Mark Scheme 4734 January 2007

4734 Mark Scheme Jan 2007

1	(i) $E(T) = E(X) + \lambda E(Y)$ $\Rightarrow 100 = 45 + 33\lambda$		M1		Use $E(X + \lambda Y)$		
		$= \frac{5}{3} \text{ AG}$		A1	2	aef	
	(ii)	$Var(T) = Var(X) + (\frac{5}{3})^{2}Var(Y)$ = 256 $T \sim N(100, 256)$	B1√	M1 A1 3	ft var	iance	
	(iii)	Same student for <i>X</i> and <i>Y</i> so independence unlikely.	B1	1	Sensi	ible reason	
2	(i)	Use $3a/2 = 1$		B1	1	Or similar	
	(ii)	$y = \frac{2}{3}x$ $y = 1 - \frac{1}{3}x$		B1 M1A1	3	M1 for correct gradient B1M1A0 if not y=	
	(iii)	$f(x) = \begin{cases} \frac{2}{3}x & 0 \le x \\ 1 - \frac{1}{3}x & 1 < x \end{cases}$: ≤1 ≤3.				
				B1√	1	ft (ii)	
	(iv) $\int_{0}^{1} \frac{2}{3} x^{2} dx + \int_{1}^{3} (x - \frac{1}{3} x^{2}) dx$			M1		One correct, with limits	
	$\left[\frac{2}{9}x^{3}\right]_{0}^{1} + \left[\frac{1}{2}x^{2} - \frac{1}{9}x^{3}\right]_{1}^{3}$			$A1\sqrt{A1}$		ft from similar f	
		= 4/3		A1	4	aef	
3		ssumes breaking strengths have no	ormal				
		al distributions variances		B1 B1	2		
	(ii) H ₀	$ μ_T = μ_U, H_1: μ_T > μ_U $ where $μ_T, μ_U$ are means for treated and untreated thread.		B1		For both hypotheses	
	$\overline{x}_T =$	$18.05, \overline{x}_U = 17.26$		B1		May be implied below by 0.79	
	$s_T^2 = 0.715, s_U^2 = 0.738$			B1		Allow biased, 0.596, 0.590 if s^2	
	$s^2 = (5 \times 0.715 + 4 \times 0.738)/9$			M1	XX 7° . 1	$=(6\times0.596+5\times0.590)/9$	
	EITHER: $(18.05 - 17.26)/[s\sqrt{(1/5+1/6)}]$ M1 = 1.532 Compare correctly with 1.383 Reject H ₀ and accept there is sufficient			A1 M1		pooled variance est.	
		nce that mean has increased so that the atment has been successful.	ıt	A1√		Conclusion in context. Ft 1.532	
	the tre	atment has been successful.		$\Delta 1$		Conclusion in context. I t 1.332	
		$\overline{X}_T - \overline{X}_U \ge ks\sqrt{1/5 + 1/6}; = 0.7$	13	M1A1		Allow > or =	

4734 Mark Scheme Jan 2007

4	(i) $s^2 = \frac{1}{11}(2604.4 - 177.6^2/12)$ = 1.0836	M1	A1	aef	
	Use $\overline{x} \pm t \sqrt{\frac{s^2}{12}}$		M1		
	$t = 2.201$ $\overline{x} = 177.6/12 = 14.8$ $(14.14,15.46), (14.1, 15.5)$		B1 A1 A1	6	
	(ii) EITHER: $(14.8 - 15.4)/(\sqrt{s^2/12})$ = -1.997 Compare correctly with -1.796 Reject H ₀ and accept that there is	M1	M1 A1		With their variance
	evidence that the mean is less than 15.4	A1√		In cont	ext. Ft – 1.997
	OR: $\overline{X} - 15.4 \le -k \sqrt{\frac{s^2}{12}}$; $\overline{X} \le 14.86$		M1A1		Allow < or =
	$14.8 < 14.86$, reject H_0 etc		M1A1√ 4		Or equivalent. Ft 14.86
5	(i) 978/1200 = 0.815		B1	1	
5	(i) $978/1200 = 0.815$ (ii) Use $p \pm z\sqrt{\frac{p(1-p)}{1200}}$		B1 M1	1	Reasonable variance
5				1	
5	(ii) Use $p \pm z \sqrt{\frac{p(1-p)}{1200}}$ z = 1.645 $\sqrt{(0.815 \times 0.185/1200)}$		M1 B1 A1√	1	ft p Allow 1199
5	(ii) Use $p \pm z \sqrt{\frac{p(1-p)}{1200}}$ z = 1.645		M1 B1	4	
5	(ii) Use $p \pm z \sqrt{\frac{p(1-p)}{1200}}$ z = 1.645 $\sqrt{(0.815 \times 0.185/1200)}$		M1 B1 A1√		ft p Allow 1199
5	(ii) Use $p \pm z \sqrt{\frac{p(1-p)}{1200}}$ z = 1.645 $\sqrt{(0.815 \times 0.185/1200)}$ (0.797,0.833) (iii) If a large number of such samples we taken, p would be contained in about 90		M1 B1 A1√ A1	4	ft p Allow 1199 Interval B1 if idea correct but badly

4734 Mark Scheme Jan 2007

6 (i)
$$\int_{1}^{t} \frac{3}{x^{4}} dx$$
 M1 Any variable

$$F(t) = \begin{cases} 1 - \frac{1}{t^{3}} & t \ge 1, \\ (0 & \text{otherwise.}) \end{cases}$$
A1 2

(ii) $G(y) = P(Y \le y)$ M1
$$= P(T \le y^{1/3})$$
 A1
$$= F(y^{1/3})$$
 M1
$$= 1 - 1/y$$
 A1 $\sqrt{}$ ft $F(t)$

$$g(y) = G'(y)$$
 M1
$$= 1/y^{2}, y \ge 1 \text{ AG}$$
 A1 6

(iii) EITHER
$$\int_{1}^{\infty} \frac{\sqrt{y}}{y^{2}} dy$$
OR
$$\int_{1}^{\infty} \frac{3t^{\frac{3}{2}}}{t^{4}} dt$$
M1
$$\left[-2y^{-1/2}\right]_{1}^{\infty} \qquad \left[-2t^{-3/2}\right]_{1}^{\infty}$$
B1
$$= 2$$
A1
3

7 (i)(a) H_0 : Eye colour and reaction are not associated. **B**1 Or equivalent (independent, or unrelated) H₁: Eye colour and reaction are associated **B**1 2 65×39/140 **B**1 1 (b) $6.11^2/18.11 + 5.3^2/11.7 + 0.81^2/9.19$ M1Or equivalent; one correct 2.061 + 2.401 + 0.071**A**1 At least 3 dp here 4.533, 4.53 AG 3 A1 But accept from 2 dp (d) v = 4**B**1 Stated or implied Use tables to obtain $\alpha = 2\frac{1}{2}$ **B**1 2 Or in words, in terms of (ii) H_0 : $p_{BL} = p_{BR} = 0.4$, $p_O = 0.2$ **B**1 (H₁: At least two prob. not as above) probs or proportions E values 56 56 28 M1A1 $\chi^2 = 9^2/56 + 14^2/56 +$ M1= 5.839**A**1 Accept 5.84 Compare correctly with 5.991 M1M1A0 if 5.991 seen and Accept that sample is consistent with consistent conclusion but the hypothesis. A1√ 7 no explicit comparison SR: If three tests for *p* then count only $p_{BR} = 0.4$. $(42/140 - 0.4)/\sigma$ M1 $\sigma = \sqrt{(0.4 \times 0.6/140)}$; -2.415 A1A1 Compare with -1..96; conclusion in context M1A1 Max 6/7 (with H_0)