EDEXCEL STATISTICS S3 (6670)

SPECIMEN PAPER MARK SCHEME

PMT

Question Number		Scheme			Mark	s
1.	(<i>a</i>)	Label members $1 \rightarrow 240$		B1		
		Use random numbers to select first from $1 - 8$		B 1		
		Select every 8 th member (e.g. 6,14, 22,)		B1		(3)
	(<i>b</i>)	e.g.: More convenient, efficient, faster etc. Any 1		B 1		(1)
					(4 m	arks)
2.	(<i>a</i>)	$\overline{P} \sim N\left(110, \frac{8^2}{16}\right)$ ie : $\overline{P} \sim N\left(110, 2^2\right)$	Normal	B1		
			$110, 2^2$	B1		(2)
	(<i>b</i>)	$P(110 < \overline{P} < 113) = P(0 < Z < \frac{113 - 110}{2})$	Standardising	M1		
		= P (0 < Z < 1.5)		A1 1	ft	
		= 0.4332	AWRT 0.433	A1		(3)
					(5 m	arks)
3.	(a)	Let T represent total time				
		\therefore E (<i>T</i>) = 225 + 165 + 185 = 575	575	B1		
		Var (<i>T</i>) = $38^2 + 23^2 + 27^2 = 2702$	2702	B1		
		$\therefore P (533 < T < 655) = P (-0.81 < Z < 1.54)$	Standardising	M1 ft	A1	
		= 0.7292	AWRT 0.729	A1		(5)
	(b)	Let D represent the difference in times for tasks B and C (i.e. $B -$	<i>C</i>)			
		$\therefore E(D) = 165 - 185 = -20$		B1		
		$Var(D) = 23^2 + 27^2 = 1258$		B 1		
		(D > 0) = P(Z > 0 - (-20))	Standardising	M 1	A1	
		$\dots F(D > 0) = F\left(2 > \frac{1}{\sqrt{1258}}\right)$	$-20, \sqrt{1258}$	ft		
		= P(Z > 0.56)				
		= 0.2877	AWRT 0.288	A1		(5)
						arks)

EDEXCEL STATISTICS S3 (6670)

Question Number		Scheme		Marks	
4.	(<i>a</i>)	Attendance ranks 2, 1, 8, 5, 3, 6, 7, 4	B1		
		$\sum d^2 = 48$ Attempt to find $\sum d^2$	M1 A1		
		$r_s = 1 - \frac{6 \times 48}{8 \times 63}$ Substitution of their $\sum d^2$	M1		
		= 0.4286 awrt 0.429	A1 ft	(5)	
	(<i>b</i>)	$H_0: \rho = 0; H_1: \rho \neq 0.$ both	B1		
		With $n=8$, critical value is 0.7381 0.7381	B1		
		Correct comparison	M1		
		Conclusion	A1 ft	(4)	
	(<i>c</i>)	Share ranks evenly.	B1		
	Use product moment correlation coefficient on ranks.		B1	(2)	
				arks)	
5.	(<i>a</i>)	$P(X = x) = \frac{1}{6}; x = 1, 2,, 6.$	B1 B1	(2)	
	(<i>b</i>)	Discrete uniform distribution	B1	(1)	
	(c) H_o : Discrete uniform distribution is a suitable model		B1		
		H_1 : Discrete uniform distribution is <u>not</u> a suitable model	B1		
		$\alpha = 0.05 \nu = 5;$ CR: $\chi^2 > 11.070$	B1 B1		
		$\sum \frac{(O-E)^2}{E} = \frac{1}{50} \left\{ 9^2 + 1^2 + 2^2 + 8^2 + 13^2 + 13^2 \right\}$ All E's=50	B1		
		$=\frac{448}{50} = \frac{9.76}{E}$	M1 A1		
		Since 9.76 is not in the critical region there is no evidence to reject H_0 and thus the data is compatible with the assumption	A1 ft	(8)	
	the data is compatible with the assumption.		(11 marks)		

EDEXCEL STATISTICS S3 (6670)

Question Number	Scheme	Marks	
6. (a)	$\mathbf{H}_{o}: \boldsymbol{\mu}_{L} = \boldsymbol{\mu}_{H}; \mathbf{H}_{1}: \boldsymbol{\mu}_{L} \neq \boldsymbol{\mu}_{H}$	B1 B1	
	$8.13^2 6.69^2$ Substitute into s.e.	M1	
	s.e. = $\sqrt{\frac{400}{400} + \frac{300}{300}}$ Complete correct expression	A1	
	= 0.5607 AWRT 0.561	A1	
	$\alpha = 0.05 \Rightarrow \text{C.R: } z < -1.96 \text{ or } z > 1.96 \qquad \pm 1.96$	B1	
	Test statistic: $z = \frac{6.40 - 7.42}{0.5607} = -\underline{1.819}$ $(\overline{x}_{\rm L} - \overline{x}_{\rm H})/$ their s.e.	M1	
	AWRT ±1.82	A1	
	Since -1.819 is not in the critical region then there is no evidence to reject H ₀ and thus it can be concluded that there is no difference in mean expenditure on tobacco.		
(b)	C. L. Theorem enables use of $\overline{L} \sim Normal and \overline{H} \sim Normal$. $\overline{L} \text{ or } \overline{H}$	B1	
	Normal	B1 (2)	
		(11 marks)	

Question Number	Scheme					Μ	larks
7.	Observed Frequencies						
		Pass	Fail	Total			
	Male	23	27	50			
	Female	32	18	50			
	Total	55	45	100			
	Expected Frequencies						
		Pass	Fail	Total	Use of $\frac{R_T \times C_T}{100}$	M1	
	Male	27.5	22.5	50	27.5	A1	
	Female	27.5	22.5	50	22.5	A1	
	Total	55	45	100			
	H_{o} : No association between gender and test result					B1	
	H ₁ : Association between gender and test result $\sum \frac{(O-E)^2}{E} = \frac{(23-27.5)^2}{27.5} + \dots \frac{(18-22.5)^2}{22.5}$ Use of $\sum \frac{(O-E)^2}{E}$					B1	
						M1 A	1
	= 3.27					A1	
	$\alpha = 0.10 \Longrightarrow \chi^2 > 2.705$				v = 1	B1	
	Since 3.27 is in the critical region there is evidence of association 2.705 between gender and test result.					B1	
	-					A1 ft	(11)
						(1	1 marks)

PMT

EDEXCEL STATISTICS S3 (6670)

Question Number		Scheme		Mark	s
8.	(<i>a</i>)	$\overline{x} = \hat{\mu} = \frac{85.2}{12} = \underline{7.10}$		M1A1	
		$a^2 = 1 \left[006.18 (85.2)^2 \right]$	Substitution in correct formula	M1	
		$s = \frac{11}{11} \left\{ 900.18 - \frac{12}{12} \right\}$	Complete correct expression	A1 ft	
		= 27.3873	AWRT 27.4	A1	(5)
	(<i>b</i>)	Confidence interval is given by	$\overline{x} \pm z_{\frac{\alpha}{2}} \cdot \frac{s}{\sqrt{n}}$	M1	
		$7.10 \pm 1.6449 imes rac{5.1}{\sqrt{12}}$	Correct expression with their values	A1 ft	
			1.6449	B1	
		ie:- (4.6783, 9.5216)	AWRT (4.68, 9.52)	A1 A1	(5)
	(<i>c</i>)	The value 4 is not in the interval;		B1	
		Thus the claim is not substantiated.		B1	(2)
				(12 marks)	