

Mark Scheme (Results)

Summer 2013

GCE Statistics 3 (6691/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2013 Publications Code UA037011 All the material in this publication is copyright © Pearson Education Ltd 2013

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt[]{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.
- 8. In some instances, the mark distributions (e.g. M1, B1 and A1) printed on the candidate's response may differ from the final mark scheme.

Question Number	Scheme							ks	
	Cl	nolesterol Level	High	Low					
1	High		7.6	12.4	20		N11	1	
1.	Low		30.4	49.6	80		M1A	1	
			38	62	100				
								(2)	
	H_0 : Cho	lesterol level is ind	lependent of intake	of saturat	ed fats(no associa	tion)	B1	(1)	
	H_1 : Cholesterol level is not independent of intake of saturated fats (association)								
			$(Q-F)^2$		O^2]			
	0	E	$\frac{\left(O-E\right)^2}{E}$		$\frac{O^2}{E}$				
	10			10		-	dM1		
	12		2.547 or $\frac{242}{95}$		947 or $\frac{360}{19}$		A1		
	8	12.4 1	.56129 or $\frac{242}{155}$	5.1	61 or $\frac{160}{31}$		A1		
	26	30.4	0.6368 or $\frac{121}{190}$	22.	236 or $\frac{845}{38}$				
	54	49.6 (0.3903 or $\frac{121}{310}$	58.	790 or $\frac{3645}{62}$				
	$\sum \frac{(O-I)}{E}$	$\frac{E)^2}{=5.1358234}$	$\frac{0.3903 \text{ or } \frac{121}{310}}{1.2^2} + \frac{8^2}{12.4}$	$+\frac{26^2}{30.4}+$	$\frac{54^2}{49.6} - 100 = 5.$	14 (awrt 5.14)	A1	(3)	
		1)(2-1) = 1	7.0 12.4	50.4	47.0		B1		
	$\chi_1^2(0.05)$						B1	(2)	
	···•		t evidence to reje	et H [C	ondone "accen	+ Н . "1	M1	(2)	
			•	0	-		A1	(2)	
	Associat	ociation between cholesterol level and saturated fat intake							
		Notes							
			part marks: E_i (2)						
	1 st M1 for some use of $\frac{\text{Row Total} \times \text{Col.Total}}{\text{Grand Total}}$. May be implied by correct E_i								
	1 st A1		l frequencies corr						
	1 st B1	• 1	heses. Must men nship" or "correla				nce		
	$2^{nd} dM1$		rrect terms (as in 3				ith their	E_i	
	2 nd A1	for all correct ter	1 st M1 Accept 2s rms. May be implie n eg 2.54 3 rd A1	ed by a co	rrect ans.(2 dp or				
	2 nd B1	for correct deg	rees of freedom (may be i	mplied by a cv	of 3.841)			
	3 rd M1		ement linking their statements score					3.5)	
	4 th A1	for a correct co condone "relat e.g. "There is e	omment in contex ionship" or "conr evidence of a rela gh. If e.g hypothe	t - must 1 nection" h tionship l	nention "choles here but not "co between choles	storol" and "fa prrelation". terol level and	its" fat inta	ake"	

Question Number					Scheme						Marks
2(a)	Uni	Α	В	С	D	Ε	F	G			
	Staff-Stu	2	4	3	5	7	1	6			
	Satisfaction	3	2	6	4	5	1	7			M1A1A1
	$ \begin{bmatrix} d \end{bmatrix} $	-1	2	-3	1	2	0	-1			11111111111
	d^2	1	4	9	1	4	0	1	20		
	$r_s = 1 - \frac{6 \times 20}{7(49 - 1)}$	$\frac{0}{1} = 0.6$	642857		(acce	pt $\frac{9}{14}$)		(8	awrt 0.(543)	dM1A1 (5
(b)	H ₀ : $\rho = 0$										
	H _{1:} $\rho \neq 0$ ($\rho >$	> 0)									B1
	Critical value	is ± 0.7	7857(±	0.7143	8 for a c	one taile	ed test)				B1
	0.643 <cv ir<="" so="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></cv>										
	There is insuff staff-student ra				ggest a	(positiv	ve) corr	elation	betwee	en	B1ft
	stan-student n		i satisia	action.							(3
											Total 8
	est a second				Notes		<u> </u>	<u> </u>	<u> </u>	<i>,</i> ,	
(a)	1 st M1 for an attempt to rank the staff-students ratio <u>or</u> satisfaction (at least 4 correct) 1 st A1 for correct rankings for both (one or both may be reversed)										
				-			•			of rev	ersed ranks)
						_					ent on 1 st M1)
						ct expre				1	,
						-		-		(acce	pt $\pm \frac{9}{14}$)
(b)	1 st B1 for b	oth hyp	otheses	in term	s of ρ , o	one tail	H ₁ mus	t be con	npatible	with th	eir ranking
		othese	s just ii	n words	s e.g. "1	no corre	elation"	score]	B0		
						one-tai		· •			
	Their cv must be compatible with their H_1 which may be in words If hypotheses are the wrong way around this must be B0 but 3 rd B1 is possible.										
											is possible.
						sfaction		lention	iuno	01 10	. or students
	-					eir cv (p		d it is c	ev <1)		
						ive" for					
		e of "as									
	Independent of 1^{st} B1 so if $ r_s > \text{cv} $ must say there is sufficient evidence of							nce of .	(o.e.)		
	and if $ r_s < cv $ must say insufficient evidence of (o.e.) regardless of their h										eir hypotheses
					•	statem					
	(This m	ark is j	ust test	ing inte	erpretat	tion of c	compari	ison of	their r_s	and t	heir cv)

Question Number	Scheme	Marks
3(a)i e.g	Quota Sampling: Advantages: Fieldwork can be done quickly, <u>or</u> administering the test is easy, <u>or</u> costs are kept to a minimum (cheap), <u>or</u> gives estimates for each course. <u>or</u> OK for large populations <u>or</u> sampling frame not required (o.e.) Disadvantages: Non-random process <u>or</u> not possible to estimate the sampling	
e.g 3(a)ii	errors, <u>or</u> non response not recorded, <u>or</u> interviewer can introduce bias in sample choice. (o.e.) Stratified Sampling:	B1
e.g.	Advantages: Can give accurate estimates as it is a random process, <u>or</u> gives estimates for each course <u>or</u> representative of [BUT not "proportional" to] the whole population. (o.e.)	
e.g.	Disadvantages: Sampling frame required, <u>or</u> strata may not be clear as some students overlap courses <u>or</u> not suitable for large populations. (o.e.)	B1 (2)
3(b)	Total enrolments=1000 (may be implied by calculations)	B1 (2)
	Leisure and Sport= $\frac{420}{1000} \times 100 = 42$	M1
	Information Technology= $\frac{337}{1000} \times 100 = 33.7 = 34$ Health and Social Care= $\frac{200}{1000} \times 100 = 20$	
	Media Studies= $\frac{43}{1000} \times 100 = 4.3 = 4$	A1 (2)
3(c)	The college's information system would be used to identify each student and which course they are enrolled on.	(3) B1
	i.e. idea of sampling frame or list for each course . Use of random numbers to select required number of students from each course	B1
		(2) Total 7
	Notes	<u> </u>
(a)	Do not penalise for lack of context in part (a) 1 st B1 for an advantage and a disadvantage for quota sampling (must be 1 st or 1 2 nd B1 for an advantage and a disadvantage for stratified sampling (2 nd or label Do not allow opposite pairs e.g. "quicker/easier" for quota sampling and "takes a lon difficult" for stratified <u>or</u> quota "easy to use" but strat. "hard for large populations" Do not allow same reason for both e.g. "gives estimates for each course"	lled (ii))
(b)	M1 for one correct calculation, ft their "1000" A1 for 42, 34, 20 and 4 only	
(c)	1 st B1 for some mention of a suitable <u>sampling frame</u> . Need not give the speci a suitable source of list is required for all students <u>in each course</u> .	fic term but
(-)	2 nd B1 for mentioning use of <u>random numbers</u> or some random selection process	

Question Number	Scheme								
4 (a)	50 50								
	$s^{2} = \frac{8 \times 1.5^{2} + 12 \times 4^{2} + 13 \times 5.5^{2} + 9 \times 7^{2} + 8 \times 10^{2}}{49} - \frac{50}{49} 5.49^{2}, = 6.88 $ (*)								
(b)	$a = 50 \times P(6 < X < 8) = 50 \times P(0.194 < Z < 0.956)$								
	b = 50 - (28.85 + a) $a = 12.81 \text{ (tables) } \underline{\text{or}} 12.68 \text{ (calc)}$ $= 8.34 \text{ (tables) } \underline{\text{or}} 8.47 \text{ (calc)}$								
(c)	H_0 : Normal distribution is a good fit H_1 : Normal distribution is not a good fit								
	Class	0	E	$\frac{O^2}{E}$	$\frac{\left(O-E\right)^2}{E}$	-			
	0-3	8	8.56	7.4766	<i>E</i> 0.0366	M1			
	3-5	12	12.73	11.31186	0.0418	-			
	5-6	13	7.56	22.354497	3.9144	A1			
	6-8 8-12	9 8	12.68 or (12.81)	$(6.32) \sim 6.38801$	$1.0680 \sim (1.13)$				
	0-12	0	(8.34) or 8.47	7.556080~ (7.67)	(0.013) ~ 0.0260	-			
	$\sum \frac{O^2}{E} - N = 5.087 \dots \sim 5.1400 \dots$ awrt (5.09 ~ 5.14)								
	v = 5 - 3 =	2	(for	5-3 or 2 can be imp	lied by 5.991 seen)	B1			
	$\chi^2_2(0.05) =$	= 5.991	· ·	1	•	B1			
	_		ufficient evidence t	o reject H ₀		M1			
	5.09<5.991 so insufficient evidence to reject H_0 Normal distribution is a good fit.								
	Normal distribution is a good fit.								
				Notes					
(a)	B1cso f	or deno	minator of 50 and a	t least 3 products on n					
	M1 for a c	orrect ex	pression with at leas	t 3 correct products on r	num or $\frac{1844.25}{42} - \frac{156}{42}$				
	22	7 7 45		50	49	49			
	<u>or</u> —	$\frac{1.243}{49}$	$\underbrace{\text{or}}_{\text{OT}} \left(\frac{7377}{200} - 5.49^2 \right)$	$\times \frac{50}{49}$ etc Allow 3sf acc	uracy				
	A1cso for 6.88 with M1 scored and no incorrect working seen								
(b)	M1 a full method for <i>a</i> or <i>b</i> using the normal dist. Correct use of (6), 8, 5.49 and $\sqrt{6.88}$ seen								
()									
	1 st A1 for <i>a</i> in range 12.68 ~ 12.81 or <i>b</i> in range 8.34~ 8.47 or awrt these values 2^{nd} A1ft for 50 – 28.85 – their <i>a</i> (or <i>b</i>) (but requires M1). Allow awrt 3sf. Must add up to 50								
(c)				ey include 5.49 or 6.88					
	1 st M1 for	attemp	ting $\frac{(O-E)^2}{E}$ or $\frac{C}{E}$	$\frac{O^2}{E}$, at least 3 correct e	xpressions or values				
			L	r^{t} or 4 th column. (2 dp					
	А	llow an	y value in the range	es for the last two rows	5.	-			
	$2^{nd} A1$ for	r a test	statistic that is awrt	5.09 ~ 5.14. Award M	M1A1A1 if this is ob	tained.			
				d on their test statistic		> 3.8)			
			=	ore M0 e.g. "significan	- 0				
				ng that normal model is 9 or 6.88 here. Hypothes					

Question Number	Scheme	Marks
5 (a)	Let $L \sim N(50, 25)$ and $S \sim N(15, 9)$	
- ()	Let $X = L - (S_1 + S_2 + S_3)$	B1
	$E(X) = 50 - 3 \times 15 = 5$	B1
	$Var(X) = 25 + 3 \times 9 = 52$	M1A1
	$P(X < 0) = P\left(Z < \frac{-5}{\sqrt{52}}\right)$	dM1
	= P(Z < -0.693)	
	=0.244 or 0.2451 (tables) (awrt $0.244 \sim 0.245$)	A1 (6)
(b)	Let $Y = L - 3S$	(6) B1
(0)	$E(Y) = 50 - 3 \times 15 = 5$	B1
	$Var(Y) = 25 + 3^2 \times 9 = 106$	M1A1
		111/11
	$P(Y > 0) = P\left(Z > \frac{-5}{\sqrt{106}}\right)$	dM1
	= P(Z > -0.4856)	
	$=0.686 \text{ or } 0.6879 \text{ (tables)} \qquad (awrt \ 0.686 \sim 0.688)$	A1
		(6)
		Total 12
	Notes	201 4
(a)	1 st B1 for forming a suitable variable X <u>explicitly</u> seen. Do not give for L – allow $L - (S + S + S)$	35 but
	$2^{nd} B1$ for $E(X) = 5$ (or -5 if their X is defined the other way around)	
	1^{st} M1 for an attempt at Var(X) = Var(L) + 3Var(S). Do not condone 5 for "25" or	3 for "9"
	1 st A1 for 52	
	$2^{nd} dM1$ for attempting the correct probability and standardising with their m	
	This mark is dependent on 1^{st} M1 so if X is not being used or wrong variar	nce score M0
	This mark is dependent on 1^{st} M1 so if X is not being used or wrong variar If their method is not crystal clear then they must be attempting P(Z < -v	nce score M0
	This mark is dependent on 1^{st} M1 so if X is not being used or wrong variar If their method is not crystal clear then they must be attempting P(Z < -v or	nce score M0 ve value)
	This mark is dependent on 1^{st} M1 so if X is not being used or wrong variar If their method is not crystal clear then they must be attempting P(Z < -v or P(Z > +ve value) i.e. their probability <u>after</u> standardisation should lead to	nce score M0 ve value)
	This mark is dependent on 1^{st} M1 so if X is not being used or wrong variar If their method is not crystal clear then they must be attempting P(Z < -v or	nce score M0 ve value) a prob. < 0.5
(b)	This mark is dependent on 1 st M1 so if X is not being used or wrong variar If their method is not crystal clear then they must be attempting $P(Z < -v)$ or P(Z > +ve value) i.e. their probability <u>after</u> standardisation should lead to 2^{nd} A1 for awrt 0.244 ~ 0.245 Correct ans. only scores 5/6 (or 6/6 if 1 st B1) but must be clearly labelled as (a) or the 1^{st} B1 for defining a new variable $[Y =]\pm (L - 3S)$. May be implied by a corr	nce score M0 ve value) a prob. < 0.5 first answer.
(b)	This mark is dependent on 1 st M1 so if X is not being used or wrong variar If their method is not crystal clear then they must be attempting $P(Z < -v)$ or P(Z > +ve value) i.e. their probability <u>after</u> standardisation should lead to $2^{nd} A1$ for awrt 0.244 ~ 0.245 Correct ans. only scores 5/6 (or 6/6 if 1 st B1) but must be clearly labelled as (a) or the $1^{st} B1$ for defining a new variable $[Y =]\pm (L - 3S)$. May be implied by a corr $2^{nd} B1$ for E(Y) = 5 (or - 5 if their Y is defined as $Y = 3S - L$) $1^{st} M1$ for an attempt at Var(Y) = Var(L) + 3 ² Var(S). Do not condone 5 for "25" or	nce score M0 ve value) a prob. < 0.5 first answer. rect variance.
(b)	This mark is dependent on 1 st M1 so if X is not being used or wrong variar If their method is not crystal clear then they must be attempting $P(Z < -v)$ or P(Z > +ve value) i.e. their probability <u>after</u> standardisation should lead to $2^{nd} A1$ for awrt 0.244 ~ 0.245 Correct ans. only scores 5/6 (or 6/6 if 1 st B1) but must be clearly labelled as (a) or the $1^{st} B1$ for defining a new variable $[Y =]\pm (L - 3S)$. May be implied by a corr $2^{nd} B1$ for E(Y) = 5 (or - 5 if their Y is defined as $Y = 3S - L$) $1^{st} M1$ for an attempt at Var(Y) = Var(L) + 3 ² Var(S). Do not condone 5 for "25" of $1^{st} A1$ for 106 only	nce score M0 ve value) a prob. < 0.5 first answer. rect variance. r 3 for "9"
(b)	This mark is dependent on 1 st M1 so if X is not being used or wrong variar If their method is not crystal clear then they must be attempting $P(Z < -v)$ or P(Z > +ve value) i.e. their probability <u>after</u> standardisation should lead to $2^{nd} A1$ for awrt 0.244 ~ 0.245 Correct ans. only scores 5/6 (or 6/6 if 1 st B1) but must be clearly labelled as (a) or the $1^{st} B1$ for defining a new variable $[Y =]\pm (L - 3S)$. May be implied by a corr $2^{nd} B1$ for E(Y) = 5 (or - 5 if their Y is defined as $Y = 3S - L$) $1^{st} M1$ for an attempt at Var(Y) = Var(L) + 3 ² Var(S). Do not condone 5 for "25" or	nce score M0 ve value) a prob. < 0.5 first answer. rect variance. r 3 for "9" nean and sd.
(b)	This mark is dependent on 1 st M1 so if X is not being used or wrong variar If their method is not crystal clear then they must be attempting $P(Z < -v)$ or P(Z > +ve value) i.e. their probability <u>after</u> standardisation should lead to $2^{nd} A1$ for awrt 0.244 ~ 0.245 Correct ans. only scores 5/6 (or 6/6 if 1 st B1) but must be clearly labelled as (a) or the $1^{st} B1$ for defining a new variable $[Y =]\pm (L - 3S)$. May be implied by a corr $2^{nd} B1$ for $E(Y) = 5$ (or -5 if their Y is defined as $Y = 3S - L$) $1^{st} M1$ for an attempt at $Var(Y) = Var(L) + 3^2 Var(S)$. Do not condone 5 for "25" o $1^{st} A1$ for 106 only $2^{nd} dM1$ for attempting the correct probability and standardising with their m	nce score M0 ve value) a prob. < 0.5 first answer. rect variance. r 3 for "9" nean and sd. ce score M0
(b)	This mark is dependent on 1 st M1 so if X is not being used or wrong variar If their method is not crystal clear then they must be attempting $P(Z < -x)$ or P(Z > +ve value) i.e. their probability <u>after</u> standardisation should lead to 2^{nd} A1 for awrt 0.244 ~ 0.245 Correct ans. only scores 5/6 (or 6/6 if 1 st B1) but must be clearly labelled as (a) or the 1^{st} B1 for defining a new variable $[Y =]\pm (L - 3S)$. May be implied by a corr 2^{nd} B1 for E(Y) = 5 (or - 5 if their Y is defined as $Y = 3S - L$) 1^{st} M1 for an attempt at Var(Y) = Var(L) + 3 ² Var(S). Do not condone 5 for "25" of 1^{st} A1 for 106 only 2^{nd} dM1 for attempting the correct probability and standardising with their m This mark is dependent on 1^{st} M1 so if Y is not being used or wrong variant If their method is not crystal clear then they must be attempting P(Z > -v) or	nce score M0 ve value) a prob. < 0.5 first answer. rect variance. r 3 for "9" lean and sd. ce score M0 ve value)
(b)	This mark is dependent on 1 st M1 so if X is not being used or wrong variar If their method is not crystal clear then they must be attempting $P(Z < -v)$ or P(Z > +ve value) i.e. their probability <u>after</u> standardisation should lead to 2^{nd} A1 for awrt 0.244 ~ 0.245 Correct ans. only scores 5/6 (or 6/6 if 1 st B1) but must be clearly labelled as (a) or the 1^{st} B1 for defining a new variable $[Y =]\pm (L - 3S)$. May be implied by a corr 2^{nd} B1 for E(Y) = 5 (or - 5 if their Y is defined as $Y = 3S - L$) 1^{st} M1 for an attempt at Var(Y) = Var(L) + 3 ² Var(S). Do not condone 5 for "25" o 1^{st} A1 for 106 only 2^{nd} dM1 for attempting the correct probability and standardising with their m This mark is dependent on 1^{st} M1 so if Y is not being used or wrong variance If their method is not crystal clear then they must be attempting $P(Z > -v)$ or P(Z < +ve value) i.e. their probability <u>after</u> standardisation should lead to	nce score M0 ve value) a prob. < 0.5 first answer. rect variance. r 3 for "9" tean and sd. ce score M0 ve value)
(b)	This mark is dependent on 1 st M1 so if X is not being used or wrong variar If their method is not crystal clear then they must be attempting $P(Z < -x)$ or P(Z > +ve value) i.e. their probability <u>after</u> standardisation should lead to 2^{nd} A1 for awrt 0.244 ~ 0.245 Correct ans. only scores 5/6 (or 6/6 if 1 st B1) but must be clearly labelled as (a) or the 1^{st} B1 for defining a new variable $[Y =]\pm (L - 3S)$. May be implied by a corr 2^{nd} B1 for E(Y) = 5 (or - 5 if their Y is defined as $Y = 3S - L$) 1^{st} M1 for an attempt at Var(Y) = Var(L) + 3 ² Var(S). Do not condone 5 for "25" of 1^{st} A1 for 106 only 2^{nd} dM1 for attempting the correct probability and standardising with their m This mark is dependent on 1^{st} M1 so if Y is not being used or wrong variant If their method is not crystal clear then they must be attempting P(Z > -v) or	nce score M0 ve value) a prob. < 0.5 first answer. rect variance. r 3 for "9" nean and sd. ce score M0 ve value) a prob. > 0.5

Questi Numb		Scheme						
		$\mathbf{H}_0: \boldsymbol{\mu}_{new} - \boldsymbol{\mu}_{old} = 1$						
		$\mathbf{H}_1: \boldsymbol{\mu}_{new} - \boldsymbol{\mu}_{old} > 1$						
		$z = \frac{7 - 5.5 - 1}{\sqrt{\frac{0.5}{60} + \frac{0.75}{70}}} = 3.62254$ (awrt 3.62)						
		Critical value $z = 1.6449$ (allow <u>+</u>) [3.62 >1.6449] so sufficient evidence to reject H ₀	B1 dM1					
		Evidence that the mean yield of new variety is more than 1 kg greater than the	A1					
	(b)	old variety. Mean yield is normally distributed Sample size is large. Must state or imply that in this case sample size is large						
		Notes	Total 11					
	(a)	1 st & 2 nd B1 for hypotheses. Accept μ_1, μ_2 or μ_A, μ_B etc if there is some indication which is which e.g. $A \sim N(\mu_A, 0.5)$	tion of					
		1 st M1 for an attempt at se. Condone switching 0.5 and 0.75 $\sqrt{\frac{0.5 \text{ or } 0.75}{60} + \frac{0.75 \text{ or } 0.5}{70}}$						
		1^{st} A1for a correct expression for denominator of test statistic or 0.138 or $\sqrt{0.0190}$ 2^{nd} A1for a correct numerator of test statistic (must have the -1) 3^{rd} A1for awrt 3.62[Allow - 3.62 from numerator of 5.5 - 7 - 1 and compatible H ₁]						
		$\begin{array}{llllllllllllllllllllllllllllllllllll$						
AI	LT	Pooled estimate: If they calculate $s_p = \sqrt{0.41845} = 0.64688$ allow 1 st M1, 1 st A1 for expression (or awrt 0.114) and 2 nd A1 if numerator correct but A0 for test statistic (4.39)						
((b)	$1^{st} B1 \text{for mention of } \underline{\text{mean}} \text{ (yield) and } \underline{\text{normal}} \text{ (distribution)} \\ 2^{nd} B1 \text{for mention of } \underline{\text{sample}} \text{ (size) being } \underline{\text{large}} \text{ in } \underline{\text{this case}}$						

Question Number	Scheme	Marks					
7 (a)	$\hat{\mu} = \bar{x} = \frac{33.29}{8} = 4.16125$ (awrt 4.16)	B1					
	$\hat{\sigma}^2 = s^2 = \frac{4.12^2 + 5.12^2 + \dots - 8 \times \overline{x}^2}{7}$	M1					
	$\hat{\sigma}^2 = s^2 = \frac{141.4035 - 138.528013}{7} = 0.41078$ (awrt 0.411)	A1					
(b)		(3) B1					
	$\sum x^2 = "141.4035" + 31 \times 0.25 + 32 \times 4.55^2 (= 811.6335) $ (awrt 812)	M1A1					
	Combined sample: $s^2 = \frac{811.6335 - \frac{178.89^2}{40}}{39} = 0.29724865$ (awrt 0.297)	M1A1					
	$\frac{s}{\sqrt{n}} = \frac{\sqrt{0.297}}{\sqrt{40}} = 0.0862 $ (awrt 0.0862)	M1A1					
	σ 178.89 0.67	(7)					
(c)	$\overline{x} \pm 1.96 \frac{\sigma}{\sqrt{n}} = \frac{178.89}{40} \pm 1.96 \frac{0.67}{\sqrt{40}}$	M1B1					
	= (4.2646, 4.67988) awrt (4.26 [or 4.265], 4.68)	A1 (2)					
		(3) Total 13					
	Notes						
(a)	M1 for an attempt at s^2 : correct denom, clear attempt at $\sum x^2$ and ft their \overline{x}	Ans only 2/2					
(b)	B1 for correct sum or mean or fully correct expression (accept mean = awrt 4.47) May be in (c) 1^{st} M1 for their 141.4035 + 31×0.25 + 32×4.55 ² or "141.4035" + 7.75+ 662.48 (accept 3sf) Beware: <u>32(0.25</u> + 4.55 ²) + "141.4035" = awrt 812 but scores M0A0. 1^{st} A1 for a fully correct expression (all to 3sf or better) or answer only = awrt 812 2^{nd} M1 for a correct expression using their values						
	3 rd M1 dependent on using a changed s^2 (not their 0.411 or 0.25) for $\frac{\sqrt{0.2}}{\sqrt{4}}$	$\frac{97}{0}$					
	This s^2 must be based on a <u>combination</u> of their 0.411 and 0.25 e.g. 0	.661					
(c)	M1 for $\overline{x} \pm z \times \frac{\sigma}{\sqrt{n}}$ for any z (> 1.5) and ft their \overline{x} based on combining their 4						
	do not award for simply using 4.55 or their 4.16. Condone $\sigma = \sqrt{\text{their } 0.297}$	or their (b)					
	B1 for $z = 1.96$ used in an attempt at a CI, may for example miss \sqrt{n} A1 for both limits awrt 3sf. Allow lower limit of 4.265						

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u> Order Code UA037011 Summer 2013

For more information on Edexcel qualifications, please visit our website <u>www.edexcel.com</u>

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

