

Mark Scheme (Results)

June 2011

GCE Statistics S3 (6691) Paper 1

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025 or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our **Ask The Expert** email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

June 2011
Publications Code UA028846
All the material in this publication is copyright
© Edexcel Ltd 2011

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - B marks are unconditional accuracy marks (independent of M marks)
 - Marks should not be subdivided.

Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod benefit of doubt
- ft follow through
- the symbol will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark

June 2011 Statistics S3 6691 Mark Scheme

_	Mark Scheme	1
Question Number	Scheme	Marks
1.	X_1, X_2, X_n is a random sample of size n , for large n ,	B1
	drawn from a population of any distribution with mean μ and variance σ^2	B1
	then \overline{X} is (approximately) $N\left(\mu, \frac{\sigma^2}{n}\right)$	B1
		(3) 3
	1 st B for large sample or equivalent 2 nd B for 'population of any distribution' or 'any population' 3 rd B require mean or symbol and normal (parameters not required)	3

Town A h rank 1 c rank 4 $ d $ 3 d^2 9	B 5 3 2	C 2 2	D 3	E 7	F	G		
$\frac{h \operatorname{rank}}{c \operatorname{rank}} = \frac{1}{4}$ $\frac{ d }{ d } = 3$	5	2 2		7	4	+		
d 3					4	6		
41	2	1	1	6	7	5		
d^2 9		0	2	1	3	1	M1	
u	4	0	4	1	9	1	M1	
$d^2 = 28$							M1	A1
$=1-\frac{6\times28}{}$	3_						M1	
7×48 $= 0.5$	3						A1	
								(6)
$: \rho = 0, H_1 : \rho \neq$	= 0						B1	
		857					B1:	ft
	-		reject H				M1	
			J	O			A1	ft
	11							(4) 10
: ti	$l^{2} = 28$ $= 1 - \frac{6 \times 28}{7 \times 48}$ $= 0.5$ $e \rho = 0, H_{1} : \rho \neq 0$ ical values are 30.7857 insuffi	$l^{2} = 28$ $= 1 - \frac{6 \times 28}{7 \times 48}$ $= 0.5$ $e \rho = 0, H_{1}: \rho \neq 0$ ical values are $r_{s} = \pm 0.7$ ± 0.7857 insufficient evices	$l^{2} = 28$ $= 1 - \frac{6 \times 28}{7 \times 48}$ $= 0.5$ $t \rho = 0, H_{1} : \rho \neq 0$ ical values are $r_{s} = \pm 0.7857$	$l^{2} = 28$ $= 1 - \frac{6 \times 28}{7 \times 48}$ $= 0.5$ $e \rho = 0, H_{1} : \rho \neq 0$ ical values are $r_{s} = \pm 0.7857$ ± 0.7857 insufficient evidence to reject H	$l^{2} = 28$ $= 1 - \frac{6 \times 28}{7 \times 48}$ $= 0.5$ $t \rho = 0, H_{1} : \rho \neq 0$ ical values are $r_{s} = \pm 0.7857$ $t 0.7857$ insufficient evidence to reject H_{0}	$l^{2} = 28$ $= 1 - \frac{6 \times 28}{7 \times 48}$ $= 0.5$ $t \rho = 0, H_{1} : \rho \neq 0$ ical values are $r_{s} = \pm 0.7857$ $t 0.7857$ insufficient evidence to reject H_{0}	$l^{2} = 28$ $= 1 - \frac{6 \times 28}{7 \times 48}$ $= 0.5$ $t \rho = 0, H_{1}: \rho \neq 0$ ical values are $r_{s} = \pm 0.7857$ $t 0.7857$ insufficient evidence to reject H_{0}	$d^{2} = 28$ $= 1 - \frac{6 \times 28}{7 \times 48}$ $= 0.5$ $d^{2} = 0$

Notes (a) $1^{st} \text{ M1} \text{for an attempt to rank the hardship against calls}$ $2^{nd} \text{ M1} \text{for attempting } d \text{ for their ranks. Must be using ranks.}$ $3^{rd} \text{ M1} \text{for attempting } \sum d^2 \text{ (must be using ranks)}$ $1^{st} \text{ A1} \text{for sum of } 28 \text{ (or } 84)$ $4^{th} \text{ M1} \text{for use of the correct formula with their } \sum d^2 \text{ . If answer is not correct an expression is required.}$ $2^{nd} \text{ A1} \text{for awrt } 0.5 \text{ (or } -0.5)$ (b) $1^{st} \text{ B1} \text{for both hypotheses in terms of } \rho, \text{ H}_1 \text{ must be two tail.}$ $2^{nd} \text{ B1} \text{for cv of } \pm 0.7857 \text{ (or } 0.7143 \text{ to ft from 1-tailed H}_1)}$ $M1 \text{for a correct statement relating their } r_s \text{ with their cv but cv must be such that } cv < 1$ $A1ft \text{for a correct contextualised comment. Must mention}$	
 2nd M1 for attempting d for their ranks. Must be using ranks. 3rd M1 for attempting ∑d² (must be using ranks) 1st A1 for sum of 28 (or 84) 4th M1 for use of the correct formula with their ∑d². If answer is not correct an expression is required. 2nd A1 for awrt 0.5 (or -0.5) 1st B1 for both hypotheses in terms of ρ, H₁ must be two tail. 2nd B1 for cv of ±0.7857 (or 0.7143 to ft from 1-tailed H₁) M1 for a correct statement relating their r₅ with their cv but cv must be such that cv <1 	
1st A1 for sum of 28 (or 84) 4th M1 for use of the correct formula with their $\sum d^2$. If answer is not correct an expression is required. 2nd A1 for awrt 0.5 (or -0.5) 1st B1 for both hypotheses in terms of ρ , H ₁ must be two tail. 2nd B1 for cv of ± 0.7857 (or 0.7143 to ft from 1-tailed H ₁) M1 for a correct statement relating their r_s with their cv but cv must be such that $ cv < 1$	
correct an expression is required. 2^{nd} A1 for awrt 0.5 (or -0.5) 1^{st} B1 for both hypotheses in terms of ρ , H_1 must be two tail. 2^{nd} B1 for cv of ± 0.7857 (or 0.7143 to ft from 1-tailed H_1) M1 for a correct statement relating their r_s with their cv but cv must be such that $ \text{cv} < 1$	
2^{nd} B1 for cv of ± 0.7857 (or 0.7143 to ft from 1-tailed H ₁) M1 for a correct statement relating their r_s with their cv but cv must be such that $ \text{cv} < 1$	
M1 for a correct statement relating their r_s with their cv but cv must be such that $ cv <1$	
be such that $ cv < 1$	
· ·	
Ain for a correct contextualised comment. Must mention	
"Councillor" and "claim" <u>or</u> "hardship" and "number of calls (to the emergency services)"	
Follow through their r_s and their cv (provided it is $ cv < 1$	
Condone use of "association" in conclusion for A1 Condone 'positive' in conclusion.	
	1

Question Number		So	cheme			Mark	S
3.							
	Defect Type	D_1	D_2				
	Shift	-					
	First Shift	47.25	15.75	63			
	Second Shift	56.25	18.75	75			
	Third Shift	46.5	15.5	62			
		150	50	200		M1A1	
	H ₀ : Type of defect is in H ₁ : Type of defect is no					B1	
	0	E	$\frac{(O-E)^2}{E}$	$\frac{{O_i}^2}{E_i}$			
	45	47.25	0.1071	42.857			
	18	15.75	0.3214	20.571			
	55	56.25	0.02777	53.777			
	20	18.75	0.0833	21.333			
	50	46.5	0.2634	53.763			
	12	15.5	0.7903	9.290		M1A1	
	$\frac{(O-E)^2}{E}$ =1.5934 or $\frac{C}{E}$	$\frac{Q_i^2}{E_i}$ -200=201.5	5934-200=1.593	4	awrt1.59	A1	
		•				B1	
	$\nu = (3-1)(2-1) = 2$						
	v = (3-1)(2-1) = 2 $\chi_2^2(0.10) = 4.605$					B1ft	
		nt evidence t	o reject H ₀				

Notes $1^{\text{st}} \text{ M1} \text{for some use of } \frac{\text{Row Total} \times \text{Col.Total}}{\text{Grand Total}} \text{ May be implied by correct}$ E_i	Question Number	Scheme	Marks
1^{st} A1 for all expected frequencies correct B1 for both hypotheses. Must mention "defect" and "shift" at least once Use of "relationship" or "correlation" or "connection" is B0 2^{nd} M1 for at least two correct terms (as in 3^{rd} or 4^{th} column) or correct expressions with their E_i 2^{nd} A1 for all correct terms. May be implied by a correct answer.(2 dp or better-allow eg 0.10) 3^{rd} M1 for a correct statement linking their test statistic and their cv . Must be χ^2 not normal. 4^{th} A1 for a correct comment in context - must mention "manager's belief" or "shift" and "defect type" - condone "relationship" or "connection" here but not "correlation". No follow through e.g. "There is evidence of a relationship between shift and type of defect"		$ \begin{array}{c} 1^{\rm st}{\rm M1} {\rm for\ some\ use\ of}\ \frac{{\rm Row\ Total}\times{\rm Col.Total}}{{\rm Grand\ Total}}\ {\rm May\ be\ implied\ by\ correct} \\ E_i \\ 1^{\rm st}{\rm A1} {\rm for\ all\ expected\ frequencies\ correct} \\ {\rm B1} {\rm for\ both\ hypotheses.}\ {\rm Must\ mention\ "defect"\ and\ "shift"\ at\ least} \\ {\rm once} \\ {\rm Use\ of\ "relationship"\ or\ "correlation"\ or\ "connection"\ is\ B0} \\ 2^{\rm nd}{\rm M1} {\rm for\ at\ least\ two\ correct\ terms\ (as\ in\ 3^{\rm rd}\ or\ 4^{\rm th}\ column)\ or\ correct} \\ {\rm expressions\ with\ their\ }E_i \\ 2^{\rm nd}{\rm A1} {\rm for\ all\ correct\ terms.}\ {\rm May\ be\ implied\ by\ a\ correct\ answer.(2\ dp\ or\ better-allow\ eg\ 0.10)} \\ 3^{\rm rd}{\rm M1} {\rm for\ a\ correct\ statement\ linking\ their\ test\ statistic\ and\ their\ cv\ .} \\ {\rm Must\ be\ }\chi^2\ {\rm not\ normal.} \\ 4^{\rm th}{\rm A1} {\rm for\ a\ correct\ comment\ in\ context\ -\ must\ mention\ "manager's\ belief"\ or\ "shift"\ and\ "defect\ type"\ -\ condone\ "relationship"\ or\ "connection"\ here\ but\ {\bf not\ "correlation"}.\ No\ follow\ through\ e.g.\ "There\ is\ evidence\ of\ a \\ \hline \end{array}$	

Question Number	Scheme	Marks
4. (a)	$\bar{x} = \frac{5320}{80} = 66.5$ $s^2 = \frac{392000 - 80 \times (66.5)^2}{79}$ $= 483.797$ awrt 484	M1,A1 M1A1ft A1 (5)
(b)	H_0 : $\mu_m = \mu_{nm}$, H_1 : $\mu_m > \mu_{nm}$ (accept μ_1, μ_2 with definition)	B1B1
	$z = \frac{69.0 - 66.5}{\sqrt{\frac{483.797}{80} + \frac{446.44}{60}}}$ = 0.6807 awrt 0.681 One tailed cv 1.6449 (Probability is awrt	M1dM1 A1 B1
	0.752) 0.6807<1.6449 (or 0.248>0.05) insufficient evidence to reject H_0 Mean money spent is not greater with music playing.	dM1 A1ft (8)

Question	Scheme	Marks
Number	Notes	
(b)	No definition award B1B0. 1 st M1 for attempt at s.e condone one number wrong or switched 60 & 80. 2 nd dM1 for using their s.e. in correct formula for test statistic. 3 rd dM1 dep. on 2 nd M1 for a correct statement based on their normal cv and their test statistic 2 nd A1 for correct comment in context. Must mention "money spent" and "music playing". Allow ft. Critical Region for (b) Standard error x z value for 2 nd M1 Standard error x 1.6449= awrt 6.04 for 1 st A1 2.5<6.04	

Question Number				Scher	ne				Mark	S
5. (a)		Hurricanes: occur singly / are independent or occur at random /are a rare event / at a constant rate								(2)
(b)	From data $\frac{1 \times 2 + 2 \times 5 + 3 \times 17 + + 7 \times 12}{80} = 4.4875$							M1A1	(2)	
				T		T	1	1		
	No of hurricanes,	0 1	2	3	4	5	6	7+		
(c)	00D(v 1	0.9 4038	r=9.06	13.55	s=15.205	13.647	10.2 06	13.388	M1A1A	.1
	Combine to give expected frequencies >5	13.9	991	13.55	15.205	13.647	10.2 06	13.388		(3)
	Observed	7	,	17	20	12	12	12	-	
(d)	$\frac{(O-E)^2}{E}$	3.49	9	0.876	1.511	0.198	0.31 5	0.143	M1	
	$\frac{{O_i}^2}{E_i}$	3.50	00	21.322	26.306	10.551	14.1 08	10.755		
H ₀ : Poisson distribution is a good fit o.e. H _{1:} Poisson distribution is not a good fit o.e.								B1		
	$\sum \frac{(O_i - E_i)^2}{E_i} = 6.545 \text{ or } \frac{O_i^2}{E_i} = 86.545-80 = 6.545 \text{ (awrt 6.55 or }$							55 or	A1	
	6.54) v = 6 - 2 = 0 cv is 9.488 $\chi_{\nu}^{2}(0.05)$	3				(ft	their	ν i.e.	B1 B1ft	
	6.545<9.4 (Hurricane				•	ution			A1	(6) 13

Question	Scheme	Marks
Number		
	Notes	
(b)	M for at least 2 terms on numerator. 359/80 only award M0A0	
(c)	M for 80xPoisson probability with 4.4875 and either 2 or 4.	
	1st A1 for awrt 9.06 and 2 nd A1 for awrt 15.20 or 15.21	
(d)	1 st M1 for some pooling and attempting $\frac{(O-E)^2}{E}$ or $\frac{O^2}{E}$, at least 3 correct	
	expressions or values.	
	1 st B1 no value for parameter permitted	
	2 nd A1 for a correct comment suggesting that Poisson model is suitable.	
	No ft	

Question Number	Scheme	Marks
6. (a)	$L = A_1 + A_2 + + A_6$ Mean is $E(L) = 6 \times 20 = 120$ Standard deviation is $\sqrt{Var(W)} = \sqrt{6 \times 5^2} = 5\sqrt{6} = 12.247$ awrt 12.2	B1 B1
(b)	$P(L>110) = P(Z > \left(\frac{110-120}{12.247}\right))$ $= P(Z < 0.8164)$ $= 0.7939 \text{ (or } 0.7929 \text{ using interpolation or } 0.79289 \text{ by calc})$	(2) M1 A1 (2)
(c)	Let $X = 4B - \sum_{1}^{6} A_{i}$ E(X) = 140 - 120 = 20 $Var(X) = 16 \times 8^{2} + 6 \times 5^{2} = 1174$ $P(X < 0) = P\left(Z < \frac{-20}{\sqrt{1174}}\right) = P(Z < -0.583)$ = 0.2797 (or 0.2810 if no interpolation) or 0.27971 by calc.	B1 M1M1A1 M1 A1 (6)

Question	Scheme	Marks
Number		
	Notes	
(b)	M1 for identifying a correct probability (they must have the 110) and	
	attempting to standardise with their mean and sd. This can be implied by the	
	correct answer.	
	A1 for awrt 0.794 or 0.793	
(c)	Accept ±20 for B mark. Only award for probability statement if 2 terms in	
	var	
	1 st M1 for 1024, 2 nd M1 for 150	
	3 rd M for standardising with their mean and 2 term sd and finding	
	probability <0.5	
	2 nd A1 for awrt 0.280 or 0.281	

Question	Scheme	Mark	.S
7. (a)	$H_0: \mu=250, H_1: \mu<250,$ $z = \frac{248-250}{\frac{5.4}{\sqrt{90}}}$ $= -3.513$ 3.51 Critical value -1.6449 -3.513<-1.6449 so sufficient evidence to reject H_0	B1 M1 A1 B1	
	Manager's claim is justified.	A1	(5)
(b)	98% CI for μ is $248 \pm 2.3263 \times \frac{5.4}{\sqrt{90}}$ = awrt (247,249) 2.33 dependent upon z value awrt	M1B1 A1A1	(4)
(c)	Hypothesis test is significant or CI does not contain stated weight. (Manager should ask the company to investigate if their) stated weight is too high o.e.	B1 B1	(2)
(d)	$P(\overline{x} - \mu < 1) = 0.98$ $\frac{1}{\frac{3}{\sqrt{n}}} = 2.3263$ $n = (3 \times 2.3263)^2 = 48.7$ Sample size 49 required.	M1 A1 dM1A1 A1	(5) 16

Question Number	Scheme	Marks
	Notes	
(a)	1 st B1 for H ₀ and for H ₁ (must be <250) They must use μ not x , p , λ or	
	\overline{x} etc	
	1 st M1 for attempt at standardising using 248, 250 and sd. Can accept ±.	
	Critical region: 250-0.936=249.064 for M1A1 (and compare with 248.)	
	3^{rd} B1 for ± 1.6449 seen (or probability of 0.0002 or better)	
	2 nd A1 for a correct contextualised comment. Must mention "Manager"	
	and "claim" or "weight" and "stated weight". No follow through.	
(b)	2.3263 or better for B mark. Any z value replacing 2.3263 award M.	
(d)	1^{st} M for LHS = z value >1	
	1 st A for RHS awrt 2.33	
	2 nd A1 for answers in the range 48.7-48.9	
	3^{rd} A1 don't condone \geq	

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467

Fax 01623 450481

Email <u>publication.orders@edexcel.com</u>

Order Code UA028846 June 2011

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

