Mark Scheme (Results) Summer 2007

GCE

GCE Mathematics

Statistics S3 (6691)

June 2007 6691 Statistics S3 Mark Scheme

Question number	Scheme	Marks				
1. (a)	$\begin{array}{ c c c c c c c c c c c c c c c }\hline \hline A & B & C & D & E & F & G & H \\ \hline P \operatorname{Rank} & 2 & 6 & 4 & 3 & 1 & 7 & 8 & 5 \\ \hline Q \operatorname{Rank} & 2 & 8 & 1 & 6 & 3 & 5 & 7 & 4 \\ \hline d^2 & 0 & 4 & 9 & 9 & 4 & 4 & 1 & 1 \\ \hline \end{array}$	M1A1				
	$\sum d^2 = 32$	M1A1				
	$r_{\rm S} = 1 - \frac{6 \times 32}{8 \times (8^2 - 1)}$	M1				
	$=\frac{13}{21}$ or AWRT 0.619	A1 (6)				
(b)	$H_0: \rho = 0$ $H_1: \rho > 0$ $(\rho_s \text{ is OK})$ both r_s 1 tail 5% critical value is 0.6429(Independent of their H1) $0.619 < 0.6429$ or not significantSo insufficient evidence of a positive correlation between judges	B1 B1 (<u>+</u> is OK) M1				
	<u>Or</u> competitor <u>is</u> justified	A1f.t. (4) 10				
(a)	1 st M1 for attempting to rank both <i>P</i> and <i>Q</i> . 1 st A1 for both correct (could be reversed) 2 nd M1 for attempting d^2 2 nd A1 for $\sum d^2 = 32$. 3 rd M1 for correct use of formula for r_s					
(b)	M1 for a correct comparison or statement about significance (o.e.)					
	Follow through their r_s provided $0 < r_s < 1$ A1f.t. for a conclusion in context. Must mention judges or marks or competitor. If they use correlation they must say it is positive. Follow through their positive r_s with their positive c.v. and ignore hypotheses. So $r_s = 0.667$ they could say competitor's claim is not justified etc.					
S.C.	<u>No ranking</u> Typical answer (-3.82) can get mark for use of r_s formula and hypotheses in (b) only (a) M0A0M0A0M1A0 (b) B1B1M0A0					

Question number	Scheme	Marks					
2. (a)	H_0 : Maths grades are independent of English grades <u>or</u> No association H_1 : Maths and English grades are dependent <u>or</u> There is an association	B1					
	Expected Frequencies e.g. $\frac{60 \times 40}{120} = 20$ 20 27.5 12.5 20 27.5 12.5	M1 A1					
	$\sum \frac{(O-E)^2}{E} = 2 \times \left(\frac{5^2}{20} + \frac{2.5^2}{27.5} + \frac{2.5^2}{12.5}\right), = 3.9545$ AWRT <u>3.95</u> or <u>3.955</u>	M1, A1					
	$v = (3-1)(2-1) = 2;$ $\chi_2^2(10\%)$ c.v. = 4.605	B1; B1					
	3.95 < 4.605 or not significant or do not reject H ₀ (allow reject H ₁)	M1					
	Insufficient evidence of an association between English and maths gradesorthere is support for the Director's belieforStudent's grades in maths and English are independent	A1 (9)					
(b)	May have some expected frequencies <5 (and hence need to pool rows/cols)	B1 (1) 10					
(a)	1 st B1 for both hypotheses in terms of independence or association and in context						
	Must mention Maths and English in at least one of the hypotheses.						
	"relationship" or "correlation" or "connection" or "link" is B0						
	 1st M1 for some correct calculation seen 1st A1 for all expected frequencies correct. Accept answers without formula seen. 2nd M1 for some evidence seen of attempt to calculate test statistic. At least one correct term seen. Follow through their expected frequencies. 						
	2 nd A1 for AWRT 3.95. Answers only please escalate!						
	 3rd M1 for correct comparison or statement – may be implied by correct conclusion. 3rd A1 for conclusion in context using "association" or "independence" in connection with grade 						
	Don't insist on seeing English or maths mentioned here.						
	Use ISW for comments if a false statement and correct statement are seen.						
(b)	B1 If they just say expected frequencies are "small" they must go onto mention	n need to pool.					

Question number	Scheme	Marks					
3.	$H_0: \mu = 18, \qquad H_1: \mu < 18$	B1, B1					
	$z = \frac{16.5 - 18}{\sqrt[3]{\sqrt{15}}} = ,-1.9364$ AWRT - 1.94	M1, A1					
	5% one tail c.v. is $z = (-) 1.6449$ or probability (AWRT 0.026) (<u>+</u>) 1.6449	B1					
	- $1.94 < -1.6449$ or significant or reject H_0 or in critical region	M1					
	There is evidence that the (mean) time to complete the puzzles has reduced						
	Or Robert is getting faster (at doing the puzzles)	A1f.t. 7					
	1 st & 2 nd B1 must see and 18						
	1 st M1 for attempting test statistic, allow \pm . Or attempt at critical value for \overline{X} : $\mu - z \times \frac{3}{\sqrt{15}}$						
	1 st A1 for AWRT – 1.94. Allow use of $ z = +1.94$ to score M1A1. Or critical value = AWRT 16.7.						
	3^{rd} B1 for AWRT 0.026 (i.e. correct probability only) or \pm 1.6449. (May be seen in cv formula)						
	2 nd M1 for correct comparison or statement relating their test statistic and 1.6449 or their and 0.05. Ignore their hypotheses if any or assume they were correct.						
	2 nd A1f.t. for conclusion in context which refers to "speed" or "time". Depends only on prev						

Question number	Scheme							Marks	
		$\frac{0 \times 17 + 1 \times 31 + \dots}{17 + 31 + \dots} = \left(\frac{200}{100} = 2\right), \qquad \hat{p} = \frac{2}{20} = \underbrace{0.1}_{\text{(Accept } 20)} \text{(Accept } \frac{2}{20} \text{ or } 2 \text{ per } 20)$					M1, A1	(2)	
(b)	e.g. $r = 10^{-10}$	e.g. $r = 100 \times {\binom{20}{2}} (0.1)^2 (0.9)^{18}$					M1		
		r = 28.5, s = AWRT 9					A1, A1	(3)	
(c)	x	0	1	2	3	> 1]		
	O_i	17	31	2 19	14	≥ 4 19			
	E_i	17	27.0	28.5	14	13.3	Pooling	M1	
	$(O-E)^2$				1.32	2.44			
	$\frac{(O-E)^2}{E}$	1.09	0.57	5.17	1.52	2.77	$\sum \frac{(O-E)^2}{E} = $ AWRT 9.4	M1A1c.a.o.	
	$v = 5 - 2 = 3$, $\chi_3^2(5\%) = 7.815$						B1ft, B1ft		
	H ₀ : Binor	mial dis	stributi	on is a g	good/su	itable	model/fit [Condone: B(20, 0.1) is]		
								B1	
	(Significant result) Binomial distribution is not a suitable model						Alcao	(7)	
(d)	_						r not with constant probability	B1ft	(1)
					*			13	
(a)	M1 for								
(b)	M1 for	correc	t expre	ssion fo	or <i>r</i> or <i>s</i>	using	the binomial distribution. Follow the	rough their \hat{p}	
(c)	1 st M1 for	some	pooling	g (accep	ot $x \ge 5$,	obs.fr	eq14, 9, 10 and exp.freq. 19.0, s,	4.3)	
	2 nd M1 for	calcul	ation of	f test st	atistic (N.B. <i>x</i>	\geq 5 gives 14.5). One correct term see	en.	
	1 st B1ft	fo	r numb	er of cl	asses –	2 (N.B	5. $x \ge 5$ will have $6 - 2 = 4$)		
	2 nd B1ft	fo	r the ap	propria	ate table	es valu	e, ft their degrees of freedom. (NB χ	$V_4^2(5\%) = 9.48$	(8)
	3 rd B1 (fo	or hypo	theses)	allow j	ust "X	~ B(20	, 0.1)" for null etc.		
	$2^{nd} A1$	fo	r correc	ctly reje	ecting E	Binomia	al model. No ft and depends on 2 nd M	/ 11.	
(d)	B1ft for	r indepe	endence	e or con	istant p	robabil	ity – must mention defective items o	r defectives	
	Fo	llow th	rough t	heir co	nclusio	n in (c)	. So if they do not reject they may s	ay "defectives	
	oc	cur wit	h proba	bility 0).1". St	ating tl	ne value implies constant probability		

Question number	Scheme	Marks					
5. (a)	$\hat{\mu} = \overline{x} = \frac{361.6}{80}, = \underline{4.52}$	M1, A1					
	$\hat{\mu} = \overline{x} = \frac{361.6}{80}, = \underline{4.52}$ $\hat{\sigma}^2 = s^2 = \frac{1753.95 - 80 \times \overline{x}^2}{79} = (1.51288)$	M1A1ft					
	AWRT <u>1.51</u>	A1 (5)					
(b)	$\mathbf{H}_0: \boldsymbol{\mu}_A = \boldsymbol{\mu}_B \qquad \mathbf{H}_1: \boldsymbol{\mu}_A > \boldsymbol{\mu}_B$	B1 B1					
	Denominator	M1					
	$z = \frac{4.52 - 4.06}{\sqrt{\frac{1.51}{80} + \frac{2.50}{60}}} = \left(\frac{0.46}{\sqrt{0.0605}}\right)$	dM1					
	= (+) 1.8689 AWRT $(+) 1.87$	A1					
	One tail c.v. is $z = 1.6449$ (AWRT 1.645 or probability AWRT 0.0307 or 0.0308)	B1					
	(significant) there is evidence that diet A is better than diet B or						
	evidence that (mean) weight lost in first week using diet A is more than with B	Alft (7)					
(c)	CLT enables you to assume that \overline{A} and \overline{B} are normally distributed	B1 (1)					
(d)	Assumed $\sigma_A^2 = s_A^2$ and $\sigma_B^2 = s_B^2$ (either)	B1 (1)					
		14					
(a) (b)	2 nd M1 for a correct attempt at <i>s</i> or <i>s</i> ² , A1ft for correct expression for <i>s</i> ² , ft their mean. N.B. $\sigma_n^2 = 1.49$ so $\frac{80}{79} \times 1.49$ is M1A1ft 1 st B1 can be given for $\mu_1 = \mu_2$, but 2 nd B1 must specify which is <i>A</i> or <i>B</i> . 1 st M1 for the denominator, follow through their 1.51. Must have square root can condone 2.50^2 but $\sqrt{\frac{1.51^2}{80} + \frac{2.50^2}{60}}$ is M0. Allow $\sqrt{\frac{1.51}{79} + \frac{2.50}{59}}$ leading to AWRT 1.85 to score M1M1A0 in (b) and can score in (d). 2 nd dM1 for attempting the correct test statistic, dependent on denominator mark 1 st A1 for AWRT ± 1.87, may be implied by a correct probability. 2 nd A1ft ft their test statistic vs their cv only if H ₁ is correct and both Ms are scored						
(c) (d)	B1 for stating <u>either</u> \overline{A} or \overline{B} (but not A or B) are normally distributed B1 for either, can be stated in words in terms of variances or standard deviations.						

6

Question number	Scheme	Marks					
6.	$\overline{x} = \frac{1}{2} (123.5 + 154.7) = 139.1$	B1					
	2.5758	B1					
	"their 2.5758" $\frac{\sigma}{\sqrt{n}} = 154.7 - 139.1 = 15.6$	M1					
	AWRT 1.96	B1					
	"their 1.96" $\frac{\sigma}{\sqrt{n}} = \frac{15.6 \times 1.96}{2.5758} = (11.87)$	M1					
	So 95% C.I. = $139.1 \pm 11.87 = (127.22, 150.97)$ AWRT (127, 151)	A1 6					
	$1^{\text{st}} \text{ B1} \text{ for mean} = 139.1 \text{ only}$						
	1^{st} M1 for UL – mean or mean – LL set equal to z value times standard error or some equivalent						
	expression for standard error. Follow through their 2.5758 provided a z value.						
	May be implied by $\frac{\sigma}{\sqrt{n}} = 6.056$ [N.B. $\frac{15.6}{2.3263} = 6.705$]						
	Condone poor notation for standard error if it is being used correctly to find	d CI.					
	2 nd M1 for full method for semi-width (or width) of 95% interval						
	Follow through their z values for both M marks						
	N.B. Use of 2.60 instead of 2.5758 should just lose 2 nd B1 since it leads to AWRT (127, 151						

Question number	Scheme	Marks			
7. (a)	Let $X = L - 4S$ then $E(X) = 19.7 - 4 \times 4.9 = 0.1$ $Var(X) = Var(L) + 4^{2} Var(S) = 0.5^{2} + 16 \times 0.2^{2}$ = 0.89 P(X > 0) = [P(Z > -0.10599)] = AWRT (0.542 - 0.544)	M1, A1 M1, M1 A1 M1 A1 (7)			
(b)	$T = S_1 + S_2 + S_3 + S_4$ (May be implied by 0.16) $E(T) = 19.6$ $Var(T) = 0.16 \text{ or } 0.4^2$	B1			
(c)	Let $Y = L - T$ E(Y) = E(L) - E(T) = [0.1] Var(Y) = Var(L) + Var(T) = [0.41] Require $P(-0.1 < Y < 0.1)$ = P(Z < 0) - P(Z < -0.31) or $0.5 - P(Z < -0.31)$ or $P(Z < 0.31) - P(Z < 0)= 0.1217$ (tables) or 0.1226 (calc) AWRT (0.122 - 0.123)	M1 M1 M1 A1 (5) 15			
(a)	1 st M1 for defining <i>X</i> and attempting $E(X)$ 1 st A1 for 0.1. Answer only will score both marks. 2 nd M1 for $Var(L) +$ 3 rd M1 for4 ² Var(<i>S</i>). For those who don't attempt <i>L</i> – 4 <i>S</i> this will be their only 2 nd A1 for 0.89 4 th M1 for attempting a correct probability, correct expression and attempt to find, involve some standardisation: ft their $\sqrt{0.89}$ and their 0.1. If 0.1 is used for $E(X)$ answer should be > 0.5, otherwise M0.				
(c)	1 st M1 for a correct method for E(<i>Y</i>), ft their E(<i>T</i>). 2 nd M1 for a correct method for Var(<i>Y</i>), ft their Var(<i>T</i>). Must have +. 3 rd M1 for dealing with the modulus and a correct probability statement. Must be modulus free. May be implied by e.g. $P(Z < \frac{0.2}{\sqrt{\text{their 0.41}}}) - 0.5$, or seeing both 0.378 (or 0.622) and 0.5 4 th M1 for correct expression for the correct probability, as printed or better. E.g. 0.5 + 0.378 is M0 A1 for AWRT in range.				

8