Question Number	Scheme		Marks	
1a)	Allocate a number between 1 and N (or equiv) to each pupil.		M1	
	Use <u>random number tables</u> , <u>computer or calculator</u> to select 15 <u>different</u> numbers between 1 and 120 (or equiv).		B1	
	Pupils corresponding to these numbers become the sample.		B1	(3)
(b)	Allocate numbers $1-64$ to girls and $1-56$ to boys. Idea of different boys and girls	sets for	M1	
	Select $\frac{64}{120} \times 15 = 8$ random numbers between $1 - 64$ for girls	attempt find no	M1	
	Select 7 random numbers between 1 – 56 for boys.	Both 7 and 8	A1	(3)
2a)	$H_0: \ \rho=0 \ ; \ H_1: \ \rho>0$ ρ	both and	B1 B1	
	5% CV – PMCC <u>0.6215</u>		M1	
	0.572 < 0.6215 / not in critical region / not significant		A1	
	No evidence of <u>positive</u> correlation		B1	
	Spearman <u>0.6429</u>		B1	(6)
(b)	Evidence of <u>positive</u> correlation No evidence to suggest that as <u>Statistics marks increased</u> <u>Geography marks increased</u> .	Context and not correlation	B1 B1	(0)
	Evidence that students <u>ranked highly in Statistics were also</u> ranked highly in Geography	ranked		(2)

EDEXCEL STATISTICS S3 (6685) – JUNE 2004

Question Number	Scheme	Marks
3a)	$H_0: \mu_A = \mu_B \; \; ; \; H_1: \mu_B > \mu_A$ both and μ	B1
	$z = \pm \frac{249 - 251}{\sqrt{\frac{2.5^2}{10} + \frac{2.3^2}{15}}}$ $\frac{249,251 \text{ accept}}{\sqrt{\frac{2.5}{10} + \frac{2.3^2}{15}} \text{ for M}}$	M1 A1
	$\sqrt{10} + \frac{1}{15}$ $= \pm 2.0227$ awrt ± 2.02	A1
	$CV = \pm 1.6449$ or $P(Z \ge 2.02) = 0.0212 - 0.0217$, or $P(Z \le 2.02) = 0.9788 - 0.9783$	B1
	-2.0227 < -1.6449 or 2.0227 > 1.6449 , or $-0.0212 - 0.0217 < 0.05 comparison and consistency needed$ or $-0.9788 - 0.9783 > 0.95$	M1
	There is evidence that the mean amount of coffee dispensed by B is greater than A. context	A1√ (7)
b)	Machine B amounts are normally distributed.	B1 (1)

Question Number	Scheme		Marks	
4a)	$\bar{x} = 75.3$		B1	
	$s^2 = \frac{1}{9} \left\{ 57455 - \frac{753^2}{10} \right\}$		M1	
	$=83.78^{\circ}$, $83\frac{71}{90}$, 83.8	awrt 83.8	A1	(3)
		1.96	B1	
b)		z value, may use 5,83.8 for M	$M1$ $A1\sqrt{\text{ on z only}}$	
	(73.0, 76.6)	awrt 73.0,76.6	A1, A1	(5)
c)	Journey times independent			(5)
	Sample large enough to use central limit theorem	any 2	B1,B1	
	Same distribution / population	·		(2)

EDEXCEL STATISTICS S3 (6685) – JUNE 2004

Question Number	Scheme	Marks
5.	Never	M1 convert % to freq A1 (26, 91, 30, 132)
	Sometimes Regularly Totals	A1 (143, 78)
	Males 30	B1
	132 78 240	B1
	Females 26	
	143 91 260	M1 A1 at least 3sf
	56 275 169	
	500	B1; B1√
	H ₀ : No association (independent) between gender and exercise	NG 44
	H1: association (not independent) between gender and exercise	M1 A1
	Expected Values	A1√
	Never	(12)
	Sometimes Regularly Totals	
	Males 26.88 132	
	81.12 240	
	Females 29.12 143	

EDEXCEL	. STATISTICS S3 (6685) – JUNE 2004
	87.88

$$\alpha = 0.05$$
 $\underline{v = 2}$; CV $\chi^2 > \underline{5.991}$

$$\Sigma \frac{(O-E)^2}{E} OR \quad \Sigma \frac{O^2}{E} - N = 0.9271$$

answers in range 0.90 - 0.95

Not in critical region – no evidence of association between gender and exercise

EDEXCEL STATISTICS S3 (6685) – JUNE 2004

Question Number		Scheme		Marks	
6a)	<i>X</i> ∼ B(3,1/6)		bino 3, 1/6	B1 B1	(2)
b)	X Prob	Expected freq	prob – must show working and use B(3,p) or may be implied by correct answer	M1	
	$0 \qquad \left(\frac{5}{6}\right)^3$	144.68	expected	M1	
	$1 3 \times \left(\frac{5}{6}\right)^2 \left(\frac{1}{6}\right)$	86.81			
	$2 3 \times \left(\frac{5}{6}\right) \left(\frac{1}{6}\right)^2$	17.36	awrt 145,86.8,17.4,1.15/1.16	B2 (-1 ee)	
	$3 \qquad \left(\frac{1}{6}\right)^3$	1.15 (1.16)			
	H ₀ : Binomial model is a H ₁ : Binomial model is no		both, no ditto	B1	
	Amalgamate 3 with anoth	er group		M1	
	$\alpha = 0.01 \text{ v} = 2 \text{ ; CR } \chi^2 >$	9.210		B1 ; B1√	
	$\sum \frac{(O-E)^2}{E} OR \sum \frac{O^2}{E} - N =$ answers in range 8.67 – 8.70 or	= 8.6894		M1 A1	
	Evidence that Binomial is	a good model.		A1√ ((11)

Question Number	Scheme	Marks	
6.c)	Estimate p Degrees of freedom reduced by 1	B1 B1	2)
	Special case		
	Use of B(3,0.192) in part (b)		
	Expected frequencies	M1	
	131.8785 94.01242 22.339	M1	
	1.769	В0	
	H_0 : Binomial model is a good fit both, no ditto H_1 : Binomial model is not a good fit	B1	
	Amalgamate 3 with another group	M1	
	$\alpha = 0.01 \text{ v} = 1 \text{ ; CR } \chi^2 > 6.635$	B1 ; B1√	
	$\Sigma \frac{(O-E)^2}{E} OR \ \Sigma \frac{O^2}{E} - N \text{in range 5.45 -5.50}$	M1 A1	
	Evidence that Binomial is a good model.	A1√ (1	1)

Question Number	Scheme	Marks
7a)	E(D) = E(A) - 3E(B) + 4E(C)	M1
	= 20	A1
	Var(D) = Var(A) + 9Var(B) + 16Var(C) Use of a ² Var X Adding 3 Var ie 4 +	M1 M1
	=341	A1
	$P (D < 44) = P \left(z < \frac{44 - 20}{\sqrt{341}} \right)$ standardising their mean and sd	M1, A1√
	= P (z < 1.30) awrt 1.30	A1
b)	= 0.9032	A1 (9)
	E(X) = 20	B1
	Var(X) = Var(A) + 3Var(B) + 16 Var(C) + and 16 $3 Var(B)$	M1 M1
	= 287	A1
	$P(X>0) = P\left(z > \frac{-20}{\sqrt{287}}\right)$ standardising their mean and sd	M1
	= P (z > -1.18) awrt -1.18	A1
	= 0.8810	A1 (7)