Statistics 2 Solution Bank

Practice Paper

- 1 a Let X be the number of people with flu. $X \sim B(12, 0.15)$ P(X = 3) = 0.9078 - 0.7358 (from tables) = 0.1720
 - **b** $P(X \le 5) = 0.9954$ (from tables)
- 2 a Not a statistic. It is not a function of solely values from the sample. It contains a parameter μ .
 - **b** A statistic. It is a function of solely values from the sample.
- 3 a Let X be the number of bear sightings per week. $X \sim Po(3)$ $P(X < 2) = P(X \le 1)$ = 0.1991 (from tables)
 - **b** Let *Y* be the number of bear sightings per 2 weeks. $Y \sim Po(6)$ P(Y=6) = 0.6063 - 0.4457 (from tables) = 0.1606
 - c From part a $P(X \le 1) = 0.1991$ $P(X \le 1 \text{ for 4 consecutive days}) = 0.1991^4$ = 0.00157 (3 s.f.)

4 a
$$f(x) = \begin{cases} \frac{1}{33}(ax+b) & 1 \le x \le 4\\ 0 & \text{otherwise} \end{cases}$$

$$E(X) = \frac{26}{11}$$

$$E(X) = \int_{0}^{\infty} xf(x) dx$$

$$= \frac{1}{33} \int_{1}^{4} (ax^{2} + bx) dx$$

$$\frac{1}{33} \left[\frac{1}{3} ax^{3} + \frac{1}{2} bx^{2} \right]_{1}^{4} = \frac{26}{11}$$

$$\left[\left(\frac{64}{3} a + 8b \right) - \left(\frac{1}{3} a + \frac{1}{2} b \right) \right] = 78$$

$$21a + \frac{15}{2}b = 78$$
Therefore:
 $14a + 5b = 52$ as required.

Statistics 2

Solution Bank

 $4 \quad \mathbf{b} \quad \int_{\alpha}^{\infty} \mathbf{f}(x) \, \mathrm{d}x = 1$ $\frac{1}{33}\int_{-1}^{4} (ax+b) dx = 1$ $\left[\frac{1}{2}ax^2 + bx\right]^4 = 33$ $\left[\left(8a + 4b \right) - \left(\frac{1}{2}a + b \right) \right] = 33$ $\frac{15}{2}a + 3b = 33$ (1) From part **b** 14a + 5b = 52 (2) $5 \times (1)$ gives: $\frac{75}{2}a + 15b = 165$ (3) $-3 \times (2)$ gives: -42a - 15b = -156(4) Adding (3) and (4) gives: $-\frac{9}{2}a=9$ a = -2*b* = 16

- c $F(x) = \int f(x) dx$ $= \frac{1}{33} \int (-2x+16) dx$ $= \frac{1}{33} (-x^2+16x+c)$ F(1) = 0 therefore c = -15 $F(x) = \frac{1}{33} (-x^2+16x-15)$ At upper quartile F(X) = 0.75 $\frac{1}{33} (-x^2+16x-15) = 0.75$ $-x^2+16x-15 = 24.75$ $4x^2 - 64x + 159 = 0$ $x = \frac{64 \pm 4\sqrt{97}}{8}$ x = 12.92... or x = 3.075...since $1 \le x \le 4$ x = 3.08 (2 d.p) as required
- **d** The mode occurs at the maximum of the pdf, therefore, mode = 1

Statistics 2

Solution Bank

5 a $L \sim U[0, 80]$

$$f(x) = \begin{cases} \frac{1}{80} & 0 \le x \le 80\\ 0 & \text{otherwise} \end{cases}$$

b Let *X* be the probability that Yifan will need to leave the queue without going on the ride.

$$P(X) = \frac{1}{80}(80 - 70)$$
$$= \frac{1}{8}$$

c Let *Y* be the probability that Yifan will go on the ride.

$$P(Y) = \frac{1}{80}(80 - 65) = \frac{15}{80}$$

Let Z be the probability that Yifan will queue for at least 30 minutes.

$$P(Z) = \frac{1}{80}(80 - 30)$$
$$= \frac{50}{80}$$
Therefore:

$$P(Y|Z) = \frac{\frac{15}{80}}{\frac{50}{80}}$$
$$= \frac{3}{10}$$

6 a Let X be the number of typing errors per page. $X \sim \text{Po}(4)$ Let *Y* be the number of typing errors per 2 pages.

 $Y \sim \text{Po}(8)$

i P(Y=7) = 0.4530 - 0.3134(from tables) = 0.1396

ii
$$P(Y > 7) = 1 - P(Y \le 7)$$

= 1 - 0.4530 (from tables)
= 0.5470

Statistics 2 Solution Bank

6 b Let W be the number of errors in n pages. $W \sim Po(4n)$ Use the approximation: $T \sim N(4n, 4n)$ P(W > 40) = P(T > 40.5) (continuity correction) P(T > 40.5) = 1 - P(T < 40.5) = 0.2268

$$P(T < 40.5) = 0.7732 \Rightarrow Z = 0.7494$$

$$P(T < 40.5) = P\left(Z < \frac{40.5 - 4n}{\sqrt{4n}}\right)$$
Therefore:

$$\frac{40.5 - 4n}{\sqrt{4n}} = 0.7494$$

$$40.5 - 4n = 1.4988n^{\frac{1}{2}}$$

$$4n + 1.4988n^{\frac{1}{2}} - 40.5 = 0$$
Let $n = x^{2}$

$$4x^{2} + 1.4988x - 40.5 = 0$$

$$x = \frac{-1.4988 \pm \sqrt{(-1.4988)^{2} - 4(4)(-40.5)}}{2(4)}$$

$$= \frac{-1.4988 \pm 25.49...}{8}$$

$$x = 3.000... \text{ or } x = -3.374...$$
Since x must be positive $x = 3.000...$
Since $n = x^{2}$

$$n = 9$$

7 a n = 40, p = 0.2Let X be the number of seeds that grow. $X \sim B(40, 0.2)$ Critical value is X = 15 (from tables)

- **b** $H_0: p = 0.2, H_0: p > 0.2$ Reject H_0 – There is sufficient evidence that Benoit is correct.
- **c** $P(X \ge 15) = 1 0.9971 = 0.0029$
- 8 a B = 1, 2, 3, 4 and R = 1, 2, 3 $X \sim (B - 1)(3 - R)$

The sample space diagram is:

			(<i>B</i> – 1)						
			0	1	2	3			
		2	0	2	4	6			
	(3 - R)	1	0	1	2	3			
		0	0	0	0	0			
P	(X=4)	$=\frac{1}{12}$							

Statistics 2

Solution Bank

8 b

x	0	1	2	3	4	6
P(X=x)	$\frac{1}{2}$	$\frac{1}{12}$	$\frac{1}{6}$	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{12}$

c Mode = 0

9 a *n* is large, *p* is small

b H₀:p = 0.003 and H₁:p > 0.003Let *X* be the number of faulty bulbs. $X \sim B(2000, 0.003)$ Use the approximation $Y \sim Po(6)$ $P(X \ge 12) = 1 - P(Y \le 11)$ = 1 - 0.9799

$$= 0.0201$$

0.0201 < 0.05 therefore reject H₀

There is evidence that the proportion of faulty bulbs has increased.