Statistics 2 Solution Bank

Exercise 7C

1 Distribution, $X \sim B(10, 0.25)$ H₀: p = 0.25 H₁: p > 0.25

 $P(X \ge 5) = 1 - P(X \le 4) = 1 - 0.9219 = 0.0781 > 0.05$ There is insufficient evidence to reject H₀ so there is no reason to doubt p = 0.25

2 Distribution, $X \sim B(10, 0.40)$ H₀: p = 0.40 H₁: p < 0.40

 $P(X \le 1) = 0.0464 < 0.05$ There is sufficient evidence to reject H₀ so p < 0.04

3 Distribution, $X \sim B(20, 0.30)$ H₀: p = 0.30 H₁: p > 0.30

 $P(X \ge 10) = 1 - P(X \le 9) = 1 - 0.9520 = 0.0480 < 0.05$ There is sufficient evidence to reject H₀ so *p* > 0.3

4 Distribution, $X \sim B(20, 0.45)$ H₀: p = 0.45 H₁: p < 0.45

 $P(X \le 3) = 0.0049 < 0.01$

There is sufficient evidence to reject H_0 so p < 0.45

5 Distribution, $X \sim B(20, 0.28)$ H₀: p = 0.28 H₁: p < 0.28

 $P(X \le 2) = 0.0526 > 0.05$ There is insufficient evidence to reject H₀ so there is no reason to doubt p = 0.28

6 Distribution, $X \sim B(8, 0.32)$ H₀: p = 0.32 H₁: p < 0.32

 $P(X \ge 7) = 1 - P(X \le 6) = 1 - 0.9980 = 0.002 < 0.05$ There is sufficient evidence to reject H₀ so p < 0.32

7 Distribution, $X \sim B(12, \frac{1}{6})$ H₀: $p = \frac{1}{6}$ H₁: $p < \frac{1}{6}$

 $P(X \le 1) = 0.3813 > 0.05$

There is insufficient evidence to reject H_0 so there is no evidence that the probability of a 6 on this dice is less than $\frac{1}{6}$

Statistics 2 Solution Bank

8 a Distribution, $X \sim B(n, 0.68)$

Reasons:

ons: – Fixed number of trials.

- Outcomes of the trials are independent.

- There are two outcomes, success and failure.
- The probability of success is constant.
- **b** Distribution, B(10, 0.68)

 $H_0: p = 0.68$ $H_1: p < 0.68$

 $P(X \le 3) = 0.0155 < 0.05$

There is sufficient evidence to reject H_0 so p < 0.68. The treatment is not as effective as claimed.

9 a X is the number of seeds in the trial for which the germination method was successful. p is the probability of success for each seed. $X \sim B(20, p)$ $H_0: p = 0.4$ $H_1: p > 0.4$

 $P(X \ge 12) = 1 - P(X \le 11) = 1 - 0.9435 = 0.0565 > 0.05$ $P(X \ge 13) = 1 - P(X \le 12) = 1 - 0.9790 = 0.021 < 0.05$ The critical region is $X \ge 13$

- **9 b** As 14 lies within the critical region, we can reject the null hypothesis. There is evidence that the new technique has improved the number of plants that germinate.
- **10 a** The test statistic is the number of people who support the candidate. $H_0: p = 0.35$ $H_1: p > 0.35$
 - **b** $X \sim B(50, 0.35)$

 $P(X \ge 23) = 1 - P(X \le 22) = 1 - 0.9290 = 0.071 > 0.05$ $P(X \ge 24) = 1 - P(X \le 23) = 1 - 0.9604 = 0.0396 < 0.05$ The critical region is $X \ge 24$

c As 28 lies in the critical region, we can reject the null hypothesis. There is evidence that the candidate's level of popularity has increased.