Statistics 2 Solution Bank

Exercise 7B

- 1 a The critical value is the first value to fall inside of the critical region.
 - **b** A critical region is a region of the probability distribution which, if the test statistic falls within it, would cause you to reject the null hypothesis.
 - c The acceptance region is the area in which we accept the null hypothesis.
- **2** Assume H_0 is true, then $X \sim B(10, 0.2)$

 $P(X \ge 4) = 1 - P(X \le 3) = 1 - 0.8791 = 0.1209 > 0.05$ $P(X \ge 5) = 1 - P(X \le 4) = 1 - 0.9672 = 0.0328 < 0.05$

The critical value is x = 5 and the critical region is $X \ge 5$ since $P(X \ge 5) = 0.0328 < 0.05$

3 Assume H_0 is true, then $X \sim B(20, 0.15)$

 $P(X \le 1) = 0.1756 > 0.05$ P(X = 0) = 0.0388 < 0.05

The critical value is x = 0 and the critical region is X = 0

4 a Assume H₀ is true, then $X \sim B(20, 0.4)$

 $P(X \le 4) = 0.0510 > 0.025$ $P(X \le 3) = 0.0160 < 0.025$

The critical value is x = 3

 $P(X \ge 13) = 1 - P(X \le 12) = 1 - 0.9790 = 0.0210 < 0.025$ $P(X \ge 12) = 1 - P(X \le 11) = 1 - 0.9435 = 0.0565 > 0.025$

The critical value is x = 13The critical region is $X \ge 13$ and $X \le 3$

- **b** The actual significance level is 0.021 + 0.016 = 0.037 = 3.7%
- 5 Assume H₀ is true, then $X \sim B(20, 0.15)$

B(X = 0) = 0.0388 < 0.05 $B(X \le 1) = 0.1756 > 0.05$

The critical value is x = 0 and the critical region is X = 0

Statistics 2 Solution Bank

6 a Assume H_0 is true, then $X \sim B(10, 0.63)$

 $P(X = 10) = 0.63^{10} = 0.0098 < 0.05$ $P(X \ge 9) = 0.0098 + 10(0.63)^{\circ}(0.37) = 0.0675 > 0.05$

The critical value is x = 10 and the critical region is X = 10

- **b** The actual significance level is 0.0098 = 0.98%
- 7 a The test statistic is the number of components in the sample that fail.
 - **b** H₀: p = 0.3, H₁: p < 0.3
 - **c** Assume H₀ is true, then $X \sim B(20, 0.3)$

P($X \le 2$) = 0.0355 (closer to 0.05) P($X \le 3$) = 0.1071

The critical region is $X \leq 2$

- **d** 0.0355 = 3.55%
- 8 a The test statistic is the number of seedlings that survive. H₀: $p = \frac{1}{3}$, H₁: $p > \frac{1}{3}$
 - **b** Assume H₀ is true, then $X \sim B(36, \frac{1}{3})$

Using a calculator P($X \ge 16$) = 1 - P($X \le 15$) = 1 - 0.8906 = 0.1094 > 0.1 P($X \ge 17$) = 1 - P($X \le 16$) = 1 - 0.9416 = 0.0584 < 0.1

The critical region is $X \ge 17$

- **c** 0.0584 = 5.84%
- 9 a In a given time, the number of customers choosing lasagne out of the total number. H₀: p = 0.2, H₁: $p \neq 0.2$
 - **b** Assume H₀ is true, then $X \sim B(25, 0.2)$

Consider the lower tail: P($X \le 0$) = 0.0038 P($X \le 1$) = 0.0274 (closer to 0.025)

Consider the upper tail: $P(X \ge 9) = 1 - P(X \le 8) = 1 - 0.9532 = 0.0468$ $P(X \ge 10) = 1 - P(X \le 9) = 1 - 0.9827 = 0.0173$ (closer to 0.025)

The critical region is $X \leq 1$ and $X \geq 10$.

Statistics 2 Solution Bank

9 c The probability of incorrectly rejecting H_o is 0.0274 + 0.0173 = 0.0447 = 4.47%

Challenge

a Assume H_0 is true then $X \sim B(50, 0.7)$

Consider the lower tail: P($X \le 29$) = 0.0478 (closer to 0.05) P($X \le 30$) = 0.0848

Consider the upper tail: $P(X \ge 41) = 1 - P(X \le 40) = 1 - 0.9598 = 0.0402$ (closer to 0.05) $P(X \ge 40) = 1 - P(X \le 39) = 1 - 0.9211 = 0.0789$

The critical region is $X \leq 29$ and $X \geq 41$

b The probability of one observation falling within the critical region is 0.0478 + 0.0402 = 8.8%The probability of two observations falling within the critical region is $0.088^2 = 0.007744 = 0.77\%$ The probability that Chloe has incorrectly rejected H₀ is 0.77%