Statistics 2 Solution Bank

Chapter Review 6

- 1 a A list of all the patients on the surgery books.
 - **b** A patient.
- 2 a Any two from: It would take too long. It would cost too much. It could be difficult to get hold of all members.
 - **b** A list of all members of the gym.
 - **c** A member of the gym.
- **3** a A sampling frame has to be some sort of list it may not be possible to list a population.
 - b A sample is usually easier to do, quicker to do and not as costly as a census.(Also, a census is not appropriate if the testing process would destroy each sampling unit.)
- 4 a A statistic is a quantity calculated solely from the observations of a sample.
 - **b i** is a statistic
 - ii is not a statistic as it depends on the value μ
- 5 a The light bulbs would all be destroyed.
 - **b** A light bulb.
- 6 a Any two from: It is quicker to do. It is cheaper to do. It is easier to do.
 - **b** It can be biased OR it is subject to natural variations.
 - c A numbered list of all 400 call centre operators.
 - d A call-centre operator.
 - e Yes, because he is using only the values from a sample. There are no parameters.
- 7 Any two from: It gives everyone's views. It is unbiased. It is easy to conduct a census when the population has only 10 members.
- 8 a and b are statistics, c and d are not statistics since they involve a population parameter.

Statistics 2 Solution Bank

- 9 a $E(X) = \frac{1}{2} \times 5 + \frac{1}{3} \times 10 + \frac{1}{6} \times 20 = \frac{55}{6}$ $Var(X) = \frac{1}{2} \times 5^{2} + \frac{1}{3} \times 10^{2} + \frac{1}{6} \times 20^{2} - \left(\frac{55}{6}\right)^{2} = \frac{1025}{36}$
 - **b** (5, 5), (10, 10), (20, 20), (5, 10), (10, 5), (5, 20), (20, 5), (10, 20), (20, 10)
 - c The sample space diagram shows the total of two randomly chosen coins.

		5	5	5	10	10	20
	5	10	10	10	15	15	25
	5	10	10	10	15	15	25
	5	10	10	10 15 10 15	15	25	
in 2	10	15	15	15	20	20	30
	10	15	15	15	20	20	30
Co	20	25	25	25	30	30	40

The sample space diagram shows the mean of two randomly chosen coins.

	Coin 1							
		5	5	5	10	10	20	
in 2	5	5	5	5	7.5	7.5	12.5	
	5	5	5	5	7.5	7.5	12.5	
	5	5	5	5	7.5	7.5	12.5	
	10	7.5	7.5	7.5	10	10	15	
	10	7.5	7.5	7.5	10	10	15	
Co	20	12.5	12.5	12.5	15	15	20	

The sampling distribution for \overline{Y} is shown in the table.

<i>y</i>	5	7.5	10	12.5	15	20
P(Y=v)	1	1	1	1	1	1
I(I y)	4	3	9	6	9	36

- **10 a** (6, 6, 6), (6, 6, 10), (6, 10, 6), (10, 6, 6), (6, 10, 10), (10, 6, 10), (10, 10, 6), (10, 10, 10)
 - **b** The median can only take the values 6 and 10. Let P(6) = p = 0.6Let P(10) = q = 0.4P(N = 6) = P(6, 6, 6) + P(6, 6, 10) + P(6, 10, 6) + P(10, 6, 6)= ppp + ppq + pqp + qpp $= 0.6 \times 0.6 \times 0.6 + 0.6 \times 0.6 \times 0.4 + 0.6 \times 0.4 \times 0.6 + 0.4 \times 0.6 \times 0.6$ = 0.648P(N = 10) = P(6, 10, 10) + P(10, 6, 10) + P(10, 10, 6) + P(10, 10, 10)= pqq + qpq + qqp + qqq $= 0.6 \times 0.4 \times 0.4 + 0.4 \times 0.6 \times 0.4 + 0.4 \times 0.4 \times 0.6 + 0.4 \times 0.4 \times 0.4$ = 0.3526 10 n 0.648 0.352 P(N=n)

INTERNATIONAL A LEVEL

Statistics 2 Solution Bank

10 c The mode can only take the values 6 and 10. Let P(6) = p = 0.6Let P(10) = q = 0.4P(M = 6) = P(6, 6, 6) + P(6, 6, 10) + P(6, 10, 6) + P(10, 6, 6)= ppp + ppq + pqp + qpp $= 0.6 \times 0.6 \times 0.6 + 0.6 \times 0.6 \times 0.4 + 0.6 \times 0.4 \times 0.6 + 0.4 \times 0.6 \times 0.6$ = 0.648P(M = 10) = P(6, 10, 10) + P(10, 6, 10) + P(10, 10, 6) + P(10, 10, 10)= pqq + qpq + qqp + qqq $= 0.6 \times 0.4 \times 0.4 + 0.4 \times 0.6 \times 0.4 + 0.4 \times 0.4 \times 0.6 + 0.4 \times 0.4 \times 0.4$ = 0.3523 2 т P(M = m)0.648 0.352

Challenge

a
$$E(\overline{X}) = E\left(\frac{X_1 + X_2 + ... + X_n}{n}\right)$$

 $= \frac{1}{n}E(X_1 + X_2 + ... + X_n)$
 $= \frac{1}{n}(E(X_1) + E(X_2) + ... + E(X_n))$
 $= \frac{1}{n}(\mu + \mu + ... + \mu)$
 $= \frac{1}{n}(n\mu)$
 $= \mu$

b
$$\operatorname{Var}(\overline{X}) = \operatorname{Var}\left(\frac{X_1 + X_2 + X_3}{3}\right)$$

$$= \frac{1}{9}\operatorname{Var}(X_1 + X_2 + X_3)$$

$$= \frac{1}{9}\left(\operatorname{Var}(X_1) + \operatorname{Var}(X_2) + \operatorname{Var}(X_3)\right)$$

$$= \frac{1}{9}\left(\sigma^2 + \sigma^2 + \sigma^2\right)$$

$$= \frac{\sigma^2}{3}$$