

Exercise 4D

1 a Between $(0,0.3)$ and $(4,0)$ the curve is a negative quadratic. Otherwise $f(x)$ is 0. There is a maximum between $x = 0$ and $x = 4$ (as when $x = 1$, for example, $f(x) > 0.3$).

b To find the mode solve, $\frac{d}{dx}f(x) = 0$

$$
\frac{d}{dx} \frac{3}{80} (8 + 2x - x^2) = 0
$$

$$
\frac{3}{80} (2 - 2x) = 0
$$

$$
2 - 2x = 0
$$

$$
x = 1
$$

The mode is 1.

(To check this is a maximum, either use the sketch or differentiate again and see if $f''(1) < 0$.)

2 a If $x < 0$, $F(x) = 0$ so $F(0) = 0$ If $0 \leqslant x \leqslant 4$ $\begin{bmatrix} 1 & 2 \end{bmatrix}^x \quad 1 \quad 2$

$$
F(x) = F(0) + \int_0^x \frac{1}{8} dt = \left[\frac{1}{16} t^2 \right]_0^x = \frac{1}{16} x^2
$$

So the full solution is:

$$
F(x) = \begin{cases} 0 & x < 0 \\ \frac{1}{16}x^2 & 0 \le x \le 4 \\ 1 & x > 4 \end{cases}
$$

b $F(m) = \frac{1}{16}m^2 = 0.5 \Rightarrow m^2 = 8 \Rightarrow m = \sqrt{8}$ (Note $-\sqrt{8}$ is not in the range $0 \le x \le 4$) So median = 2.83 (3 s.f.)

3 **a** As F(2) =
$$
\frac{2}{3}
$$
 and F(m) = 0.5, the median must lie in the range $0 \le x \le 2$
So F(m) = $\frac{m^2}{6}$ = 0.5 \Rightarrow m² = 3 \Rightarrow m = + $\sqrt{3}$ = 1.732 (3 d.p.) (as $-\sqrt{3}$ is not in the range)

$$
\frac{Q_1^2}{6} = 0.25 \Rightarrow Q_1^2 = 1.5 \Rightarrow Q_1 = \sqrt{1.5} = 1.2247... = 1.225 \text{ (3 d.p.)}
$$

As F(2) = $\frac{2}{3}$, upper quartile lies in the range 2 ≤ x ≤ 3
 $-\frac{Q_3^2}{3} + 2Q_3 - 2 = 0.75$
 $-Q_3^2 + 6Q_3 - 6 = 2.25$
 $-Q_3^2 + 6Q_3 - 8.25 = 0$
 $Q_3 = \frac{-6 \pm \sqrt{36 - 33}}{-2}$
 $Q_3 = 2.134 \text{ (3 d.p.) or 3.866 \text{ (3 d.p.)}$
 $Q_3 = 2.134 \text{ (3 d.p.) as 3.866 does not lie in the rangeInterquartile range = 2.1340 - 1.2247 = 0.909 \text{ (3 d.p.)}$

4 a The graph is a straight line between $(0,1)$ and $(2,0)$. Otherwise $f(x)$ is 0.

- **b** 0 (the mode occurs at the maximum point of the probability density function graph)
- **c** Using Method 1:

For
$$
0 \le x \le 2
$$
, $F(x) = \int_0^x \left(1 - \frac{1}{2}t\right) dt = \left[t - \frac{1}{4}t^2\right]_0^x = x - \frac{1}{4}x^2$

Using Method 2:

For
$$
0 \le x \le 2
$$
, $F(x) = \int 1 - \frac{1}{2}x dx = x - \frac{1}{4}x^2 + c$
As $F(2) = 1$, $2 - 1 + c = 1 \Rightarrow c = 0$

So the full solution is:

 ϵ

$$
F(x) = \begin{cases} 0 & x < 0 \\ x - \frac{1}{4}x^2 & 0 \le x \le 2 \\ 1 & x > 2 \end{cases}
$$

© Pearson Education Ltd 2019. Copying permitted for purchasing institution only. This material is not copyright free. 2

P Pearson

4 **d** $m - \frac{1}{4}m^2 = 0.5$ $m^2-4m+2=0$ $m = \frac{4 \pm \sqrt{16-8}}{2} = 2 \pm \sqrt{2}$ As $2 + \sqrt{2}$ is not in range, median = $2 - \sqrt{2} = 0.586$ (3 s.f.)

- **e** $Q_3 \frac{1}{4}Q_3^2 = 0.75$ $Q_3^2 - 4Q_3 + 3 = 0$ $(Q_3-1)(Q_3-3)=0$ So $Q_3 = 1$ (other solution is not in the range $0 \le x \le 2$)
- **5 a** The graph is a straight line between $\left(0, \frac{1}{2}\right)$ and $\left(3, \frac{1}{6}\right)$. Otherwise f(*x*) is 0.

- **b** 0 (the mode occurs at the maximum point of the probability density function graph)
- **c** Using Method 1:

For
$$
0 \le y \le 3
$$
, $F(y) = \int_0^y \frac{1}{2} - \frac{1}{9}t dt = \left[\frac{t}{2} - \frac{1}{18}t^2\right]_0^y = \frac{y}{2} - \frac{1}{18}y^2$

Using Method 2:

For
$$
0 \le y \le 3
$$
, $F(y) = \int \frac{y}{2} - \frac{1}{9} y dy = \frac{y}{2} - \frac{1}{18} y^2 + c$
As $F(3) = 1$, $\frac{3}{2} - \frac{9}{18} + c = 1 \Rightarrow c = 0$

So the full solution is:

$$
F(y) = \begin{cases} 0 & y < 0 \\ \frac{y}{2} - \frac{1}{18}y^2 & 0 \le y \le 3 \\ 1 & y > 3 \end{cases}
$$

5 **d** $\frac{m}{2} - \frac{1}{18}m^2 = 0.5$ $m^2-9m+9=0$ $m = \frac{9 \pm \sqrt{81-36}}{2} = \frac{9 \pm \sqrt{45}}{2} = \frac{9 \pm 3\sqrt{5}}{2}$ As $\frac{9+3\sqrt{5}}{2}$ = 7.85 lies outside the range, median = $\frac{9-3\sqrt{5}}{2}$ = 1.15 (3 s.f.)

6 a The graph is a positive cubic between $(0,0)$ and $(2,2)$. Otherwise $f(x)$ is 0.

b 2 (the mode occurs at the maximum point of the probability density function graph)

c For
$$
0 \le x \le 2
$$
, $F(x) = \int_0^x \frac{1}{4} t^3 dt = \left[\frac{1}{16} t^4 \right]_0^x = \frac{1}{16} x^4$

So the full solution is:

$$
F(x) = \begin{cases} 0 & x < 0 \\ \frac{1}{16}x^4 & 0 \le x \le 2 \\ 1 & x > 2 \end{cases}
$$

d $\frac{1}{16}m^4 = 0.5 \implies m^4 = 8 \implies m = \sqrt[4]{8}$ So median = 1.68 (3 s.f.)

(median must be the positive root to be in the range)

7 a The graph is a positive quadratic between $\left(-1, \frac{3}{4}\right)$ and $\left(1, \frac{3}{4}\right)$, with a minimum at $\left(0, \frac{3}{8}\right)$. Otherwise $f(x)$ is 0.

P Pearson

- **b** The distribution is bimodal; it has two modes. They are at -1 and 1.
- **c** The distribution is symmetrical. Median $= 0$

d For
$$
-1 \le x \le 1
$$
, $F(x) = \int_{-1}^{x} \frac{3}{8} x^2 + \frac{3}{8} dx = \left[\frac{1}{8} x^3 + \frac{3}{8} x \right]_{-1}^{x} = \left[\frac{1}{8} x^3 + \frac{3}{8} x \right] - \left[-\frac{1}{8} - \frac{3}{8} \right] = \frac{1}{8} x^3 + \frac{3}{8} x + \frac{1}{2}$

So the full solution is:

$$
F(x) = \begin{cases} 0 & x < -1 \\ \frac{1}{8}x^3 + \frac{3}{8}x + \frac{1}{2} & -1 \le x \le 1 \\ 1 & x > 1 \end{cases}
$$

8 a The graph is a negative quadratic between $(0,0)$ and $\left(2,\frac{6}{10}\right)$, with a maximum when $x = 1.5$. Otherwise $f(x)$ is 0.

8 b Find the mode by solving

$$
\frac{d}{dx} \left(\frac{9}{10} x - \frac{3}{10} x^2 \right) = 0
$$

$$
\Rightarrow \frac{9}{10} - \frac{6}{10} x = 0
$$

$$
\Rightarrow \text{mode} = \frac{3}{2} = 1.5
$$

c For
$$
0 \le x \le 2
$$
, $F(x) = \int_0^x \left(\frac{9}{10}t - \frac{3}{10}t^2\right) dt = \left[\frac{9}{20}t^2 - \frac{1}{10}t^3\right]_0^x = \frac{9}{20}x^2 - \frac{1}{10}x^3$

So the full solution is:

$$
F(x) = \begin{cases} 0 & x < 0\\ \frac{9}{20}x^2 - \frac{1}{10}x^3 & 0 \le x \le 2\\ 1 & x > 2 \end{cases}
$$

d F(1.23) = $\frac{9}{20} \times 1.23^2 - \frac{1}{10} \times 1.23^3 = 0.495$ $F(1.24) = \frac{9}{20} \times 1.24^2 - \frac{1}{10} \times 1.24^3 = 0.501$

Since $F(m) = 0.5$, $F(1.23) < F(m) < F(1.24)$ and as $F(x)$ is a cumulative distribution function this shows that the median, *m*, lies between 1.23 and 1.24.

9 a $f(x) = \frac{d}{dx}F(x)$

So where $F(x)$ is constant, $f(x) = 0$

For $1 \le x \le 3$, $f(x) = \frac{d}{dx} \left(\frac{1}{8} x^2 - \frac{1}{8} \right) = \frac{1}{4} x$

So the probability density function is:

$$
f(x) = \begin{cases} \frac{1}{4}x & 1 \leq x \leq 3 \\ 0 & \text{otherwise} \end{cases}
$$

9 b The graph of $f(x)$ is a straight line between $(1, 0.25)$ and $(3, 0.75)$. Otherwise $f(x)$ is 0.

The mode $= 3$ (the mode occurs at the maximum point of the probability density function graph)

P Pearson

c
$$
F(m) = \frac{1}{8}m^2 - \frac{1}{8} = 0.5
$$

\n $\Rightarrow \frac{1}{8}m^2 = \frac{5}{8} \Rightarrow m = \sqrt{5}$
\nMedian = $\sqrt{5} = 2.24$ (3 s.f.)

d P(k < X < k+1) = P(X < k+1) - P(X < k) = F(k+1) - F(k)
\nSo
$$
\frac{1}{8}((k+1)^2 - 1) - \frac{1}{8}(k^2 - 1) = 0.6
$$

\n⇒ $k^2 + 2k + 1 - 1 - k^2 + 1 = 4.8$
\n⇒ $2k = 3.8$
\n⇒ $k = 1.9$

10 **a** $f(x) = \frac{d}{dx}F(x)$

So where $F(x)$ is constant, $f(x) = 0$

For
$$
0 \le x \le 1
$$
, $f(x) = \frac{d}{dx}(4x^3 - 3x^4) = 12x^2 - 12x^3$

So the probability density function is:

$$
f(x) = \begin{cases} 12x^2(1-x) & 0 \le x \le 1 \\ 0 & \text{otherwise} \end{cases}
$$

10 b The graph of f(*x*) is negative cubic between (0,0) and (1,0) with a maximum between $x = 0$ and $x = 1$. Otherwise $f(x)$ is 0

P Pearson

To find the mode solve $\frac{d}{dx}f(x) = 0$

$$
\frac{d}{dx}(12x^2 - 12x^3) = 24x - 36x^2 = 0
$$

\n
$$
\Rightarrow 12x(2 - 3x) = 0
$$

\n
$$
\Rightarrow x = 0 \text{ or } \frac{2}{3}
$$

Checking whether $f(x)$ is a maximum or minimum at these points:

$$
f''(x) = \frac{d}{dx}(24x - 36x^2) = 24 - 72x
$$

At $x = 0$, $f''(x) = 24$. As $f''(x) > 0$, there is a minimum at this point
At $x = \frac{2}{3}$, $f''(x) = -24$. As $f''(x) < 0$, there is a maximum at this point
So the mode $= \frac{2}{3}$

c
$$
P(0.2 < X < 0.5) = F(0.5) - F(0.2)
$$

= $(4 \times 0.5^3 - 3 \times 0.5^4) - (4 \times 0.2^3 - 3 \times 0.2^4)$
= 0.5 - 0.1875 - 0.032 + 0.0048 = 0.2853

11 a For $0 \le w \le 5$, $F(w) = \int_0^{\infty} \frac{20}{5^5} t^3 (5-t) dt = \left[\frac{100}{4 \times 5^5} t^4 - \frac{20}{5 \times 5^5} t^5 \right]_0^{\infty} = \frac{25}{5^5} w^4 - \frac{4}{5^5} w^5 = \frac{w^4}{5^5} (25 - 4w)$

So the full solution is:

$$
F(w) = \begin{cases} 0 & w < 0\\ \frac{w^4}{5^5} (25 - 4w) & 0 \le w \le 5\\ 1 & w > 5 \end{cases}
$$

11 b F(3.4) =
$$
\frac{3.4^4(25-13.6)}{5^5}
$$
 = 0.4875 (4 d.p.)
\nF(3.5) = $\frac{3.5^4(25-14)}{5^5}$ = 0.5282 (4 d.p.)
\nSo F(3.4) < 0.5 < F(3.5), hence the median lies between 3.4 kg and 3.5 kg

c To find the mode, solve
$$
\frac{d}{dx}f(w) = 0
$$

\n
$$
\frac{d}{dx} \left(\frac{20}{5^5} w^3 (5 - w) \right) = \frac{60}{5^4} w^2 - \frac{80}{5^5} w^3
$$
\n
$$
\Rightarrow \frac{20}{5^5} w^2 (15 - 4w) = 0
$$
\n
$$
\Rightarrow w = 0 \text{ or } \frac{15}{4}
$$
\n
$$
f'(w) > 0 \text{ when } w < \frac{15}{4} \text{ and } 0 \text{ when } w > \frac{15}{4}, \text{ so } w = \frac{15}{4} \text{ is a maximum}
$$
\nHence mode = $\frac{15}{4}$

(Alternatively justify the maximum by sketching $f(w)$ or showing that $f''(3.75) < 0$)

12 a
$$
E(X) = \int_{0}^{1} \frac{x}{4} dx + \int_{1}^{2} \frac{x^{4}}{5} dx = \left[\frac{x^{2}}{8}\right]_{0}^{1} + \left[\frac{x^{5}}{25}\right]_{1}^{2}
$$

\n
$$
= \frac{1}{8} + \frac{32}{25} - \frac{1}{25} = \frac{25 + 248}{200} = \frac{273}{200} = 1.365
$$
\nb If $x < 0$, $F(x) = 0$ so $F(0) = 0$
\nIf $0 \le x < 1$
\n $F(x) = \int \frac{1}{4} dx = \frac{x}{4} + c$
\nAs $F(0) = 0 \Rightarrow c = 0$
\nIf $1 \le x \le 2$
\n $F(x) = \int \frac{x^{3}}{5} dx = \frac{x^{4}}{20} + d$
\nAs $F(2) = 1 \Rightarrow \frac{16}{20} + d = 1 \Rightarrow d = \frac{4}{20} = \frac{1}{5}$
\nSo the full solution is:
\n $\begin{bmatrix} 0 & x < 0 \\ \frac{x}{4} & 0 \le x < 1 \\ \frac{x^{4}}{20} + \frac{1}{5} & 1 \le x \le 2 \\ 1 & x > 2 \end{bmatrix}$

12 **c** $F(m) = \frac{m^4}{20} + \frac{1}{5} = 0.5$ $m^4 + 4 = 10$ $m^4=6$ $m=1.565$ (3 d.p.) So median = 1.565 (3 d.p.)

Lower quartile

$$
\frac{Q_1^4}{20} + \frac{1}{5} = 0.25
$$

$$
Q_1^4 + 4 = 5
$$

$$
Q_1 = 1
$$

Upper quartile

$$
\frac{Q_3^4}{20} + \frac{1}{5} = 0.75
$$

\n
$$
Q_3^4 + 4 = 15
$$

\n
$$
Q_3^4 = 11
$$

\n
$$
Q_3 = 1.8212 (4 d.p.)
$$
 (Note -1.8212 is not in range)

Interquartile range = $1.8212 - 1 = 0.821$ (3 d.p.)

d
$$
\frac{x^4}{20} + \frac{1}{5} = 0.4 \Rightarrow \frac{x^4}{20} + \frac{1}{5} = \frac{2}{5} \Rightarrow x^4 = 4 \Rightarrow x = 1.414
$$
 (3 d.p.)

13 a f(*x*) is a continuously decreasing function in the range $2 \le x \le 10$, as *x* increases $\frac{1}{x \ln 5}$ decreases So the mode occurs at $x = 2$

b For
$$
2 \le x \le 10
$$
, $F(x) = \int_2^x \frac{1}{t \ln 5} dt = \left[\frac{\ln t}{\ln 5} \right]_2^x = \frac{\ln x}{\ln 5} - \frac{\ln 2}{\ln 5} = \frac{\ln x - \ln 2}{\ln 5} = \frac{\ln (0.5x)}{\ln 5}$

So the full solution is \mathbf{r}

$$
F(x) = \begin{cases} 0 & x < 2 \\ \frac{\ln(0.5x)}{\ln 5} & 2 \le x \le 10 \\ 1 & x > 10 \end{cases}
$$

c
$$
F(m) = \frac{\ln 0.5m}{\ln 5} = \frac{\ln m - \ln 2}{\ln 5} = 0.5
$$

\n $\Rightarrow \ln m = 0.5 \ln 5 + \ln 2 = \ln(2\sqrt{5})$
\n $\Rightarrow m = 2\sqrt{5}$

13 d Lower quartile

$$
\frac{\ln Q_1 - \ln 2}{\ln 5} = 0.25
$$

\n
$$
\Rightarrow \ln Q_1 = 0.25 \ln 5 + \ln 2 = 1.09551 (5 d.p.)
$$

\n
$$
\Rightarrow Q_1 = e^{1.09551} = 2.9907 (4 d.p.)
$$

Upper quartile

$$
\frac{\ln Q_3 - \ln 2}{\ln 5} = 0.75
$$

\n
$$
\Rightarrow \ln Q_3 = 0.75 \ln 5 + \ln 2 = 1.90023
$$
 (5 d.p.)
\n
$$
\Rightarrow Q_1 = e^{1.90023} = 6.6874
$$
 (4 d.p.)

Interquartile range = 6.6874 – 2.9907 = 3.697 (3 d.p.)

14 a For
$$
x \ge 0
$$
, $F(x) = \int_0^x 2.5e^{-2.5t} dt = \left[-e^{-2.5t} \right]_0^x = 1 - e^{-2.5x}$

So the cumulative distribution function is

$$
F(x) = \begin{cases} 0 & x < 0\\ 1 - e^{-2.5x} & x \ge 0 \end{cases}
$$

 $\sqrt{ }$

So median is 277 hours (to the nearest hour)

b Lower quartile

Upper quartile
 $1-e^{-2.5Q_3}=0.75$ $\Rightarrow e^{-2.5Q_3}=0.25$ $\Rightarrow -2.5Q_3 = \ln 0.25 = -1.38629$ $\Rightarrow Q_3 = 0.5545$ (4 d.p.)

Interquartile range = $0.5545 - 0.1151 = 0.439$ (3 d.p.)

So to the nearest hour, the lower quartile is 115 hours, the upper quartile is 555 hours and the interquartile range is 439 hours.

15 a The area under the curve must equal 1, so:

$$
\int_0^{0.25} k \sec^2(\pi x) dx = 1
$$

\n
$$
\Rightarrow \left[\frac{k}{\pi} \tan(\pi x) \right]_0^{0.25} = 1
$$

\n
$$
\Rightarrow \frac{k}{\pi} \left(\tan(0.25\pi) - \tan 0 \right) = \frac{k}{\pi} = 1
$$

\n
$$
\Rightarrow k = \pi
$$

b For
$$
0 \le x \le 2.5
$$
, $F(x) = \int_0^x \pi \sec^2(\pi t) dt = [\tan(\pi t)]_0^x = \tan(\pi x)$

So the cumulative distribution function is

$$
F(x) = \begin{cases} 0 & x < 0 \\ \tan(\pi x) & 0 \le x \le 0.25 \\ 1 & x > 0.25 \end{cases}
$$

- **c** $F(m) = \tan(\pi m) = 0.5$ $\Rightarrow \pi m = 0.4636 \Rightarrow m = 0.1476$ (4 d.p.)
- **16 a** The area under the curve must equal 1, so:

$$
\int_{2}^{4} \frac{k}{x(5-x)} dx = 1
$$

\n
$$
\Rightarrow k \int_{2}^{4} \frac{1}{5x} + \frac{1}{5(5-x)} dx = 1
$$

\n
$$
\Rightarrow \frac{k}{5} [\ln x - \ln(5-x)]_{2}^{4} = 1
$$

\n
$$
\Rightarrow k (\ln 4 - \ln 2 + \ln 3) = 5
$$

\n
$$
\Rightarrow k \ln \left(\frac{4 \times 3}{2} \right) = k \ln 6 = 5
$$

\n
$$
\Rightarrow k = \frac{5}{\ln 6}
$$

$$
\begin{aligned} \n\mathbf{b} \quad \mathbf{E}(X) &= \frac{5}{\ln 6} \int_2^4 \frac{x}{x(5-x)} \, \mathrm{d}x = \frac{5}{\ln 6} \int_2^4 \frac{1}{(5-x)} \, \mathrm{d}x \\ \n&= \frac{5}{\ln 6} \Big[-\ln(5-x) \Big]_2^4 = \frac{5\ln 3}{\ln 6} = 3.0657 \Rightarrow 3.066 \text{ (3 d.p.)} \n\end{aligned}
$$

c
$$
E(X^2) = \frac{5}{\ln 6} \int_2^4 \frac{x^2}{x(5-x)} dx = \frac{5}{\ln 6} \int_2^4 \frac{x}{(5-x)} dx = \frac{5}{\ln 6} \int_2^4 -1 + \frac{5}{(5-x)} dx
$$

$$
= \frac{5}{\ln 6} \Big[-x - 5\ln(5-x) \Big]_2^4 = \frac{5\ln 3}{\ln 6} = \frac{5}{\ln 6} (-4 + 2 + 5\ln 3) = \frac{5(5\ln 3 - 2)}{\ln 6} = 9.7476 \text{ (4 d.p.)}
$$

 $Var(X) = E(X^2) - (E(X))^2 = 9.7476 - (3.0657)^2 = 0.349$ (3 d.p.)

P Pearson

16 d For
$$
2 \le x \le 4
$$
, $F(x) = \frac{5}{\ln 6} \int_2^x \frac{1}{t(5-t)} dt = \frac{5}{\ln 6} \int_2^x \frac{1}{5t} + \frac{1}{5(5-t)} dt$

$$
= \frac{1}{\ln 6} \Big[\ln t - \ln(5-t) \Big]_2^x = \frac{1}{\ln 6} \Big(\ln x - \ln(5-x) - \ln 2 + \ln 3 \Big) = \frac{1}{\ln 6} \Big(\ln \Big(\frac{3x}{2(5-x)} \Big) \Big)
$$

P Pearson

So the cumulative distribution function is

$$
F(x) = \begin{cases} 0 & x < 2 \\ \frac{1}{\ln 6} \left(\ln \left(\frac{3x}{10 - 2x} \right) \right) & 2 \le x \le 4 \\ 1 & x > 4 \end{cases}
$$

e
$$
F(m) = \frac{1}{\ln 6} \left(\ln \frac{3m}{10 - 2m} \right) = 0.5
$$

\n $\Rightarrow \ln \left(\frac{3m}{10 - 2m} \right) = 0.5 \ln 6 = \ln \sqrt{6}$
\n $\Rightarrow \frac{3m}{10 - 2m} = \sqrt{6}$
\n $\Rightarrow m = \frac{10\sqrt{6}}{3 + 2\sqrt{6}} = 3.101 (3 d.p.)$

- **f** 4 because the probability distribution function curve is U-shaped and the maximum value of the curve is at the endpoint 4.
- **g** As the mean < median < mode, the distribution is negatively skewed.

Challenge

- **1** There are many possible answers. The sketches below show one set of graphs that satisfy the respective conditions:
	- **a** The mode \neq median because there is no maximum.

Challenge (continued)

1 b The mode lies outside the interquartile range because the maximum is at an endpoint.

2 There are many possible answers. Consider this function:

$$
f(x) = \begin{cases} x & 0 \le x \le 1 \\ \frac{1}{2} & 1 < x \le 2 \\ 0 & \text{otherwise} \end{cases}
$$

It is a probability distribution function as:

$$
\int_0^1 x dx + \int_1^2 \frac{1}{2} dx = \left[\frac{x^2}{2} \right]_0^1 + \left[\frac{x}{2} \right]_1^2 = \frac{1}{2} + 1 - \frac{1}{2} = 1
$$

The cumulative distribution function is:

$$
F(x) = \begin{cases} 0 & x < 0 \\ \frac{x^2}{2} & 0 \le x < 1 \\ \frac{x}{2} & 1 < x \le 2 \\ 1 & x > 2 \end{cases}
$$

From the sketch, the mode = 1. From the cumulative distribution function $F(1) = 0.5$, so the median is 1 and the median and the mode are therefore equal.