Statistics 2 Solution Bank

Exercise 3B

- **1 a i** Yes, since $n = 120$ is large (> 50) and $p = 0.6$ is close to 0.5.
	- **ii** $\mu = np = 120 \times 0.6 = 72$ and $\sigma = \sqrt{np(1-p)} = \sqrt{72 \times 0.4} = \sqrt{28.8} = 5.37$ (3 s.f.) $X \sim B(72, 5.37^2)$
	- **b i** No, $n = 20$ is not large enough (< 50).
	- **c i** Yes, since $n = 250$ is large (> 50) and $p = 0.52$ is close to 0.5.
		- **ii** $\mu = np = 250 \times 0.52 = 130$ and $\sigma = \sqrt{np(1-p)} = \sqrt{130 \times 0.48} = \sqrt{62.4} = 7.90$ (3 s.f.) $X \sim B(130, 7.90^2)$
	- **d i** No, $p = 0.85$ is too far from 0.5.
	- **e i** Yes, since $n = 400$ is large (> 50) and $p = 0.48$ is close to 0.5.
		- **ii** $\mu = np = 400 \times 0.48 = 192$ and $\sigma = \sqrt{np(1-p)} = \sqrt{192 \times 0.52} = \sqrt{99.84} = 9.99$ (3 s.f.) $X \sim B(192, 9.99^2)$
	- **f i** Yes, since $n = 1000$ is large (> 50) and $p = 0.58$ is close to 0.5.
		- **ii** $\mu = np = 1000 \times 0.58 = 580$ and $\sigma = \sqrt{np(1-p)} = \sqrt{580 \times 0.42} = \sqrt{243.6} = 15.6$ (3 s.f.) $X \sim B(580, 15.6^2)$
- **2** A normal approximation is valid since $n = 150$ is large (> 50) and $p = 0.45$ is close to 0.5. $\mu = np = 150 \times 0.45 = 67.5$ and $\sigma = \sqrt{np(1-p)} = \sqrt{67.5 \times 0.55} = \sqrt{37.125} = 6.093$ (4 s.f.) So X can be approximated by $Y \sim N(67.5, 6.093^2)$
	- **a** $P(X \le 60) \approx P(Y < 60.5) = 0.1253$ (4 d.p.)
	- **b** $P(X > 75) \approx P(Y > 75.5) = 0.0946$ (4 d.p.)
	- **c** $P(65 \le X \le 80) \approx P(64.5 \le Y \le 80.5) = 0.6723$ (4 d.p.)
- **3** A normal approximation is valid since $n = 200$ is large (> 50) and $p = 0.53$ is close to 0.5. $\mu = np = 200 \times 0.53 = 106$ and $\sigma = \sqrt{np(1-p)} = \sqrt{106 \times 0.47} = \sqrt{49.82} = 7.058$ (4 s.f.) So *X* can be approximated by $Y \sim N(106, 7.058^2)$
	- **a** $P(X < 90) \approx P(Y < 89.5) = 0.0097$ (4 d.p.)
	- **b** $P(100 \le X < 110) \approx P(99.5 < Y < 109.5) = 0.5115 (4 d.p.)$
	- **c** $P(X = 105) \approx P(104.5 < Y < 105.5) = 0.0559$ (4 d.p.)

Statistics 2 Solution Bank

4 A normal approximation is valid since $n = 100$ is large (> 50) and $p = 0.6$ is close to 0.5. $\mu = np = 100 \times 0.6 = 60$ and $\sigma = \sqrt{np(1-p)} = \sqrt{60 \times 0.4} = \sqrt{24} = 4.899$ (4 s.f.) So *X* can be approximated by $Y \sim N(60, 4.899^2)$

Pearson

- **a** $P(X > 58) \approx P(Y > 58.5) = 0.6203$ (4 d.p.)
- **b** $P(60 < X \le 72) \approx P(60.5 < Y < 72.5) = 0.4540$ (4 d.p.)
- **c** $P(X = 70) \approx P(69.5 < Y < 70.5) = 0.0102$ (4 d.p.)
- **5** Let *X* be the number of heads in 70 tosses of a fair coin, so $X \sim B(70, 0.5)$. Since $p = 0.5$ and 70 is large, *X* can be approximated by the normal distribution $Y \sim N(\mu, \sigma^2)$, where $\mu = 70 \times 0.5 = 35$ and $\sigma = \sqrt{70 \times 0.5 \times 0.5} = \sqrt{17.5}$ So $Y \sim N(35, 17.5)$ $P(X > 45) \approx P(Y \ge 45.5) = 0.0060$ (4 d.p.)
- **6** A normal approximation is valid since $n = 1200$ is large and p is close to 0.5. $1200 \times \frac{50}{101} = 594.059$ 10 $\mu = np = 1200 \times \frac{50}{101} = 594.05$ and $\sigma = \sqrt{np(1-p)} = \sqrt{594.059 \times \frac{51}{101}} = \sqrt{299.97059...} = 17.32$ 1 299.97059 01 $\sigma = \sqrt{np(1-p)} = \sqrt{594.059 \times \frac{51}{101}} = \sqrt{299.97059...} = 17.32$ (4 s.f.) So *Y* ~ N(594.059, 299.97...) $P(X \ge 600) \approx P(Y > 599.5) = 0.3767$ (4 d.p.)
- **7 a** The number of trials, *n*, must be large (> 50), and the success probability, *p*, must be close to 0.5.
	- **b** Using the binomial distribution, $P(X = 10) = \begin{pmatrix} 20 \\ 10 \end{pmatrix} \times 0.45^{10} \times 0.55^{10} = 0.1593$ 1 $.45^{10} \times 0.55^{10} = 0.1$ 0 $X = 10$ = $\begin{pmatrix} 20 \\ 10 \end{pmatrix}$ \times 0.45¹⁰ \times 0.55¹⁰ = 0.159 \setminus $\begin{bmatrix} 2 \ 1 \end{bmatrix}$ × $\bigg)$ (4 d.p.)
	- **c** A normal approximation is valid since $n = 240$ is large and $p = 0.45$ is close to 0.5. $\mu = np = 240 \times 0.45 = 108$ and $\sigma = \sqrt{np(1-p)} = \sqrt{108 \times 0.55} = \sqrt{59.4} = 7.707$ (4 s.f.) So $Y \sim N(108, 59.4)$ $P(X < 110) \approx P(Y < 109.5) = 0.5772$ (4 d.p.)
	- **d** $P(X \geq q) = 0.2 \Rightarrow P(Y > (q 0.5)) = 0.2$ Using the inverse normal function, $P(Y > (q - 0.5)) = 0.2 \implies q - 0.5 = 114.485 \implies q = 114.985$ So $q = 115$
- **8 a** Using the cumulative binomial function with $N = 30$ and $p = 0.52$, $P(X < 17) = P(X \le 16) = 0.6277$ (4 d.p.)
	- **b** A normal approximation is valid since $n = 600$ is large and $p = 0.52$ is close to 0.5. $\mu = np = 600 \times 0.52 = 312$ and $\sigma = \sqrt{np(1-p)} = \sqrt{312 \times 0.48} = \sqrt{149.76} = 12.24$ (4 s.f.) So $Y \sim N(312, 149.76)$ $P(300 \le X \le 350) \approx P(299.5 \le Y \le 350.5) = 0.8456$ (4 d.p.)

INTERNATIONAL A LEVEL

Statistics 2 Solution Bank

- **9 a** Using the binomial distribution, $P(X = 55) = \begin{pmatrix} 100 \\ 55 \end{pmatrix} \times 0.56^{55} \times 0.44^{45} = 0.0784$ $X = 55$) = $\binom{100}{55}$ × 0.56⁵⁵ × 0.44⁴⁵ = 0.0784 (4 d.p.)
	- **b** A normal approximation is valid since $n = 100$ is large and $p = 0.56$ is close to 0.5. $\mu = np = 100 \times 0.56 = 56$ and $\sigma = \sqrt{np(1-p)} = \sqrt{56 \times 0.44} = \sqrt{24.64} = 4.964$ (4 s.f.) So $Y \sim B(56, 24.64)$ $P(X = 55) \approx P(54.5 < Y < 55.5) = 0.07863$ (4 s.f.) Percentage error = $\frac{0.07838...(-)0.07863...}{0.07838} \times 100 = 0.31$ 0.07838... $\frac{-10.07863...}{220} \times 100 = 0.31\%$ (2 d.p.)