Statistics 2 Solution Bank

Exercise 1C

- 1 a $E(X) = 12 \times 0.7 = 8.4$
 - b $Var(X) = 12 \times 0.7 \times (1 0.7) = 2.52$
- 2 a E(X) = 0.4n = 3.2So n = 8
 - **b** $P(X=5) = \binom{8}{5} (0.4)^5 (0.6)^3$ = 56 × 0.1024 × 0.216 = 0.1239 (4 d.p.)
 - **c** The answer can be found from the binomial cumulative distribution function tables in the textbook or by using a calculator. $P(X \le 2) = 0.3154$
- 3 Var(X) = 10p(1-p) = 2.4So p(1-p) = 0.24 $p^2 - p + 0.24 = 0$ (p-0.4)(p-0.6) = 0 factoring p = 0.4 or 0.6
- 4 $\operatorname{Var}(X) = 15p(1-p) = 2.4$ So p(1-p) = 0.16 $p^2 - p + 0.16 = 0$ (p-0.2)(p-0.8) = 0 factoring p = 0.2 or 0.8
- 5 E(X) = np = 4.8 (1) Var(X) = np(1-p) = 2.88 (2) (2) ÷ (1) gives: $(1-p) = \frac{2.88}{4.8} = 0.6 \Rightarrow p = 0.4$ From (1): $np = 4.8 \Rightarrow n = \frac{4.8}{0.4} = 12$
- 6 a Let X be the number of heads obtained in 20 spins, so $X \sim B(20, p)$

Var(X) = 20p(1-p) = 4.2So p(1-p) = 0.21 $p^2 - p + 0.21 = 0$ (p-0.3)(p-0.7) = 0 factoring p = 0.3 (as p < 0.5)

Statistics 2 Solution Bank

- 6 b P(X=7) = $\binom{20}{7}$ (0.3)⁷(0.7)¹³ $= 77520 \times 0.0002187 \times 0.0096889 = 0.1643$ (4 d.p.)
- 7 a Let Y be the number of times in 10 attempts that the salesman gets a reply. So $Y \sim B(10, 0.65)$

i
$$P(Y=5) = {10 \choose 5} (0.65)^5 (0.35)^5$$

= 252 × 0.11603 × 0.005252 = 0.1536 (4 d.p.)

- **ii** $P(Y \ge 5) = 1 P(Y \le 4)$ find value by using a calculator = 1 - 0.0949 = 0.9051
- **b** Let X be the number of times in n attempts that the salesman gets a reply. So $X \sim B(n, 0.65)$
 - i Require that E(X) = 0.65n = 78So n = 120
 - ii $Var(X) = np(p-1) = 120 \times 0.65 \times 0.35 = 27.3$
- 8 a Let X be the number of biscuits in a box of 48 that are broken. So $X \sim B(48, 0.04)$

find value by using a calculator $P(X \ge 2) = 1 - P(X \le 1)$ =1-0.4228=0.5772

b Let *Y* be the number of boxes out of 120 that contain at least 2 broken biscuits. So $Y \sim B(120, 0.5772)$ $E(X) = 120 \times 0.5772 = 69.264$ $Var(X) = 120 \times 0.5772 \times (1 - 0.5772)$ $=120 \times 0.5772 \times 0.4228$ = 29.28 (2 d.p.)

9 a
$$X \sim B(5,p)$$

 $P(X \ge 1) = 1 - P(X = 0)$
 $= 1 - {5 \choose 0} p^0 (1-p)^5 = 1 - (1-p)^5 = 0.83193$
So $(1-p)^5 = 0.16807$
 $1-p = 0.7 \Longrightarrow p = 0.3$

b $E(X) = 5 \times 0.3 = 1.5$ $Var(X) = 5 \times 0.3 \times 0.7 = 1.05$

Statistics 2 Solution Bank

10 a Let *X* be the number of sixes in 5 throws of the dice. From the data:

$$\overline{x} = \frac{\sum fx}{\sum f} = \frac{163 \times 0 + 208 \times 1 + 98 \times 2 + 28 \times 3 + 3 \times 4}{163208 + 98 + 28 + 3} = 1$$
$$\sigma^{2} = \frac{\sum fx^{2}}{\sum f} - 1^{2} = \frac{163 \times 0^{2} + 208 \times 1^{2} + 98 \times 2^{2} + 28 \times 3^{2} + 3 \times 4^{2}}{163208 + 98 + 28 + 3} = 1.8 - 1 = 0.8$$

- b $X \sim B(5,p)$ E(X) = 5p = 1 So p = 0.2
- c Using $X \sim B(5,0.2)$, the expected frequencies can be found using the formula

expected frequency for x sixes =
$$500 \times P(X = x) = 500 \times {\binom{5}{x}} (0.2)^x (0.8)^{5-x}$$

Number of sixes	0	1	2	3	4	5
Expected frequency	164	205	102	26	3	0

The data are very similar to the expected results from the proposed binomial model.

d Using the model, $Var(X) = 5 \times 0.2 \times 0.8 = 0.8$, which exactly matches the observed variance of the data. This further supports the suitability of the binomial model.

Challenge

b

a
$$E(X) = \sum xP(X-x)$$

$$= \sum_{x=0}^{3} x {\binom{3}{x}} p^{x} (1-p)^{3-x}$$

$$= 0 + 1 \times 3p(1-p)^{2} + 2 \times 3p^{2}(1-p) + 3 \times p^{3}$$

$$= 3p(1-2p+p^{2}) + 6p^{2}(1-p) + 3p^{3}$$

$$= 3p(1-2p+p^{2}+2p-2p^{2}+p^{2}) = 3p$$

$$Var(X) = \sum x^{2}P(X-x) - (E(X))^{2}$$

= $\sum_{x=0}^{3} x^{2} {3 \choose x} p^{x} (1-p)^{3-x} - (3p)^{2}$
= $0 + 1^{2} \times 3p(1-p)^{2} + 2^{2} \times 3p^{2}(1-p) + 3^{2} \times p^{3} - 9p^{2}$
= $3p(1-2p+p^{2}) + 12p^{2}(1-p) + 9p^{3} - 9p^{2}$
= $3p(1-2p+p^{2}+4p-4p^{2}+3p^{2}-3p) = 3p(1-p)$