4733

4733 Probability & Statistics 2

1	$\frac{105.0 - \mu}{\sigma} = -0.7; \frac{110.0 - \mu}{\sigma} = -0.5$ Solve: $\sigma = 25$ $\mu = 122.5$	M1 A1 B1 M1 A1 A1	6	Standardise once, equate to Φ^{-1} , allow σ^2 Both correct including signs & σ , no cc (continuity correction), allow wrong z Both correct z-values. "1 –" errors: M1A0B1 Get either μ or σ by solving simultaneously σ a.r.t. 25.0 $\mu = 122.5 \pm 0.3$ or 123 if clearly correct, allow from σ^2 but <i>not</i> from $\sigma = -25$.
2	Po(20) ≈ N(20, 20) Normal approx. valid as $\lambda > 15$ $1-\Phi\left(\frac{24.5-20}{\sqrt{20}}\right) = 1-\Phi(1.006)$ = 1 - 0.8427 = 0.1573	M1 A1 B1 M1 A1 A1	6	Normal stated or implied (20, 20) or (20, $\sqrt{20}$) or (20, 20^2), can be implied "Valid as $\lambda > 15$ ", or "valid as λ large" Standardise 25, allow wrong or no cc, $\sqrt{20}$ errors $1.0 < z \le 1.01$ Final answer, art 0.157
3	H ₀ : $p = 0.6$, H ₁ : $p < 0.6$ where p is proportion in population who believe it's good value $R \sim B(12, 0.6)$ α : P($R \le 4$) = 0.0573 > 0.05 β : CR is ≤ 3 and $4 > 3$	B2 M1 A1 B1 B1		Both, B2. Allow π , % One error, B1, except <i>x</i> or \overline{x} or <i>r</i> or <i>R</i> : 0 B(12, 0.6) stated or implied, e.g. N(7.2, 2.88) <i>Not</i> P(< 4) or P(≥ 4) or P(= 4) Must be using P(≤ 4), or P(> 4) < 0.95 and binomial Must be using CR; explicit comparison needed
	p: $p = 0.0153$ Do not reject H ₀ . Insufficient evidence that the proportion who believe it's good value for money is less than 0.6	A1 M1 A1	7	Correct conclusion, needs B(12,0.6) and ≤ 4 Contextualised, some indication of uncertainty [SR: N(7.2,) or Po(7.2): poss B2 M1A0] [SR: P(< 4) or P(= 4) or P(≥ 4): B2 M1A0]
4 (i)	Eg "not all are residents"; "only those in street asked"	B1 B1	2	One valid relevant reason A definitely different valid relevant reason <i>Not</i> "not a random sample", <i>not</i> "takes too long"
(ii)	Obtain list of whole population Number it sequentially Select using random numbers [Ignore method of making contact]	B1 B1 B1	3	"Everyone" or "all houses" must be implied <i>Not</i> "number it with random numbers" unless then "arrange in order of random numbers" SR : "Take a random sample": B1 SR : Systematic: B1 B0, B1 if start randomly chosen
(iii)	Two of: α: Members of population equally likely to be chosen β: Chosen independently/randomly γ: Large sample (e.g. > 30)	B1 B1	2	One reason. NB : If "independent", must be "chosen" independently, not "views are independent" Another reason. Allow "fixed sample size" but not both that and "large sample". Allow "houses"

physicsandmathstutor.com

4733

Mark Scheme

5	(i)	Bricks scattered at constant average rate & independently of one	B1 B1	2	B1 for each of 2 different reasons, in context. (Treat "randomly" ≡ "singly" ≡ "independently")
	(ii)	another Po(12) $P(\le 14) - P(\le 7) = .77200895$	B1 M1		Po(12) stated or implied Allow one out at either end or both, eg 0.617, or
		$[or P(8) + P(9) + \dots + P(14)]$		2	wrong column, but <i>not</i> from Po(3) nor, eg, .9105 – .7720
		= 0.6825	A1	3	Answer in range [0.682, 0.683]
	(iii)	$e^{-\lambda} = 0.4$ $\lambda = -\ln (0.4)$ = 0.9163 Volume = 0.9163 ÷ 3 = 0.305	B1 M1 A1 M1	4	This equation, aef, can be implied by, eg 0.9 Take ln, or 0.91 by T & I λ art 0.916 or 0.92, can be implied Divide their λ value by 3 [SR : Tables, eg 0.9÷3: B1 M0 A0 M1]
6	(i)	$33.6 \\ \frac{115782.84}{100} - 33.6^{2} \ [= 28.8684] \\ \times \frac{100}{99} = 29.16$	B1 M1 M1 A1	4	33.6 clearly stated [not recoverable later] Correct formula used for biased estimate $\times \frac{100}{99}$, M's independent. Eg $\frac{\Sigma r^2}{99}$ [-336 ²] SR B1 variance in range [29.1, 29.2]
	(ii)	$\overline{R} \sim N(33.6, 29.16/9) = N(33.6, 1.8^2)$	M1 A1		Normal, their μ , stated or implied Variance [their (i)]÷9 [not ÷100]
		$1 - \Phi\left(\frac{32 - 33.6}{\sqrt{3.24}}\right) \left[= \Phi(0.8889)\right]$	M1		Standardise & use Φ , 9 used, answer > 0.5, allow $\sqrt{\text{errors}}$, allow cc 0.05 but <i>not</i> 0.5
		= 0.8130	A1	4	Answer, art 0.813
	(iii)	No, distribution of R is normal so that of \overline{R} is normal	B2	2	Must be saying this. Eg "9 is not large enough": B0. Both: B1 max, unless saying that <i>n</i> is irrelevant.
7	(i)	$\frac{{}^{2}_{9}\int_{0}^{3}x^{3}(3-x)dx = \frac{2}{9}\left[\frac{3x^{4}}{4} - \frac{x^{5}}{5}\right]_{0}^{3} [= 2.7] - (1\frac{1}{2})^{2} = \frac{9}{20} \text{ or } 0.45$	M1 A1 B1 M1 A1	5	Integrate $x^2 f(x)$ from 0 to 3 [<i>not</i> for μ] Correct indefinite integral Mean is 1 ¹ / ₂ , soi [not recoverable later] Subtract their μ^2 Answer art 0.450
	(ii)	$\frac{2}{9} \int_{0}^{0.5} x(3-x) dx = \frac{2}{9} \left[\frac{3x^2}{2} - \frac{x^3}{3} \right]_{0}^{0.5}$ $= \frac{2}{27} \text{ AG}$	M1 A1	2	Integrate $f(x)$ between 0, 0.5, must be seen somewhere Correctly obtain given answer $\frac{2}{27}$, decimals other than 0.5 not allowed, 1 more line needed (eg [] = $\frac{1}{3}$)
	(iii)	B(108, $\frac{2}{27}$)	B1		B(108, $\frac{2}{27}$) seen or implied, eg Po(8)
		≈ N(8, 7.4074) $1 - \Phi\left(\frac{9.5 - 8}{\sqrt{7.4074}}\right)$ = 1 - $\Phi(0.5511)$	M1 A1 M1		Normal, mean 8 variance (or SD) 200/27 or art 7.41 Standardise 10, allow $\sqrt{\text{errors}}$, wrong or no cc, needs to be using B(108,)
		= 0.291	A1 A1	6	Correct √ and cc Final answer, art 0.291

physicsandmathstutor.com

4733

Mark Scheme

	(iv)	$\overline{X} \sim N(1.5, \frac{1}{240})$	$ \begin{array}{c} B1 \\ B1 \\ M \\ B1 \\ \end{array} $	NormalNB: not part (iii)Mean their μ Variance or SD (their 0.45)/108 [not (8, 50/729)]
8	(i)	H ₀ : $\mu = 78.0$ H ₁ : $\mu \neq 78.0$ $z = \frac{76.4 - 78.0}{\sqrt{68.9/120}} = -2.1115$ > - 2.576 or 0.0173 > 0.005 78 ± $z\sqrt{(68.9/120)}$ = 76.048	B1 B1 M1 A1 B1 M1 A1√	Both correct, B2. One error, B1, but <i>x</i> or \bar{x} : B0. Needs $\pm (76.4 - 78)/\sqrt{(\sigma \pm 120)}$, allow $\sqrt{\text{errors}}$ art -2.11, or $p = 0.0173 \pm 0.0002$ Compare <i>z</i> with (-)2.576, or <i>p</i> with 0.005 Needs 78 and 120, can be - only Correct CV to 3 sf, $\sqrt{\text{on } z}$
		76.4 > 76.048	B1	$z = 2.576$ and compare 76.4, allow from 78 \leftrightarrow 76.4
		Do not reject H_0 . Insufficient evidence that the mean time has changed	M1 A1√ 7	Correct comparison & conclusion, needs 120, "like with like", correct tail, \bar{x} and μ right way round Contextualised, some indication of uncertainty
	(ii)	$\frac{1}{\sqrt{68.9/n}} > 2.576$ $\sqrt{n} > 21.38,$ $n_{\min} = 458$ Variance is estimated	M1 M1 A1 B1 4	IGNORE INEQUALITIES THROUGHOUT Standardise 1 with <i>n</i> and 2.576, allow $\sqrt{\text{errors}}$, cc etc but <i>not</i> 2.326 Correct method to solve for \sqrt{n} (<i>not</i> from <i>n</i>) 458 only (<i>not</i> 457), <i>or</i> 373 from 2.326, signs correct Equivalent statement, allow "should use <i>t</i> ". In principle nothing superfluous, but "variance stays same" B1 bod