Mark Scheme 4733 June 2006

physicsandmathstutor.com

4733

Mark Scheme

June 2006

1		$x = x \int_{-\infty}^{4} x = x \int_{-\infty}^{1} \left[x^{4} \right]_{-\infty}^{4} \left[-2.81 \right]_{-\infty}^{1}$	M1		Integrate xf(x), limits 3 & 4 [can be implied]
		$\mu = \frac{3}{37} \int_{3} x^{3} dx = \frac{3}{37} \left[\frac{\pi}{4} \right]_{3} \left[1 - 3 \frac{\pi}{148} \right]_{3}$			$\begin{bmatrix} \frac{525}{140} & \text{or } 3.547 \end{bmatrix}$
		Γ_{r}^{5}	M1		Attempt to integrate $x^2 f(x)$ limits 3 & 4
		$\frac{3}{37}\int_{-2}^{4} x^4 dx = \frac{3}{37}\left \frac{x}{5}\right $	A1		Correct indefinite integral, any form
			A1		$\frac{2343}{195}$ or in range [12.6, 12.7] [can be implied]
		$= 12\frac{123}{185}$ or 12.665	M1		Subtract their μ^2
		$\sigma^2 = 12\frac{123}{185} - 3\frac{81}{148}^2 = 0.0815$	A1	6	Answer, in range [0.0575, 0.084]
2	(i)	Find $P(R \ge 6)$ or $P(R < 6)$	M1	•	Find $P(= 6)$ from tables/calc, OR RH critical
	()	= 0.0083 or 0.9917	A1		region
			_		P(≥ 6) in range [0.008, 0.0083] or P(< 6) =
		Compare with 0.025 [can be from	B1		0.9917
			A 4 ./	4	OR CR is 6 with probability
		[0.05 If "empty LH tall stated]	ATV		0.0083/0.9917 Explicitly compare with 0.025 for 0.075 if
		Reject H ₀			consistent]
					OR state that result is in critical region
					Correct comparison and conclusion, $$ on their p
	(ii)	$n = 9$, $P(\le 1) = 0.0385$ [> 0.025]	M1		At least one, or $n = 8$, $P(\le 1) = 0.0632$
		$n = 10, P(\le 1) = 0.0233 [< 0.025]$	A1		Both of these probabilities seen, don't need
		Therefore <i>n</i> = 9	B1	3	0.025
					Answer $h = 9$ only, indepit of M1A1, <i>not</i> from $P(= 1)$
3	(i)	$(140 - \mu)/\sigma = -2.326$	M1		One standardisation equated to Φ^{-1} allow "1–"
•	(.)	$(300 - \mu)/\sigma = 0.842$	B1		σ^2
			A1√		Both 2.33 and 0.84 at least, ignore signs
		Solve to obtain:	M1		Both equations completely correct, $$ on their z
		μ = 257.49	A1		Solve two simultaneous equations to find one
		σ = 50.51	A1	6	variable
					μ value, in range [257, 258]
	 /ii)	Higher	B1		6 In range [50.4, 50.55] "Higher" or equivalent stated
	(11)	as there is positive skew	B1	2	Plausible reason allow from normal calculations
4	(i)	Each element equally likely to be	B1	1	One of these two. "Selections independent"
	()	selected (and all selections			alone is insufficient, but don't need this. An
		independent) OR each possible			example is insufficient.
		sample equally likely			
	(11)	$^{6}C_{1} = p^{4} (1 - p)^{2}$	IVI1		B(6, 5/8) stated or implied, allow e.g. 499/799
		-0.32187	NII Λ1√	3	Answer a rt 0.322 can allow from wrong p
	(iii)	N(37 5 225/16)	B1		Normal mean 37.5 or 37.47 from 499/799
	()	39.5-37.5	B1		499/800
		$\frac{370}{375} = 0.5333$	M1 dep)	14.0625 or 3.75 seen, allow 14.07/14.1 or 3.75
		5.15	A1		Standardise, wrong or no cc, <i>np</i> , <i>npq</i> , no \sqrt{n}
		1 – Ф(0.5333)	dep M1		Correct cc, \sqrt{npq} , signs can be reversed
		= 0.297	A1 6		Tables used, answer < 0.5, $p = 5/8$
			0		Answer, a.r.t. $U.297$
					B1 $r_0 < 0$. $r_0(np)$ stated of implied,

physicsandmathstutor.com

4733

Mark Scheme

June 2006

5	(i)	B(303, 0.01)	B1		B(303, 0.01) stated, allow $p = 0.99$ or 0.1
		≈ Po(3.03)	B1	2	Po(3.03) stated or implied, can be recovered from (ii)
	(ii)	$e^{-3.03} (1+3.03+\frac{3.03^2}{2}) = 0.4165$ AG	M1 A1	2	Correct formula, ± 1 term or "1 – " or both Convincingly obtain 0.4165(02542) [Exact: 0.41535]
	(:::)				T
	(111)	$302 \text{ seats} \Rightarrow \mu = 3.02$	IVI I M1		Formula, at least one correct term
		$e^{-102}(1+3.02) = 0.1902$	A1		Correct number of terms for their u
		0 196 < 0 2	A1		0 1962 [or 0 1947 from exact]
		So 302 seats.	A1	5	Answer 302 only
	SR:	B(303, 0.99): B1B0; M0; M1 then N(2	298.98,2.	989	98) or equiv, standardise: M1A1 total 4/9
	SR:	p = 0.1: B(303, 0.1), N(30.3,	27.27) B	1B(0; Standardise 2 with $np \& \sqrt{npq}$, M1A0;
	0.5	N(0.1 <i>n</i> , 0.09 <i>n</i>); standardise with	np & √nµ	bq;	solve quadratic for \sqrt{n} ; $n = 339$: M1M1M1A1, total
	SR:	6/9 D(200 0.04) - N(2.00 0.0007) - D4D	0 M040		440
6	(i)	$B(303, 0.01) \approx N(3.03, 2.9997)$: B1B		; IVI	1AU Volid rooson in context, allow "random"
0	<u>()</u> (ii)		M1		Poisson toblog "1 " or correct formula + 1 torm
	(11)	= 0.0079	A1 2	2	Poisson lables, $T = 0.0000000000000000000000000000000000$
	(iii)	N(48, 48)	B1		Normal, mean 48
	()	z = 55.5 - 48	B1√		Variance or SD same as mean $$
		$\overline{\sqrt{48}}$	M1 dep		Standardise, wrong or no cc, $\mu = \lambda$
		= 1.0825	A1		Correct cc, $\sqrt{\lambda}$
		$1 - \Phi(1.0825)$	dep M1	-	Use tables, answer < 0.5
		= 0.1394	A1	6	Answer in range [0.139, 0.14]
	(iv)	e ^{-∧} < 0.02	M1		Correct formula for P(0), OR P(0 $\lambda = 4$) at least
		$\lambda > -\ln 0.02$			In used OR $\lambda = 3.9$ at least by T & I
		= 3.912 0.44 - 2.012; t - 0.78 minutes	M1		3.91(2) seen OR λ = 3.91 at least by T & I
		0.4i = 3.912; $i = 9.78$ minutes	A1 	5	Divide λ by 0.4 or multiply by 150, any distribution
		i = 9 minutes 47 seconds		,	587 seconds \pm 1 sec [inequalities not needed]

physicsandmathstutor.com

Mark Scheme

June 2006

7	(i)	$\frac{c - 4000}{60 / \sqrt{50}} = 1.645$ Solve c = 4014 [4013.958] Critical region is > 4014	M1 B1 A1√ M1 A1 A1√ 6	Standardise unknown with $\sqrt{50}$ or 50 [ignore RHS] z = 1.645 or -1.645 seen Wholly correct eqn, $$ on their z [1 - 1.645: M1B1A0] Solve to find c Value of c, a.r.t. 4014 Answer "> 4014", allow \geq , $$ on their c, needs M1M1
	(ii)	Use "Type II is: accept when H_0 false" $\frac{4020 - 4014}{60 / \sqrt{50}}$ = 0.7071 [0.712 from 4013.958] 1 - $\Phi(0.7071)$ = 0.240 [0.238 from 4013.958]	M1dep depM1 A1√ A1 M1 A1 6	Standardise 4020 and 4014 $$, allow 60 ² , cc With $\sqrt{50}$ or 50 Completely correct LHS, $$ on their c z-value in range [0.707, 0.712] Normal tables, answer < 0.5 Answer in range [0.2375, 0.2405]
	(iii)	Smaller Smaller cv, better test etc	B1 B1 2	"Smaller" stated, no invalidating reason Plausible reason
	(iv)	Smaller Smaller cv, larger prob of Type I etc	B1 B1 2	"Smaller" stated, no invalidating reason Plausible reason
_	(v)	No, parent distribution known to be normal	B2 2	"No" stated, convincing reason SR: If B0, "No", reason that is not invalidating: B1