physicsandmathstutor.com

Mark Scheme 4733 June 2005

physicsandmathstutor.com

4733

Mark Scheme

1	(i)	Method is biased because many pupils cannot be chosen	B1 B1	"Biased" or equivalent stated, allow "not random" 2 Valid relevant reason
	(ii)	Allocate a number to each pupil	B1	State "list numbered"
	. ,	Select using random numbers	B1 2	2 Use random numbers [<i>not</i> "hat"]
2		$20 - 25 = \Phi^{-1}(0.25) = -0.674$	M1	Standardise and equate to Φ^{-1} [not .7754 or .5987]
		$\overline{\sigma}$	B1	z in range [-0.675, -0.674], allow +
		$\sigma = 5 \div 0.674$	M1	(\pm) 5 ÷ z-value [not $\Phi(z)$ or 0.75]
		= 7.42	A1 4	Answer in range [7.41, 7.42], no sign fudges
				[SR: σ^2 : M1B1M0A0
				cc: M1B1M1A0]
3	(a)	Po(1.2)	B1	Po(1.2) stated or implied
		Tables or correct formula used	M1	Correct method for Poisson probability, allow "1 –"
		0.8795	A1 .	3 Answer, 0.8795 or 0.879 or 0.88(0)
	(b)	N(30, 30)	B1	Normal, mean 30 stated or implied
			B1	Variance 30 stated or implied, allow $\sqrt{30}$ or 30^2
		$\frac{38.5 - 30}{\sqrt{30}} \ [= 1.55]$	M1	Standardise using $\sigma^2 = \mu$, allow $\sqrt{\sigma}$ or cc errors
		$[\Phi(1.55) =]$ 0.9396	A1	$\sqrt{\mu}$ and 38.5 both correct
			A1 .	Answer in range [0.939, 0.94(0)]
4	(i)	50 - 50 - 0.0007	M1	Use $\frac{n}{2} \times s \text{ or } s^2$ allow λ
	(i)	$\hat{\sigma}^2 = \frac{50}{49} \times 0.0967 = 0.0987$	A1 2	Z
				Answer, a.r.t. 0.0987
	(ii)	$H_0: \mu = 1.8, H_1: \mu \neq 1.8$	B1B1	Hypotheses correctly stated in terms of μ
		where μ is the population mean		SR: μ wrong/omitted: B1 both, but \overline{X} : B0
	α, β:	$z = \frac{(1.72 - 1.8)}{\hat{\sigma}/\sqrt{50}} = -1.8(006)$	N/1	Standardise with \sqrt{n} , allow +, biased σ , $\sqrt{\text{errors}}$
	<i>с</i> , р.	$\hat{\sigma}/\sqrt{50}$	M1 A1	$z = -1.80 \pm 0.01$, don't allow +
	α:	-1.8 < -1.645	B1	Compare $\pm z$ with ± 1.645 , signs consistent
	ρ.		B1 V	
	β:	$\Phi(-1.8) = 1 - 0.9641 < 0.05$	M1	Explicitly compare $\Phi(z)$ with 0.05, correct tail
	γ:	CV $1.8 - k.\sigma/\sqrt{50}$	M1 A1√	Correct expression for CV, $-$ or \pm , k from Φ^{-1}
		<i>k</i> = 1.645, CV = 1.727 1.72 < 1.727	B1	$CV = 1.727$, $\sqrt{on their k}$, ignore upper limit $k = 1.645$ and compare CV with 1.72
	Daiaat			k = 1.645 and compare CV with 1.72
	Reject 1	Π_0	M1	Reject $H_0 $, correct method, needs $\sqrt{50}$, $\mu = 1.8$;
	Significant evidence that mean height is not 1.8		A 1 1	allow cc, \sqrt{vc} or k error or biased σ estimate
	Signing	cant evidence that mean neight is not 1.8	A1√ 7	
5	(;)	30 C (0,4) 10 (0,c) 20 = 0.2015 0.1752	M1	[SR: 1.8, 1.72 interchanged: B0B0M1A0B1M0]
5	(i)	${}^{30}C_{10}(0.4){}^{10}(0.6){}^{20} \text{ or } 0.2915 - 0.1763$	M1 A1	Correct formula or use of tables
		= 0.1152	M1	2 Answer, a.r.t. 0.115
	(ii)	$30p > 5 \text{ so } p > \frac{1}{6}$	M1 M1	30 <i>p</i> or 30 <i>pq</i> used 30 <i>q</i> or both solutions from 30 <i>pq</i> used
		$30q > 5$ so $q > \frac{1}{6}$		<i>Fither</i> $\frac{1}{2} < n < \frac{5}{2}$ or $\left[\frac{1}{2} - \frac{\sqrt{3}}{3} < n < \frac{1}{2} + \frac{\sqrt{3}}{3}\right]$
		$\frac{1}{6}$	A1 .	
	(:::)	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		$[0.211$
	(iii)	N(12, 7.2)	B1 D1	12 seen $7.2 \text{ or } 2.682 \text{ seen allow } 7.2^2$
		$\frac{10.5 - np}{\sqrt{npq}}$ and $\frac{9.5 - np}{\sqrt{npq}}$	B1 M1	7.2 or 2.683 seen, allow 7.2^2
		\sqrt{npq} \sqrt{npq}	M1	Both standardised, allow wrong/no cc, <i>npq</i>
		$\Phi(-0.559) - \Phi(-0.9317)$	A1√ M1	\sqrt{npq} , 10.5 and 9.5 correct, $$ on their <i>np</i> , <i>npq</i>
		= 0.8243 - 0.7119 = 0.1124	M1	Correct use of tails
			A1 6	
				[SR: $\frac{1}{\sqrt{2\pi \times 7.2}} e^{-\frac{1}{2}\frac{(10-12)^2}{7.2}}$ M1A1, answer A2]
				[SR: $\frac{1}{\sqrt{2\pi \times 7.2}}e^{-2}$ 7.2 M1A1, answer A2]
				$\gamma \angle \mu \land I. \angle$

physicsandmathstutor.com

Mark Scheme

6	(i)	$R \sim B(25, 0.8)$	B1		B(25, 0.8) stated or implied, e.g. from N(20, 4)
0	(1)				
		$P(R \le 16) = 0.0468, P(R \le 17) = 0.1091$	M1	2	One relevant probability seen [Normal: M0A0]
		<i>k</i> = 16	A1	3	
			.		[SR: unsupported 16, B1M0B1]
	(ii)	20 <i>p</i>	M1		$20 \times \text{their } p \text{ or } 20 \times 0.05$
		= 0.936	A1	2	Answer, a.r.t. 0.936, i.s.w.
	(iii)	$P(R \le 16 \mid p = 0.6)$	M1		Find $P(R \le k p = 0.6)$
		= 0.7265	A1	2	Answer 0.7265 or 0.727
	(iv) α:	$p' = 0.5 \times 0.0468 + 0.5 \times 0.7265$	M1		"Tree diagram" probability, any sensible p
		= 0.38665	A1		Value in range [0.38, 0.39]
		$2 \times p' \times (1 - p')$	M1		Correct formula, including 2, any p'
		= 0.474	A1	4	• • • •
or $\bar{\beta}$	· 08	$8 \text{ A} 0.8 \text{ R} .5^2 \times .9532 \times .0468 = .0112$	M1		$p_1q_2 + p_2q_1$ etc (0.5 not needed)
<i>01</i> p	-		A1		4 cases, $$ on their <i>p</i> s and <i>q</i> s, 0.5 not needed
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
		6 R 0.8 A	M 1		e.g. $2(p_1q_2 + p_2q_1)$
		8 A 0.6 R $.5^2 \times .9532 \times .7265 = .1731$	1111		Completely correct list of cases and probabilities,
			A1		including 0.5
		6 A 0.6 R $.5^2 \times .2735 \times .7265 = .0497$			Answer in range [0.47, 0.48]
		6 R 0.6 A $.5^2 \times .7265 \times .2735 = .0497$			
7	(i)	(11 - 3)k = 1	M1		Use area = 1 [e.g. $\int kx dx = 1$ with limits 3, 11]
	~ /	k = 1/8	A1	2	
	(ii)	$\mu = \frac{1}{2}(3+11) = 7$	B1		Mean 7, cwd
	(11)		M1		Attempt $\int x^2 f(x) dx$, correct limits
		$\int_{1}^{11} \frac{1}{2} r^2 dr = \left \frac{x^3}{x^3} \right \qquad [-54 \frac{1}{2}]$			
		$\int_{3}^{11} \frac{1}{8} x^2 dx = \left[\frac{x^3}{24}\right]_{3}^{11} [= 54 \frac{1}{3}]$	A1		Indefinite integral $\frac{x^3}{3k}$, their k
		$\sigma^2 = 54 \frac{1}{3} - 7^2$			Subtract their μ^2
		$=5\frac{1}{3}$	M1	_	
		5	A1	5	
	(iii)	P(X < 9) = 6k [= ³ / ₄]	B1		Correct p for their k
		$(\frac{3}{4})^3$	M1		Work out their p^3 , 0
		$=\frac{27}{64}$ or 0.421875	A1	3	Answer $\frac{27}{64}$ or a.r.t. 0.422
	(iv)	Normal	B1		"Normal" distribution stated
	` '	Mean is 7	B1		Mean same as in (ii) $$
		Variance is $5\frac{1}{3} \div 32 (=\frac{1}{6})$	B1√	3	
0	(*)			v	
8	(i)	Coins occur at constant average rate	B1	-	One contextualised condition, e.g. independent
		and independently of one another	B1	2	
					in hoards" ["singly" not enough]. Treat "random"
					as equivalent to "independent". Allow "They"
	(ii)	$R \sim \text{Po}(5.4)$	B1		Poisson (5.4) stated or implied
		$5.4^3 = 0.1185$	M1		Correct formula, any λ
		$e^{-5.4} \frac{5.4^3}{3!} = 0.1185$	A1	3	Answer, in range [0.118, 0.119]
	(iii)	$R \sim Po(3)$	B1		Poisson (3) stated or implied
	()	Tables, looking for 0.05 or 0.95	M1		Evidence of correct use of tables
		$P(R \ge 7) = 0.0335$	A1√		One relevant correct probability seen
		$P(R \ge 7) = 0.0555$ Therefore smallest number is 7	A1 V	4	· ·
	(in)				
	(iv)	$R \sim \text{Po}(4.8)$	B1		Poisson (4.8) used
		Type II error is $R < 7$ when $\mu = 4.8$	M1	2	Correct context for Type II error, $$ on their <i>r</i>
		P(<7) = 0.7908	A1	3	$P(<7)$, a.r.t. 0.791, c.w.o. $[P(\ge 7): M0]$