

Mathematics

Advanced GCE

Unit 4733: Probability and Statistics 2

Mark Scheme for January 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2011

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

physicsandmathstutor.com

Mark Scheme

January 2011

1		$\hat{\alpha} = \bar{x} = \frac{468}{52} = 52$	B1	52 stated
		$\mu = x = \frac{1}{9} = 32$	M1	Correct method for biased estimator
		24820	M1	Multiply by 9/8
		$\frac{-52^2}{9}$ [= 55.78]		[if single formula, allow M0 M1 if wrong but divisor 8 seen
		0		anywhere]
		$\hat{\sigma}^2 = \frac{9}{2} \times 53.78 = 60.5$	A1 4	Answer 60.5 or exact equivalent
		8		
2		$53.28 - \mu_{-1.06}$	M1dep	Standardise with \sqrt{n} once & equate to z, allow sign, square/ \sqrt{n}
		$\frac{1}{5/\sqrt{n}} = 1.90$		errors
		u = 51.65	A1	twice, signs correct, zs may be wrong
		$\frac{\mu - 51.05}{5} = 1.3$	B1	Both correct z values seen
		$5/\sqrt{n}$	depM1	Solve to get \sqrt{n} or μ , needs first M1
		$\sqrt{n} = 10, \qquad n = 100$	AÎ	n = 100, not from wrong signs
		$\mu =$ 52.3	B1 6	a.r.t. 52.3. right arithmetic needed but \sqrt{n} can be omitted
3		B(200, 0.0228)	M1	B(200, 0.0228) stated or implied
_		Po(4.56)	A1	Po(4.56) stated or implied, allow 4.6 here
		4.56 ²	M1	Correct formula for $P(\leq 2) \pm 1$ term. any λ (tables: M0)
		$e^{-4.50}(1+4.56+\frac{1.50}{2})$	A1	Correct formula, 4.56 needed
		- 0 167	A1	Answer, a.r.t. 0.167 [0.16694]
		= 0.107	B1 6	Both, can be merely asserted. If numbers, must be these
		<i>n</i> large of $n > 50$, <i>p</i> small of $np < 5$		SR interpolation: clear method M1, answer A2
				MR: typically B(200, 0.228) \approx N(45.6, 3.52); M1A1;
				standardise correctly M1: state $nn na > 5$ B1
4	(i)	r:d = 2134 - 230	M1	Standardise z with $\sqrt{50}$ ignore sign or $\sqrt{0}$ or squaring errors
-	(1)	Either $z = \frac{21311}{45} \frac{250}{50}$		Standardise 2, with 1990, ignore sign of 1 of squaring errors
		45/ \sqrt{50}		z-value a r t -2.61 or <i>p</i> in range [0.0044, 0.005)
		= -2.608	Al	Correctly compare $(-)^2.576$, signs consistent.
		-2.608 < -2.576 or 0.0047 < 0.005	BI	or p explicitly with 0.005
	Or	6126	M1	$230 - z\sigma/\sqrt{50}$ allow $\sqrt{10}$ or squaring errors allow + but not
		C_{V} is $230-2.576 \times \frac{11}{\sqrt{50}} = 213.0$	B1	250° 2.07 (50, and 1° + or squaring errors, and 1° = out not inst +: $7 = 2.576$
		$\sqrt{30}$		Just 1, 2, 2, 5 / 6
		213.4 < 213.0	Al	Explicitly compare 213.4 with 213.6
		Reject H ₀ . Significant evidence	M1	"Reject", FT, needs correct method and form of
		that population mean is not 230	A1 FT 5	comparison; interpreted, acknowledge uncertainty
	(ii)	Yes, population distribution is not	B2 2	<i>Not</i> , "yes, sample size is large" but ignore " <i>can</i> use it as"
		known to be normal		SR: Both right and wrong answers: B1
				α "Yes as it must be assumed normal": B1
5		$H_0: \lambda = 12; H_1: \lambda > 12$	B2	Both correct: B2. Allow μ . One error, B1, but <i>not x</i> , <i>r</i> etc.
		<i>Either</i> : $P(\ge 19) = 1 - P(\le 18)$	M1	Po(12) stated or implied, e.g. 0.9787
		= 1 - 0.9626		
		= 0.0374	A1	0.0374, or 0.9626 if compared with 0.9
		< 0.1	B1	Explicitly compare $P(\geq 19)$ with 0.1, or $P(\leq 18)$ with 0.9
		<i>Or</i> : CR is ≥ 18 , $p = 0.063$	A1	\geq 18 and 0.063 stated
		19 ≥ 18	B1	Explicit comparison of CV (right-hand CR) with 19
		Reject H ₀ . Significant evidence of	M1	"Reject" FT, needs correct method and comparison, e.g. not
		increase in mean number of		from \leq 19 or = 19, withhold if inconsistent
		applicants	A1 FT 7	Interpreted in context, acknowledge uncertainty

physicsandmathstutor.com

4733

Mark Scheme

6	(i)	If one customer arrives, it does not	B1		Answer that shows correct understanding of "independent", in
		change the probability that another			context; not just equivalent to "singly"
		one does so; customers probably	B1	2	Plausible reason, in context, nothing wrong, nothing that
		arrive in groups of at least 2			suggests "constant average rate"
	(ii)	0.1730	M1		Correct use of tables or formula, e.g3007, or .4405 from Po(5)
			Al	2	if $Po(7)$ stated; answer 0.173, 0.1730 or better
	(111)	Po(35)	BI		$Po(5\times7)$ stated or implied
		N(35, 35)	MI		Normal, μ = their λ
		$(40.5-35) = 1$ $\Phi(0.0207)$	AI M1		Both parameters correct, allow 35 ² , V35
		$1-\Phi\left \frac{10.5-55}{\sqrt{25}}\right = 1-\Phi(0.9297)$			Standardise 40 with λ , $\forall \lambda$, allow \forall , cc errors
				6	Both $\sqrt{\lambda}$ and cc correct
-		= 0.1763	AI D1	U	Answer, a.r.t. 0.1/6 [penalise 0.1/65]
7	(1)	N	BI		Horizontal line above axis
			BI D1	2	Concave decreasing curve above axis
			ы	3	Boin correct including approx relationship, not extending
	(;;)		M1		Δ the most $[f_{(i)}]_{ij}$ is the function of the effective for the effect
	(11)	$\int_{a}^{3} \frac{a}{a} dx = 1, \left \frac{-a}{a} \right _{a}^{3} = 1; a = \frac{3}{2}$	R1		Attempt J $f_X(x) dx$, limits 1, 3 at some stage, and equate to 1 Correct indefinite integral
		$\int_{1} x^{2} dx = 1 \int \left[x \right]_{1} dx = 2$		3	Correct indefinite integral Correctly obtain $3/2$ or 1.5 or exact equivalent
	(iii)		M1		Confectly obtain $5/2$ of 1.5 of exact equivalent
	(111)	$\int_{1}^{3} \frac{d}{dt} dx = \left[a \ln x \right]_{1}^{3}$		г	Attempt J $x_{1\chi}(x) dx$, minus 1, 5 at some stage
		$\frac{1}{x}$	A1F	г3	Answer any exact equivalent or a r t 1.65 FT on a or a ln 3
		$= \frac{3}{2} \ln 3$			Answer, any exact equivalent of a.i.t 1.05, 11 on a, of a in 5
	(iv)	T is equally likely to take any value	B1	1	Must be "values taken by T " (or "of T ") or clear equivalent
		between 1 and 3			Any hint that they think <i>T</i> is an <i>event</i> gets B0.
					α "Same chance of occurring anywhere between 1 and 3": 0
					β "For values of <i>T</i> between 1 and 3, <i>T</i> is equally likely": 0
					γ "Each value of T is equally likely to occur": 1
-					
8	(i)	B(40, 0.225)	M1		B(40, 0.225) stated or implied
8	(i)	B(40, 0.225) ≈ N(9, 6.975)	M1 M1		B(40, 0.225) stated or implied Normal, mean 9
8	(i)	$B(40, 0.225) \approx N(9, 6.975) \frac{5.5-9}{5} = -1.325$	M1 M1 A1		B(40, 0.225) stated or implied Normal, mean 9 Variance 6.975 or SD 2.641 or 6.975
8	(i)	B(40, 0.225) ≈ N(9, 6.975) $\frac{5.5-9}{\sqrt{6.975}} = -1.325$	M1 M1 A1 M1		B(40, 0.225) stated or implied Normal, mean 9 Variance 6.975 or SD 2.641 or 6.975 Standardise with <i>np</i> and \sqrt{npq} , allow <i>npq</i> , no or wrong cc
8	(i)	B(40, 0.225) ≈ N(9, 6.975) $\frac{5.5-9}{\sqrt{6.975}} = -1.325$ 0.9074	M1 M1 A1 M1 A1 A1		B(40, 0.225) stated or implied Normal, mean 9 Variance 6.975 or SD 2.641 or 6.975 Standardise with <i>np</i> and \sqrt{npq} , allow <i>npq</i> , no or wrong cc CC and \sqrt{npq} correct, allow from N(3600, 0.225) Answer in range [0.907, 0.908]
8	(i)	B(40, 0.225) ≈ N(9, 6.975) $\frac{5.5-9}{\sqrt{6.975}} = -1.325$ 0.9074 np = 9 > 5 or n large; and	M1 M1 A1 M1 A1 A1 B2	8	B(40, 0.225) stated or implied Normal, mean 9 Variance 6.975 or SD 2.641 or 6.975 Standardise with <i>np</i> and \sqrt{npq} , allow <i>npq</i> , no or wrong cc CC and \sqrt{npq} correct, allow from N(3600, 0.225) Answer, in range [0.907, 0.908] Full conditions B2: partial B1 (assertions OK) Allow <i>npq</i>
8	(i)	B(40, 0.225) ≈ N(9, 6.975) $\frac{5.5-9}{\sqrt{6.975}} = -1.325$ 0.9074 np = 9 > 5 or n large; and nq = 31 > 5 or p close to 0.5	M1 M1 A1 M1 A1 A1 B2	8	B(40, 0.225) stated or implied Normal, mean 9 Variance 6.975 or SD 2.641 or 6.975 Standardise with <i>np</i> and \sqrt{npq} , allow <i>npq</i> , no or wrong cc CC and \sqrt{npq} correct, allow from N(3600, 0.225) Answer, in range [0.907, 0.908] Full conditions B2; partial, B1 (assertions OK). Allow <i>npq</i> , allow from e.g. $n = 3600$
8	(i) (ii)	B(40, 0.225) $\approx N(9, 6.975)$ $\frac{5.5-9}{\sqrt{6.975}} = -1.325$ 0.9074 np = 9 > 5 or n large; and nq = 31 > 5 or p close to 0.5 Number list sequentially and	M1 M1 A1 M1 A1 A1 B2 B1	8	B(40, 0.225) stated or implied Normal, mean 9 Variance 6.975 or SD 2.641 or 6.975 Standardise with <i>np</i> and \sqrt{npq} , allow <i>npq</i> , no or wrong cc CC and \sqrt{npq} correct, allow from N(3600, 0.225) Answer, in range [0.907, 0.908] Full conditions B2; partial, B1 (assertions OK). Allow <i>npq</i> , allow from e.g. <i>n</i> = 3600 Number list don't need "sequentially"
8	(i) (ii)	B(40, 0.225) $\approx N(9, 6.975)$ $\frac{5.5-9}{\sqrt{6.975}} = -1.325$ 0.9074 np = 9 > 5 or n large; and nq = 31 > 5 or p close to 0.5 Number list sequentially and select using random numbers	M1 M1 A1 M1 A1 A1 B2 B1 B1 B1	8	B(40, 0.225) stated or implied Normal, mean 9 Variance 6.975 or SD 2.641 or 6.975 Standardise with <i>np</i> and \sqrt{npq} , allow <i>npq</i> , no or wrong cc CC and \sqrt{npq} correct, allow from N(3600, 0.225) Answer, in range [0.907, 0.908] Full conditions B2; partial, B1 (assertions OK). Allow <i>npq</i> , allow from e.g. <i>n</i> = 3600 Number list, don't need "sequentially" Mention random numbers (<i>not</i> "select numbers randomly")
8	(i) (ii)	B(40, 0.225) ≈ N(9, 6.975) $\frac{5.5-9}{\sqrt{6.975}} = -1.325$ 0.9074 np = 9 > 5 or n large; and nq = 31 > 5 or p close to 0.5 Number list sequentially and select using random numbers If # > 3600, ignore (etc)	M1 M1 A1 M1 A1 A1 B2 B1 B1 B1 B1	8	B(40, 0.225) stated or implied Normal, mean 9 Variance 6.975 or SD 2.641 or 6.975 Standardise with <i>np</i> and \sqrt{npq} , allow <i>npq</i> , no or wrong cc CC and \sqrt{npq} correct, allow from N(3600, 0.225) Answer, in range [0.907, 0.908] Full conditions B2; partial, B1 (assertions OK). Allow <i>npq</i> , allow from e.g. <i>n</i> = 3600 Number list, don't need "sequentially" Mention random numbers (<i>not</i> "select numbers randomly") Deal with issue of # > 3600, <i>or</i> "ignore repeats"
8	(i) (ii)	B(40, 0.225) $\approx N(9, 6.975)$ $\frac{5.5-9}{\sqrt{6.975}} = -1.325$ 0.9074 np = 9 > 5 or n large; and nq = 31 > 5 or p close to 0.5 Number list sequentially and select using random numbers If # > 3600, ignore (etc)	M1 M1 A1 M1 A1 A1 B2 B1 B1 B1 B1	8	B(40, 0.225) stated or implied Normal, mean 9 Variance 6.975 or SD 2.641 or 6.975 Standardise with <i>np</i> and \sqrt{npq} , allow <i>npq</i> , no or wrong cc CC and \sqrt{npq} correct, allow from N(3600, 0.225) Answer, in range [0.907, 0.908] Full conditions B2; partial, B1 (assertions OK). Allow <i>npq</i> , allow from e.g. <i>n</i> = 3600 Number list, don't need "sequentially" Mention random numbers (<i>not</i> "select numbers randomly") Deal with issue of # > 3600, <i>or</i> "ignore repeats" α "Randomly pick numbers from 0 to 3599": (B1) B0 B1
8	(i) (ii)	B(40, 0.225) ≈ N(9, 6.975) $\frac{5.5-9}{\sqrt{6.975}} = -1.325$ 0.9074 np = 9 > 5 or n large; and nq = 31 > 5 or p close to 0.5 Number list sequentially and select using random numbers If # > 3600, ignore (etc) B(14, 0.7)	M1 M1 A1 M1 A1 A1 B2 B1 B1 B1 B1 B1	8	B(40, 0.225) stated or implied Normal, mean 9 Variance 6.975 or SD 2.641 or 6.975 Standardise with <i>np</i> and \sqrt{npq} , allow <i>npq</i> , no or wrong cc CC and \sqrt{npq} correct, allow from N(3600, 0.225) Answer, in range [0.907, 0.908] Full conditions B2; partial, B1 (assertions OK). Allow <i>npq</i> , allow from e.g. <i>n</i> = 3600 Number list, don't need "sequentially" Mention random numbers (<i>not</i> "select numbers randomly") Deal with issue of # > 3600, <i>or</i> "ignore repeats" α "Randomly pick numbers from 0 to 3599": (B1) B0 B1 B(14, 0.7) stated or implied, e.g. N(9.8, 2.94), can be recovered
8	(i) (ii)	B(40, 0.225) ≈ N(9, 6.975) $\frac{5.5-9}{\sqrt{6.975}} = -1.325$ 0.9074 np = 9 > 5 or n large; and nq = 31 > 5 or p close to 0.5 Number list sequentially and select using random numbers If # > 3600, ignore (etc) B(14, 0.7) CR is ≥ 13	M1 M1 A1 M1 A1 A1 B2 B1 B1 B1 B1 M1 A1	8	B(40, 0.225) stated or implied Normal, mean 9 Variance 6.975 or SD 2.641 or 6.975 Standardise with <i>np</i> and \sqrt{npq} , allow <i>npq</i> , no or wrong cc CC and \sqrt{npq} correct, allow from N(3600, 0.225) Answer, in range [0.907, 0.908] Full conditions B2; partial, B1 (assertions OK). Allow <i>npq</i> , allow from e.g. <i>n</i> = 3600 Number list, don't need "sequentially" Mention random numbers (<i>not</i> "select numbers randomly") Deal with issue of # > 3600, <i>or</i> "ignore repeats" α "Randomly pick numbers from 0 to 3599": (B1) B0 B1 B(14, 0.7) stated or implied, e.g. N(9.8, 2.94), can be recovered CV 13, or > 12 or {13, 14}, allow = but no other inequalities
8	(i) (ii) (i)	B(40, 0.225) ≈ N(9, 6.975) $\frac{5.5-9}{\sqrt{6.975}} = -1.325$ 0.9074 np = 9 > 5 or n large; and nq = 31 > 5 or p close to 0.5 Number list sequentially and select using random numbers If # > 3600, ignore (etc) B(14, 0.7) CR is ≥ 13 with probability 0.0475	M1 M1 A1 A1 B2 B1 B1 B1 M1 A1 A1	8 3 3	B(40, 0.225) stated or implied Normal, mean 9 Variance 6.975 or SD 2.641 or 6.975 Standardise with <i>np</i> and \sqrt{npq} , allow <i>npq</i> , no or wrong cc CC and \sqrt{npq} correct, allow from N(3600, 0.225) Answer, in range [0.907, 0.908] Full conditions B2; partial, B1 (assertions OK). Allow <i>npq</i> , allow from e.g. <i>n</i> = 3600 Number list, don't need "sequentially" Mention random numbers (<i>not</i> "select numbers randomly") Deal with issue of # > 3600, <i>or</i> "ignore repeats" α "Randomly pick numbers from 0 to 3599": (B1) B0 B1 B(14, 0.7) stated or implied, e.g. N(9.8, 2.94), can be recovered CV 13, or > 12 or {13, 14}, allow = but no other inequalities Exactly correct CR, and supporting prob .0475 or .9525 seen
8	(i) (ii) (i)	B(40, 0.225) ≈ N(9, 6.975) $\frac{5.5-9}{\sqrt{6.975}} = -1.325$ 0.9074 np = 9 > 5 or n large; and nq = 31 > 5 or p close to 0.5 Number list sequentially and select using random numbers If # > 3600, ignore (etc) B(14, 0.7) CR is ≥ 13 with probability 0.0475 H ₀ : $p = 0.7$, H ₁ : $p > 0.7$	M1 M1 A1 A1 B2 B1 B1 B1 B1 M1 A1 A1 B2	8	B(40, 0.225) stated or implied Normal, mean 9 Variance 6.975 or SD 2.641 or 6.975 Standardise with <i>np</i> and \sqrt{npq} , allow <i>npq</i> , no or wrong cc CC and \sqrt{npq} correct, allow from N(3600, 0.225) Answer, in range [0.907, 0.908] Full conditions B2; partial, B1 (assertions OK). Allow <i>npq</i> , allow from e.g. <i>n</i> = 3600 Number list, don't need "sequentially" Mention random numbers (<i>not</i> "select numbers randomly") Deal with issue of # > 3600, <i>or</i> "ignore repeats" α "Randomly pick numbers from 0 to 3599": (B1) B0 B1 B(14, 0.7) stated or implied, e.g. N(9.8, 2.94), can be recovered CV 13, or > 12 or {13, 14}, allow = but no other inequalities Exactly correct CR, and supporting prob.0475 or .9525 seen Both, B2. Allow π . One error, B1, but <i>r</i> , <i>x</i> etc: B0
8	(i) (ii) (ii)	B(40, 0.225) ≈ N(9, 6.975) $\frac{5.5-9}{\sqrt{6.975}} = -1.325$ 0.9074 np = 9 > 5 or n large; and nq = 31 > 5 or p close to 0.5 Number list sequentially and select using random numbers If # > 3600, ignore (etc) B(14, 0.7) CR is ≥ 13 with probability 0.0475 H ₀ : $p = 0.7$, H ₁ : $p > 0.7$ 12 < 13	M1 M1 A1 A1 B2 B1 B1 B1 B1 M1 A1 A1 B2 B1	8	B(40, 0.225) stated or implied Normal, mean 9 Variance 6.975 or SD 2.641 or 6.975 Standardise with <i>np</i> and \sqrt{npq} , allow <i>npq</i> , no or wrong cc CC and \sqrt{npq} correct, allow from N(3600, 0.225) Answer, in range [0.907, 0.908] Full conditions B2; partial, B1 (assertions OK). Allow <i>npq</i> , allow from e.g. <i>n</i> = 3600 Number list, don't need "sequentially" Mention random numbers (<i>not</i> "select numbers randomly") Deal with issue of # > 3600, <i>or</i> "ignore repeats" α "Randomly pick numbers from 0 to 3599": (B1) B0 B1 B(14, 0.7) stated or implied, e.g. N(9.8, 2.94), can be recovered CV 13, or > 12 or {13, 14}, allow = but no other inequalities Exactly correct CR, and supporting prob.0475 or .9525 seen Both, B2. Allow π . One error, B1, but <i>r</i> , <i>x</i> etc: B0 Compare CV <i>from correct tail and inequality</i> with 12,
8	(i) (ii) (ii)	B(40, 0.225) ≈ N(9, 6.975) $\frac{5.5-9}{\sqrt{6.975}} = -1.325$ 0.9074 np = 9 > 5 or n large; and nq = 31 > 5 or p close to 0.5 Number list sequentially and select using random numbers If # > 3600, ignore (etc) B(14, 0.7) CR is ≥ 13 with probability 0.0475 H ₀ : $p = 0.7$, H ₁ : $p > 0.7$ 12 < 13	M1 M1 A1 M1 A1 B2 B1 B1 B1 B1 B1 M1 A1 A1 A1 B2 B1	8 3 3	B(40, 0.225) stated or implied Normal, mean 9 Variance 6.975 or SD 2.641 or 6.975 Standardise with <i>np</i> and \sqrt{npq} , allow <i>npq</i> , no or wrong cc CC and \sqrt{npq} correct, allow from N(3600, 0.225) Answer, in range [0.907, 0.908] Full conditions B2; partial, B1 (assertions OK). Allow <i>npq</i> , allow from e.g. <i>n</i> = 3600 Number list, don't need "sequentially" Mention random numbers (<i>not</i> "select numbers randomly") Deal with issue of # > 3600, <i>or</i> "ignore repeats" α "Randomly pick numbers from 0 to 3599": (B1) B0 B1 B(14, 0.7) stated or implied, e.g. N(9.8, 2.94), can be recovered CV 13, or > 12 or {13, 14}, allow = but no other inequalities Exactly correct CR, and supporting prob.0475 or .9525 seen Both, B2. Allow π . One error, B1, but <i>r</i> , <i>x</i> etc: B0 Compare CV <i>from correct tail and inequality</i> with 12, <i>or</i> P(\geq 12) = 0.1608 and > 0.05 <i>or</i> P(< 12) = 0.8392 and < 0.95
9	(i) (ii) (ii)	B(40, 0.225) ≈ N(9, 6.975) $\frac{5.5-9}{\sqrt{6.975}} = -1.325$ 0.9074 np = 9 > 5 or n large; and nq = 31 > 5 or p close to 0.5 Number list sequentially and select using random numbers If # > 3600, ignore (etc) B(14, 0.7) CR is ≥ 13 with probability 0.0475 H ₀ : $p = 0.7$, H ₁ : $p > 0.7$ 12 < 13 Do not reject H ₀ . Insufficient	M1 M1 A1 M1 A1 B2 B1 B1 B1 B1 M1 A1 A1 A1 B2 B1 M1 M1	8 3 3	B(40, 0.225) stated or implied Normal, mean 9 Variance 6.975 or SD 2.641 or 6.975 Standardise with <i>np</i> and \sqrt{npq} , allow <i>npq</i> , no or wrong cc CC and \sqrt{npq} correct, allow from N(3600, 0.225) Answer, in range [0.907, 0.908] Full conditions B2; partial, B1 (assertions OK). Allow <i>npq</i> , allow from e.g. <i>n</i> = 3600 Number list, don't need "sequentially" Mention random numbers (<i>not</i> "select numbers randomly") Deal with issue of # > 3600, <i>or</i> "ignore repeats" α "Randomly pick numbers from 0 to 3599": (B1) B0 B1 B(14, 0.7) stated or implied, e.g. N(9.8, 2.94), can be recovered CV 13, or > 12 or {13, 14}, allow = but no other inequalities Exactly correct CR, and supporting prob .0475 or .9525 seen Both, B2. Allow π . One error, B1, but <i>r</i> , <i>x</i> etc: B0 Compare CV <i>from correct tail and inequality</i> with 12, <i>or</i> P(\geq 12) = 0.1608 and > 0.05 <i>or</i> P(< 12) = 0.8392 and < 0.95 Correct method & conclusion, requires like-with-like; CV
9	(i) (ii) (ii)	B(40, 0.225) ≈ N(9, 6.975) $\frac{5.5-9}{\sqrt{6.975}} = -1.325$ 0.9074 np = 9 > 5 or n large; and nq = 31 > 5 or p close to 0.5 Number list sequentially and select using random numbers If # > 3600, ignore (etc) B(14, 0.7) CR is ≥ 13 with probability 0.0475 H ₀ : $p = 0.7$, H ₁ : $p > 0.7$ 12 < 13 Do not reject H ₀ . Insufficient evidence that proportion who show	M1 M1 A1 M1 A1 B2 B1 B1 B1 B1 M1 A1 A1 A1 B2 B1 M1	8 3 3	B(40, 0.225) stated or implied Normal, mean 9 Variance 6.975 or SD 2.641 or 6.975 Standardise with <i>np</i> and \sqrt{npq} , allow <i>npq</i> , no or wrong cc CC and \sqrt{npq} correct, allow from N(3600, 0.225) Answer, in range [0.907, 0.908] Full conditions B2; partial, B1 (assertions OK). Allow <i>npq</i> , allow from e.g. <i>n</i> = 3600 Number list, don't need "sequentially" Mention random numbers (<i>not</i> "select numbers randomly") Deal with issue of # > 3600, <i>or</i> "ignore repeats" α "Randomly pick numbers from 0 to 3599": (B1) B0 B1 B(14, 0.7) stated or implied, e.g. N(9.8, 2.94), can be recovered CV 13, or > 12 or {13, 14}, allow = but no other inequalities Exactly correct CR, and supporting prob .0475 or .9525 seen Both, B2. Allow π . One error, B1, but <i>r</i> , <i>x</i> etc: B0 Compare CV <i>from correct tail and inequality</i> with 12, <i>or</i> P(\geq 12) = 0.1608 and > 0.05 <i>or</i> P(< 12) = 0.8392 and < 0.95 Correct method & conclusion, requires like-with-like; CV method needs \geq 13 or < 12; <i>p</i> method needs \geq 12 or < 12
9	(i) (ii) (ii)	B(40, 0.225) ≈ N(9, 6.975) $\frac{5.5-9}{\sqrt{6.975}} = -1.325$ 0.9074 np = 9 > 5 or n large; and nq = 31 > 5 or p close to 0.5 Number list sequentially and select using random numbers If # > 3600, ignore (etc) B(14, 0.7) CR is ≥ 13 with probability 0.0475 H ₀ : $p = 0.7$, H ₁ : $p > 0.7$ 12 < 13 Do not reject H ₀ . Insufficient evidence that proportion who show improvement is greater than 0.7	M1 M1 A1 A1 B2 B1 B1 B1 B1 M1 A1 A1 F	8 3 3	B(40, 0.225) stated or implied Normal, mean 9 Variance 6.975 or SD 2.641 or 6.975 Standardise with <i>np</i> and \sqrt{npq} , allow <i>npq</i> , no or wrong cc CC and \sqrt{npq} correct, allow from N(3600, 0.225) Answer, in range [0.907, 0.908] Full conditions B2; partial, B1 (assertions OK). Allow <i>npq</i> , allow from e.g. <i>n</i> = 3600 Number list, don't need "sequentially" Mention random numbers (<i>not</i> "select numbers randomly") Deal with issue of # > 3600, <i>or</i> "ignore repeats" α "Randomly pick numbers from 0 to 3599": (B1) B0 B1 B(14, 0.7) stated or implied, e.g. N(9.8, 2.94), can be recovered CV 13, or > 12 or {13, 14}, allow = but no other inequalities Exactly correct CR, and supporting prob .0475 or .9525 seen Both, B2. Allow π . One error, B1, but <i>r</i> , <i>x</i> etc: B0 Compare CV <i>from correct tail and inequality</i> with 12, <i>or</i> P(\geq 12) = 0.1608 and > 0.05 <i>or</i> P(< 12) = 0.8392 and < 0.95 Correct method & conclusion, requires like-with-like; CV method needs \geq 13 or < 12; <i>p</i> method needs \geq 12 or < 12 Withhold if inconsistent
9	(i) (ii) (i)	B(40, 0.225) ≈ N(9, 6.975) $\frac{5.5-9}{\sqrt{6.975}} = -1.325$ 0.9074 np = 9 > 5 or n large; and nq = 31 > 5 or p close to 0.5 Number list sequentially and select using random numbers If # > 3600, ignore (etc) B(14, 0.7) CR is ≥ 13 with probability 0.0475 H ₀ : $p = 0.7$, H ₁ : $p > 0.7$ 12 < 13 Do not reject H ₀ . Insufficient evidence that proportion who show improvement is greater than 0.7	M1 M1 A1 A1 B2 B1 B1 B1 B1 M1 A1 A1 F1 A1 F1	8 3 3	B(40, 0.225) stated or implied Normal, mean 9 Variance 6.975 or SD 2.641 or 6.975 Standardise with <i>np</i> and \sqrt{npq} , allow <i>npq</i> , no or wrong cc CC and \sqrt{npq} correct, allow from N(3600, 0.225) Answer, in range [0.907, 0.908] Full conditions B2; partial, B1 (assertions OK). Allow <i>npq</i> , allow from e.g. <i>n</i> = 3600 Number list, don't need "sequentially" Mention random numbers (<i>not</i> "select numbers randomly") Deal with issue of # > 3600, <i>or</i> "ignore repeats" α "Randomly pick numbers from 0 to 3599": (B1) B0 B1 B(14, 0.7) stated or implied, e.g. N(9.8, 2.94), can be recovered CV 13, or > 12 or {13, 14}, allow = but no other inequalities Exactly correct CR, and supporting prob. 0475 or .9525 seen Both, B2. Allow π . One error, B1, but <i>r</i> , <i>x</i> etc: B0 Compare CV <i>from correct tail and inequality</i> with 12, <i>or</i> P(\geq 12) = 0.1608 and > 0.05 <i>or</i> P(< 12) = 0.8392 and < 0.95 Correct method & conclusion, requires like-with-like; CV method needs \geq 13 or < 12; <i>p</i> method needs \geq 12 or < 12 Withhold if inconsistent Contextualised, acknowledge uncertainty
9	(i) (ii) (ii)	B(40, 0.225) ≈ N(9, 6.975) $\frac{5.5-9}{\sqrt{6.975}} = -1.325$ 0.9074 np = 9 > 5 or n large; and nq = 31 > 5 or p close to 0.5 Number list sequentially and select using random numbers If # > 3600, ignore (etc) B(14, 0.7) CR is ≥ 13 with probability 0.0475 H ₀ : $p = 0.7$, H ₁ : $p > 0.7$ 12 < 13 Do not reject H ₀ . Insufficient evidence that proportion who show improvement is greater than 0.7	M1 M1 A1 A1 B2 B1 B1 B1 B1 M1 A1 A1 B2 B1 M1 A1 F	8 3 3 T 5	B(40, 0.225) stated or implied Normal, mean 9 Variance 6.975 or SD 2.641 or 6.975 Standardise with <i>np</i> and \sqrt{npq} , allow <i>npq</i> , no or wrong cc CC and \sqrt{npq} correct, allow from N(3600, 0.225) Answer, in range [0.907, 0.908] Full conditions B2; partial, B1 (assertions OK). Allow <i>npq</i> , allow from e.g. <i>n</i> = 3600 Number list, don't need "sequentially" Mention random numbers (<i>not</i> "select numbers randomly") Deal with issue of # > 3600, <i>or</i> "ignore repeats" α "Randomly pick numbers from 0 to 3599": (B1) B0 B1 B(14, 0.7) stated or implied, e.g. N(9.8, 2.94), can be recovered CV 13, or > 12 or {13, 14}, allow = but no other inequalities Exactly correct CR, and supporting prob.0475 or .9525 seen Both, B2. Allow π . One error, B1, but <i>r</i> , <i>x</i> etc: B0 Compare CV <i>from correct tail and inequality</i> with 12, <i>or</i> P(\geq 12) = 0.1608 and > 0.05 <i>or</i> P(< 12) = 0.8392 and < 0.95 Correct method & conclusion, requires like-with-like; CV method needs \geq 13 or < 12; <i>p</i> method needs \geq 12 or < 12 Withhold if inconsistent Contextualised, acknowledge uncertainty [SR: Normal or Po: (i) M1, (ii) B2 maximum]
9	(i) (ii) (ii)	B(40, 0.225) ≈ N(9, 6.975) $\frac{5.5-9}{\sqrt{6.975}} = -1.325$ 0.9074 np = 9 > 5 or n large; and nq = 31 > 5 or p close to 0.5 Number list sequentially and select using random numbers If # > 3600, ignore (etc) B(14, 0.7) CR is ≥ 13 with probability 0.0475 H ₀ : $p = 0.7$, H ₁ : $p > 0.7$ 12 < 13 Do not reject H ₀ . Insufficient evidence that proportion who show improvement is greater than 0.7	M1 M1 A1 M1 A1 B2 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1	8 3 3 T 5	B(40, 0.225) stated or implied Normal, mean 9 Variance 6.975 or SD 2.641 or 6.975 Standardise with <i>np</i> and \sqrt{npq} , allow <i>npq</i> , no or wrong cc CC and \sqrt{npq} correct, allow from N(3600, 0.225) Answer, in range [0.907, 0.908] Full conditions B2; partial, B1 (assertions OK). Allow <i>npq</i> , allow from e.g. <i>n</i> = 3600 Number list, don't need "sequentially" Mention random numbers (<i>not</i> "select numbers randomly") Deal with issue of # > 3600, <i>or</i> "ignore repeats" α "Randomly pick numbers from 0 to 3599": (B1) B0 B1 B(14, 0.7) stated or implied, e.g. N(9.8, 2.94), can be recovered CV 13, or > 12 or {13, 14}, allow = but no other inequalities Exactly correct CR, and supporting prob.0475 or .9525 seen Both, B2. Allow π . One error, B1, but <i>r</i> , <i>x</i> etc: B0 Compare CV <i>from correct tail and inequality</i> with 12, <i>or</i> P(\geq 12) = 0.1608 and > 0.05 <i>or</i> P(< 12) = 0.8392 and < 0.95 Correct method & conclusion, requires like-with-like; CV method needs \geq 13 or < 12; <i>p</i> method needs \geq 12 or < 12 Withhold if inconsistent Contextualised, acknowledge uncertainty [SR: Normal or Po: (i) M1, (ii) B2 maximum] [0.9932 or 0.0068 probably B2 maximum]
9	(i) (ii) (ii) (iii)	B(40, 0.225) ≈ N(9, 6.975) $\frac{5.5-9}{\sqrt{6.975}} = -1.325$ 0.9074 np = 9 > 5 or n large; and nq = 31 > 5 or p close to 0.5 Number list sequentially and select using random numbers If # > 3600, ignore (etc) B(14, 0.7) CR is ≥ 13 with probability 0.0475 H ₀ : $p = 0.7$, H ₁ : $p > 0.7$ 12 < 13 Do not reject H ₀ . Insufficient evidence that proportion who show improvement is greater than 0.7 B(14, 0.8)	M1 M1 A1 M1 A1 B2 B1 B1 B1 B1 B1 B1 B1 B1 B1 M1 A1 F M1 A1 F	8 3 3 T 5	B(40, 0.225) stated or implied Normal, mean 9 Variance 6.975 or SD 2.641 or 6.975 Standardise with <i>np</i> and √ <i>npq</i> , allow <i>npq</i> , no or wrong cc CC and √ <i>npq</i> correct, allow from N(3600, 0.225) Answer, in range [0.907, 0.908] Full conditions B2; partial, B1 (assertions OK). Allow <i>npq</i> , allow from e.g. <i>n</i> = 3600 Number list, don't need "sequentially" Mention random numbers (<i>not</i> "select numbers randomly") Deal with issue of # > 3600, <i>or</i> "ignore repeats" <i>α</i> "Randomly pick numbers from 0 to 3599": (B1) B0 B1 B(14, 0.7) stated or implied, e.g. N(9.8, 2.94), can be recovered CV 13, or > 12 or {13, 14}, allow = but no other inequalities Exactly correct CR, and supporting prob .0475 or .9525 seen Both, B2. Allow <i>π</i> . One error, B1, but <i>r</i> , <i>x</i> etc: B0 Compare CV from correct tail and inequality with 12, <i>or</i> P(≥ 12) = 0.1608 and > 0.05 <i>or</i> P(< 12) = 0.8392 and < 0.95 Correct method & conclusion, requires like-with-like; CV method needs ≥ 13 or < 12; <i>p</i> method needs ≥ 12 or < 12 Withhold if inconsistent Contextualised, acknowledge uncertainty [SR: Normal or Po: (i) M1, (ii) B2 maximum] [0.9932 or 0.0068 probably B2 maximum] B(14, 0.8) stated or implied, allow from B(14, 0.75)
9	(i) (ii) (ii) (iii)	B(40, 0.225) ≈ N(9, 6.975) $\frac{5.5-9}{\sqrt{6.975}} = -1.325$ 0.9074 np = 9 > 5 or n large; and nq = 31 > 5 or p close to 0.5 Number list sequentially and select using random numbers If # > 3600, ignore (etc) B(14, 0.7) CR is ≥ 13 with probability 0.0475 H ₀ : $p = 0.7$, H ₁ : $p > 0.7$ 12 < 13 Do not reject H ₀ . Insufficient evidence that proportion who show improvement is greater than 0.7 B(14, 0.8) P(≤ 12) from B(14, 0.8)	M1 M1 A1 M1 A1 B2 B1 B1 B1 B1 B1 B1 B1 B1 B1 M1 A1 F1 M1 A1 F1 M1 M1 M1	8 3 3 T 5	B(40, 0.225) stated or implied Normal, mean 9 Variance 6.975 or SD 2.641 or 6.975 Standardise with <i>np</i> and √ <i>npq</i> , allow <i>npq</i> , no or wrong cc CC and √ <i>npq</i> correct, allow from N(3600, 0.225) Answer, in range [0.907, 0.908] Full conditions B2; partial, B1 (assertions OK). Allow <i>npq</i> , allow from e.g. <i>n</i> = 3600 Number list, don't need "sequentially" Mention random numbers (<i>not</i> "select numbers randomly") Deal with issue of # > 3600, <i>or</i> "ignore repeats" <i>α</i> "Randomly pick numbers from 0 to 3599": (B1) B0 B1 B(14, 0.7) stated or implied, e.g. N(9.8, 2.94), can be recovered CV 13, or > 12 or {13, 14}, allow = but no other inequalities Exactly correct CR, and supporting prob .0475 or .9525 seen Both, B2. Allow π One error, B1, but <i>r</i> , <i>x</i> etc: B0 Compare CV from correct tail and inequality with 12, <i>or</i> P(≥ 12) = 0.1608 and > 0.05 <i>or</i> P(< 12) = 0.8392 and < 0.95 Correct method & conclusion, requires like-with-like; CV method needs ≥ 13 or < 12; <i>p</i> method needs ≥ 12 or < 12 Withhold if inconsistent Contextualised, acknowledge uncertainty [SR: Normal or Po: (i) M1, (ii) B2 maximum] [0.9932 or 0.0068 probably B2 maximum] B(14, 0.8) stated or implied, allow from B(14, 0.75) Attempt prob of acceptance region, e.g. 0.8990, $$ on (i)

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553