4733 Mark Scheme January 2009

4733 Probability & Statistics 2

1		$U \sim B(800, 0.005) \approx Po(4)$	B1		Po(np) stated or implied
		$P(U \le 6)$	M1		Tables or formula ± 1 term, e.g. 0.7851, 0 .9489, 0.1107, not 1–
		= 0.8893	A1		Answer 0.889 or a.r.t. 0.8893
		n > 50/large, $np < 5/p$ small	B1	4	Both conditions
2		$\frac{23.625 - 23}{5 + \sqrt{3}} = 2$	M1		Standardise with \sqrt{n} , allow $\sqrt{2}$ errors
		$\frac{1}{5/\sqrt{n}} = 2$	A1		Equate to 2 or a.r.t. 2.00, signs correct
		$\sqrt{n} = 16$	M1		Solve for \sqrt{n} , needs Φ^{-1} , <i>not</i> from $/n$
		n = 256	A1	4	256 only, allow from wrong signs
3	(i)	0.16	M1		Correct formula for $R = 0$ or 1
3	(1)	(a) $e^{-0.42} = 0.657$	A1		P(0), a.r.t. 0.657
		(b) $0.42 e^{-0.42} = 0.276$	A1	3	P(1), a.r.t. 0.276
	(22)			3	
	(ii)	Po(2.1):	M1		Po(2.1) stated or implied
		$1 - P(\le 3) = 1 - 0.8386$	M1	•	Tables or formula, e.g. 0.8386 or 0.6496 or 0.9379 or
		= 0.1614	A1	3	complement; Answer, in range [0.161, 0.162]
	(iii)		B2	2	At least 3 separate bars, all decreasing
					Allow histogram. Allow convex
					P(0) < P(1) but otherwise OK: B1
					Curve: B1
					[no hint of normal allowed]
4	(i)	$H_0: p = 0.14$	B2		Both correct. 1 error, B1, but x or r or \bar{x} etc: 0
1	(1)	$H_1: p = 0.14$ $H_1: p < 0.14$	DZ		Both correct. I error, B1, but x of r or χ etc. 0
		B(22, 0.14)	M1		$D(22, 0.14)$ stated animalised a $D(2.09, 2.6499)$ on $D_0(2.09)$
		$P(\le 2) = .86^{22} + (22 \times .86^{21} \times .14) +$	A1		B(22, 0.14) stated or implied, e.g. N(3.08, 2.6488) or Po(3.08)
			A1		Correct formula for 2 or 3 terms, $or P(\le 0) = 0.036$ and CR
		$(231 \times .86^{20} \times .14^2) = 0.3877$	B1		Correct answer, a.r.t. 0.388, or CR is $= 0$
		> 0.1	M1		Explicitly compare 0.1 or CR with 2, OK from Po but <i>not</i> from N
		Do not reject H ₀ . Insufficient	1111		Correct comparison type and conclusion, needs binomial, at least
		evidence that company overestimates viewing proportion	A1	8	2 terms, <i>not</i> from P(< 2)
		overestimates viewing proportion	711	Ū	Contextualised, some acknowledgement of uncertainty
					[SR: Normal: B2 M1 A0 B0 M0]
	(25)	Cologted independently	D 1		[SR: 2-tailed, or $p > 0.14$, $P(\ge 2)$: B1M1A2B0M1A1]
	(ii)	Selected independently	B1	2	Independent selection
		Each adult equally likely to be	B1	2	Choice of sample elements equally likely (no credit if not
		chosen			focussed on selection)
					[Only "All samples of size <i>n</i> equally likely": B1 only unless
_	(2)		D1		related to Binomial conditions]
5	(i)	\ /	B1		Horizontal straight line
		\ /	B1	2	Symmetrical U-shaped curve
		\ /	B1	3	Both correct, including relationship between the two and not
					extending beyond [–2, 2], curve through (0,0)
	(ii)	S is equally likely to take any	B2	2	Correct statement about both distributions, √ on their graph
	(11)	value	DZ	4	[Correct for one only, or partial description: B1]
		T is more likely at extremities			Not "probability of S is constant", etc.
	(iii)		M1		Integrate $x^2g(x)$, limits -2 , 2
	(111)	$\frac{5}{64} \int_{-2}^{2} x^{6} dx = \frac{5}{64} \left[\frac{x^{7}}{7} \right]_{2}^{2} = \frac{20}{7}$	M1		Integrate x g(x), Hmits -2 , 2 Correct indefinite integral [= $5x^7/448$]
		$\left \frac{64}{64} \int_{-2}^{3} u dx - \frac{64}{64} \left \frac{7}{7} \right _{3} \right = \frac{7}{7} \right $	A1 B1		
		-0^2	DI		0 or 0^2 subtracted or $E(X) = 0$ seen, $not \int_{0}^{2} f(x) dx - \int_{0}^{2} f(x) dx$
			Λ 1	4	Answer $\frac{20}{7}$ or $2\frac{6}{7}$ or a.r.t. 2.86, don't need 0
		$=\frac{20}{7}$	A1	4	1
		1	l		

4733 Mark Scheme January 2009

6	(i)	20.25	M1		$50.0 \pm z\sqrt{(1.96/81)}$, allow one sign only, allow $\sqrt{\text{errors}}$
		$50.0 \pm 1.96 \sqrt{\frac{20.25}{81}} = 50.0 \pm 0.98$	B1		z = 1.96 in equation (<i>not</i> just stated)
		= 49.02, 50.98	A1A1		Both critical values, min 4 SF at some stage (if both 3SF, A1)
		\overline{W} < 49.02 and \overline{W} > 50.98	$A1\sqrt{1}$	5	CR, allow \leq / \geq , don't need \overline{W} , $$ on their CVs, can't recover
		W < 45.02 and W > 50.58	AIV	3	[Ans 50 ± 0.98 : A1 only]
					[SR: 1 tail, M1B0A0; 50.8225 or 49. 1775: A1]
	(ii)	50.98-50.2	M1		Standardise one limit with same SD as in (i)
	` /	$\frac{50.98 - 50.2}{0.5} = 1.56$	A1		A.r.t. 1.56, allow − Can allow √ here
		49.02 - 50.2	A1		A.r.t. –2.36, allow + if very unfair
		$\frac{49.02 - 50.2}{0.5} = -2.36$	M1		Correct handling of tails for Type II error
			A1	5	Answer in range [0.931, 0.932]
		$\Phi(1.56) - \Phi(-2.36) = 0.9315$			[SR 1-tail M1; -1.245 or 2.045 A1; 0.893 or 0.9795 A1]
	(iii)	It would get smaller	B1	1	No reason needed, but withhold if definitely wrong reason seen.
					Allow from 1-tail
7	(i)	$\hat{\mu} = \bar{t} = 13.7$	B1		13.7 stated
		12657.28	M1		Correct formula for biased estimate
		$\frac{12657.28}{64} - 13.7^2$ [= 10.08]; $\times \frac{64}{63}$	M1		$\times \frac{64}{63}$ used, or equivalent, can come in later
		= 10.24	A1		Variance or SD 10.24 or 10.2
		$H_0: \mu = 13.1, H_1: \mu > 13.1$	B2		Both correct.
					[SR: One error, B1, but x or t or \bar{x} or \bar{t} , 0]
		$\frac{13.7 - 13.1}{\sqrt{10.24/64}} = 1.5 \text{ or } p = 0.0668$	M1		Standardise, or find CV, with $\sqrt{64}$ or 64
			A1		$z = \text{a.r.t. } 1.50, \text{ or } p = 0.0668, \text{ or CV } 13.758 [\sqrt{\text{ on } z}]$
		1.5 < 1.645 or 0.0668 > 0.05	B1		Compare $z \& 1.645$, or $p \& 0.05$ (must be correct tail),
		Denoted II I I Go			or $z = 1.645 \& 13$ with CV
		Do not reject H_0 . Insufficient evidence that time taken on	M1		Correct comparison & conclusion, needs 64, not $\mu = 13.7$
		average is greater than 13.1 min	A1	11	Contextualised, some acknowledgement of uncertainty
	(**)		D1		[13.1 – 13.7: (6), M1 A0 B1 M0]
8	(ii) (i)	Yes, not told that dist is normal N(14.7, 4.41)	B1 M1	1	Equivalent statement, <i>not</i> " <i>n</i> is large", don't need "yes"
0	(1)	Valid because	A1		Normal, attempt at <i>np</i> Both parameters correct
		np = 14.7 > 5; nq = 6.3 > 5	B1		Check $np > 5$; If both asserted but not both
		np = 14.7 > 3, nq = 0.3 > 3	B1		nq or npq > 5
		$1 - \Phi\left(\frac{15.5 - 14.7}{\sqrt{4.41}}\right) = 1 - \Phi(0.381)$			[Allow " n large, p close to $\frac{1}{2}$ "]
			M1		Standardise, answer < 0.5 , no \sqrt{n}
		= 1 - 0.6484	A1		z, a.r.t. 0.381
		= 0.3516	A1	7	Answer in range [0.351, 0.352] [Exact: M0]
	(ii)	$\bar{K} \sim N(14.7, 4.41/36)$	M1		Normal, their np from (i)
		$[=N(14.7, 0.35^2)]$	A1√		Their variance/36
		Valid by Central Limit Theorem	B1		Refer to CLT or large $n (= 36, not 21)$, or " $K \sim N$ so $\overline{K} \sim N$ ",
		as 36 is large			not same as (i), not $np > 5$, $nq > 5$ for \overline{K}
		$\Phi\left(\frac{14.0 + \frac{1}{72} - 14.7}{\sqrt{4.41/36}}\right) = \Phi(-1.96)$	M1		Standardise 14.0 with 36 or √36
		$\sqrt{4.41/36}$	A1		cc included, allow 0.5 here, e.g. 14.5 – 14.7
		= 0.025	A1	7	z = -1.96 or -2.00 or -2.04 , allow + if answer < 0.5
			A1	7	0.025 or 0.0228
	OR:	$B(756, 0.7) \approx N(529.2, 158.76)$	M1M1	Δ1	[0.284 loses last 2] [Po(25.2) etc: probably 0] ×36; N(529.6,); 158.76
	ON.		B1	711	\times 30; N(329.0,); 138.70 CLT as above, or $np > 5$, $nq > 5$, can be asserted here
		$\Phi\left(\frac{504.5 - 529.2}{\sqrt{158.76}}\right) = \Phi(-1.96)$	M1		Standardise 14×36
		(1201/0)	A1		cc correct and \sqrt{npq}
		= 0.025	A1		0.025 or 0.0228
		1			