4733 Mark Scheme January 2008

4733 Probability & Statistics 2

1		$80-\mu$	M1		Standardise once with Φ^{-1} , allow σ^2 , cc
		$\frac{80 - \mu}{\sigma} = \Phi^{-1}(0.95) = 1.645$	B1		Both 1.645 (1.64, 1.65) and [0.674, 0.675], ignore signs
		$\frac{\mu - 50}{\sigma} = \Phi^{-1}(0.75) = 0.674(5)$	A1		Both equations correct apart from wrong z , not $1-1.645$
		U	M1		Solve two standardised equations
		Solve simultaneously	A1		μ, a.r.t 58.7
		$\mu = 58.7$, $\sigma = 12.9$	A1	6	σ, a.r.t. 12.9 [not $σ$ ²] [$σ$ ² : M1B1A0M1A1A0]
2	(i)	Let <i>R</i> denote the number of choices	M1		$B(12, \frac{5}{6})$ stated or implied, allow 501/600 etc
		which are 500 or less.	M1		p^{12} or q^{12} or equivalent
		$R \sim B(12, \frac{5}{6})$	A1	3	Answer, a.r.t. 0.112
		$P(R = 12) = (\frac{5}{6})^{12}$ [=0.11216]			[SR: $\frac{500}{600} \times \frac{499}{599} \times \frac{498}{598} \times \dots$; 0.110: M1A1]
		= 0.112			[M1 for 0.910 or 0.1321 or vague number of terms]
	(ii)	Method unbiased; unrepresentative by	B1	_	State that method is unbiased
		chance	B1	2	Appropriate comment (e.g. "not unlikely")
-	(:)	D(z1) 0.0211	D1		[SR: partial answer, e.g. not <u>necessarily</u> biased: B1]
3	(i)	$P(\le 1) = 0.0611$	B1 M1		0.0611 seen
		$P(\ge 9) = 1 - P(\le 8) = 1 - 0.9597$	A1		Find P(≥ 9), allow 8 or 10 [0.0866, 0.0171] 0.0403 correct
		= 0.0403 $0.0611 + 0.0403 = [0.1014]$	M1		Add probabilities of tails, or 1 tail \times 2
		[-0.1014]	A1	5	Answer [10.1, 10.2]% or probability
	(ii)	$P(2 \le G \le 8)$	M1		Attempt at $P(2 \le G \le 8)$, not isw, allow $1 \le G \le 9$ etc
	(11)	= 0.8944 - 0.0266 [= 0.8678]	M1		Po(5.5) tables, $P(\le \text{top end}) - P(\le \text{bottom end})$
		= 0.868	A1	3	Answer, a.r.t. 0.868, allow %
4	(i)		B1		Mean 82.4, c.a.o.
	()	$\hat{\mu} = \bar{y} = \frac{3296.0}{40} = 82.4$	M1		Use correct formula for biased estimate
		$\frac{286800.4}{40} - 82.4^{2} [= 380.25]$	M1		Multiply by $n/(n-1)$
		40			[SR: all in one, M2 or M0]
		$S^2 \times \frac{40}{39}$; = 390	A1	4	Variance 390, c.a.o.
	(ii)	$\Phi\left(\frac{60 - 82.4}{\sqrt{390}}\right) = \Phi(-1.134)$	M1		Standardise, allow 390, cc or biased estimate, +/–,
		$\Phi\left(\frac{1}{\sqrt{390}}\right)$			do not allow \sqrt{n}
		= 1 - 0.8716 = 0.128	A1	2	Answer in range [0.128, 0.129]
	(iii)	No, distribution irrelevant	B1	1	"No" stated or implied, any valid comment
5	(i)	H_0 : $\mu = 500$ where μ denotes	B2		Both hypotheses stated correctly
		$H_1: \mu < 500$ the population mean	3.54		[SR: 1 error, B1, but \bar{x} etc: B0]
		α : $z = \frac{435 - 500}{100 / \sqrt{4}} = -1.3$	M1		Standardise, use $\sqrt{4}$, can be +
		$100 / \sqrt{4}$	A1		$z = -1.3$ (allow -1.29 from cc) or $\Phi(z) = 0.0968$ (.0985)
		Compare –1.282	B1		Compare $z \& -1.282 \ or \ p \ (< 0.5) \& 0.1 \ or \ equivalent$
		$β$: 500 – 1.282×100/ $\sqrt{4}$	M1		$500 - z \times 100/\sqrt{4}$, allow $\sqrt{\text{errors}}$, any Φ^{-1} , must be –
		= 435.9; compare 435	A1√;B1		CV correct, $$ on their z; 1.282 correct and compare
		Reject H ₀	M1√		Correct deduction, needs $\sqrt{4}$, $\mu = 500$, like-with-like
		Significant evidence that number of	A1√	7	Correct conclusion interpreted in context
		visitors has decreased	 		6. 110. 20. 12
	(ii)	CLT doesn't apply as <i>n</i> is small	M1	•	Correct reason ["n is small" is sufficient]
		So need to know distribution	B1	2	Refer to distribution, e.g. "if not normal, can't do it"

_	(:)	(-) 1 0.0152	3.71		D. (2) (-1.1 11 2
6	(i)	(a) 1 – 0.8153	M1	•	Po(3) tables, "1 –" used, e.g. 0.3528 or 0.0839
		= 0.1847	A1	2	Answer 0.1847 or 0.185
		(b) 0.8153 – 0.6472	M1	•	Subtract 2 tabular values, or formula [e ⁻³ 3 ⁴ /4!]
		= 0.168	A1	. 2	Answer, a.r.t. 0.168
	(ii)	N(150, 150)	B1		Normal, mean 3×50 stated or implied
		$1-\Phi\left(\frac{165.5-150}{\sqrt{150}}\right)$	B1		Variance or SD = 3×50 , or same as μ
		$\left(\frac{1-\Psi}{\sqrt{150}}\right)$	M1		Standardise 165 with λ , $\sqrt{\lambda}$ or λ , any or no cc
		$=1-\Phi(1.266)=$ 0.103	A1	5	$\sqrt{\lambda}$ and 165.5
			A1		Answer in range [0.102, 0.103]
	(iii)	(a) The sale of one house does not	B1		Relevant answer that shows evidence of correct
		affect the sale of any others			understanding [but <i>not</i> just examples]
		(b) The average number of houses	B1	2	Different reason, in context
		sold in a given time interval is			[Allow "constant rate" or "uniform" but not "number
		constant			constant", "random", "singly", "events".]
7	(i)	$\int kx^2 \int_{-\infty}^{\infty} kx^2 dx$	3.51		Use $\int_0^2 kx dx = 1$, or area of triangle
		$\int_0^2 kx dx = \left[\frac{kx^2}{2}\right]_0^2 = 2k$	M1	•	$\int_0^{\infty} \int_0^{\infty} dt dt = 1$, of the of thangle
		L 10	A1	2	Correctly obtain $k = \frac{1}{2}$ AG
		$= 1 \text{ so } k = \frac{1}{2}$			·
	(ii)	У Л			
			B1		Straight line, positive gradient, through origin
			B1	2	Correct, some evidence of truncation, no need for vertical
		$\longrightarrow x$			
		0 2			
	(iii)	$\int_{0}^{2} \frac{1}{2} x^{2} dx = \left[\frac{1}{6} x^{3} \right]_{0}^{2} = \frac{4}{3}$	M1		Use $\int_{0}^{2} kx^{2} dx$; $\frac{4}{3}$ seen or implied
			A1		
		$\int_{0}^{2} \frac{1}{2} x^{3} dx = \left[\frac{1}{8} x^{4} \right]_{0}^{2} = 2$	M1		Use $\int_0^2 kx^3 dx$; subtract their mean ²
			M1		\mathbf{J}_0 and \mathbf{J}_0
		$2 - \left(\frac{4}{3}\right)^2 = \frac{2}{9}$	A1	5	Answer $\frac{2}{9}$ or a.r.t. 0.222, c.a.o.
	(iv)	Δ.V.	M1		Translate horizontally, allow stated, or "1, 2" on axis
	` /		A1√	2	One unit to right, 1 and 3 indicated, nothing wrong seen,
					no need for vertical or emphasised zero bits
		$\rightarrow \rightarrow x$			[If in doubt as to \rightarrow or \downarrow , M0 in this part]
		1 3			
	(v)	$\frac{7}{3}$	B1√		Previous mean + 1
			B1√	2	Previous variance
		$\frac{2}{9}$			[If in doubt as to \rightarrow or \downarrow , B1B1 in this part]

0	(')	TT 0.5% OD 1.0.5%	DO		D 41 4 4 1 4 6
8	(i)	$H_0: p = 0.65 \text{ OR } p \ge 0.65$	B2		Both hypotheses correctly stated, in this form
		H_1 : $p < 0.65$			[One error (but not r , x or \bar{x}): B1]
		B(12, 0.65)	M1		B(12, 0.65) stated or implied
		α : $P(\le 6) = 0.2127$	A1		Correct probability from tables, $not P(= 6)$
		Compare 0.10	B1		Explicit comparison with 0.10
		$β$: Critical region ≤ 5 ; $6 > 5$	B1		Critical region ≤ 5 or ≤ 6 or ≤ 4 $\land \geq 11$ & compare 6
		Probability 0.0846	A1		Correct probability
		Do not reject H ₀	M1√		Correct comparison and conclusion, needs correct
		Insufficient evidence that proportion			distribution, correct tail, like-with-like
		of population in favour is not at least	A1√		Interpret in context, e.g. "consistent with claim"
		65%	<u> </u>	7	[SR: N(7.8, 2.73): can get B2M1A0B1M0: 4 ex 7]
	(ii)	Insufficient evidence to reject claim;	B1√		Same conclusion as for part (i), don't need context
		test and p/q symmetric	B1	2	Valid relevant reason, e.g. "same as (i)"
	(iii)	$R \sim B(2n, 0.65), P(R \le n) > 0.15$	M1		$B(2n, 0.65), P(R \le n) > 0.15$ stated or implied
		B(18, 0.65), p = 0.1391	A1		Any probability in list below seen
		, , , , , , , , , , , , , , , , , , ,	A1		p = 0.1391 picked out (i.e., not just in a list of > 2)
		Therefore $n = 9$	A1	4	Final answer $n = 9$ only
					[SR < n: M1A0, n = 4, 0.1061 A1A0]
					[SR 2-tail: M1A1A0A1 for 15 or 14]
					[SR: 9 only, no working: M1A1]
					[MR B(12, 0.35): M1A0, $n = 4$, 0.1061 A1A0]
					3 0.3529 7 0.1836 12 0.0942
					4 0.2936 8 0.1594 13 0.0832
					5 0.2485 9 0.1391 14 0.0736
					6 0.2127 10 0.1218 15 0.0652