OCR Maths S2

Mark Scheme Pack

2005-2014

1	(i) (a) $Po(2)$: $1 - P(\le 3)$	M1		Po(2) tables, "1 – " used
1	= 0.1429	A1	2	Answer, a.r.t. 0.143
		M1		Parameter 2/3
	(b) Po(2/3): $e^{-2/3} \frac{(\frac{2}{3})^2}{2!}$	M1		Poisson formula correct, $r = 2$, any μ
	= 0.114	A1	3	Answer, a.r.t. 0.114
	(ii) Foxes may congregate so not	B1		Independent/not constant rate/singly used
	independent	B1	2	Any valid relevant application in context
2	N(80/7, 400/49)	B1		80/7, a.e.f (11.43)
	$13.5 - \frac{80}{7}$	B1		400/49 or 20/7 seen, a.e.f. (8.163 or 2.857)
	20 7	M1		Standardise with $np \& npq$ or \sqrt{npq} or nq , no
	= 0.725	A1		\sqrt{n}
	$1 - \Phi(0.725)$	A1		\sqrt{npq} correct
	= 0.2343	M1		13.5 correct
		A1	7	Normal tables used, answer < 0.5
				Answer, a.r.t. 0.234
				[SR: Binomial, complete expression M1, 0.231
				A1
				Po(80/7) B1, complete expression M1, 0.260
				A1
				Normal approx to Poisson, B1B0 M1A0A1
				M1A0]
3	H_0 : $p = 0.3$	B1		NH stated, must be this form (or π)
	$H_1: p \neq 0.3$	B1		AH stated, must be this form (or π) [μ : B1
	B(8, 0.3)	M1		both]
	$P(\le 4) = 0.9420;$ $P(> 4) =$	A1 M1		B(8, 0.3) stated or implied
	0.0580 P(<5) 0.0887: P(>5)	IVII		Any one of these four probabilities seen
	$P(\le 5) = 0.9887;$ $P(> 5) = 0.0113$	M1		Either compare $P(\geq 5) \& 0.025 / P(\leq 4) \& 0.975$
	Compare 0.025 or critical value 6	1,11		0.975 Or critical region ≥ 6 with 5
	Do not reject H_0	A1√	7	H_0 not rejected, can be implied, needs
	Insufficient evidence that		,	essentially correct method
	manufacturer's claim is wrong			Correct conclusion in context
	6			[SR: Normal, Poisson: can get
				B2M1A0M0M1A1
				$P(\le 5)$: first 4 marks. $P(= 5)$: first 3 marks
				only.]
4	(i) B(80, 0.02)	M1		B(80, 0.02) seen or implied, e.g. N(1.6, 1.568)
	approx Po(1.6)	M1		Po(np) used
	$1 - P(\le 1) = 1 - 0.5249$	M1		$1 - P(\leq 1)$ used
	= 0.4751	A1	4	Answer, a.r.t. 0.475
		 - <u> </u>		[SR: Exact: M1 M0 M0, 0.477 A1]
	(ii) $P(\le 4) = 0.9763, P(\ge 5) =$	M1		Evidence for correct method, e.g. answer 6
	0.0237	A1	_	At least one of these probabilities seen
	$P(\le 5) = 0.9940, P(\ge 6) =$	A1	3	Answer 6 only
	0.0060			[SR N(1.6,1.568): $2.326 = (r - 1.6)/\sqrt{1.568}$ M1
	Therefore least value is 6			r = 5 or (with cc) 6 A1
				Exact: M1 A0 A1]

5	$(i) \qquad \frac{0-\mu}{\mu/2} = -2,$	M1	Standardise, allow $-$, allow $\mu^2/4$
	,	A1	z = 2 or -2
	independent of μ	A1	z-value independent of μ and any relevant
	$1 - \Phi(2) = 1 - 0.9772 =$	A1	4 statement
	0.0228		Answer, a.r.t. 0.023
	(ii) $\Phi[(9-6)/3]$	M1	Standardise and use Φ [no \sqrt{n}]
	$\Phi(1.0) = 0.8413$	A1	0.8413 [not 0.1587]
	$[\Phi(1.0)]^3$	M1	Cube previous answer
	= 0.59546		4 Answer, in range [0.595, 0.596]
	(iii) Annual increases not	B1	1 Independence mentioned, in context. Allow
	independent		"one year affects the next" but not "years not
-	TI 20 II 20 I	B1	random"
6	H_0 : $\mu = 32$; H_1 : $\mu > 32$, where μ is	B1	One hypothesis correctly stated, <i>not</i> x or \overline{x} or \overline{w}
	population mean waist measurement $\overline{W} = 32.3$	B1	Both completely correct, μ used
		M1	Sample mean 32.3 seen Correct formula for s^2 used
	$s^2 = 52214.50/50 - \overline{W}^2$ [= 1]	M1	
	$\hat{\sigma}^2 = 50/49 \times s^2$ [= 50/49 or 1.0204]	1,11	Multiply by 50/49 or √
	α : $z = (32.3 - 32) \times \sqrt{49}$	M1	Correct formula for z, can use s, aef, need $\mu = 32$
	= 2.1	A1	$z = 2.1$ or $1 - \Phi(z) = 0.0179$, not -2.1
	Compare 2.1 with 3.09	B1	Explicitly compare their 2.1 with 3.09(0) or their
	or 0.0179 with 0.001		0.0179 with 0.001
	$β: CV = 32 + 3.09 ÷ \sqrt{49}$	M1	$32 + z \times \sigma/\sqrt{n}$ [allow \pm , s, any z]
	= 32.44	B1	$z = 3.09$ and (later) compare \bar{x}
	Compare CV with 32.3	A1√	CV in range [32.4, 32.5], $\sqrt{\text{ on } k}$
	Do not reject H ₀	M1√	Correct conclusion, can be implied, needs
	-		essentially correct method including \sqrt{n} ,
	Insufficient evidence that waists are		any reasonable σ , but not from $\mu = 32.3$
	actually larger	A1√	Interpreted in context
		10	
7	(i) $\frac{80-c}{8/\sqrt{12}} = 2.326$	M	Equate standardised variable to Φ^{-1} , allow –
	$8/\sqrt{12}$	1	$\sqrt{12}$, 8 correct
	T1 62	A	2.326 or a.r.t 2.33 seen, signs must be correct
	c = 74.63	1 4	Answer, a.r.t. 74.6, cwo, allow \leq or \geq
		В	
		1	
		A 1	
	(ii) (a) Type I error	B 1	"Type I error" stated, needs evidence
	(b) Correct	$1\sqrt{1}$	"Correct" stated or clearly implied
	(5)	B	Wrong $c: 74 < c < 75$, B1 $\sqrt{B1}$
		1√	c < 74, both "correct", B1. 75 < $c < 80$, both
		1	"Type I", B1
			Also allow if only one is answered
	(iii) $\frac{74.63 - \mu}{8/\sqrt{12}} = -1.555$	M1*d	
	$8/\sqrt{12}$ = 1.333	ер	$\frac{c-\mu}{8/\sqrt{12}} = (\pm)\Phi^{-1}, \text{ allow no } \sqrt{12} \text{ but not } 80, \text{ not}$
			0.8264
	Solve for μ	A1√	Correct including sign, $$ on their c
	$\mu=78.22$	dep*	Solve to find μ, dep, answer consistent with signs
		M1	Answer, a.r.t. 78.2
		A1	
		4	

8	(i)	$\int_0^1 x^n dx = \left[\frac{x^{n+1}}{n+1} \right]_0^1 = \frac{1}{n+1}$	M1		Integrate x^n , limits 0 and 1
			M1		Equate to 1 and solve for <i>k</i>
		k/(n+1) = 1 so $k = n+1$	A1	3	•
	<i>(</i>)	$\begin{bmatrix} x^{n+2} \end{bmatrix}^1$	M1		Integrate x^{n+1} , limits 0 and 1, not just $x.x^n$
	(ii)	$\int_0^1 x^{n+1} dx = \left \frac{x^{n+2}}{n+2} \right _0^1 = \frac{1}{n+2}$	A1		Answer 1
					n+2
		$\mu = \frac{k}{n+2} = \frac{n+1}{n+2} \mathbf{AG}$. 1	_	Correctly obtain given enguer
			A1	3	Correctly obtain given answer
	(;;;)	$\begin{bmatrix} 1 & 5 & \begin{bmatrix} x^6 \end{bmatrix}^1 \end{bmatrix}$	M1		Integrate x^5 , limits 0 and 1, allow with n
	(iii)	$\int_0^1 x^5 dx = \left[\frac{x^6}{6} \right]_0^1 \ [= \frac{1}{6}]$	M1		Subtract $\left(\frac{4}{5}\right)^2$
		$\sigma^2 = \frac{4}{6} - \left(\frac{4}{5}\right)^2 = \frac{2}{75}$	A1	3	Answer $\frac{2}{75}$ or a.r.t. 0.027
	(iv)	$N(\frac{4}{5}, \frac{2}{7500})$	B1		Normal stated
		(3 /300)	B1		Mean $\frac{4}{5}$ or $\frac{n+1}{n+2}$
			B1√	3	Near $\frac{1}{5}$ or $\frac{1}{n+2}$
					Variance their (iii)/100, a.e.f., allow $\sqrt{}$
	(v)	Same distribution, translated	M1		Can be negative translation; <i>or</i> integration, must
					include correct method for integral
		Mean 0	A1√		(Their mean) $-\frac{4}{5}$, c.w.d.
		Variance $\frac{2}{75}$	B1√		Variance same as their (iii), or $\frac{2}{75}$ by integration
		75	3		$\frac{1}{75}$ by integration

1		Г.,4 7 ⁴ -	M1		Integrate $xf(x)$, limits 3 & 4 [can be implied]
		$\mu = \frac{3}{37} \int_{3}^{4} x^{3} dx = \frac{3}{37} \left[\frac{x^{4}}{4} \right]_{3}^{4} $ [=			
		E 33			$\left[\frac{525}{148} \text{ or } 3.547\right]$
		$3\frac{81}{148}$]	M1		Attempt to integrate $x^2f(x)$, limits 3 & 4
		$3 \int_{0}^{4} x^{4} dx = 3 \left[x^{5} \right]^{4}$	A1 A1		Correct indefinite integral, any form
		$\frac{3}{37} \int_{3}^{4} x^{4} dx = \frac{3}{37} \left[\frac{x^{5}}{5} \right]_{3}^{4}$			2343/ ₁₈₅ or in range [12.6, 12.7] [can be implied]
		$= 12\frac{123}{185} \text{ or } 12.665$	M1	_	Subtract their μ^2
			A1	6	Answer, in range [0.0575, 0.084]
	(1)	$\sigma^2 = 12\frac{123}{185} - 3\frac{81}{148}^2 = 0.0815$			
2	(i)	Find $P(R \ge 6)$ or $P(R < 6)$ = 0.0083 or 0.9917	M1 A1		Find P(= 6) from tables/calc, OR RH critical region
		= 0.0063 01 0.9917	Α ι		P(≥ 6) in range [0.008, 0.0083] or P(< 6) =
		Compare with 0.025 [can be from	B1		0.9917
		N]		4	OR CR is 6 with probability
		[0.05 if "empty LH tail	A1√		0.0083/0.9917
		stated]			Explicitly compare with 0.025 [or 0.975 if
		Reject H ₀			consistent]
					OR state that result is in critical region
	(ii)	$n = 9$, $P(\le 1) = 0.0385$ [> 0.025]	M1		Correct comparison and conclusion, $$ on their p At least one, or $n = 8$, $P(\le 1) = 0.0632$
	(")	$n = 9$, $P(\le 1) = 0.0385$ [> 0.025] $n = 10$, $P(\le 1) = 0.0233$ [< 0.025]	A1		Both of these probabilities seen, don't need
		Therefore $n = 9$	B1	3	
					Answer $n = 9$ only, indep't of M1A1, not from P(=
					1)
3	(i)	$(140 - \mu)/\sigma = -2.326$	M1		One standardisation equated to Φ^{-1} , allow "1–",
		$(300 - \mu)/\sigma = 0.842$	B1		σ^2
		Calva to obtain	A1√ M1		Both 2.33 and 0.84 at least, ignore signs
		Solve to obtain: $\mu = 257.49$	A1		Both equations completely correct, $$ on their z Solve two simultaneous equations to find one
		$\sigma = 50.51$	A1	6	variable
		ÿ 33.3 1			μ value, in range [257, 258]
					σ in range [50.4, 50.55]
	(ii)	Higher	B1		"Higher" or equivalent stated
		as there is positive skew	B1		Plausible reason, allow from normal calculations
4	(i)	Each element equally likely to be	B1	1	One of these two. "Selections independent"
		selected (and all selections independent) OR each possible			alone is insufficient, but don't need this. An example is insufficient.
		sample equally likely			елатріє із інэшнысік.
	(ii)	B(6, 5/8)	M1		B(6, 5/8) stated or implied, allow e.g. 499/799
	` '	${}^{6}C_{4}p^{4}(1-p)^{2}$	M1		Correct formula, any p
			1 44./	3	Answer, a.r.t. 0.322, can allow from wrong <i>p</i>
		= 0.32187	A1√		·
	(iii)	N(37.5, 225/16)	B1		Normal, mean 37.5, or 37.47 from 499/799,
	(iii)		B1 B1		499/800
	(iii)	N(37.5, 225/16)	B1 B1 M1 der	0	499/800 14.0625 or 3.75 seen, allow 14.07/14.1 or 3.75
	(iii)	$ N(37.5, 225/16) \frac{39.5 - 37.5}{3.75} = 0.5333 $	B1 B1 M1 der A1		499/800 14.0625 or 3.75 seen, allow 14.07/14.1 or 3.75 Standardise, wrong or no cc, np , npq , no \sqrt{n}
	(iii)	$N(37.5, 225/16)$ $\frac{39.5 - 37.5}{3.75} = 0.5333$ $1 - \Phi(0.5333)$	B1 B1 M1 dep A1 dep M1		499/800 14.0625 or 3.75 seen, allow 14.07/14.1 or 3.75 Standardise, wrong or no cc, np , npq , no \sqrt{n} Correct cc, \sqrt{npq} , signs can be reversed
	(iii)	$ N(37.5, 225/16) \frac{39.5 - 37.5}{3.75} = 0.5333 $	B1 B1 M1 der A1		499/800 14.0625 or 3.75 seen, allow 14.07/14.1 or 3.75 Standardise, wrong or no cc, np , npq , no \sqrt{n} Correct cc, \sqrt{npq} , signs can be reversed Tables used, answer < 0.5, $p = 5/8$
	(iii)	$N(37.5, 225/16)$ $\frac{39.5 - 37.5}{3.75} = 0.5333$ $1 - \Phi(0.5333)$	B1 B1 M1 der A1 dep M1		499/800 14.0625 or 3.75 seen, allow 14.07/14.1 or 3.75 Standardise, wrong or no cc, np , npq , no \sqrt{n} Correct cc, \sqrt{npq} , signs can be reversed

5	(i)	B(303, 0.01)	B1	B(303, 0.01) stated, allow $p = 0.99$ or 0.1		
		≈ Po(3.03)	B1 2	Allow Bin implied clearly by parameters Po(3.03) stated or implied, can be recovered from (ii)		
	(ii)	$e^{-3.03} (1 + 3.03 + \frac{3.03^2}{2}) = 0.4165$ AG	M1 A1 2	Correct formula, ± 1 term or "1 – " or both		
	(iii)	$302 \text{ seats} \Rightarrow \mu = 3.02$	M1	Try smaller value of μ		
		$e^{-3.02}(1+3.02) = 0.1962$	M1 A1	Formula, at least one correct term		
		0.196 < 0.2	A1	Correct number of terms for their μ 0.1962 [or 0.1947 from exact]		
		So 302 seats.		Answer 302 only		
	SR:		298.98,2.9898) or equiv, standardise: M1A1 total 4/9			
	SR:	p = 0.1: B(303, 0.1), N(30.3,				
	0.5		np & √npq;	solve quadratic for \sqrt{n} ; $n = 339$: M1M1M1A1, total		
	SR:	6/9				
	/:\	B(303, 0.01) ≈ N(3.03, 2.9997): B1B				
6	(i) (ii)	Customers arrive independently 1 – 0.9921	B1 1 M1	Valid reason in context, allow "random"		
	(11)	= 0.0079	A1 2	Poisson tables, "1 –", or correct formula \pm 1 term Answer, a.r.t. 0.008 $[1 - 0.9384 = 0.0606: M1A0]$		
	(iii)	N(48, 48)	. <u>/ ``</u> B1	Normal, mean 48		
	()	z = 55.5 - 48	B1√	Variance or SD same as mean√		
		$-\frac{\sqrt{48}}{\sqrt{600}}$	M1 dep	Standardise, wrong or no cc, $\mu = \lambda$		
		= 1.0825	A1 '	Correct cc, √λ		
		$1 - \Phi(1.0825)$	dep M1	Use tables, answer < 0.5		
		= 0.1394	A1 6	Answer in range [0.139, 0.14]		
	(iv)	$e^{-\lambda} < 0.02$	M1	Correct formula for P(0), OR P(0 λ = 4) at least		
		$\lambda > -\ln 0.02$	M1	In used OR $\lambda = 3.9$ at least by T & I		
		= 3.912	A1 M1	3.91(2) seen OR λ = 3.91 at least by T & I		
		0.4t = 3.912: $t = 9.78$ minutes $t = 9$ minutes 47 seconds	A1 5	Divide λ by 0.4 or multiply by 150, any distribution		
		t = 3 minutes 47 Seconds	7(1 3	587 seconds ± 1 sec [inequalities not needed]		

7	(i)	$\frac{c - 4000}{60 / \sqrt{50}} = 1.645$ Solve $c = 4014$ [4013.958] Critical region is > 4014	M1 B1 A1√ M1 A1 A1√ 6	Standardise unknown with $\sqrt{50}$ or 50 [ignore RHS] $z=1.645$ or -1.645 seen Wholly correct eqn, $$ on their z [1 -1.645 : M1B1A0] Solve to find c Value of c , a.r.t. 4014 Answer "> 4014 ", allow \geq , $$ on their c , needs M1M1
	(ii)	Use "Type II is: accept when H_0 false" $\frac{4020 - 4014}{60 / \sqrt{50}} = 0.7071 \qquad [0.712 \text{ from} \\ 4013.958] \\ 1 - \Phi(0.7071) \\ = \textbf{0.240} \qquad [0.238 \text{ from} \\ 4013.958]$	M1dep depM1 A1√ A1 M1 A1 6	Standardise 4020 and 4014 $\sqrt{\ }$, allow 60 2 , cc With $\sqrt{50}$ or 50 Completely correct LHS, $\sqrt{\ }$ on their c z-value in range [0.707, 0.712] Normal tables, answer < 0.5 Answer in range [0.2375, 0.2405]
	(iii)	Smaller Smaller cv, better test etc	B1 B1 2	"Smaller" stated, no invalidating reason Plausible reason
	(iv)	Smaller Smaller cv, larger prob of Type I etc	B1 B1 2	"Smaller" stated, no invalidating reason Plausible reason
	(v)	No, parent distribution known to be normal	B2 2	"No" stated, convincing reason SR: If B0, "No", reason that is not invalidating: B1

For over-specified answers (> 6SF where inappropriate) deduct 1 mark, no more than once in paper.

1	22 – 11	#-1/0 242\	M1		Standardise with Φ^{-1} , allow +, "1 –" errors, cc, $\sqrt{5}$ or 5^2
1	$\frac{22 \mu}{5} =$	$=-\Phi^{-1}(0.242)$	A1		
	3	=-0.7	B1		Correct equation including signs, no cc, can be wrong Φ^{-1}
	μ = 25.5			4	0.7 correct to 3 SF, can be +
_	•		A1	4	Answer 25.5 correct to 3 SF
2	(i)	$900 \div 12 = 75$	B1	1	75 only
		True, first choice is random	B1	1	True stated with reason based on first choice
	(b)	False, chosen by pattern	B1	1	False stated, with any non-invalidating reason
	(iii)	Not equally likely	M1		"Not equally likely", or "Biased" stated
		e.g. $P(1) = 0$, or triangular	A1	2	Non-invalidating reason
3	Let R be	e the number of 1s	B1		B(90, 1/6) stated or implied, e.g. Po(15)
		$R \sim B(90, 1/6)$	B1		Normal, $\mu = 15$ stated or implied
		\approx N(15, 12.5)	B1		12.5 or $\sqrt{12.5}$ or 12.5^2 seen
		13.5 - 15 [= -0.424]	M1		Standardise, np and npq , allow errors in $$ or cc or both
		$\frac{1}{\sqrt{12.5}}$	A1		$\sqrt{\text{and cc both right}}$
		0.6643	A 1	6	Final answer, a.r.t. 0.664. [Po(15): 1/6]
4	(i)	$\overline{w} = 100.8 \div 14 = 7.2$	B1		7.2 seen or implied
	()		M1		Use Σw^2 – their \overline{w}^2
		$\frac{938.70}{14} - \overline{w}^2 = 15.21$			
		× 14/13	M1		Multiply by $n/(n-1)$
		= 16.38	A1	4	Answer, a.r.t. 16.4
	(ii)	$N(7.2, 16.38 \div 70)$	B1		Normal stated
	()	[=N(7.2, 0.234)]	B1√		Mean their \overline{w}
		, , , , , ,	В1√	3	Variance [their (i) $\sqrt{\div 70}$], allow arithmetic slip
5	(i)	$\lambda = 1.2$	B1		Mean 1.2 stated or implied
	(-)	Tables or formula used	M1		Tables or formula [allow \pm 1 term, or "1 –"] correctly used
		0.6626	A1	3	Answer in range [0.662, 0.663]
					[.3012, .6990, .6268 or .8795: B1M1A0]
	(ii)	B(20, 0.6626√)	M1		B(20, p), p from (i), stated or implied
	()	$^{20}C_{13} 0.6626^{13} \times 0.3374^{7}$	M1		Correct formula for their <i>p</i>
		0.183	A1	3	Answer, a.r.t. 0.183
	(iii)	Let <i>S</i> be the number of stars	В1		Po(24) stated or implied
	. ,	$S \sim \text{Po}(24)$	B1		Normal, mean 24
		$\approx N(24, 24)$	B1√		Variance 24 or 24^2 or $\sqrt{24}$, $\sqrt{1}$ if 24 wrong
		$\frac{29.5 - 24}{\sqrt{24}} [= 1.1227]$	M1		Standardise with λ , λ , allow errors in cc or $$ or both
		$-\frac{1}{\sqrt{24}}$	A1		$\sqrt{\lambda}$ and cc both correct
		0.8692	A1	6	Answer, in range [0.868, 0.8694]

6		Γ . 2 7 2	M1	Use total area = 1
U	(i)	$\left[ax + \frac{bx^2}{2}\right]_0^2 = 1$	B1	Correct indefinite integral, or convincing area method
			A1 3	•
		2a + 2b = 1 AG		last line [if $+c$, must see it eliminated]
	(ii)	$\begin{bmatrix} ax^2 & bx^3 \end{bmatrix}^2$ 11	M1	Use $\int x f(x) dx = 11/9$, limits 0, 2
	(11)	$\left[\frac{ax^2}{2} + \frac{bx^3}{3}\right]_0^2 = \frac{11}{9}$	B1	Correct indefinite integral
		2 8b 11	A1	Correct equation obtained, a.e.f.
		$2a + \frac{8b}{3} = \frac{11}{9}$	M1	Obtain one unknown by correct simultaneous method
		Solve simultaneously	A1	<i>a</i> correct, 1/6 or a.r.t 0.167
		$a = \frac{1}{6}, b = \frac{1}{3}$	A1 6	<i>b</i> correct, 1/3 or a.r.t. 0.333
	(iii)	e.g. $P(< 11/9) = 0.453$, or	M1	Use P($x < 11/9$), or integrate to find median m
	` '	=	M1	Substitute into $\int f(x)dx$, $$ on a , b , limits 0 and 11/9 or m
		$ax + \frac{bx^2}{2} \Big _{0}^{m} = 0.5, m = 1.303 \text{ or } \frac{\sqrt{13} - 1}{2}$		[if finding m, need to solve 3-term quadratic]
			A1	Correct numerical answer for probability or <i>m</i>
		Hence median > mean	A1√ 4	Correct conclusion, cwo
				["Negative skew", M2; median > mean, A2]
7	(i)	$H_0: p = 0.35$ [or $p \ge 0.35$]	B1	Each hypothesis correct, B1+B1, allow $p \ge .35$ if .35 used
		$H_1: p < 0.35$	B1	[Wrong or no symbol, B1, but r or x or \overline{x} : B0]
		B(14, 0.35)	M1	Correct distribution stated or implied, can be implied by
	α:	$P(\le 2) = 0.0839 > 0.025$		N(4.9,), but <i>not</i> $Po(4.9)$
	β:	$CR \le 1$, probability 0.0205	A1	0.0839 seen, $or P(\le 1) = 0.0205$ if clearly using CR
		Do not reject H ₀ . Insufficient	B1	Compare binomial tail with 0.025, $or R = 2$ binomial CR
		evidence that proportion that can	M1	Do not reject H_0 , $$ on their probability, <i>not</i> from N or Po
		receive Channel C is less than 35%	A1√ 7	or P($<$ 2); Contextualised conclusion $\sqrt{}$
	(ii)	B(8, 0.35): $P(0) = 0.0319$	M1	Attempt to find $P(0)$ from $B(n, 0.35)$
		B(9, 0.35): $P(0) = 0.0207$	A1	One correct probability $[P(\le 2) = .0236, n = 18: M1A1]$
			A1	Both probabilities correct
		Hence largest value of <i>n</i> is 8	A1 4	
	or	$0.65^n > 0.025$; $n \ln 0.65 > \ln 0.025$	M1M1	$p^n > 0.025$, any relevant p; take ln, or T&I to get 1 SF
		8.56; largest value of $n = 8$	A1A1	In range [8.5, 8.6]; answer 8 or \leq 8 only
8	(i) α :	$\frac{100.7 - 102}{5.6 / \sqrt{80}} = -2.076$	M1	Standardise 100.7 with $\sqrt{80}$ or 80
			Al	a.r.t. -2.08 obtained, must be $-$, <i>not</i> from $\mu = 100.7$
		Compare with –2.576	B1 3	2.576 of 2.56 seen and compare 2, and we com
	or β :	$\Phi(-2.076) = 0.0189$	M1	Standardise 100.7 with $\sqrt{80}$ or 80
		[or $\Phi(2.076) = 0.981$]	A1(2)	a.r.t. 0.019, allow 0.981 only if compared with 0.995
		and compare with 0.005 [or 0.995]	B1 (3)	Compare correct tail with 0.005 or 0.995
	or γ:	$102 - \frac{k \times 5.6}{\sqrt{80}}$	M1	This formula, allow +, 80, wrong SD, any k from Φ^{-1}
		•	B1	1 2 57 6 2 50 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		k = 2.576, compare 100.7	A1 (3)	k = 2.576/2.58, – sign, and compare 100.7 with CV
		100.39	+ - 	
		Do not reject H_0	M1	Reject/Do not reject, $\sqrt{\ }$, needs normal, 80 or $\sqrt{80}$, Φ^{-1} or
		Insufficient evidence that quantity	A 1 2	equivalent, correct comparison, <i>not</i> if clearly $\mu = 100.7$
		of SiO ₂ is less than 102	A1 2	
	(ii) (a)	$\frac{c - 102}{5.6/\sqrt{n}} = -2.326$	M1 B1	One equation for c and n , equated to Φ^{-1} , allow cc, wrong sign, σ^2 ; 2.326 or 2.33
		•	Al 3	
		$102 - c = \frac{13.0256}{\sqrt{n}}$ AG		Correctly obtain given equation, needs in principle to have started from $c - 102$, -2.326
	/1. \	•	M1	Second equation, as before
	(b)	$\frac{c-100}{5.6/\sqrt{n}} = 1.645$ or $c-100 = \frac{9.212}{\sqrt{n}}$	A1 2	-
		o.o. yn		
	(c)	Solve simultaneous equations	M1	Correct method for simultaneous equations, find c or \sqrt{n}
		$\sqrt{n} = 11.12$	A1	\sqrt{n} correct to 3 SF
		$n_{min} = 124$	A1	$n_{min} = 124$ only
		c = 100.83	A1 4	Critical value correct, 100.8 or better

1	(i)	$\hat{\mu} = 4830.0/100 = 48.3$	B1		48.3 seen
•	(1)	$\mu = 4630.07100 = 46.3$ 249509.16/100 – (their \bar{x}^2)	M1		Biased estimate: 162.2016: can get B1M1M0
		· · · · · · · · · · · · · · · · · · ·	M1		Multiply by $n/(n-1)$
		× 100/99	A1	4	Answer, 164 or 163.8 or 163.84
	(;;)	= 163.84			
	(ii)	No, Central Limit theorem applies, so can assume distribution is	B2	2	"No" with statement showing CLT is understood (though CLT does not need to be mentioned)
		normal			[SR: No with reason that is not wrong: B1]
2		B(130, 1/40)	B1		B(130, 1/40) stated or implied
4		$\approx Po(3.25)$	M1		Poisson, or correct N on their B (n, p)
			A1√		Parameter their np , or correct parameter(s) $$
		$e^{-\lambda} \frac{\lambda^4}{4!}$	M1		Correct formula, or interpolation
		= 0.180	A1	5	Answer, 0.18 or a.r.t. 0.180
		- 0.180	711	3	[SR: N(3.25, 3.17) or N(3.25, 3.25): B1M1A1]
3	(i)	Binomial	B1	1	Binomial stated or implied
	(ii)	Each element equally likely	B1		All elements, or selections, equally likely stated
	(11)	Choices independent	B1	2	Choices independent [not just "independent"]
		choices macpenaent	D1	-	[can get B2 even if (i) is wrong]
4	(i)	Two of: Distribution symmetric	B1		One property
_	(-)	No substantial truncation	B1	2	Another definitely different property
		Unimodal/Increasingly		_	Don't give both marks for just these two
		unlikely further from μ, etc			"Bell-shaped": B1 only unless "no truncation"
	(ii)	Variance $8^2/20$	M1		Standardise, allow cc, don't need n
	(11)	$z = \frac{47.0 - 50.0}{\sqrt{1 - 10.0}} = -1.677$	A1		Denominator (8 or 8^2 or $\sqrt{8}$) ÷ (20 or $\sqrt{20}$ or 20^2)
		$z = \frac{1}{\sqrt{8^2/20}} = -1.677$	A1		z-value, a.r.t. –1.68 or +1.68
		•	A1	4	Answer, a.r.t. 0.953
	(')	$\Phi(1.677) = 0.9532$	D.1		
5	<u>(i)</u>	$H_1: \lambda > 2.5 \text{ or } 15$	B1	11	$\lambda > 2.5$ or 15, allow μ , don't need "H ₁ "
	(ii)	Use parameter 15	M1		$\lambda = 15$ used [N(15, 15) gets this mark only]
		P(> 23)	M1		Find P(> 23 or \ge 23), final answer < 0.5
		1 - 0.9805 = 0.0195 or $1.95%$	A1	3	eg 0.0327 or 0.0122
		1 – 0.3803 – 0.0133 01 1.33%	AI	3	Answer, 1.95% or 2% or 0.0195 or 0.02
	(:::)	D(<0212 17) 0.0267	N 1		[SR: 2-tailed, 3.9% gets 3/3 here]
	(iii)	$P(\le 23 \mid \lambda = 17) = 0.9367$	M1		One of these, or their complement: .9367, .8989,
		$P(\le 23 \mid \lambda = 18) = 0.8989$	A1		0.9047, 0.8551, .9317, .8933, .9907, .9805
		Parameter = 17	AI		Parameter 17 [17.1076], needs $P(\le 23)$, cwo
		17/6 2.92	M1	3	[SR: if insufficient evidence can give B1 for 17] Their parameter ÷ 6 [2.85]
		$\lambda = 17/6 \text{ or } 2.83$	1111	3	
6	(i)	H_0 : $p = 0.19$, H_1 : $p < 0.19$	B2		[SR: Solve $(23.5 - \lambda)/\sqrt{\lambda} = 1.282 \text{ M1}$; 18.05 A0] Correct, B2. One error, B1, but <i>x</i> or \bar{x} or <i>r</i> : B0
U	(i)	where p is population proportion	M1		Binomial probabilities, allow 1 term only
		$0.81^{20} + 20 \times 0.81^{19} \times 0.19$	A1		Correct expression [0.0148 + 0.0693]
		$0.81 + 20 \times 0.81 \times 0.19$ = 0.0841	A1		Probability, a.r.t. 0.084
		Compare 0.1	B1		Explicit comparison of "like with like"
	or	Add binomial probs until ans > 0.1	A1	-	$[P(\leq 2) = 0.239]$
	O1	Critical region ≤ 1	B1		$\begin{bmatrix} 1 & 2j - 0.23j \end{bmatrix}$
		Reject H_0	M1		Correct deduction and method [needs P(≤ 1)]
		Significant evidence that proportion	A1√	8	Correct conclusion in context
		of e's in language is less than 0.19	V1 A	o	[SR: N(3.8, 3.078): B2M1A0B1M0]
	(ii)	Letters not independent	B1	1	Correct modelling assumption, stated in context
	(11)	Letters not independent	וע	1	Allow "random", "depends on message", etc
			<u> </u>		Throw random, depends on message, etc

7	(i)	9	B1		Horizontal straight line
,	(1)		B1		Positive parabola, symmetric about 0
			B1	3	Completely correct, including correct relationship
			DI	3	between two
					Don't need vertical lines or horizontal lines outside
					range, but don't give last B1 if horizontal line
					continues past "±1"
					continues past ±1
	(ii)	S is equally likely to take any value	B2	2	Correct statement about distributions (<i>not</i> graphs)
		in range, T is more likely at			[Partial statement, or correct description
		extremities			for one only: B1]
	(iii)	$[r^3]^1$	M1		Integrate $f(x)$ with limits $(-1, t)$ or $(t, 1)$
		$\int_{t}^{1} \frac{3}{2} x^{2} dx = \left[\frac{x^{3}}{2} \right]_{t}^{1}$			[recoverable if t used later]
		2 3,	B1		Correct indefinite integral
		$\frac{1}{2}(1-t^3) = 0.2 \text{ or } \frac{1}{2}(t^3+1) = 0.8$	M1		Equate to 0.2, or 0.8 if $[-1, t]$ used
		$t^3 = 0.6$	M1		Solve cubic equation to find <i>t</i>
		t = 0.8434	A1	5	Answer, in range [0.843, 0.844]
8	(i)	64.2 - 63 = 1.644	M1dep		Standardise 64.2 with \sqrt{n}
		$\sqrt{12.25/23}$	A1		z = 1.644 or 1.645, must be +
		P(z > 1.644)	dep M1		Find $\Phi(z)$, answer < 0.5
		= 0.05	A1	4	Answer, a.r.t. 0.05 or 5.0%
	(ii)	(a) $63 + 1.645 \times \frac{3.5}{\sqrt{50}}$	M1		$63 + 3.5 \times k / \sqrt{50}$, k from Φ^{-1} , not –
		$03 + 1.043 \wedge \frac{1}{\sqrt{50}}$	B1		<i>k</i> = 1.645 (allow 1.64, 1.65)
		≥ 63.81	A1	3	Answer, a.r.t. 63.8, allow $>$, \geq , =, c.w.o.
		(b) $P(< 63.8 \mid \mu = 65)$	M1		Use of correct meaning of Type II
		63.8-652 3956	M1		Standardise their c with $\sqrt{50}$
		$\frac{63.8 - 65}{3.5 / \sqrt{50}} = -2.3956$	A1		$z = (\pm) 2.40 $ [or -2.424 or -2.404 etc]
		0.0083	A1	4	Answer, a.r.t. 0.008 [eg, 0.00767]
	(iii)	B better: Type II error smaller	В2√	2	This answer: B2. "B because sample bigger": B1.
		(and same Type I error)			[SR: Partial answer: B1]
9	(a)	np > 5 and $nq > 5$	M2		Use either $nq > 5$ or $npq > 5$
		0.75n > 5 is relevant			[SR: If M0, use $np > 5$, or " $n = 20$ " seen: M1]
		n > 20	A1	3	Final answer $n > 20$ or $n \ge 20$ only
	(b)	(i) $70.5 - \mu = 1.75\sigma$	M1		Standardise once, and equate to Φ^{-1} , $\pm cc$
		$\mu - 46.5 = 2.25\sigma$	A1		Standardise twice, signs correct, cc correct
			B1		Both 1.75 and 2.25
		Solve simultaneously	M1		Correct solution method to get one variable
		$\mu = 60$	A1√		μ , a.r.t. 60.0 or \pm 154.5
		$\sigma = 6$	A1√	6	σ, a.r.t. 6.00 [Wrong cc (below): A1 both]
			<u> </u>		[SR: σ²: M1A0B1M1A1A0]
		(ii) $np = 60, npq = 36$	M1dep		$np = 60$ and $npq = 6^2$ or 6
		q = 36/60 = 0.6	depM1		Solve to get q or p or n
		p = 0.4	A1√		$p = 0.4 \sqrt{\text{on wrong cc or } z}$
		n = 150	A1√	4	$n = 150 \sqrt{\text{on wrong cc or } z}$

		σ	μ	q	$p(\pm 0.01)$	n
70.5	46.5	6	60	0.6	0.4	150
			60.062			
71	46	6.25	5	0.6504	0.3496	171.8
			60.562			
71.5	46.5	6.25	5	0.6450	0.3550	170.6
			59.562			
70.5	45.5	6.25	5	0.6558	0.3442	173.0
71.5	45.5	6.5	60.125	0.7027	0.2973	202.2
70	46	6	59.5	0.6050	0.3950	150.6

1		90 ,,	M1		$C_{\ell} = 1 - 1$ 2
1		$\frac{80-\mu}{\sigma} = \Phi^{-1}(0.95) = 1.645$	M1		Standardise once with Φ^{-1} , allow σ^2 , cc
		I	B1		Both 1.645 (1.64, 1.65) and [0.674, 0.675], ignore signs
		$\frac{\mu - 50}{\sigma} = \Phi^{-1}(0.75) = 0.674(5)$	A1		Both equations correct apart from wrong z, not 1–1.645
			M1		Solve two standardised equations
		Solve simultaneously	A1 A1	4	μ , a.r.t 58.7
		$\mu = 58.7$, $\sigma = 12.9$		6	σ , a.r.t. 12.9 [not σ^2] [σ^2 : M1B1A0M1A1A0]
2	(i)	Let <i>R</i> denote the number of choices	M1		$B(12, \frac{5}{6})$ stated or implied, allow 501/600 etc
		which are 500 or less.	M1		p^{12} or q^{12} or equivalent
		$R \sim B(12, \frac{5}{6})$	A1	3	Answer, a.r.t. 0.112
		$P(R = 12) = (\frac{5}{6})^{12}$ [=0.11216]			[SR: $\frac{500}{600} \times \frac{499}{599} \times \frac{498}{598} \times \dots$; 0.110: M1A1]
		= 0.112			[M1 for 0.910 or 0.1321 or vague number of terms]
	(ii)	Method unbiased; unrepresentative by	B1		State that method is unbiased
		chance	B1	2	Appropriate comment (e.g. "not unlikely")
					[SR: partial answer, e.g. not <u>necessarily</u> biased: B1]
3	(i)	$P(\le 1) = 0.0611$	B1		0.0611 seen
		$P(\ge 9) = 1 - P(\le 8) = 1 - 0.9597$	M1		Find $P(\ge 9)$, allow 8 or 10 [0.0866, 0.0171]
		=0.0403	A1		0.0403 correct
		0.0611 + 0.0403 = 0.1014	M1	_	Add probabilities of tails, $or 1 tail \times 2$
		= 10.1 %	A1	5	Answer [10.1, 10.2]% or probability
	(ii)	$P(2 \le G \le 8)$	M1		Attempt at $P(2 \le G \le 8)$, not isw, allow $1 \le G \le 9$ etc
		= 0.8944 - 0.0266 [= 0.8678]	M1	_	$Po(5.5)$ tables, $P(\le top\ end) - P(\le bottom\ end)$
		= 0.868	A1	3	Answer, a.r.t. 0.868, allow %
4	(i)	$\hat{\mu} = \bar{y} = \frac{3296.0}{40} = 82.4$	B1		Mean 82.4, c.a.o.
		10	M1		Use correct formula for biased estimate
		$\frac{286800 \cdot 4}{40} - 82 \cdot 4^2 = 380.25$	M1		Multiply by $n/(n-1)$
		40	A 1	4	[SR: all in one, M2 or M0]
		$S^2 \times \frac{40}{39}$; = 390	A1	4	Variance 390, c.a.o.
	(ii)	$\Phi\left(\frac{60-82.4}{\sqrt{390}}\right) = \Phi(-1.134)$	M1		Standardise, allow 390, cc or biased estimate, +/-,
		(\\$250)	A 1	•	do not allow \sqrt{n}
		= 1 - 0.8716 = 0.128	A1	2	Answer in range [0.128, 0.129]
	(iii)	No, distribution irrelevant	B1	1	"No" stated or implied, any valid comment
5	(i)	H_0 : $\mu = 500$ where μ denotes	B2		Both hypotheses stated correctly
		H_1 : μ < 500 the population mean			[SR: 1 error, B1, but \bar{x} etc: B0]
		α : $z = \frac{435 - 500}{100 / \sqrt{4}} = -1.3$	M1		Standardise, use $\sqrt{4}$, can be +
		$100 / \sqrt{4}$	A1		$z = -1.3$ (allow -1.29 from cc) or $\Phi(z) = 0.0968$ (.0985)
		Compare –1.282	B1		Compare $z \& -1.282 \ or \ p \ (< 0.5) \& 0.1 \ or \ equivalent$
		$β$: 500 – 1.282×100/ $\sqrt{4}$	M1		$500 - z \times 100/\sqrt{4}$, allow $\sqrt{\text{errors}}$, any Φ^{-1} , must be –
		= 435.9; compare 435	A1√;B1	l	CV correct, $$ on their z ; 1.282 correct and compare
		Reject H ₀	M1√		Correct deduction, needs $\sqrt{4}$, $\mu = 500$, like-with-like
		Significant evidence that number of	A1√	7	Correct conclusion interpreted in context
		visitors has decreased	<u> </u>		
	(ii)	CLT doesn't apply as n is small	M1		Correct reason ["n is small" is sufficient]
		So need to know distribution	B1	2	Refer to distribution, e.g. "if not normal, can't do it"

	(')	1 0.0153	3.41		D (2) + 11
6	(i)	(a) $1 - 0.8153$	M1	•	Po(3) tables, "1 –" used, e.g. 0.3528 or 0.0839
		= 0.1847	A1	2	Answer 0.1847 or 0.185
		(b) 0.8153 – 0.6472	M1	•	Subtract 2 tabular values, or formula [e ⁻³ 3 ⁴ /4!]
		= 0.168	A1	2	Answer, a.r.t. 0.168
	(ii)	N(150, 150)	B1		Normal, mean 3×50 stated or implied
		$1-\Phi\left(\frac{165.5-150}{\sqrt{150}}\right)$	B1		Variance or SD = 3×50 , or same as μ
		$\left \frac{1-\Phi}{\sqrt{150}} \right $	M1		Standardise 165 with λ , $\sqrt{\lambda}$ or λ , any or no cc
		$= 1 - \Phi(1.266) = 0.103$	A1	_	$\sqrt{\lambda}$ and 165.5
			A1	5	Answer in range [0.102, 0.103]
	(iii)	(a) The sale of one house does not	B1		Relevant answer that shows evidence of correct
		affect the sale of any others			understanding [but <i>not</i> just examples]
		(b) The average number of houses	B1	2	Different reason, in context
		sold in a given time interval is			[Allow "constant rate" or "uniform" but not "number
		constant			constant", "random", "singly", "events".]
7	(i)	$\left \int_{\mathbb{R}^2} \left[\int_{\mathbb{R}^2} \left \int_{\mathbb{R}^2} $			Use $\int_{0}^{2} kx dx = 1$, or area of triangle
		$\int_0^2 kx dx = \left[\frac{kx^2}{2}\right]_0^2 = 2k$	M1		Ose $\int_0^{\kappa} kx dx = 1$, or area or triangle
			A1	2	Correctly obtain $k = \frac{1}{2}$ AG
		$= 1 \text{ so } k = \frac{1}{2}$, , , , , , , , , , , , , , , , , , , ,
	(ii)	У ∧			
			B1		Straight line, positive gradient, through origin
			B1	2	Correct, some evidence of truncation, no need for vertical
		\longrightarrow χ			
		0 2			
	(iii)	$\int_{0}^{2} \frac{1}{2} x^{2} dx = \left[\frac{1}{6} x^{3} \right]_{0}^{2} = \frac{4}{3}$	M1		Use $\int_{0}^{2} kx^{2} dx$; $\frac{4}{3}$ seen or implied
			A1		$\int_0^{\infty} kx dx$, 3 seem of implied
		$\int_{0}^{2} \frac{1}{2} x^{3} dx = \left[\frac{1}{8} x^{4}\right]_{0}^{2} [= 2]$	M1		Use $\int_0^2 kx^3 dx$; subtract their mean ²
		0	M1		$\int_0^{R} kx dx$, subtract then mean
		$2 - \left(\frac{4}{3}\right)^2 = \frac{2}{9}$	A1	5	Answer $\frac{2}{9}$ or a.r.t. 0.222, c.a.o.
		\37 9			1
	(iv)	$\bigwedge^{\mathcal{Y}}$	M1		Translate horizontally, allow stated, or "1, 2" on axis
			A1√	2	One unit to right, 1 and 3 indicated, nothing wrong seen,
					no need for vertical or emphasised zero bits
		$\xrightarrow{1}$ $\xrightarrow{2}$ x			[If in doubt as to \rightarrow or \downarrow , M0 in this part]
	(-)	1 3			Don't constant 1
	(v)	$\frac{7}{3}$	B1√	_	Previous mean + 1
		$\frac{2}{9}$	B1√	2	Previous variance
		9			[If in doubt as to \rightarrow or \downarrow , B1B1 in this part]

8	(i)	$H_0: p = 0.65 \text{ OR } p \ge 0.65$	B2		Both hypotheses correctly stated, in this form
		H_1 : $p < 0.65$			[One error (but not r , x or \bar{x}): B1]
		B(12, 0.65)	M1		B(12, 0.65) stated or implied
		α : $P(\le 6) = 0.2127$	A1		Correct probability from tables, <i>not</i> $P(=6)$
		Compare 0.10	B1		Explicit comparison with 0.10
		$β$: Critical region ≤ 5 ; $6 > 5$	B1		Critical region ≤ 5 or ≤ 6 or $\{\leq 4\} \cap \{\geq 11\}$ & compare 6
		Probability 0.0846	A1		Correct probability
		Do not reject H ₀	M1√		Correct comparison and conclusion, needs correct
		Insufficient evidence that proportion			distribution, correct tail, like-with-like
		of population in favour is not at least	A1√		Interpret in context, e.g. "consistent with claim"
		65%		7	[SR: N(7.8, 2.73): can get B2M1A0B1M0: 4 ex 7]
	(ii)	Insufficient evidence to reject claim;	B1		Same conclusion as for part (i), don't need context
		test and p/q symmetric	B1	2	Valid relevant reason, e.g. "same as (i)"
	(iii)	$R \sim B(2n, 0.65), P(R \le n) > 0.15$	M1		B(2 <i>n</i> , 0.65), P($R \le n$) > 0.15 stated or implied
		B(18, 0.65), p = 0.1391	A1		Any probability in list below seen
			A1		p = 0.1391 picked out (i.e., not just in a list of > 2)
		Therefore $n = 9$	A1	4	Final answer $n = 9$ only
					[SR < n: M1A0, n = 4, 0.1061 A1A0]
					[SR 2-tail: M1A1A0A1 for 15 or 14]
					[SR: 9 only, no working: M1A1]
					[MR B(12, 0.35): M1A0, $n = 4$, 0.1061 A1A0]
					3 0.3529 7 0.1836 12 0.0942
					4 0.2936 8 0.1594 13 0.0832
					5 0.2485 9 0.1391 14 0.0736
					6 0.2127 10 0.1218 15 0.0652

General: Conclusions to hypothesis tests must acknowledge uncertainty. Thus "time is unchanged" is A0. Similarly, "Significant evidence that time is unchanged" is also A0.

		Significant evidence that time is unchanged'		4 0.	
1	(i)	Biased in favour of those with strong	B2	2	"Biased", "unrepresentative", "not indept" or equiv
		political interest			[but <i>not</i> "not random"] stated, with sensible reason.
					[SR: partial answer, B1]
	(ii)	Obtain list of all pupils	B1		List, can be implied; number serially or randomly,
		Allocate numbers sequentially	B1		not just "number pupils"
		Choose using random numbers	B1	3	Select consistently with method of numbering,
					not just "select randomly"
					[SR: systematic: List B1, every n^{th} B1, random start B1]
_	(0)		3.74		[SR: names in a hat: B2]
2	(i)	$\Phi\left(\frac{24-30}{12}\right) - \Phi\left(\frac{20-30}{12}\right)$	M1		Standardise one, allow $\sqrt{12}$, 12^2 , \sqrt{n}
		$\begin{pmatrix} 12 \end{pmatrix} \begin{pmatrix} 12 \end{pmatrix}$	A1		Both standardisations correct, allow cc here
		$=\Phi(-0.5)-\Phi(-0.833)$	M1		Correct handling of tails $[0.3085 - 0.2024]$
		= (1 - 0.6915) - (1 - 0.7976) = 0.1061	A1	4	Answer, a.r.t. 0.106, c.a.o.
	(ii)	Not symmetrical (skewed)	M1		Any comment implying not symmetric
		Therefore inappropriate	A1	2	Conclude "not good model" [Partial answer: B1]
3		$H_0: \mu = 28$	B2		Both hypotheses correctly stated; one error, allow
		$H_1: \mu \neq 28$			wrong or no letter, but not x or t or \bar{x} , B1
		$\sigma^2 = 37.05 \times 40/39 \qquad [= 38]$	M1		Multiply 37.05 or $\sqrt{37.05}$ by $n/(n-1)$ or $\sqrt{[n/(n-1)]}$
		$z = \frac{26.44 - 28}{\sqrt{38/40}} = -1.601$	M1		Standardise with \sqrt{n} , allow $\sqrt{\text{errors}}$, cc, +
	α	$z = \frac{1.001}{\sqrt{38/40}} = -1.001$	A 1		Correct z, a.r.t -1.60 , or $p \in [0.0547, 0.0548]$
		Compare –1.645, or 0.0547 with 0.05	B1		Explicit comparison of z with -1.645 or p with 0.05
	β	Critical value $28 - z\sigma/\sqrt{n}$ [= 26.397]	M1		Allow "±", √ errors, cc, ignore other tail
	•	z = 1.645	B1		z = 1.645 in CV expression, and compare 26.44
		Compare 26.44 with 26.40	A1√		CV, $$ on their z, rounding to 3 SF correct
		Do not reject H ₀ [can be implied]	M1		Needs \sqrt{n} , correct method & comparison, <i>not</i> $\mu = 26.44$
		Insufficient evidence that time taken has	A1√	8	Conclusion interpreted in context, $\sqrt{\text{ on } z}$,
		changed.			-
4	(i)	53-50 < 2.326	M1		Standardise with 10 or $\sqrt{10}$ and Φ^{-1}
		$\frac{53-50}{\sigma/\sqrt{10}} < 2.326$	A 1		Both sides same sign, $\sqrt{10}$, don't worry about <
		4.00	B1		2.326 or 2.33 seen
		$\sigma > 4.08$ AG	A1	4	Convincingly obtain $\sigma > 4.08$ to 3 SF, one other step
		[Allow≥]			[SR: Substitution: standardise & substitute 4.08 M1;
					0.0101 A1; 4.07 or 4.075 tried, M1; full justification A1]
	(ii)	P(Type I) = 0.01 used, e.g. Geo(0.01)	M1		Not enough merely to state $p = 0.01$
		$0.99^4 \times 0.01$	M1	•	$p^4 \times q$
	/ 0`	= 0.0096	A1	3	Answer, a.r.t. 0.0096
5	(i)	$\int_{-1}^{1} \frac{3}{4} (x^2 - x^4) dx = \frac{3}{4} \left[\frac{x^3}{3} - \frac{x^5}{5} \right]_{-1}^{1} [= 1/5]$	M1		Attempt $\int_{-1}^{1} x^2 f(x) dx$
		$J_{-1}^{4} = \frac{1}{3} = \frac{1}{5}$	A 1		- 1
		$1/5 - 0^2$	A1		Correct indefinite integral
		= 1/5	B1 A1	4	Mean 0 clearly indicated
	(ii)	' ₁	A1		Answer 1/5 or a.r.t. 0.200, don't need $\mu = 0$
	(11)		B1		Correct graph, don't need $f(x)$ as well. Don't allow if
			וע		graph goes further below axis than "pips".
		(a) -			Don't worry too much about exact shape
1		(b) Areas equal, more spread out,	M1		Mention areas or total probability
		so g _{max} lower	A1		Convincing argument, not just "flatter"
		(c) W greater	B1dep		W greater
		as more spread out	depB1	5	with convincing reason
			•		Č

6	(0)	D ₀ (2.275)	M1		Do(10/9) stated or implied
0	(a)	Po(2.375)	M1		Po(19/8) stated or implied One correct Poisson formula, <i>not</i> tables
		$e^{-2.375} \left(\frac{2.375^3}{3!} + \frac{2.375^4}{4!} \right) = [0.2079 + 0.1233]$			
		,	A1 A1	4	Complete correct expression, including addition
		= 0.3310	AI	4	Answer, a.r.t. 0.331
	(b)	(i) $n \text{ large OR} n > 50$	B1		[SR: Po(2) or Po(2.4) and tables, M1]
	(0)	$p \text{ small OR} \qquad np < 5$	B1	2	Or equivalent [Allow ≤ and ≥ throughout]
		p small $OR \qquad np < 3$	Di	4	Or equivalent, e.g. $np \approx npq$, or $p < 0.1$
			M1		[Treat " $np < 5$, $npq < 5$ " as single wrong statement] Correct binomial distribution stated or implied
		(ii) $B(108, \frac{1}{36})$	M1		
		$\approx Po(3)$	A1		Po(np), $$ on their n , p
		$1 - P(\le 3) = 1 - 0.6472$	M1		Po(3)
		= 0.3528	A1	5	Use Po tables, "1 –", or correct formula, ± 1 term,
7	(i)	Dramad actabas must acque	B1	3	e.g. 0.1847; a.r.t. 0.353, allow from exact Binomial
'	(i)	Dropped catches must occur independently of one another and at	B1	2	"independently", in context, allow "random" "Constant average rate", in context
		constant average rate	DI	4	["Singly" doesn't gain B1]
	(ii)	Use: "Reject H ₀ when correct"	M1		
	(11)	Po(10)	M1		Find $P(\ge r)$ where $r > \lambda$, e.g. $P(\ge 6)$ from $Po(2)$ Po(10) stated or implied [can be recovered in (iii)]
Ħ		$P(\ge 16) = 1 - P(\le 15) = 1 - 0.9513$	M1		Seek biggest prob < 0.05, e.g. 0.0835 or 0.0166,
j. bs		$\Gamma(\geq 10) - \Gamma - \Gamma(\leq 13) - \Gamma - 0.9313$	1411		allow 0.0293 but no other LH tail
heı		Probability 0.0487	A1		Answer in range [0.0487, 0.0488], cwd, cwo
eit	(iii)	$H_0: \lambda = 10 \text{ or } 2 \text{ [or } \mu$]	B2		Hypotheses fully correct, allow λ or μ
l in	(111)	$H_1: \lambda > 10 \text{ or } 2 \text{ [or } \mu$] $H_1: \lambda > 10 \text{ or } 2 \text{ [or } \mu$]	D2		[SR: one error, B1, but r or R or x or \overline{x} : B0]
dec		α : $P(\ge 14) = 1 - 0.8645 = 0.1355$	A1		$p \in [0.135, 0.136]$ from Po(10)
var		$6.$ $F(\ge 14) = 1 - 0.8043 = 0.1333$ > 0.05	B1		$p \in [0.133, 0.136]$ from Po(10) Compare explicitly with 0.05 or 0.0487
e av		$β$: Critical region $r \ge 16$, $p = 0.0487$	A1√		$\sqrt{\text{on answer from (ii)}}$
ιpe		Compare $r = 14$	B1√		v on answer from (ii)
Marks can be awarded in either part		Do not reject H_0 [can be implied]	M1		Method correct, $\sqrt{\text{ on } p}$, must be upper tail and " \geq "
rks		Insufficient evidence of an increase in	A1√	10	Conclusion interpreted in context
Ma		the number of dropped catches	711 (10	[SR: $P(\le 14) = 0.9165 < 0.95$: (B2 M1) A0 B1 M0A0;
		and manneer of dropped entenes			same for $P(> 14)$ or $P(= 14)$]
					[SR: N(10,10): (ii) 0.05 M0. (iii) (B2) M1 A0 B1 M0A0]
8	(i)	$H_0: p = 0.4$ or $\mu = 4.8$	B2		Both fully correct, B2.
		$H_1: p > 0.4$ or $\mu > 4.8$			[SR: one error, B1, but x or R or r or \bar{x} : B0]
		B(12, 0.4)	M1		B(12, 0.4) stated or implied, e.g. 0.9972 or 0.9847
		$P(\ge 9) = 1 - 0.9847 = 0.0153$	A1		Or: CR is ≥ 9 and $p \in [0.015, 0.0153]$
		< 0.05	В1√		Explicitly compare with 0.05, or 9 with ≥ 9 , $$ on $<$
		Reject H_0 [can be implied]	M1		Reject H_0 , $$ on probability, must be " \geq "
		Significant evidence of increase in	A1√	7	Conclusion interpreted in context
		proportion of audience members who	,	•	[SR: $P(\le 9)$ or $P(= 9)$ or $P(> 9)$: (B2 M1) A0 B1 M0A0]
		know sponsor's name			[SR: N(4.8, 2.88): (B2) M1 A0 B0 M0A0]
	(ii)	N(160, 96)	B1		Normal, mean 160
			B1		Variance (or SD) 96 [96/400: B2M0]
		$\frac{(x-0.5)-160}{\sqrt{96}} = 1.645$	M1		Standardise unknown with np and \sqrt{npq} or npq , &
		$\sqrt{96}$	A1		equate to Φ^{-1} ; $\sqrt{96}$ and signs correct, ignore cc
			B1		RHS = 1.645
		Solve to find $x = 176.6$	M1		Solve [implied by 177 or 176.6 or 176.1]
		Minimum value is 177	A1	7	177 only, from 176.6, CWO [cc error: 6 ex 7]

1		$U \sim B(800, 0.005) \approx Po(4)$	B1		Po(np) stated or implied
		$P(U \le 6)$	M1		Tables or formula ± 1 term, e.g. 0.7851, 0 .9489, 0.1107, not 1–
		= 0.8893	A1		Answer 0.889 or a.r.t. 0.8893
		n > 50/large, np < 5/p small	B1	4	Both conditions
2		$\frac{23.625 - 23}{\sqrt{2}} = 2$	M1		Standardise with \sqrt{n} , allow $\sqrt{2}$ errors
		$\frac{1}{5/\sqrt{n}} = 2$	A1		Equate to 2 or a.r.t. 2.00, signs correct
		$\sqrt{n} = 16$	M1		Solve for \sqrt{n} , needs Φ^{-1} , <i>not</i> from $/n$
		n = 256	A1	4	256 only, allow from wrong signs
3	(;)	0.16	M1		Correct formula for $R = 0$ or 1
3	(i)		A1		P(0), a.r.t. 0.657
		$\begin{array}{ccc} & = 0.657 \\ \text{(b)} & 0.42 \ e^{-0.42} & = 0.276 \end{array}$		2	
	····		A1	3	P(1), a.r.t. 0.276
	(ii)	Po(2.1):	M1		Po(2.1) stated or implied
		$1 - P(\le 3) = 1 - 0.8386$	M1	•	Tables or formula, e.g. 0.8386 or 0.6496 or 0.9379 or
		= 0.1614	A1	3	complement; Answer, in range [0.161, 0.162]
	(iii)		B2	2	At least 3 separate bars, all decreasing
					Allow histogram. Allow convex
					P(0) < P(1) but otherwise OK: B1
					Curve: B1
					[no hint of normal allowed]
	(*)	II 0.14	DO		D.d
4	(i)	$H_0: p = 0.14$	B2		Both correct. 1 error, B1, but x or r or \bar{x} etc: 0
		$H_1: p < 0.14$	3.61		D(20,014) I I I I I N(2,00,0,400) D(2,00)
		B(22, 0.14)	M1		B(22, 0.14) stated or implied, e.g. N(3.08, 2.6488) or Po(3.08)
		$P(\le 2) = .86^{22} + (22 \times .86^{21} \times .14) +$	A1		Correct formula for 2 or 3 terms, $or P(\le 0) = 0.036$ and CR
		$(231 \times .86^{20} \times .14^2) = 0.3877$	A1		Correct answer, a.r.t. 0.388 , or CR is = 0
		> 0.1	B1		Explicitly compare 0.1 or CR with 2, OK from Po but <i>not</i> from N
		Do not reject H_0 . Insufficient	M1		Correct comparison type and conclusion, needs binomial, at least
		evidence that company			2 terms, <i>not</i> from $P(< 2)$
		overestimates viewing proportion	A1	8	Contextualised, some acknowledgement of uncertainty
					[SR: Normal: B2 M1 A0 B0 M0]
			ļ		[SR: 2-tailed, or $p > 0.14$, $P(\ge 2)$: B1M1A2B0M1A1]
	(ii)	Selected independently	B1		Independent selection
		Each adult equally likely to be	B1	2	Choice of sample elements equally likely (no credit if not
		chosen			focussed on selection)
					[Only "All samples of size <i>n</i> equally likely": B1 only unless
					related to Binomial conditions]
5	(i)	\ [/	B1		Horizontal straight line
		\ /	B1		Symmetrical U-shaped curve
		\ /	B1	3	Both correct, including relationship between the two and not
		\ 			extending beyond $[-2, 2]$, curve through $(0,0)$
	(ii)	S is equally likely to take any	B2	2	Correct statement about both distributions, $$ on their graph
		value			[Correct for one only, or partial description: B1]
		T is more likely at extremities	ļ		Not "probability of S is constant", etc.
	(iii)	$\begin{bmatrix} x^7 \end{bmatrix}^2 \begin{bmatrix} 20 \end{bmatrix}$	M1		Integrate $x^2g(x)$, limits -2 , 2
		$\frac{5}{64} \int_{-2}^{2} x^{6} dx = \frac{5}{64} \left[\frac{x^{7}}{7} \right]_{2}^{2} = \frac{20}{7}$	A1		Correct indefinite integral $[=5x^7/448]$
		L 3-2 -	B1		0 or 0^2 subtracted or $E(X) = 0$ seen, $not \int x^2 f(x) dx - \int x f(x) dx$
		-0^{2}			Answer $\frac{20}{7}$ or $2\frac{6}{7}$ or a.r.t. 2.86, don't need 0
		$=\frac{20}{7}$	A1	4	$\frac{1}{7}$
		7			

			1		
6	(i)	20.25	M1		$50.0 \pm z\sqrt{(1.96/81)}$, allow one sign only, allow $$ errors
		$50.0 \pm 1.96 \sqrt{\frac{20.25}{81}} = 50.0 \pm 0.98$	B1		z = 1.96 in equation (<i>not</i> just stated)
		= 49.02, 50.98	4141		Both critical values, min 4 SF at some stage (if both 3SF, A1)
			A1A1		CR, allow \leq / \geq , don't need \overline{W} , $$ on their CVs, can't recover
		\overline{W} < 49.02 and \overline{W} > 50.98	A1√	5	
					[Ans 50 ± 0.98 : A1 only]
					[SR: 1 tail, M1B0A0; 50.8225 or 49. 1775: A1]
	(ii)	$\frac{50.98 - 50.2}{0.5} = 1.56$	M1		Standardise one limit with same SD as in (i)
		0.5	A1		A.r.t. 1.56, allow – Can allow $\sqrt{\text{here}}$
			A1		A.r.t. –2.36, allow + if very unfair
		$\frac{49.02 - 50.2}{0.5} = -2.36$	M1		Correct handling of tails for Type II error
			A1	5	Answer in range [0.931, 0.932]
		$\Phi(1.56) - \Phi(-2.36) = $ 0.9315		•	[SR 1-tail M1; –1.245 or 2.045 A1; 0.893 or 0.9795 A1]
	(:::)	Tt	B1	1	
	(iii)	It would get smaller	ы	1	No reason needed, but withhold if definitely wrong reason seen.
<u> </u>					Allow from 1-tail
7	(i)	$\hat{\mu} = \bar{t} = 13.7$	B1		13.7 stated
		12657.28	M1		Correct formula for biased estimate
		$\frac{12657.28}{64} - 13.7^2$ [= 10.08]; $\times \frac{64}{63}$	M1		$\times \frac{64}{63}$ used, or equivalent, can come in later
		= 10.24			Variance or SD 10.24 or 10.2
			A1		
		$H_0: \mu = 13.1, H_1: \mu > 13.1$	B2		Both correct.
		$\frac{13.7 - 13.1}{10.000000000000000000000000000000000$			[SR: One error, B1, but x or t or \bar{x} or \bar{t} , 0]
		$\frac{13.7 - 13.1}{\sqrt{10.24/64}} = 1.5 \text{ or } p = 0.0668$	M1		Standardise, or find CV, with √64 or 64
			A1		$z = \text{a.r.t. } 1.50, \text{ or } p = 0.0668, \text{ or CV } 13.758 [\sqrt{\text{ on } z}]$
		1.5 < 1.645 or 0.0668 > 0.05	B1		Compare $z \& 1.645$, or $p \& 0.05$ (must be correct tail),
					or $z = 1.645 \& 13$ with CV
		Do not reject H ₀ . Insufficient	M1		Correct comparison & conclusion, needs 64, not $\mu = 13.7$
		evidence that time taken on	A1	11	Contextualised, some acknowledgement of uncertainty
		average is greater than 13.1 min			[13.1 – 13.7: (6), M1 A0 B1 M0]
	(ii)	Yes, not told that dist is normal	B1	1	Equivalent statement, <i>not</i> " <i>n</i> is large", don't need "yes"
8	(i)	N(14.7, 4.41)	M1		Normal, attempt at <i>np</i>
0	(1)	Valid because	A1		• •
					Both parameters correct
		np = 14.7 > 5; nq = 6.3 > 5	B1		Check $np > 5$; If both asserted but not both
		$\left(15.5-14.7\right) = 1 - \Phi(0.381)$	B1		nq or npq > 5 14.7 and 6.3 seen: B1 only
		$1 - \Phi\left(\frac{15.5 - 14.7}{\sqrt{4.41}}\right) = 1 - \Phi(0.381)$			[Allow " n large, p close to $\frac{1}{2}$ "]
		= 1 - 0.6484	M1		Standardise, answer < 0.5 , no \sqrt{n}
		= 0.3516	A1		z, a.r.t. 0.381
		= 0.3510	A1	7	Answer in range [0.351, 0.352] [Exact: M0]
	(ii)	$\bar{K} \sim N(14.7, 4.41/36)$	M1		Normal, their <i>np</i> from (i)
	(/	$[= N(14.7, 0.35^2)]$	A1√		Their variance/36
		Valid by Central Limit Theorem	B1		Refer to CLT or large $n (= 36, not 21)$, or " $K \sim N$ so $\overline{K} \sim N$ ",
		as 36 is large	ועו		not same as (i), not $np > 5$, $nq > 5$ for \overline{K}
			M1		
		$\Phi\left(\frac{14.0 + \frac{1}{72} - 14.7}{\sqrt{4.41/36}}\right) = \Phi(-1.96)$	M1		Standardise 14.0 with 36 or √36
		√4.41/36)	A1		cc included, allow 0.5 here, e.g. 14.5 – 14.7
		= 0.025	A1	_	z = -1.96 or -2.00 or -2.04 , allow + if answer < 0.5
			A1	7	0.025 or 0.0228
					[0.284 loses last 2] [Po(25.2) etc: probably 0]
	OR:	$B(756, 0.7) \approx N(529.2, 158.76)$	M1M1	A1	×36; N(529.6,); 158.76
		(504.5-529.2) \$(1.00)	B1		CLT as above, or $np > 5$, $nq > 5$, can be asserted here
		$\Phi\left(\frac{504.5 - 529.2}{\sqrt{158.76}}\right) = \Phi(-1.96)$	M1		Standardise 14×36
			A1		cc correct and \sqrt{npq}
		= 0.025	A1		0.025 or 0.0228
1					0.025 Or 0.0220

1	$\frac{105.0 - \mu}{\sigma} = -0.7; \frac{110.0 - \mu}{\sigma} = -0.5$ Solve: $\sigma = 25$ $\mu = 122.5$	M1 A1 B1 M1 A1 A1	6	Standardise once, equate to Φ^{-1} , allow σ^2 Both correct including signs & σ , no cc (continuity correction), allow wrong z Both correct z -values. "1 –" errors: M1A0B1 Get either μ or σ by solving simultaneously σ a.r.t. 25.0 $\mu = 122.5 \pm 0.3$ or 123 if clearly correct, allow from σ^2 but <i>not</i> from $\sigma = -25$.
2	Po(20) \approx N(20, 20) Normal approx. valid as $\lambda > 15$ $1 - \Phi\left(\frac{24.5 - 20}{\sqrt{20}}\right) = 1 - \Phi(1.006)$ = 1 - 0.8427 = 0.1573	M1 A1 B1 M1 A1	6	Normal stated or implied (20, 20) or (20, $\sqrt{20}$) or (20, 20^2), can be implied "Valid as $\lambda > 15$ ", or "valid as λ large" Standardise 25, allow wrong or no cc, $\sqrt{20}$ errors $1.0 < z \le 1.01$ Final answer, art 0.157
3	H ₀ : $p = 0.6$, H ₁ : $p < 0.6$ where p is proportion in population who believe it's good value $R \sim B(12, 0.6)$ α : $P(R \le 4) = 0.0573$ > 0.05 β : CR is ≤ 3 and $4 > 3$	B2 M1 A1 B1		Both, B2. Allow π , % One error, B1, except x or \overline{x} or r or R : 0 B(12, 0.6) stated or implied, e.g. N(7.2, 2.88) Not P(< 4) or P(\geq 4) or P($=$ 4) Must be using P(\leq 4), or P($>$ 4) < 0.95 and binomial Must be using CR; explicit comparison needed
	p = 0.0153 Do not reject H ₀ . Insufficient evidence that the proportion who believe it's good value for money is less than 0.6	A1 M1 A1	7	Correct conclusion, needs B(12,0.6) and \leq 4 Contextualised, some indication of uncertainty [SR: N(7.2,) or Po(7.2): poss B2 M1A0] [SR: P($<$ 4) or P($=$ 4) or P(\geq 4): B2 M1A0]
4 (i)	Eg "not all are residents"; "only those in street asked"	B1 B1	2	One valid relevant reason A definitely different valid relevant reason Not "not a random sample", not "takes too long"
(ii)	Obtain list of whole population Number it sequentially Select using random numbers [Ignore method of making contact]	B1 B1 B1	3	"Everyone" or "all houses" must be implied Not "number it with random numbers" unless then "arrange in order of random numbers" SR: "Take a random sample": B1 SR: Systematic: B1 B0, B1 if start randomly chosen
(iii)	Two of: α: Members of population equally likely to be chosen β: Chosen independently/randomly γ: Large sample (e.g. > 30)	B1 B1	2	One reason. NB: If "independent", must be "chosen" independently, not "views are independent" Another reason. Allow "fixed sample size" but not both that and "large sample". Allow "houses"

5	(i)	Bricks scattered at constant average rate & independently of one another	B1 B1	2	B1 for each of 2 different reasons, in context. (Treat "randomly" = "singly" = "independently")
and the same same	(ii)	Po(12) $P(\le 14) - P(\le 7) = .77200895$ [or $P(8) + P(9) + + P(14)$]	B1 M1		Po(12) stated or implied Allow one out at either end or both, eg 0.617, or wrong column, but <i>not</i> from Po(3) nor, eg, .9105 – .7720
		= 0.6825	A1	3	Answer in range [0.682, 0.683]
	(iii)	$e^{-\lambda} = 0.4$ $\lambda = -\ln (0.4)$ = 0.9163 Volume = $0.9163 \div 3 = 0.305$	B1 M1 A1 M1	4	This equation, aef, can be implied by, eg 0.9 Take ln, or 0.91 by T & I λ art 0.916 or 0.92, can be implied Divide their λ value by 3 [SR: Tables, eg 0.9÷3: B1 M0 A0 M1]
6	(i)	$33.6 \frac{115782.84}{100} - 33.6^{2} [= 28.8684] \times \frac{100}{99} $	B1 M1 M1 A1	4	33.6 clearly stated [not recoverable later] Correct formula used for biased estimate $\times \frac{100}{99}, \text{ M's independent. Eg } \frac{\Sigma r^2}{99} [-33.6^2]$ SR B1 variance in range [29.1, 29.2]
	(ii)	$\overline{R} \sim N(33.6, 29.16/9)$ = $N(33.6, 1.8^2)$ $1 - \Phi\left(\frac{32 - 33.6}{\sqrt{3.24}}\right) [= \Phi(0.8889)]$	M1 A1 M1		Normal, their μ , stated or implied Variance [their (i)]÷9 $[not \div 100]$ Standardise & use Φ , 9 used, answer > 0.5, allow $\sqrt{\text{errors}}$, allow cc 0.05 but <i>not</i> 0.5
		= 0.8130	A1	4	Answer, art 0.813
an one on one	(iii)	No, distribution of R is normal so that of \overline{R} is normal	В2	2	Must be saying this. Eg "9 is not large enough": B0. Both: B1 max, unless saying that <i>n</i> is irrelevant.
7	(i)	$\frac{2}{9} \int_0^3 x^3 (3-x) dx = \frac{2}{9} \left[\frac{3x^4}{4} - \frac{x^5}{5} \right]_0^3 [= 2.7] - (1\frac{1}{2})^2 = \frac{9}{20} \text{ or } 0.45$	M1 A1 B1 M1 A1	5	Integrate $x^2 f(x)$ from 0 to 3 [not for μ] Correct indefinite integral Mean is 1½, soi [not recoverable later] Subtract their μ^2 Answer art 0.450
	(ii)	$\int_{9}^{2} \int_{0}^{0.5} x(3-x)dx = \frac{2}{9} \left[\frac{3x^{2}}{2} - \frac{x^{3}}{3} \right]_{0}^{0.5}$ $= \frac{2}{27} \text{ AG}$	M1 A1	2	Integrate $f(x)$ between 0, 0.5, must be seen somewhere Correctly obtain given answer $\frac{2}{27}$, decimals other than 0.5 not allowed, 1 more line needed (eg [] = $\frac{1}{3}$)
	(iii)	B(108, $\frac{2}{27}$) $\approx N(8, 7.4074)$ $1 - \Phi\left(\frac{9.5 - 8}{\sqrt{7.4074}}\right)$ $= 1 - \Phi(0.5511)$ = 0.291	B1 M1 A1 M1	6	B(108, $\frac{2}{27}$) seen or implied, eg Po(8) Normal, mean 8 variance (or SD) 200/27 or art 7.41 Standardise 10, allow $\sqrt{\text{errors}}$, wrong or no cc, needs to be using B(108,) Correct $\sqrt{\text{and cc}}$ Final answer, art 0.291

(iv)	$\overline{X} \sim N(1.5, \frac{1}{240})$	B1 B1√ B1√ 3	Normal NB: <i>not</i> part (iii) Mean their μ Variance or SD (their 0.45)/108 [not (8, 50/729)]
8 (i)	H ₀ : $\mu = 78.0$ H ₁ : $\mu \neq 78.0$ $z = \frac{76.4 - 78.0}{\sqrt{68.9/120}} = -2.1115$ > - 2.576 or 0.0173 > 0.005	B1 B1 M1 A1 B1	Both correct, B2. One error, B1, but x or \bar{x} : B0. Needs $\pm (76.4 - 78)/\sqrt{(\sigma \div 120)}$, allow $$ errors art -2.11 , or $p = 0.0173 \pm 0.0002$ Compare z with $(-)2.576$, or p with 0.005
	$78 \pm z\sqrt{(68.9/120)}$ = 76.048 $76.4 > 76.048$	M1 A1√ B1	Needs 78 and 120, can be – only Correct CV to 3 sf, $\sqrt{\text{on } z}$ $z = 2.576$ and compare 76.4, allow from 78 \leftrightarrow 76.4
	Do not reject H_0 . Insufficient evidence that the mean time has changed	M1 A1√ 7	Correct comparison & conclusion, needs 120, "like with like", correct tail, \bar{x} and μ right way round Contextualised, some indication of uncertainty
(ii)	$\frac{1}{\sqrt{68.9/n}} > 2.576$ $\sqrt{n} > 21.38,$ $n_{\min} = 458$ Variance is estimated	M1 M1 A1 B1 4	IGNORE INEQUALITIES THROUGHOUT Standardise 1 with n and 2.576, allow $\sqrt{\text{errors}}$, cc etc but not 2.326 Correct method to solve for \sqrt{n} (not from n) 458 only (not 457), or 373 from 2.326, signs correct Equivalent statement, allow "should use t ". In principle nothing superfluous, but "variance stays

B0

B0

[effectively the same]

[effectively the same]

B1 only

B1 only

B1 only

The chance of a brick being in one place is always the same

They must occur independently and at constant average rate

Bricks' locations must be random and independent

Only one brick in any one place; bricks independent

Events must occur independently and at constant average rate

γ

3

ζ

η

Penalise over-specified answers (> 6 SF) first time but only once per paper. Use Or to annotate "over-assertive" or "no context" respectively

T .					
1		$\hat{\mu} = \overline{x} = 15.16$	B1		15.16 or 15.2 as answer only
		$\hat{\sigma}^2 = \frac{5}{4}s^2$	M1		Use $\frac{\Sigma x^2}{5} - \overline{x}^2$ [=1.0904]
		·	M1		Multiply by 5/4, or equiv for single formula
		= 1.363	A1	4	Final answer 1.36 or 1.363 only, <i>not</i> isw
2	(i)	Not all equally likely – those in	M1	-	Not all equally likely stated or implied
-	(1)	range 0 to 199 more likely to be	A1	2	Justified by reference to numbers, no
		chosen	111	_	spurious reasons
	(ii)	Ignore random numbers greater	B1	1	Any valid resolution of this problem, no
	()	than 799, or 399		_	spurious reasons
3		$B(60, 0.35) \approx N(21, 13.65)$	M1		B(60, 0.35) stated or implied
			M1		N(21,)
		$\Phi\left(\frac{18.5 - 21}{\sqrt{13.65}}\right) = \Phi(-0.6767)$	A1		Variance or $SD = 13.65$
		· · /	M1		Standardise, their np and \sqrt{npq} or npq ,
		=1-0.7507			wrong or no cc
			A1		Both \sqrt{npq} and cc correct
		= 0.2493	A1	6	Answer, a.r.t. 0.249
4		$H_0: \mu = 60; H_1: \mu < 60$	B2		Both correct, B2
					B1 for one error, but not x , t , \overline{x} or \overline{t}
		(α) $z = \frac{58.9 - 60}{\sqrt{5^2 / 80}} = -1.967$	M1		Standardise 58.9 & $\sqrt{80}$, allow – or $\sqrt{100}$ errors
		V3 780	A1		z, art -1.97 or p in range $[0.024, 0.025]$
		< - 1.645	B1		Explicit comparison with -1.645 or 0.05, or
					+1.645 or 0.95 if 1.967 or 0.976 used
	or:	$(\beta)_{c=60-1.645} \times \frac{5}{\sqrt{80}} = 59.08$	M1		$60 - z \times 5/\sqrt{80}$, any $z = \Phi^{-1}$, allow $\sqrt{2}$ errors or
		$\sqrt{80} = 39.08$	B1		\pm , not just +; $z = 1.645$ and compare 58.9
		58.9 < 59.08	A1		59.1 or better, \checkmark on wrong z
		Reject H ₀	M1		Correct first conclusion, needs essentially
					correct method including √80 or 80
		Significant evidence that people	A1	7	Contextualised, uncertainty acknowledged
		underestimate time			SR: μ = 58.9: B0M1A0B1 max 2/7
					SR: 2-tail: max 5/7
5	(i)	$H_0: \lambda = 11.0$	B2		Allow μ . Both correct, B2
		$H_1: \lambda > 11.0$			One error: B1, but not C , x etc
		(α) $P(\geq 19) = 1 - 0.9823$	M1		Find $P(\ge 19)$ [or $P(< 19)$ if later 0.95]
		= 0.0177	A1		art 0.0177 [0.9823, ditto]
		< 0.05	B1		Compare 0.05 [0.95 if consistent], needs
					M1
		(β) CR ≥ 18 ,	M1		CR or CV 16/17/18/19 stated or clearly
					implied, but not <
		$P(\ge 18) = 0.0322$	A1		18 and 0.0322 both seen, allow 0.9678
		19 > 18	B1		Explicit comparison with 19, needs M1
		Reject H ₀	M1		Needs essentially correct method &
		Cignificant avidence of a	A 1 🎤	7	comparison
		Significant evidence of an	A1	7	Contextualised, uncertainty acknowledged
		increase in number of customers			SR: Normal, or $P(=19)$ or $P(\le 19)$ or
	(::)	Can't daduag says and effect	D 1	1	P(> 19): First B2 only.
	(ii)	Can't deduce cause-and-effect, or	B1	1	Conclusion needed. No spurious reasons.
		there may be other factors			If "DNR" in (i), "couldn't deduce even if"
					11

6	(i)	(a) Probabilities don't total 1	B1	1	Equivalent statement
		(b) $P(>70)$ must be $< P(>50)$	B1	1	Equivalent statement
		(c) $P(>50) = 0.3 \Rightarrow \mu < 50$	B1	1	Any relevant valid statement, e.g. "P(< 50)
		$P(<70) = 0.3 \Rightarrow \mu > 70$			= 0.7 but P(< 50) must be $<$ P(< 70)"
	(ii)	$\mu = 60$ by symmetry	B1		$\mu = 60$ obtained at any point, allow from Φ
		$\frac{10}{\sigma} = \Phi^{-1}(0.7) = 0.524(4)$	M1		One standardisation, equate to Φ^{-1} , not
		$\sigma = \Phi^{-}(0.7) = 0.324(4)$			0.758
		$\sigma = 10/0.5243$	B1		$\Phi^{-1} \in [0.524, 0.5245]$ seen
		= 19.084	A1	4	σ in range [19.07, 19.1], e.g. 19.073
7	(i)	A	M1		Horizontal line
			A1	2	Evidence of truncation
					[no need for labels]
		5 11			
	(ii)	$\mu = 8$	B1		8 only, cwd
		$\int_{5}^{11} \frac{1}{6} t^2 dt = \left[\frac{1}{18} t^3 \right]_{5}^{11} \qquad [=67]$	M1		Attempt $\int kt^2 dt$, limits 5 and 11 seen
		♥ 3	B1		k = 1/6 stated or implied
		-8^2	M1	_	Subtract their (non-zero) mean ²
		= 3	A1	5	Answer 3 only, <i>not</i> from MF1
	(iii)	N(8, 3/48)	M1		Normal stated or implied
		$1 - \Phi\left(\frac{8.3 - 8}{\sqrt{3/48}}\right) = 1 - \Phi(1.2)$	A1		Mean 8
		$\left(\frac{1-\Phi}{\sqrt{3/48}}\right)^{-1}$	A1		Variance their (non-zero) (ii)/48
		= 1 - 0.8848	M1		Standardise, \sqrt{n} , ignore sign or \sqrt{n} errors. cc:
		0.1151			MO
		= 0.1151	A1		Answer, art 0.115
	(*)	Normal distribution only approx.	B1	6	Any equivalent comment, e.g. CLT used
8	(i)	$P(\le 4) = 0.0473$	M1		$P(\le r)$ from B(10, 0.7), $r = 3/4/5$, not N
		Therefore CR is ≤ 4	B1	2	"≤ 4" stated, not just "4", nothing else
		P(Type I error) = 4.73%	A1	3	Answer, art 0.0473 or 4.73%, must be stated
	(ii)	B(10, 0.4) and find $P(>4)$	M1		Must be this, <i>not</i> isw, fon (i)
		$1 - P(\leq 4)$	M1	,	Allow for 0.6177 or 0.1622
		= 0.3669	A1	3	Answer, art 0.367
	(iii)	0.5×0.3669	M1	2	$0.5 \times (ii)$
		= 0.18345	A1	2	Ans correct to 3 SF, e.g. 0.184 from 0.367

9	(i)	$1 - P(\le 7) = 1 - 0.9881$	M1		Allow for 0.0038 or 0.0335
	()	= 0.0119	A1	2	Answer, a.r.t. 0.0119
	(ii)	Po(12)	M1		Po(12) stated or implied
	(11)	$P(\le 14) - P(\le 12)$	M1		Formula, 2 consecutive correct terms, or
		[0.7720 - 0.5760]	1711		tables, e.g0905 or .3104 or .1629
		= 0.196	A1	3	Answer, art 0.196
	(iii)	$Po(60) \approx N(60, 60)$	M1		N(60,)
	(111)	$FO(00) \approx IN(00, 00)$	A1		Variance or SD 60
		$\Phi\left(\frac{69.5-60}{\sqrt{60}}\right) = \Phi(1.226)$	M1		Standardise, $\lambda \& \sqrt{\lambda}$, allow λ or wrong or no
		$\left(\frac{1}{\sqrt{60}}\right)$			cc
			A1		$\sqrt{\lambda}$ and cc both correct
		= 0.8899	A1	5	Answer 0.89 or a.r.t. 0.890
	(iv)	(a) $1 - e^{-3m}(1 + 3m)$	M1		M1 for one error, e.g. no "1 –", or extra term,
			A1	2	or 0 th term missing; answer, aesf
		(b) $m = 1.29$,	M1		Substitute 1.29 or 1.3 into appropriate fn
		p = 0.89842	A1		Comp 0.9 0.1 0
		m = 1.3, p = 0.9008	A1		1.29 0.898 0.1015800158
		-			1.3 0.901 0.09918 .0008146
		Straddles 0.9, therefore solution	A 1	4	Explicit comparison with relevant value, &
		between 1.29 and 1.3	A1	4	conclusion, needs both ps correct
	or	Method for iteration; 1.296	M1A1		Can be implied by at least 1.296
		1.2965or better; conclusion	A1A1		Need at least 4 dp for M1A2
		stated	7 1 1 7 1 1		Troca at least 1 ap 101 WITTE
		stated			

	40.4.5	T	1		
1	(i)(a)	$1 - P(\le 6) = 1 - 0.8675$	M1	•	1 – .9361 or 1 – .8786 or 1 – .8558: M19721: M0
		= 0.1325	A1	2	Or 0.132 or 0.133
	(b)	Po(0.42)	M1		Po(0.42) stated or implied
		$e^{-0.42} \frac{0.42^2}{2!} = 0.05795$	M1		Correct formula, any numerical λ
		2!	A1	3	Answer, art 0.058. Interpolation in tables: M1B2
	(ii)	E.g. "Contagious so incidences do	B2	2	Contextualised reason, referred to conditions: B2. No
		not occur independently", or "more			marks for mere learnt phrases or spurious reasons, e.g.
		cases in winter so not at constant			not just "independently, singly and constant average
		average rate"			rate". See notes.
2	(i)	B(10, 0.35)	M1		B(10, 0.35) stated or implied
		P(< 3)	M1		Tables used, e.g. 0.5138 or 0.3373 , or formula ± 1 term
		= 0.2616	A1	3	Answer 0.2616 or better or 0.262 only
	(ii)	Binomial requires being chosen	B2	2	Focus on "Without replacement" negating independence
	` /	independently, which this is not, but			condition. It doesn't negate "constant probability"
		unimportant as population is large			condition but can allow B1 if "selected". See notes
3	(i)		M1		Standardise and equate to Φ^{-1} , allow "1 –" errors, σ^2 , cc
	` /	$\left(\frac{32-40}{\sigma}\right) = \Phi^{-1}(0.2) = -0.842$	B1		0.842 seen
		$\sigma = 9.5[06]$	A1	3	Answer, 9.5 or in range [9.50, 9.51], c.w.o.
	(ii)	B(90, 0.2)	B1		B(90, 0.2) stated or implied
	(11)	$\approx N(18, 14.4)$	M1		N, their <i>np</i>
			A1		variance their npq , allow $\sqrt{\text{errors}}$
		$1 - \Phi\left(\frac{19.5 - 18}{\sqrt{14.4}}\right) = 1 - \Phi(0.3953)$	M1		Standardise with np and npq , allow $$, cc errors, e.g.
		√14.4)	A1		
		= 1 - 0.6537 = 0.3463	A1	6	396, .448, .458, .486, .472; \sqrt{npq} and cc correct
4		II 0.4	B1		Answer, a.r.t. 0.346 [NB: 0.3491 from Po: 1/6]
4		$H_0: p = 0.4,$ $H_1: p > 0.4$	B1		Fully correct, B2. Allow π . p omitted or μ used in both,
		$R \sim B(16, 0.4)$:	M1		or > wrong: B1 only. x or \overline{x} or 6.4 etc: B0
	(01)	$P(R \ge 11) = 0.0191$	A1		B(16, 0.4) stated or implied, allow N(6.4, 3.84)
	(α)	$F(K \ge 11) = 0.0191$	AI		Allow for $P(\le 10) = 0.9808$, and < 0.99 , or $z = 2.092$ or
		> 0.01	A1		$p = 0.018$, but not $P(\le 11) = 0.9951$ or $P(= 11) = 0.0143$
					Explicit comp with .01, or $z < 2.326$, not from ≤ 11 or $= 11$
	(β)	$CR R \ge 12 \text{ and } 11 < 12$	A1		Must be clear that it's ≥ 12 and not ≤ 11
		Probability 0.0049	A1		Needs to be seen, allow 0.9951 here, or $p = .0047$ from N
		Do not reject H_0 . Insufficient	M1		Needs like-with-like, $P(R \ge 11)$ or $CR R \ge 12$
		evidence that proportion of	A1 FT	7	Conclusion correct on their p or CR, contextualised, not
		commuters who travel by train has			too assertive, e.g. "evidence that" needed.
		increased			Normal, $z = 2.34$, "reject" [no cc] can get 6/7
5	(i)	(a) $30 + 1.645 \times \frac{5}{\sqrt{10}}$	M1		$30 + 5z/\sqrt{10}$, allow \pm but not just –, allow $$ errors
		$\sqrt{10}$	B1		z = 1.645 seen, allow –
		= 32.6	A1		Critical value, art 32.6
		Therefore critical region is $\bar{t} > 32.6$	A1 FT	4	"> c " or " $\geq c$ ", FT on c provided > 30, can't be
			ļ		recovered. Withhold if not clear which is CR
		(b) $P(\bar{t} < 32.6 \mid \mu = 35)$	M1*		Need their c, final answer < 0.5 and $\mu = 35$ at least, but
		$32.6 - 35$ [_ 1.5178]			allow answer > 0.5 if consistent with their (i)
		$\frac{32.6 - 35}{5/\sqrt{10}} \ [= -1.5178]$	dep*M1		Standardise their CV with 35 and $\sqrt{10}$ or 10
		0.0645	A1	3	Answer in range [0.064, 0.065], or 0.115 from 1.96 in (a)
	(ii)	$(32.6 - \mu) = 0$	M1		Standardise c with μ , equate to Φ^{-1} , can be implied by:
	(11)	$(32.6 - \mu) = 0$ $\mu = 32.6$	A1 FT		$\mu = \text{their } c$
		$\begin{array}{c} \mu - 32.0 \\ 20 + 0.6m = 32.6 \end{array}$	M1		Equate and solve for m , allow from 30 or 35
		m = 21	A1	4	Answer, a.r.t. 21, c.a.o.
		m — 21		-	MR: 0.05: M1 A0 M1, 16.7 A1 FT
					Ignore variance throughout (ii)
			1		ignore variance unougnout (II)

6	(a)	N(24, 24)	B1		Normal, mean 24 stated or implied
	(4)		B1		Variance or SD equal to mean
		$1 - \Phi\left(\frac{30.5 - 24}{\sqrt{24}}\right) = 1 - \Phi(1.327)$	M1		Standardise 30 with λ and $\sqrt{\lambda}$, allow cc or $\sqrt{\lambda}$ errors, e.g.
		(121)	A1		.131 or .1103; 30.5 and $\sqrt{\lambda}$ correct
		= 0.0923	A1	5	Answer in range [0.092, 0.0925]
	(b)(i)	p or $np = 196$ is too large	B1	1	Correct reason, no wrong reason, don't worry about 5 or 15
	(b)(i)	Consider $(200 - E)$	M1	.‡	Consider complement
	(ii)	(200 - E) $(200 - E) \sim Po(4)$	M1		Po(200×0.02)
			M1		· · · · · · · · · · · · · · · · · · ·
		$P(\ge 6) = [= 1 - 0.7851]$	A1	4	Poisson tables used, correct tail, e.g. 0.3712 or 0.1107
7		= 0.2149	B2	7	Answer a.r.t. 0.215 only Both correct
′		$H_0: \mu = 56.8$	B 2		
		$H_1: \mu \neq 56.8$	D1		One error: B1, but not \overline{x} , etc
		$\overline{x} = 17085/300 = 56.95$	B1		56.95 or 57.0 seen or implied
		$\frac{300}{299} \left(\frac{973847}{300} - 56.95^2 \right)$	M1 M1		Biased [2.8541] : M1M0A0
		299 (300			Unbiased estimate method, allow if ÷ 299 seen anywhere
		= 2.8637	A1 M1		Estimate, a.r.t. 2.86 [not 2.85]
	()	56.95 - 56.8 = 1.535	A1		Standardise with $\sqrt{300}$, allow $\sqrt{\text{errors}}$, cc
	(a)	$z = \frac{56.95 - 56.8}{\sqrt{2.8637/300}} = 1.535$	A1		$z \in [1.53, 1.54] \text{ or } p \in [0.062, 0.063], not - 1.535$
		1.535 < 1.645 or 0.0624 > 0.05	AI		Compare explicitly z with 1.645 or p with 0.05, or
					$2p > 0.1$, not from $\mu = 56.95$
	(β)	$CV_{56.9+1.645}$ 2.8637	M1		$56.8 + z\sigma/\sqrt{300}$, needn't have \pm , allow $\sqrt{\text{errors}}$
		CV $56.8 \pm 1.645 \times \sqrt{\frac{2.8637}{300}}$	A1		z = 1.645
		56.96 > 56.95	A1 FT		$c = 56.96$, FT on z, and compare 56.95 [$c_L = 56.64$]
		Do not reject H ₀ ;	M1		Consistent first conclusion, needs 300, correct method
			A 1 ET		and comparison
		insufficient evidence that mean	A1 FT		Conclusion stated in context, not too assertive, e.g.
	(*)	thickness is wrong	3.71	11	"evidence that" needed
8	(i)	$\int_{1}^{\infty} kx^{-a} dx = \left[k \frac{x^{-a+1}}{-a+1} \right]_{1}^{\infty}$	M1		Integrate $f(x)$, limits 1 and ∞ (at some stage)
		$\int_1 \kappa x dx = \left \kappa \frac{-a+1}{-a+1} \right $	B1	2	Correct indefinite integral
			A1	3	Correctly obtain given answer, don't need to see
		Correctly obtain $k = a - 1$ AG			treatment of ∞ but mustn't be wrong. Not k^{-a+1}
	(ii)	$\int_{1}^{\infty} 3x^{-3} dx = \left[3 \frac{x^{-2}}{-2} \right]_{1}^{\infty} = 1 \frac{1}{2}$	M1		Integrate $xf(x)$, limits 1 and ∞ (at some stage)
		$\int_{1}^{3x} dx = \left[\frac{3-2}{-2} \right]_{1}^{-1/2}$	3.54		$[x^4 \text{ is } not \text{ MR}]$
			M1		Integrate $x^2 f(x)$, correct limits
		$\int_{1}^{\infty} 3x^{-2} dx = \left[3 \frac{x^{-1}}{-1} \right]_{1}^{\infty} - (1 \frac{1}{2})^{2}$	A1		Either $\mu = 1\frac{1}{2}$ or $E(X^2) = 3$ stated or implied, allow $k, k/2$
			M1	_	Subtract their numerical μ^2 , allow letter if subs later
		Answer ¾	A1	5	Final answer $\frac{3}{4}$ or 0.75 only, ewo, e.g. not from $\mu = -1\frac{1}{2}$.
					[SR: Limits 0, 1: can get (i) B1, (ii) M1M1M1]
	(iii)	$\int_{1}^{2} (a-1)x^{-a} dx = \left[-x^{-a+1} \right]_{1}^{2} = 0.9$	M1*		Equate $\int f(x)dx$, one limit 2, to 0.9 or 0.1.
					[Normal: 0 ex 4]
		$1 - \frac{1}{2^{a-1}} = 0.9, \ 2^{a-1} = 10$	dep*M1		Solve equation of this form to get 2^{a-1} = number
		<u> </u>	M1 inde	* .	Use logs or equivalent to solve 2^{a-1} = number
		a = 4.322	A1	4	Answer, a.r.t. 4.32. T&I: (M1M1) B2 or B0

Specimen Verbal Answers

1	α	"Cases of infection must occur randomly, independently, singly and at	
		constant average rate"	B0
	β	Above + "but it is contagious"	B1
	γ	Above + "but not independent as it is contagious"	B2
	δ	"Not independent as it is contagious"	B2
	3	"Not constant average rate", or "not independent"	B0
	λ	"Not constant average rate because contagious" [needs more]	B1
	ζ	"Not constant average rate because more likely at certain times of year"	B2
	μ	Probabilities changes because of different susceptibilities	B0
	ν	Not constant average rate because of different susceptibilities	B2
	η	Correct but with unjustified or wrong extra assertion [scattergun]	B1
	θ	More than one correct assertion, all justified	B2
	π	Valid reason (e.g. "contagious") but not referred to conditions	B1
r=		and the first of the control of the	

[Focus is on explaining why the required assumptions might not apply. No credit for regurgitating learnt phrases, such as "events must occur randomly, independently, singly and at constant average rate, even if contextualised.]

2 Don't need either "yes" or "no".

α	"No it doesn't invalidate the calculation" [no reason]	B0
β	"Binomial requires not chosen twice" [false]	B0
γ	"Probability has to be constant but here the probabilities change"	B0
δ	Same but "probability of being chosen" [false, but allow B1]	B1
3	"Needs to be independently chosen but probabilities change" [confusion]	B0
ζ	"Needs to be independent but one choice affects another" [correct]	B2
η	"The sample is large so it makes little difference" [false]	B0
θ	"The population is large so it makes little difference" [true]	B2
λ	Both correct and wrong reasons (scattergun approach)	B1

[Focus is on modelling conditions for binomial: On every choice of a member of the sample, each member of the population is equally likely to be chosen; and each choice is independent of all other choices.

Recall that in fact even without replacement the probability that any one person is chosen is the same for each choice. Also, the binomial "independence" condition <u>does</u> require the possibility of the same person being chosen twice.]

1	ı	460	D1		50 1
1		$\hat{\mu} = \bar{x} = \frac{468}{9} = 52$	B1		52 stated
			M1		Correct method for biased estimator
		24820 522 [- 53.78]	M1		Multiply by 9/8
		$\frac{24820}{9} - 52^2 \ [= 53.78]$			[if single formula, allow M0 M1 if wrong but divisor 8 seen
		. 9			anywhere]
		$\hat{\sigma}^2 = \frac{9}{8} \times 53.78 = 60.5$	A1	4	Answer 60.5 or exact equivalent
		8			
2		$\frac{53.28 - \mu}{5/\sqrt{n}} = 1.96$	M1de	p	Standardise with \sqrt{n} once & equate to z, allow sign, square/ \sqrt{n}
		$\frac{1}{5/\sqrt{n}} = 1.90$			errors
		u_51.65	A1		twice, signs correct, zs may be wrong
		$\frac{\mu - 51.65}{5/\sqrt{n}} = 1.3$	B1		Both correct z values seen
		$5/\sqrt{n}$	depM	1	Solve to get \sqrt{n} or μ , needs first M1
		$\sqrt{n} = 10,$ $n = 100$	A1		n = 100, not from wrong signs
		$\mu = 52.3$	B1	6	a.r.t. 52.3, right arithmetic needed but \sqrt{n} can be omitted
3		B(200, 0.0228)			
3		· · · · · · · · · · · · · · · · · · ·	M1		B(200, 0.0228) stated or implied
		Po(4.56)	A1		Po(4.56) stated or implied, allow 4.6 here
		$e^{-4.56}(1+4.56+\frac{4.56^2}{2})$	M1		Correct formula for $P(\le 2) \pm 1$ term, any λ (tables: M0)
		2	A1		Correct formula, 4.56 needed
		= 0.167	A1		Answer, a.r.t. 0.167 [0.16694]
		n large or n > 50; p small or np < 5	B1	6	Both, can be merely asserted. If numbers, must be these
					SR interpolation: clear method M1, answer A2
					MR: typically B(200, 0.228) \approx N(45.6, 3.52): M1A1;
					standardise correctly, M1; state np , $nq > 5$, B1
4	(i)	Eithan 213.4-230	M1		Standardise z with $\sqrt{50}$, ignore sign or $$ or squaring errors
	,	Either $z = \frac{213.4 - 230}{45/\sqrt{50}}$			~ ···································
		= -2.608			z-value, a.r.t. -2.61 , or p in range $[0.0044, 0.005)$
			A1		Correctly compare (–)2.576, signs consistent,
		$-2.608 < -2.576 \ or \ 0.0047 < 0.005$	B1		or p explicitly with 0.005
	Or	GV 45 212.6	M1		$230 - z\sigma/\sqrt{50}$, allow $$ or squaring errors, allow \pm but not
		CV is $230 - 2.576 \times \frac{45}{\sqrt{50}} = 213.6$	B1		just +; $z = 2.576$
		•			Just +, 2 = 2.570
		213.4 < 213.6	A1		Explicitly compare 213.4 with 213.6
		Reject H ₀ . Significant evidence	M1		"Reject", FT, needs correct method and form of
		that population mean is not 230	A1 F1	Γ 5	comparison; interpreted, acknowledge uncertainty
	(ii)	Yes, population distribution is not	B2	2	<i>Not</i> , "yes, sample size is large" but ignore " <i>can</i> use it as"
		known to be normal			SR: Both right and wrong answers: B1
					α "Yes as it must be assumed normal": B1
5		H_0 : $\lambda = 12$; H_1 : $\lambda > 12$	B2		Both correct: B2. Allow μ . One error, B1, but <i>not x</i> , r etc.
		$Either: P(\ge 19) = 1 - P(\le 18)$	M1		Po(12) stated or implied, e.g. 0.9787
		= 1 - 0.9626	1711		1 0(12) stated of implied, e.g. 0.7/67
			A1		0.0374, or 0.9626 if compared with 0.9
		= 0.0374	B1		
		< 0.1			Explicitly compare $P(\ge 19)$ with 0.1, or $P(\le 18)$ with 0.9
		<i>Or</i> : CR is ≥ 18 , $p = 0.063$	A1		\geq 18 and 0.063 stated
		19≥18	B1		Explicit comparison of CV (right-hand CR) with 19
		Reject H ₀ . Significant evidence of	M1		"Reject" FT, needs correct method and comparison, e.g. not
		increase in mean number of			from \leq 19 or = 19, withhold if inconsistent
1		applicants	A1 F1	Γ 7	Interpreted in context, acknowledge uncertainty

	(:)	TC	D1		A
0	(i)	If one customer arrives, it does not	B1		Answer that shows correct understanding of "independent", in
		change the probability that another	D1	2	context; not just equivalent to "singly"
		one does so; customers probably	B1	2	Plausible reason, in context, nothing wrong, nothing that
	(;;)	arrive in groups of at least 2	N/1		suggests "constant average rate"
	(ii)	0.1730	M1 A1	2	Correct use of tables or formula, e.g3007, or .4405 from Po(5) if Po(7) stated; answer 0.173, 0.1730 or better
	(iii)	Po(35)	B1		Po(5×7) stated or implied
	(111)	N(35, 35)	M1		Normal, μ = their λ
		14(33, 33)	A1		Both parameters correct, allow 35^2 , $\sqrt{35}$
		$(40.5-35) = 1 - \Phi(0.9297)$	M1		Standardise 40 with λ , $\sqrt{\lambda}$, allow $\sqrt{\lambda}$, cc errors
		$1 - \Phi\left(\frac{40.5 - 35}{\sqrt{35}}\right) = 1 - \Phi(0.9297)$	A1		Both $\sqrt{\lambda}$ and cc correct
		= 0.1763	A1	6	Answer, a.r.t. 0.176 [penalise 0.1765]
7	(i)	- 0.1703	B1		Horizontal line above axis
'	(1)		B1		Concave decreasing curve above axis
			B1	3	Both correct including approx relationship, not extending
		Ψ .	D1		beyond [1, 3], verticals and scale not needed
	(ii)	г ¬3	M1		Attempt $\int f_X(x)dx$, limits 1, 3 at some stage, and equate to 1
	(11)	$\int_{1}^{3} \frac{a}{x^{2}} dx = 1, \left[\frac{-a}{x} \right]_{1}^{3} = 1; a = \frac{3}{2}$	B1		Correct indefinite integral
1		$\begin{bmatrix} J_1 & \chi^2 & & & \downarrow x \end{bmatrix}_1$	A1	3	Correctly obtain 3/2 or 1.5 or exact equivalent
	(iii)	$\int_{0}^{3} a$	M1		Attempt $\int x f_X(x) dx$, limits 1, 3 at some stage
1		$\int_{1}^{3} \frac{a}{x} \mathrm{d}x = \left[a \ln x \right]_{1}^{3}$	B1 F	Т	Correct indefinite integral, FT on a
		$= \frac{3}{2} \ln 3$	A1 F		Answer, any exact equivalent or a.r.t 1.65, FT on a, or a ln 3
	(:-)		D1		
	(iv)	T is equally likely to take any value	B1	1	Must be "values taken by T" (or "of T") or clear equivalent
		between 1 and 3			Any hint that they think <i>T</i> is an <i>event</i> gets B0.
					α "Same chance of occurring anywhere between 1 and 3": 0
					β "For values of <i>T</i> between 1 and 3, <i>T</i> is equally likely": 0 γ "Each value of <i>T</i> is equally likely to occur": 1
					V Each value of T is equally likely to occur. I
Q	(i)	R(40, 0.225)	М1		
8	(i)	$B(40, 0.225)$ $\approx N(9, 6.975)$	M1 M1		B(40, 0.225) stated or implied
8	(i)	$\approx N(9, 6.975)$	M1		B(40, 0.225) stated or implied Normal, mean 9
8	(i)	$\approx N(9, 6.975)$			B(40, 0.225) stated or implied Normal, mean 9 Variance 6.975 or SD 2.641 or 6.975
8	(i)	$\approx N(9, 6.975)$ $\frac{5.5 - 9}{\sqrt{6.975}} = -1.325$	M1 A1		B(40, 0.225) stated or implied Normal, mean 9 Variance 6.975 or SD 2.641 or 6.975 Standardise with np and \sqrt{npq} , allow npq , no or wrong cc
8	(i)	$\approx N(9, 6.975)$ $\frac{5.5 - 9}{\sqrt{6.975}} = -1.325$ 0.9074	M1 A1 M1		B(40, 0.225) stated or implied Normal, mean 9 Variance 6.975 or SD 2.641 or 6.975 Standardise with np and \sqrt{npq} , allow npq , no or wrong cc CC and \sqrt{npq} correct, allow from N(3600, 0.225)
8	(i)	$\approx N(9, 6.975)$ $\frac{5.5 - 9}{\sqrt{6.975}} = -1.325$ 0.9074 $np = 9 > 5 \text{ or } n \text{ large; and}$	M1 A1 M1 A1	8	B(40, 0.225) stated or implied Normal, mean 9 Variance 6.975 or SD 2.641 or 6.975 Standardise with np and \sqrt{npq} , allow npq , no or wrong cc
8	(i)	$\approx N(9, 6.975)$ $\frac{5.5 - 9}{\sqrt{6.975}} = -1.325$ 0.9074	M1 A1 M1 A1 A1	8	B(40, 0.225) stated or implied Normal, mean 9 Variance 6.975 or SD 2.641 or 6.975 Standardise with np and \sqrt{npq} , allow npq , no or wrong cc CC and \sqrt{npq} correct, allow from N(3600, 0.225) Answer, in range [0.907, 0.908]
8	(i)	$\approx N(9, 6.975)$ $\frac{5.5 - 9}{\sqrt{6.975}} = -1.325$ 0.9074 $np = 9 > 5 \text{ or } n \text{ large; and}$	M1 A1 M1 A1 A1	8	B(40, 0.225) stated or implied Normal, mean 9 Variance 6.975 or SD 2.641 or 6.975 Standardise with np and \sqrt{npq} , allow npq , no or wrong cc CC and \sqrt{npq} correct, allow from N(3600, 0.225) Answer, in range [0.907, 0.908] Full conditions B2; partial, B1 (assertions OK). Allow npq ,
8		≈ N(9, 6.975) $\frac{5.5-9}{\sqrt{6.975}} = -1.325$ 0.9074 $np = 9 > 5 \text{ or } n \text{ large; and } nq = 31 > 5 \text{ or } p \text{ close to 0.5}$ Number list sequentially and select using random numbers	M1 A1 M1 A1 A1 B2	8	B(40, 0.225) stated or implied Normal, mean 9 Variance 6.975 or SD 2.641 or 6.975 Standardise with np and \sqrt{npq} , allow npq , no or wrong cc CC and \sqrt{npq} correct, allow from N(3600, 0.225) Answer, in range [0.907, 0.908] Full conditions B2; partial, B1 (assertions OK). Allow npq , allow from e.g. $n = 3600$ Number list, don't need "sequentially" Mention random numbers (not "select numbers randomly")
8		≈ N(9, 6.975) $\frac{5.5-9}{\sqrt{6.975}} = -1.325$ 0.9074 np = 9 > 5 or n large; and nq = 31 > 5 or p close to 0.5 Number list sequentially and	M1 A1 M1 A1 A1 B2	8	B(40, 0.225) stated or implied Normal, mean 9 Variance 6.975 or SD 2.641 or 6.975 Standardise with np and \sqrt{npq} , allow npq , no or wrong cc CC and \sqrt{npq} correct, allow from N(3600, 0.225) Answer, in range [0.907, 0.908] Full conditions B2; partial, B1 (assertions OK). Allow npq , allow from e.g. $n=3600$ Number list, don't need "sequentially" Mention random numbers (not "select numbers randomly") Deal with issue of # > 3600, or "ignore repeats"
	(ii)	$\approx N(9, 6.975)$ $\frac{5.5-9}{\sqrt{6.975}} = -1.325$ 0.9074 $np = 9 > 5 \text{ or } n \text{ large; and } nq = 31 > 5 \text{ or } p \text{ close to } 0.5$ Number list sequentially and select using random numbers If # > 3600, ignore (etc)	M1 A1 M1 A1 A1 B2 B1 B1		B(40, 0.225) stated or implied Normal, mean 9 Variance 6.975 or SD 2.641 or 6.975 Standardise with np and \sqrt{npq} , allow npq , no or wrong cc CC and \sqrt{npq} correct, allow from N(3600, 0.225) Answer, in range [0.907, 0.908] Full conditions B2; partial, B1 (assertions OK). Allow npq , allow from e.g. $n=3600$ Number list, don't need "sequentially" Mention random numbers (not "select numbers randomly") Deal with issue of $\# > 3600$, or "ignore repeats" α "Randomly pick numbers from 0 to 3599": (B1) B0 B1
9		$\approx N(9, 6.975)$ $\frac{5.5-9}{\sqrt{6.975}} = -1.325$ 0.9074 $np = 9 > 5 \text{ or } n \text{ large; and } nq = 31 > 5 \text{ or } p \text{ close to } 0.5$ Number list sequentially and select using random numbers If # > 3600, ignore (etc) $B(14, 0.7)$	M1 A1 M1 A1 B2 B1 B1 B1		B(40, 0.225) stated or implied Normal, mean 9 Variance 6.975 or SD 2.641 or 6.975 Standardise with np and \sqrt{npq} , allow npq , no or wrong cc CC and \sqrt{npq} correct, allow from N(3600, 0.225) Answer, in range [0.907, 0.908] Full conditions B2; partial, B1 (assertions OK). Allow npq , allow from e.g. $n = 3600$ Number list, don't need "sequentially" Mention random numbers (not "select numbers randomly") Deal with issue of $\# > 3600$, or "ignore repeats" α "Randomly pick numbers from 0 to 3599": (B1) B0 B1 B(14, 0.7) stated or implied, e.g. N(9.8, 2.94), can be recovered
	(ii)		M1 A1 M1 A1 B2 B1 B1 B1 B1	3	B(40, 0.225) stated or implied Normal, mean 9 Variance 6.975 or SD 2.641 or 6.975 Standardise with np and \sqrt{npq} , allow npq , no or wrong cc CC and \sqrt{npq} correct, allow from N(3600, 0.225) Answer, in range [0.907, 0.908] Full conditions B2; partial, B1 (assertions OK). Allow npq , allow from e.g. $n = 3600$ Number list, don't need "sequentially" Mention random numbers (not "select numbers randomly") Deal with issue of $\# > 3600$, or "ignore repeats" α "Randomly pick numbers from 0 to 3599": (B1) B0 B1 B(14, 0.7) stated or implied, e.g. N(9.8, 2.94), can be recovered CV 13, or > 12 or $\{13, 14\}$, allow = but no other inequalities
	(ii)	≈ N(9, 6.975) $\frac{5.5-9}{\sqrt{6.975}} = -1.325$ 0.9074 $np = 9 > 5 \text{ or } n \text{ large; and } nq = 31 > 5 \text{ or } p \text{ close to 0.5}$ Number list sequentially and select using random numbers If # > 3600, ignore (etc) $B(14, 0.7)$ CR is ≥ 13 with probability 0.0475	M1 A1 M1 A1 B2 B1 B1 B1 A1 A1		B(40, 0.225) stated or implied Normal, mean 9 Variance 6.975 or SD 2.641 or 6.975 Standardise with np and \sqrt{npq} , allow npq , no or wrong cc CC and \sqrt{npq} correct, allow from N(3600, 0.225) Answer, in range [0.907, 0.908] Full conditions B2; partial, B1 (assertions OK). Allow npq , allow from e.g. $n = 3600$ Number list, don't need "sequentially" Mention random numbers (not "select numbers randomly") Deal with issue of $\# > 3600$, or "ignore repeats" α "Randomly pick numbers from 0 to 3599": (B1) B0 B1 B(14, 0.7) stated or implied, e.g. N(9.8, 2.94), can be recovered CV 13, or > 12 or {13, 14}, allow = but no other inequalities Exactly correct CR, and supporting prob .0475 or .9525 seen
	(ii)	≈ N(9, 6.975) $\frac{5.5-9}{\sqrt{6.975}} = -1.325$ 0.9074 np = 9 > 5 or n large; and nq = 31 > 5 or p close to 0.5 Number list sequentially and select using random numbers If # > 3600, ignore (etc) B(14, 0.7) CR is ≥ 13 with probability 0.0475 H ₀ : $p = 0.7$, H ₁ : $p > 0.7$	M1 A1 M1 A1 B2 B1 B1 B1 B1 B1	3	Normal, mean 9 Variance 6.975 or SD 2.641 or 6.975 Standardise with <i>np</i> and √ <i>npq</i> , allow <i>npq</i> , no or wrong cc CC and √ <i>npq</i> correct, allow from N(3600, 0.225) Answer, in range [0.907, 0.908] Full conditions B2; partial, B1 (assertions OK). Allow <i>npq</i> , allow from e.g. <i>n</i> = 3600 Number list, don't need "sequentially" Mention random numbers (<i>not</i> "select numbers randomly") Deal with issue of # > 3600, <i>or</i> "ignore repeats" α "Randomly pick numbers from 0 to 3599": (B1) B0 B1 B(14, 0.7) stated or implied, e.g. N(9.8, 2.94), can be recovered CV 13, or > 12 or {13, 14}, allow = but no other inequalities Exactly correct CR, and supporting prob .0475 or .9525 seen Both, B2. Allow π. One error, B1, but <i>r</i> , <i>x</i> etc: B0
	(ii)	≈ N(9, 6.975) $\frac{5.5-9}{\sqrt{6.975}} = -1.325$ 0.9074 $np = 9 > 5 \text{ or } n \text{ large; and } nq = 31 > 5 \text{ or } p \text{ close to 0.5}$ Number list sequentially and select using random numbers If # > 3600, ignore (etc) $B(14, 0.7)$ CR is ≥ 13 with probability 0.0475	M1 A1 M1 A1 B2 B1 B1 B1 A1 A1	3	B(40, 0.225) stated or implied Normal, mean 9 Variance 6.975 or SD 2.641 or 6.975 Standardise with <i>np</i> and √ <i>npq</i> , allow <i>npq</i> , no or wrong cc CC and √ <i>npq</i> correct, allow from N(3600, 0.225) Answer, in range [0.907, 0.908] Full conditions B2; partial, B1 (assertions OK). Allow <i>npq</i> , allow from e.g. <i>n</i> = 3600 Number list, don't need "sequentially" Mention random numbers (<i>not</i> "select numbers randomly") Deal with issue of # > 3600, <i>or</i> "ignore repeats" α "Randomly pick numbers from 0 to 3599": (B1) B0 B1 B(14, 0.7) stated or implied, e.g. N(9.8, 2.94), can be recovered CV 13, or > 12 or {13, 14}, allow = but no other inequalities Exactly correct CR, and supporting prob .0475 or .9525 seen Both, B2. Allow π. One error, B1, but <i>r</i> , <i>x</i> etc: B0 Compare CV <i>from correct tail and inequality</i> with 12,
	(ii)	≈ N(9, 6.975) $\frac{5.5-9}{\sqrt{6.975}} = -1.325$ 0.9074 np = 9 > 5 or n large; and nq = 31 > 5 or p close to 0.5 Number list sequentially and select using random numbers If # > 3600, ignore (etc) B(14, 0.7) CR is ≥ 13 with probability 0.0475 H ₀ : $p = 0.7$, H ₁ : $p > 0.7$ 12 < 13	M1 A1 M1 A1 B2 B1 B1 B1 B1 B1 B1	3	B(40, 0.225) stated or implied Normal, mean 9 Variance 6.975 or SD 2.641 or 6.975 Standardise with np and \sqrt{npq} , allow npq , no or wrong cc CC and \sqrt{npq} correct, allow from N(3600, 0.225) Answer, in range [0.907, 0.908] Full conditions B2; partial, B1 (assertions OK). Allow npq , allow from e.g. $n = 3600$ Number list, don't need "sequentially" Mention random numbers (not "select numbers randomly") Deal with issue of $\# > 3600$, or "ignore repeats" α "Randomly pick numbers from 0 to 3599": (B1) B0 B1 B(14, 0.7) stated or implied, e.g. N(9.8, 2.94), can be recovered CV 13, or > 12 or {13, 14}, allow = but no other inequalities Exactly correct CR, and supporting prob .0475 or .9525 seen Both, B2. Allow π . One error, B1, but r , x etc: B0 Compare CV from correct tail and inequality with 12, or P(\ge 12) = 0.1608 and > 0.05 or P($<$ 12) = 0.8392 and $<$ 0.95
	(ii)		M1 A1 M1 A1 B2 B1 B1 B1 B1 B1	3	B(40, 0.225) stated or implied Normal, mean 9 Variance 6.975 or SD 2.641 or 6.975 Standardise with np and \sqrt{npq} , allow npq , no or wrong cc CC and \sqrt{npq} correct, allow from N(3600, 0.225) Answer, in range [0.907, 0.908] Full conditions B2; partial, B1 (assertions OK). Allow npq , allow from e.g. $n = 3600$ Number list, don't need "sequentially" Mention random numbers (not "select numbers randomly") Deal with issue of $\# > 3600$, or "ignore repeats" α "Randomly pick numbers from 0 to 3599": (B1) B0 B1 B(14, 0.7) stated or implied, e.g. N(9.8, 2.94), can be recovered CV 13, or > 12 or $\{13, 14\}$, allow = but no other inequalities Exactly correct CR, and supporting prob .0475 or .9525 seen Both, B2. Allow π . One error, B1, but r , x etc: B0 Compare CV from correct tail and inequality with 12, or P(≥ 12) = 0.1608 and > 0.05 or P(< 12) = 0.8392 and < 0.95 Correct method & conclusion, requires like-with-like; CV
	(ii)		M1 A1 M1 A1 B2 B1 B1 B1 B1 M1 A1 A1 M1	3	B(40, 0.225) stated or implied Normal, mean 9 Variance 6.975 or SD 2.641 or 6.975 Standardise with np and \sqrt{npq} , allow npq , no or wrong cc CC and \sqrt{npq} correct, allow from N(3600, 0.225) Answer, in range [0.907, 0.908] Full conditions B2; partial, B1 (assertions OK). Allow npq , allow from e.g. $n = 3600$ Number list, don't need "sequentially" Mention random numbers (not "select numbers randomly") Deal with issue of $\# > 3600$, or "ignore repeats" α "Randomly pick numbers from 0 to 3599": (B1) B0 B1 B(14, 0.7) stated or implied, e.g. N(9.8, 2.94), can be recovered CV 13, or > 12 or {13, 14}, allow = but no other inequalities Exactly correct CR, and supporting prob .0475 or .9525 seen Both, B2. Allow π . One error, B1, but r , x etc: B0 Compare CV from correct tail and inequality with 12, or $P(\ge 12) = 0.1608$ and > 0.05 or $P(< 12) = 0.8392$ and < 0.95 Correct method & conclusion, requires like-with-like; CV method needs ≥ 13 or < 12 ; p method needs ≥ 12 or < 12
	(ii)		M1 A1 M1 A1 B2 B1 B1 B1 B1 B1 B1	3	B(40, 0.225) stated or implied Normal, mean 9 Variance 6.975 or SD 2.641 or 6.975 Standardise with np and \sqrt{npq} , allow npq , no or wrong cc CC and \sqrt{npq} correct, allow from N(3600, 0.225) Answer, in range [0.907, 0.908] Full conditions B2; partial, B1 (assertions OK). Allow npq , allow from e.g. $n = 3600$ Number list, don't need "sequentially" Mention random numbers (not "select numbers randomly") Deal with issue of $\# > 3600$, or "ignore repeats" α "Randomly pick numbers from 0 to 3599": (B1) B0 B1 B(14, 0.7) stated or implied, e.g. N(9.8, 2.94), can be recovered CV 13, or > 12 or {13, 14}, allow = but no other inequalities Exactly correct CR, and supporting prob .0475 or .9525 seen Both, B2. Allow π . One error, B1, but r , x etc: B0 Compare CV from correct tail and inequality with 12, or P(\ge 12) = 0.1608 and > 0.05 or P($<$ 12) = 0.8392 and $<$ 0.95 Correct method & conclusion, requires like-with-like; CV method needs \ge 13 or $<$ 12; p method needs \ge 12 or $<$ 12 Withhold if inconsistent
	(ii)		M1 A1 M1 A1 B2 B1 B1 B1 B1 M1 A1 A1 M1	3	B(40, 0.225) stated or implied Normal, mean 9 Variance 6.975 or SD 2.641 or 6.975 Standardise with np and \sqrt{npq} , allow npq , no or wrong cc CC and \sqrt{npq} correct, allow from N(3600, 0.225) Answer, in range [0.907, 0.908] Full conditions B2; partial, B1 (assertions OK). Allow npq , allow from e.g. $n = 3600$ Number list, don't need "sequentially" Mention random numbers (not "select numbers randomly") Deal with issue of $\# > 3600$, or "ignore repeats" α "Randomly pick numbers from 0 to 3599": (B1) B0 B1 B(14, 0.7) stated or implied, e.g. N(9.8, 2.94), can be recovered CV 13, or > 12 or {13, 14}, allow = but no other inequalities Exactly correct CR, and supporting prob .0475 or .9525 seen Both, B2. Allow π . One error, B1, but r , x etc: B0 Compare CV from correct tail and inequality with 12, or P(\ge 12) = 0.1608 and > 0.05 or P($<$ 12) = 0.8392 and < 0.95 Correct method & conclusion, requires like-with-like; CV method needs \ge 13 or $<$ 12; p method needs \ge 12 or $<$ 12 Withhold if inconsistent Contextualised, acknowledge uncertainty
	(ii)		M1 A1 M1 A1 B2 B1 B1 B1 B1 M1 A1 A1 M1	3	B(40, 0.225) stated or implied Normal, mean 9 Variance 6.975 or SD 2.641 or 6.975 Standardise with np and \sqrt{npq} , allow npq , no or wrong cc CC and \sqrt{npq} correct, allow from N(3600, 0.225) Answer, in range [0.907, 0.908] Full conditions B2; partial, B1 (assertions OK). Allow npq , allow from e.g. $n = 3600$ Number list, don't need "sequentially" Mention random numbers (not "select numbers randomly") Deal with issue of $\# > 3600$, or "ignore repeats" α "Randomly pick numbers from 0 to 3599": (B1) B0 B1 B(14, 0.7) stated or implied, e.g. N(9.8, 2.94), can be recovered CV 13, or > 12 or {13, 14}, allow = but no other inequalities Exactly correct CR, and supporting prob .0475 or .9525 seen Both, B2. Allow π . One error, B1, but r , x etc: B0 Compare CV from correct tail and inequality with 12, $or P(\ge 12) = 0.1608$ and $> 0.05 or P(< 12) = 0.8392$ and < 0.95 Correct method & conclusion, requires like-with-like; CV method needs ≥ 13 or < 12 ; p method needs ≥ 12 or < 12 Withhold if inconsistent Contextualised, acknowledge uncertainty [SR: Normal or Po: (i) M1, (ii) B2 maximum]
	(ii) (ii)		M1 A1 M1 A1 B2 B1 B1 B1 B1 A1 A1 A1 A1 B2 B1	3	B(40, 0.225) stated or implied Normal, mean 9 Variance 6.975 or SD 2.641 or 6.975 Standardise with np and \sqrt{npq} , allow npq , no or wrong cc CC and \sqrt{npq} correct, allow from N(3600, 0.225) Answer, in range [0.907, 0.908] Full conditions B2; partial, B1 (assertions OK). Allow npq , allow from e.g. $n = 3600$ Number list, don't need "sequentially" Mention random numbers (not "select numbers randomly") Deal with issue of $\# > 3600$, or "ignore repeats" α "Randomly pick numbers from 0 to 3599": (B1) B0 B1 B(14, 0.7) stated or implied, e.g. N(9.8, 2.94), can be recovered CV 13, or > 12 or {13, 14}, allow = but no other inequalities Exactly correct CR, and supporting prob .0475 or .9525 seen Both, B2. Allow π . One error, B1, but r , x etc: B0 Compare CV from correct tail and inequality with 12, $or P(\ge 12) = 0.1608$ and $> 0.05 or P(< 12) = 0.8392$ and < 0.95 Correct method & conclusion, requires like-with-like; CV method needs ≥ 13 or < 12 ; p method needs ≥ 12 or < 12 Withhold if inconsistent Contextualised, acknowledge uncertainty [SR: Normal or Po: (i) M1, (ii) B2 maximum] [0.9932 or 0.0068 probably B2 maximum]
	(ii)		M1 A1 M1 A1 B2 B1 B1 B1 B1 A1 A1 A1 A1 B2 B1 M1 A1 B2 B1	3	B(40, 0.225) stated or implied Normal, mean 9 Variance 6.975 or SD 2.641 or 6.975 Standardise with np and \sqrt{npq} , allow npq , no or wrong cc CC and \sqrt{npq} correct, allow from N(3600, 0.225) Answer, in range [0.907, 0.908] Full conditions B2; partial, B1 (assertions OK). Allow npq , allow from e.g. $n = 3600$ Number list, don't need "sequentially" Mention random numbers (not "select numbers randomly") Deal with issue of # > 3600, or "ignore repeats" α "Randomly pick numbers from 0 to 3599": (B1) B0 B1 B(14, 0.7) stated or implied, e.g. N(9.8, 2.94), can be recovered CV 13, or > 12 or {13, 14}, allow = but no other inequalities Exactly correct CR, and supporting prob .0475 or .9525 seen Both, B2. Allow π . One error, B1, but r , x etc: B0 Compare CV from correct tail and inequality with 12, $or P(\ge 12) = 0.1608$ and > 0.05 or $P(< 12) = 0.8392$ and < 0.95 Correct method & conclusion, requires like-with-like; CV method needs ≥ 13 or < 12 ; p method needs ≥ 12 or < 12 Withhold if inconsistent Contextualised, acknowledge uncertainty [SR: Normal or Po: (i) M1, (ii) B2 maximum] [0.9932 or 0.0068 probably B2 maximum] B(14, 0.8) stated or implied, allow from B(14, 0.75)
	(ii) (ii)		M1 A1 M1 A1 B2 B1 B1 B1 B1 A1 A1 A1 A1 B2 B1	3	B(40, 0.225) stated or implied Normal, mean 9 Variance 6.975 or SD 2.641 or 6.975 Standardise with np and \sqrt{npq} , allow npq , no or wrong cc CC and \sqrt{npq} correct, allow from N(3600, 0.225) Answer, in range [0.907, 0.908] Full conditions B2; partial, B1 (assertions OK). Allow npq , allow from e.g. $n = 3600$ Number list, don't need "sequentially" Mention random numbers (not "select numbers randomly") Deal with issue of $\# > 3600$, or "ignore repeats" α "Randomly pick numbers from 0 to 3599": (B1) B0 B1 B(14, 0.7) stated or implied, e.g. N(9.8, 2.94), can be recovered CV 13, or > 12 or {13, 14}, allow = but no other inequalities Exactly correct CR, and supporting prob .0475 or .9525 seen Both, B2. Allow π . One error, B1, but r , x etc: B0 Compare CV from correct tail and inequality with 12, $or P(\ge 12) = 0.1608$ and $> 0.05 or P(< 12) = 0.8392$ and < 0.95 Correct method & conclusion, requires like-with-like; CV method needs ≥ 13 or < 12 ; p method needs ≥ 12 or < 12 Withhold if inconsistent Contextualised, acknowledge uncertainty [SR: Normal or Po: (i) M1, (ii) B2 maximum] [0.9932 or 0.0068 probably B2 maximum]

1		Number all the houses sequentially, or use house numbers Select using random numbers	B1 B1	Any mention of using house numbers, or houses, or other numbering. (List can be implied). Not random numbering unless correct subsequent method (e.g. sort them numerically) Mention random numbers. Not "select numbers randomly". Must be random method. NB: Using 263 × calculator Rand # is biased: B0. But "Ran#(263)" is unbiased.
		Ignore numbers > 263	B1 3	Deal with problem of > 263, <i>or</i> repeats. "Select 20 random numbers between 1 and 263": B1B0
				[If this, need to mention repeats to get last B1] Example: "put numbers/house names (etc) into hat and select": B1B0B0
2	α	$\mu = \frac{48+57}{2} = 52.5$ $\Phi^{-1}(0.9332) = 1.5$ $4.5 \div 1.5 \qquad [\sigma = 3]$	M1 A1 B1 M1	Use symmetry to find μ Obtain $\mu = 52.5$ 1.5 seen, e.g. in $4.5 \div 1.5$ $4.5 \div$ their Φ^{-1} , or $1.645 \div$ their Φ^{-1} , must be +ve, allow cc
	β	$\frac{57 - \mu}{\sigma} = 1.5, \frac{48 - \mu}{\sigma} = -1.5$ Solve simultaneously: $\mu = 52.5 \qquad [\sigma = 3]$	M1 A1 B1 A1	$\frac{57 - \mu}{\sigma} = z$, $\frac{48 - \mu}{\sigma} = -z$ M1 for one, ignoring cc, σ^2 , sign or "1 –" errors, RHS must be Φ^{-1} (not Φ [e.g. 0.8246 or 0.5267] or 0.0668 or 0.9332); A1 for both completely correct except for value of z. $z = 1.5$ or -1.5 in at least one equation Solve without obvious errors, get $\mu = 52.5$, OK from wrong z [NB: 52.5 from both signs wrong: A0]
		$\mu + \frac{4.5}{1.5} \times 1.645$ = 57.4 (35)	M1 B1 A1 7	$\mu + z\sigma$ [Their μ and σ , anything recognisable as z] [expect to see 52.5 + 3×1.645] $z = 1.645$ seen Answer in range [57.4, 57.45], cwo
3		1.5 = 57.4 (35) $CV_{20} - \frac{5}{\sqrt{16}} \times 2.326 = 17.0925$ $P(X > 17.0925)$	M1 B1 A1 M1*	Attempt $20 - 5z/\sqrt{16}$, allow SD \leftrightarrow var errors, allow $20 \pm 5z/\sqrt{16}$, not $20 + 5z/\sqrt{16}$, allow cc 2.326 seen CV a.r.t. 17.1 [NB: not 17.9075] Standardise any attempt at a CV (from $\mu = 20$) with 15 and any SD that would have got first M1,
		$= \Phi\left(\frac{17.0925 - 15}{5/\sqrt{16}}\right) = \Phi(1.674)$ Answer 0.0471	A1 dep M1 A1 7	allow cc $z = 1.674$ seen or implied, e.g. by $p = 0.047$ or 0.953 or 0.9535, allow anything in range [1.67, 1.68] Probability < 0.5, or > 0.5 if their CV is < 15 Answer, a.r.t. 0.047 [including 0.0465 from CV 17.1] <i>Notes:</i> 16 missing: can get M0B1A0M1A0M1A0, or even last two A1's if 16 used then

4	(i)		M1 A1 2	Positive parabola, all above axis. [Don't worry about being pointed unless extreme.] Correct place, touches <i>x</i> -axis, not beyond the limits suggested by their axes, symmetric ends, not too straight
	(ii)	$\frac{3}{16} \int_0^4 x^2 (x-2)^2 \mathrm{d}x$	M1	Attempt $\int x^2 f(x) dx$, limits 0 and 4
			M1	Method for integration, e.g. multiply out [indept] [Or use $\sigma^2 = \frac{3}{16} \int_0^4 (x-2)^4 dx$]
		$= \frac{3}{16} \left[\frac{x^5}{5} - x^4 + 4 \frac{x^3}{3} \right]_0^4 \qquad [= 6 \frac{2}{5}]$	B1	Correct indefinite integral, limits not needed, e.g. parts: $\frac{3}{16} \left[\frac{x^2(x-2)^3}{3} - \frac{x(x-2)^4}{6} + \frac{(x-2)^5}{30} \right]$
		$\sigma^2 = 6\frac{2}{5} - 2^2$	B1	Subtract 2 ²
		$=2\frac{2}{5}$	A1 5	Final answer 2.4, any equivalent exact form, cwo
	(iii)	No because <i>x</i> represents a value taken by the random variable [not	B1 1	Show clear understanding that x is a value of X. Usual misunderstanding is "X is an event that may or may not occur, depending on x". However:
		an event that "occurs"]		SR: Allow B1 for answer clearly indicating that probabilities higher where curve higher, <i>or</i> clearly stating that all probabilities are effectively zero.
				E.g.: "Agree as area under graph [or " $f(x)$ "] increases", or "minimum at 2" B1
				"True only between 0 and 4": B0 unless explanation
5	(i)	H_0 : $p = 0.4$; H_1 : $p < 0.4$	B1B1	Mention of variance etc: 0. "Agree because the graph shows this": B0 Both: B2. Allow π . One error, B1, but x or r : 0. SEE NOTES AT START AND END
3	(1)	B(10, 0.4)	M1	B(10, 0.4) stated or implied, e.g. N(4, 2.4) $[P(=1)] [=0.0404]$ or $P(\ge 1)$ $[=0.9940]$ or $P(<1)$
		2(10, 011)	1.22	[=0.0060] or Poisson or normal, or RH tail for CR, gets no more marks in (i)]
	α	$P(\le 1) = 0.0464$	A1	This probability or 0.9536 only
		< 0.05 so reject H ₀	A1	Explicit comparison with 0.05, or 0.9536 with 0.95
	β	CR is ≤ 1 and compare 1	A1	Comparison needn't be explicit in this method
		Probability of this is 0.0464	A1	This probability needs to be seen
		Reject H ₀ .	M1	Correct method, ✓, comparison and first conclusion
		Significant evidence that % who book with travel agents reduced	A1 √ 7	Interpreted in context, "evidence that" or equiv needed, ✓ on numbers
	(ii)	Can't deduce cause-and-effect	B1 1	Equivalent comment, regardless of answer to (i). Ignore wrong answer if right answer seen "Other factors haven't been considered" B1 "Sample is small", or "test may be wrong" B0

6	(i)	H_0 : $\mu = 24.3$; H_1 : $\mu \neq 24.3$	B1B1		Both: B2. 1 error, B1, but t, x etc: B0 SEE NOTES AT START AND END
	(-)	$\bar{t} = 26.28$	B1		26.28 seen or implied
			M1		Correct formula for biased estimate [= 41.405]
		$\hat{\sigma}^2 = \frac{50}{49} \left[\frac{36602.17}{50} - 26.28^2 \right]$	M1		Multiply by 50/49
		= 42.25			[Single formula: M2, or give M1 if wrong but 49 divisor seen]
			A1		42.25 or 6.5 seen or implied
	α	$z = \frac{26.28 - 24.3}{\sqrt{42.25/50}} = 2.154$	M1		Standardise their \bar{t} with 24.3, $\sqrt{50}$, allow sign/ $\sqrt{/cc}$ errors, their variance
		· · · · · · · · · · · · · · · · · · ·	A1		2.15(4) <i>or p</i> in range [0.0153, 0.0158], <i>not</i> –2.154 unless 0.015(6) subsequently used, <i>not</i> 1-tail
		< 2.576	A1		Compare z with ± 2.576 , or $p > 0.005$, or $2p$ with 0.01, not from $\mu = 26.28$
	β	CV 2 2 2 2 42.25	M1		$24.3 + zs/\sqrt{50}$, allow cc, $\sqrt{\text{errors}}$, allow \pm but not – only. Not $26.28 - zs/\sqrt{50}$
		CV $24.3 + 2.576 \times \sqrt{\frac{42.25}{50}}$	A1		$z = 2.576$, not from $\mu = 26.28$ or 50 omitted, not from 1-tail
		= 26.67 and 26.28 < 26.67	A1		Correct CV, \checkmark on z, and compare sample mean
		Do not reject H_0 . Insufficient evidence of a	M1		Conclusion, \checkmark , needs method, like-with-like, 50, not from $\mu = 26.28$, doesn't need correct z
		change in maximum daily temperature.	A1 🖍	11	Contextualised, recognise uncertainty, \checkmark on numbers
		g			NB: Clear evidence of $\mu = 26.28$: can't get last 4 marks. See exemplars γ and δ
	(ii)	<i>n</i> is large	B1	1	This answer <i>only</i> or " $n >$ number" where number ≥ 29 , <i>not</i> both this and "distribution unknown".
					But "n is large so we can approximate even though we don't know the distribution" is B1
					"Possible as $n = 50$ " B0.
7	(i)	Po(11)	M1		Po(11) stated or clearly implied
		$1 - P(\le r) = 0.854$ gives $r = 14$	M1		Find 1 – 0.146 in tables, e.g. answer 14 [RH tail, e.g. "7", or single value only: max M1M0A0]
	L	so $n = 15$	A1	3	$n = 15$ only, allow " ≥ 15 "
	(ii)	$Po(44) \approx N(44, 44)$	M1		Normal, mean attempted 2.2×20
		$\Phi\left(\frac{37.5-44}{\sqrt{44}}\right) = \Phi(-0.980)$	A1		Both parameters 44, allow var = $\sqrt{44}$ or 44^2
		$\left \begin{array}{c} \Psi \left(\frac{1}{\sqrt{44}} \right) \end{array} \right $	M1		Standardise, their 44, allow cc , \sqrt{errors} , e.g. ans 0.283 or 0.2036 or 0.4411, $not \div 20$
		0.1625	A1	_	$\sqrt{\text{ and cc both correct}}$
	ļ	= 0.1635	A1	5	Answer in range [0.163, 0.164]
	(iii)	B(40, 0.146)	M1		B(40, 0.146) stated or implied, e.g. by Po(5.84)
		\approx N(5.84, 4.98736)	M1		Normal, attempt at mean = np [Poisson etc, or exact binomial (0.22132): no more marks]
		$1 - \Phi\left(\frac{7.5 - 5.84}{\sqrt{4.98736}}\right) = 1 - \Phi(0.7433)$	A1		Both parameters correct [Poisson(5.84) \rightarrow N(5.84, 5.84): M0A0]
		$\sqrt{4.98736}$	M1		Standardise with their np and npq , allow cc, $\sqrt{\text{errors}}$, e.g. ans 0.3838 or 0.302 or 0.370
			A1 A1	6	cc and √ both correct
		= 0.2286	AI	U	Answer in range [0.228, 0.229]
					SC: $B(40, 0.854) \approx N(34.16, 4.98736)$: can get full marks, but if $R > 7$ used, max 3

8	(a) (i)	Several calls may all refer to the same incident	B1	1	Any reason showing correct understanding of "independent", but not just "singly" or equivalent. Ignore extra condition(s) unless clearly wrong in which case B0. Not "fires" independent. "Fires might spread" B0
	(ii)	Calls occur at constant average rate	B1		This condition only, allow "average" omitted, <i>not</i> "constant <i>probability</i> ", <i>not</i> "random" unless clearly correct interpretation follows. No third condition unless fully justified by subsequent answer. Need contextualising <i>somewhere</i> in this part.
		E.g. No, because incidents are	B1	2	Any comment (with either yes or no) showing correct understanding, but
		less/more common at night			"Fires might not occur at constant average rate" is not enough (gets B1 B0) "Different rates at different times of year": B0
	(b) (i)	$1 - \left(1 + 2.74 + \frac{2.74^2}{2!}\right)e^{-2.74}$	M1 M1		Formula for any one correct Poisson probability for $r \ge 1$ [1 – (0.06457 + 0.17692 + 0.24238)] Correct overall formula, allow 1 error (e.g. 1 term extra or missing or no "1 –")
		= 0.516(1)	A1	3	Answer, a.r.t. 0.516 [Interpolation (0.51604) or no working: B0 or B3]
	(ii)	$= 0.516(1)$ $(e^{-2} \times 1)(e^{-3} \times 3) + (e^{-2} \times 2)(e^{-3} \times 1)$	M1		Two correct terms multiplied, or all 4 bits seen, e.g. $.1353 \times .1494 + .2707 \times .4979 = 0.0202 + 0.0135$
			A1		Correct expression
		= 0.0337	A1	3	Answer, a.r.t. 0.0337
	(iii)	$(e^{-\lambda} \times 1)(e^{-\mu} \times \mu) + (e^{-\lambda} \times \lambda)(e^{-\mu} \times 1)$	M1		Correct algebraic expression [Ignore 1! throughout]
		$=e^{-\lambda}\times e^{-\mu}(\lambda+\mu)$	M1		Take out factor of $e^{-\lambda} \times e^{-\mu}$ or equivalent essential step
		$=e^{-(\lambda+\mu)}(\lambda+\mu)$	A1		Correctly obtain exact answer [allow $e^{-\lambda - \mu}(\lambda + \mu)$]
		= P(T=1)	A1	4	All correct, and write down correct formula for $P(T = 1)$ [NB: T needed] Allow working towards middle
					SR: $\lambda = 2$, $\mu = 3$: Can get M1M1A1A0 if e^{-2} and e^{-3} retained. As soon as decimal approximations seen,
					no more marks.

Specific examples for question 5(i)

α	H_0 : $p = 0.4$; H_1 : $p < 0.4$	B1B1		δ	H_0 : $p = 0.4$; H_1 : $p < 0.4$	B1B1	
	N(4, 2.4)	M1			B(10, 0.4)	M1	
	$P(\le 1) = 0.0533$	A0			$P(\ge 1) = 0.9939$	A0	
	> 0.05				> 0.95	A0	
	So do not reject H ₀ . Insufficient evidence that % who	M0			So reject H ₀	M0	
	book with travel agents reduced		3		Insufficient evidence that % who book with travel agents	A0	3
]			reduced		
β	H_0 : $p = 0.4$; H_1 : $p < 0.4$	B1B1		3	H_0 : $p = 0.4$; H_1 : $p \neq 0.4$ [two-tailed]	B1B0	
	B(10, 0.4)	M1			B(10, 0.4)	M1	
	" $P(= 1) = 0.0464$ " [allow this]	A1			" $P(=1) = 0.0464$ "	A1	
	< 0.05	A1			> 0.025	A0	
	So reject H ₀	M1			So do not reject H ₀	M1	
	Insufficient evidence that % who book with travel	A0	6		Insufficient evidence that % who book with travel agents	A1	5
	agents reduced]			reduced		
γ	H_0 : $p = 0.4$; H_1 : $p < 0.4$	B1B1		ζ	H_0 : $p = 0.4$; H_1 : $p < 0.4$	B1B1	
	B(10, 0.4)	M1			B(10, 0.4)	M1	
	P(=1) = 0.0404 [look out for this]	A0			P(=1) = 0.0464	A1	
	< 0.05 so reject H_0	A0			[no explicit comparison]	A0	
	Significant evidence that % who book with travel	M0			So reject H ₀ . Significant evidence that % who book with	M1	
	agents reduced	A0	3		travel agents reduced	A1	6

Specific examples for question 6(i)

α	H ₀ : $\bar{t} = 24.3$; H ₁ : $\bar{t} \neq 24.3$ [wrong symbol] \bar{t} not seen explicitly [implied by] $\hat{\sigma}^2 = \left[\frac{36602.17}{50} - 26.28^2 \right] = 41.405 \text{ [biased est]}$ $z = \frac{26.28 - 24.3}{\sqrt{41.405/50}} = 2.1758$ < 2.576 Accept H ₀ , maximum temp unchanged [over-assertive, otherwise A1]	B0B0 B1 M1 M0 A0 M1 A0 A1 M1A0	5	δ	$H_0 = 24.3$; $H_1 \neq 24.3$ [missing symbol] $\bar{t} = 26.28$ $\hat{\sigma}^2 = = 42.25$ $z = \frac{24.3 - 26.28}{\sqrt{42.25/50}} = -2.154$ [loses 1] > -2.576 Insufficient evidence to reject H_0 . No change in maximum daily temperature. [OK]	B1 or B1 M1M A1 M1 A0 A1 M1 A1	
β	H ₀ : $\mu = 26.28$; H ₁ : $\mu \neq 26.28$ [WRONG] $ \bar{t} = 24.3 \text{ [explicitly]} $ $ \hat{\sigma}^2 = \dots = 42.25 $ $ z = \frac{26.28 - 24.3}{\sqrt{42.25/50}} = 2.154 \text{ [allow this - BOD]} $ $ < 2.576 $ Accept H ₀ . Insufficient evidence of a change in maximum daily temperature.	B0B0 B0 M1M1 A1 M1 A1 A1 A1	8	ε	H ₀ : μ = 24.3; H ₁ : μ > 24.3 [one-tail] \bar{t} = 26.28 $\hat{\sigma}^2$ = = 42.25 $z = \frac{26.28 - 24.3}{\sqrt{42.25/50}} = 2.154$ < 2.326 Accept H ₀ . Insufficient evidence of a change in maximum daily temperature.	B1B0 B1 M1M A1 M1 A1 A0 M1 A1	
γ	H ₀ : $\mu = 26.28$; H ₁ : $\mu \neq 26.28$ [WRONG] \bar{t} not seen separately [implied] $\hat{\sigma}^2 = = 42.25$ $z = \frac{24.3 - 26.28}{\sqrt{42.25/50}} = -2.154$ [DON'T allow this] $ > -2.576$ Accept H ₀ . Insufficient evidence of a change in maximum daily temperature.	B0B0 B1 M1M1 A1 M1 A0 A0 M0 A0	5	η	$z = \frac{24.3 - 26.28}{\sqrt{42.25/50}} = -2.154 but then$ So $p = 0.0156 > 0.005 [OK here]$ Accept H ₀ . Insufficient evidence of a change in maximum daily temperature. $z = \frac{26.28 - 24.3}{\sqrt{42.25}} = 0.3046 \left[no \sqrt{50} \right]$ < 2.576 Accept H ₀ . Insufficient evidence of a change in maximum daily temperature.	M1 A1 A1 M1 A1 M0 A0 A0 M0 A0	(11)

The following guidance notes are provided.

1 Standardisation using the normal distribution.

- (a) In *stating* parameters of normal distributions, don't worry about the difference between σ and σ^2 , so allow N(9, 16) or N(9, 4²) or N(9, 4). When *calculating* $\frac{\overline{x} \mu}{\sigma / \sqrt{n}}$, the following mistakes are accuracy mistakes and not method mistakes so can generally score M1A0: confusion of σ with σ^2 or $\sqrt{\sigma}$; n versus \sqrt{n} ; wrong or no continuity corrections.
- (b) Use of $\frac{\mu \overline{x}}{\sigma}$ instead of $\frac{\overline{x} \mu}{\sigma}$ is not penalised if it leads to a correct probability, but if the candidate is using a z-value in a hypothesis test, an answer of z = -2.15 when it ought to be 2.15 is an accuracy error and loses the relevant A1. When finding μ or σ^2 from probabilities, some candidates are taught to use $\frac{\mu \overline{x}}{\sigma}$ whenever $\mu > \overline{x}$; provided the signs are consistent this gains full marks.
- Some candidates are taught to calculate, for example, P(X > 5) from N(9, 16) by calculating instead P(X < 13). This is a correct method, though it looks very strange the first time you see it.
- (d) When calculating normal approximations to binomial or Poisson, use of the wrong, or no, continuity correction generally loses the last two marks: A0 A0.

Conclusions to hypothesis tests. There are generally 2 marks for these.

- (a) In order to gain M1, candidates must not only say the correct "Reject/do not reject H_0 " but have done the whole test in essence correctly apart from numerical errors. In other words, they must have compared their p value with a critical p value or other "like-with-like" (e.g. not say 0.0234 with 1.96), using the correct tail (e.g. not –2.61 with +2.576), and the working should in general have accuracy errors only. Thus miscalculation of z, comparison with 1.645 instead of 1.96, or using n instead of \sqrt{n} , or omission of a continuity correction when it is necessary, are all accuracy errors and the candidate can still gain the last M1 A1. Omission of \sqrt{n} where it is necessary is a method mistake and so gets M0. In hypothesis tests using discrete distributions, use of $P(\le 12)$ or P(> 12) or P(= 12) when it should be $P(\ge 12)$ is a method mistake and usually loses all the final marks in a question.
- (b) The A1 mark is for interpreting the answer *in the context of the question*, and *without over-assertiveness*. Thus "The mean number of applicants has increased" is over-assertive and gets A0 (although we allow "There is sufficient evidence to reject H₀. The mean number of applicants has increased", A1), and "There is sufficient evidence that the mean has increased" is not contextualised, so that too is A0.
- (c) A wrong statement such as -2.61 > -2.576 generally gets B0 for comparison but can get the subsequent M1A1. Otherwise:
- (d) If there is a self-contradiction, award M1 only if "Reject/Accept H_0 " is consistent with their comparison. Thus if, say, we had $z = 2.61 > z_{crit} = 2.576$: "Reject H_0 , there is insufficient evidence that the mean number of ... has changed" is M1A0. but "Do not reject H_0 , there is evidence that the mean number of ... has changed" is M0A0.
- (e) We don't usually worry about differences between "Reject H_0 " and "Accept H_1 " etc.

Question	Answer	Marks	Guidance	
1	$\hat{\mu} = \overline{x} = 3.65$	B1	3.65 stated explicitly, <i>not</i> isw	
	$S^{2} = \frac{739.625}{50} - 3.65^{2} = 1.47$ $\hat{\sigma}^{2} = \frac{50}{49} S^{2}$	M1	Correct formula for biased estimate used, award if 1.47 seen	
	$\hat{\sigma}^2 = \frac{50}{49} S^2$	M1	n/(n-1) factor used, or if wrong single formula, M1 if $n-1$ divisor anywhere. Correct single formula: M2	
	= 1.5	A1	Answer 1.5 or exact equivalent only	
		[4]	, ,	
2	Po(4.2)	M1	Po(np) stated or implied	
	$e^{-4.2} \frac{4.2^5}{5!} = 0.1633$	M1	Poisson formula or tables, allow for .1944, .1144, .16(0), .1663;	
	5! n large, p small	A1 B1	Answer, a.r.t. 0.163	
	n range, p small $or n > 50$, $np < 5$	B1	One condition Needs Poisson. If inequalities The other condition used, must be these, but allow $p < 0.1$ if	
	or n > 50, np < 5	D1	and nothing extraneous $n > 50$ already stated	
		[5]	and nothing extraneous " > 50 arready stated	
3	$\mu = 60$	B1	$\mu = 60$ stated or implied, can be written down	
	$\frac{63.8 - \mu}{\sigma} = \Phi^{-1}(0.9) = 1.282$	M1	Standardise 63.8 or 56.2 with σ , allow $$ or cc errors, equate to	
	σ σ $(0.5)-1.202$	B1	Φ^{-1}	
			1.282 (or 1.281 or 1.28) seen	
	$\sigma = 2.96(4)$	A1	σ , in range [2.96, 2.97], can be implied by what follows, <i>not</i> σ^2	
	$1 - \Phi\left(\frac{65 - 60}{2.964}\right) = 1 - \Phi\left(1.687\right)$	M1	Standardise 65 with their μ and σ , allow $$ or cc errors	
	= 0.0458	A1	Final answer, a.r.t. 0.046, c.w.o.	
		[6]		
4	N(2.5, 0.025)	M1	Normal (any – can be implied by standardisation)	
	$\Phi\left(\frac{2.59 - 2.5}{\sqrt{0.025}}\right) = \Phi\left(0.5692\right)$	A1	Mean 2.5	
	$\left[\begin{array}{c} \sqrt{0.025} \end{array}\right]$	A1	Variance or SD 1.25 ÷ 50 stated or used	
	0.7174	A1	Standardise 2.59 or 2.61, with $\sqrt{(1.25/50)}$	
	= 0.7154	A1	Answer in range [0.715, 0.716] or [0.736, 0.737] from 0.632	
		[5]		

5	(i)	(a)	$^{6}C_{4} \cdot 0.6^{4} \cdot 0.4^{2}$	M1	This formula, allow $0.6 \leftrightarrow 0.4$, or tables used correctly
	(1)	(4)	= 0.311 [04] [= 972/3125]	A1	Final answer, exact fraction or a.r.t. 0.311
			= 0.011[0+] [= 7/2/3123]	[2]	Tind diswer, exact fraction of d.r.t. 0.511
_	(')	(1.)	12 g 8 g 20 g 5 40 g 20 g 20 g 20		
5	(i)	(b)	$^{12}C_4 \times {}^8C_2 \div {}^{20}C_6 [= 495 \times 28 \div 38760]$	M1	Product of two ${}^{n}C_{r}$ divided by ${}^{n}C_{r}$, or ${}^{6}C_{2}\left(\frac{12}{20} \times \frac{11}{19} \times \frac{10}{18} \times \frac{9}{17} \times \frac{8}{16} \times \frac{7}{15}\right)$
			= 0.3576 [= 231/646]	A1	Final answer, exact fraction or a.r.t. 0.358
				[2]	
5	(ii)		$B(60, 0.6) \approx N(36, 14.4)$	B1 B1	$N(36,)$ or $N(24,)$; 14.4 or $\sqrt{14.4}$, both from $B(60, 0.6)$
				M1	Standardise with their np and \sqrt{npq} (or npq)
			$1 - \Phi\left(\frac{29.5 - 36}{\sqrt{14.4}}\right) = 1 - \Phi\left(-1.713\right)$	A1	Both their \sqrt{npq} and cc correct [30.5 if using 24]
			= 0.9567	A1	Answer in range [0.956, 0.957]
			No effect as population is large or yes but not by much	B1	Need all of one of these [not "sample"], or equiv, nothing wrong
				[6]	
6			$H_0: \lambda = 6.3 \ [or \ \mu]$	B2	Both: B2. One error e.g. " $H_0 = 6.3$ ", or " H_1 : $\lambda \neq 6.3$ ", B1,
			$H_1: \lambda < 6.3 [or \mu]$		but x , r etc: 0
			$P(\le 2) = e^{-6.3}(1 + 6.3 + 19.845)$	M1	Correct formula for at least 2 terms, can be implied by 0.0134
				A1	Fully correct formula for ≤ 2 , can be implied by answer
			= 0.0498	A1	Answer, a.r.t. 0.0498
					SR tables: B2 if a.r.t. 0.0506, else 0 [then can get B1M1A1]
			< 0.05	B1	Explicitly state < 0.05 , not from H ₁ : $\lambda \neq 6.3$, or CR ≤ 2 and
					explicitly state 2 in CR, needs essentially correct distribution
				3.41	Not needed for final M1A1
			Therefore reject H ₀ .	M1	Correct method, comparison and first conclusion
			Significant evidence that average number of pips has been reduced.	A1√	Interpreted in context acknowledging uncertainty somewhere, √ on
			Teduced.		p etc SR: P(< 2) [0.0134] or Po(= 2) [0.0364]: B2 M1 A0 B0 M0
					but <i>allow</i> "Po(= 2) = 0.0498" etc
					SR: Normal: B2 M1 A0 B0
				[8]	22 111 110 20

7	(i)	(a)	$\int_{1}^{4} \frac{1}{2\sqrt{x}} x dx = \left[\frac{1}{3} x^{\frac{3}{2}}\right]_{1}^{4} = 7/3 \text{ or } 2.333$	M1 B1 A1 [3]	Attempt to integrate $xf(x)$, correct limits Correct indefinite integral, a.e.f. Final answer 7/3 or equiv or a.r.t. 2.33		
7	(i)	(b)	$\int_{1}^{m} \frac{1}{2\sqrt{x}} dx = 0.5$ $\sqrt{m - 1} = 0.5$ $m = 2.25$	M1 A1 A1 [3]	This or complementary integral, limits needed [not "-∞"], equated to 0.5, needn't attempt to evaluate This equation, any equivalent simplified form Answer 9/4 or exact equivalent only		
7	(ii)		$1.5 \int_{1}^{\infty} y^{-2.5} y^{2} dx = 1.5 \left[\frac{y^{0.5}}{0.5} \right]_{1}^{\infty}$ Upper limit gives infinite answer	M1 B1 A1 [3]	Attempt to integrate $y^2 f(y)$, limits 1 and ∞ , allow any letter Correct indefinite integral $[=3\sqrt{y}]$, ignore μ $[=3]$ Give correct reason, c.w.o. apart from constant, allow "= ∞ "		
8	(i)		Location of bacteria must be independent – the position of one does not affect that of another	M1 A1	"Found independently": M1. Allow "are independent", "singly". Context needed somewhere in answer. Correct explanation, not just of "singly", e.g. not "must not group together". No extra or wrong conditions, but allow both "singly" and "independently". Right explanation, not "independent": M1A0		
			Number in one volume occurs randomly. β Bacteria are distributed independently from one another. The Position of each bacterium must be independent of the position groups, they must not be influenced by the surrounding bacteria need to be independent. The results of one cannot be Bacteria must occur independently, so the state of one bacteria	ring in a particular volume is independent of the number in another interval of the same volume. curs randomly. M1A0 dependently from one another. This means that they cannot be in groups. M1A0 must be independent of the position of other bacteria. Not well modelled by Poisson if they tended to form influenced by the surrounding bacteria or certain conditions (e,g, heat). M1A0 endent. The results of one cannot influence the result of another. M1A0 endently, so the state of one bacterium has no effect on any other bacteria. M1A0 st be independent, they cannot affect the probability of another bacterium occurring. M1A1			
			η Bacteria must occur independently, so if one occurs it can't	cause more	e to appear. M1A1		

8	(ii)	$1 - P(\le 4) [= 1 - 0.8912]$	M1	Allow M1 for 1 – .9580 [= 0.042] or wrong λ . 0.8912 etc: M0
		= 0.1088	A1	0.109 or 0.1088 or better
			[2]	
8	(iii)	Po(0.925)	M1	Po(0.925) stated or implied [37/40]
		$e^{-0.925} \frac{0.925^2}{} = 0.169(64)$	M1	Correct Po formula for $r = 2$, any λ , can be implied by:
		$e^{-0.925} \frac{0.925^2}{2!} = 0.169(64)$	A1	Answer 0.17(0) or 0.1696 or better
			[3]	
8	(iv)	Po(250)	B1	Po(250) stated or implied
		$\lambda > 15$ or λ large [or μ]	B1	Either of these
		N(250, 250)	M1*	N, mean their $100 \times 2.5 \dots$
			A1√	variance (or SD) their mean
		(239.5-250)	Dep*M1	Standardise, allow wrong or no cc and/or no $$ or σ^2 , needs A1
		$\Phi\left(\frac{239.5 - 250}{\sqrt{250}}\right) = 1 - \Phi(0.664)$	A1√	Continuity correction and √ correct
		= 0.2533	A1	Final answer a.r.t. 0.253, c.w.o.
			[7]	
9	(i)	H_0 : $\mu = 8$; H_1 : $\mu \neq 8$	B2	Both, B2. One error, B1, allow $x/r/t$ here, but not \overline{H}
		where μ is the population mean amount of sleep obtained by	B1	Need "population" or equivalent, but allow "average amount of
		Year 11 pupils		sleep obtained by Year 11 pupils". Allow " μ is population mean".
			[3]	
9	(ii)	$\Phi\left(\frac{0.28}{0.87/\sqrt{64}}\right) = \Phi(2.575)$	M1	Standardise, with \sqrt{n} or n , allow cc, \sqrt{n} errors
		$\left(\frac{1}{0.87/\sqrt{64}}\right)$	A1	z = 2.575 or 2.57 or 2.58, can be implied by, e.g., 0.005 or 0.995
		$2 \times (1 - above)$	M1	Correct handling of tails
		= 0.01 or 1%	A1	Answer 0.01 or 1% correct to 2 SF, c.w.o.
			[4]	
9	(iii)	Rejecting H_0 when $\mu = 8$	B1	Or equivalent, some mention of context, not "probability of"
			[1]	
9	(iv)	$\Phi(8.28-7.9)$ $\Phi(7.72-7.9)$	M1	Find P(between 7.72 and 8.28 μ = 7.9), allow 1 – 2×P(1 tail)
		$\Phi\left(\frac{8.28-7.9}{0.87/\sqrt{64}}\right) - \Phi\left(\frac{7.72-7.9}{0.87/\sqrt{64}}\right)$		(need attempt to find correct region, <i>not</i> isw – i.e., <i>not</i> ans 0.049)
		$= \Phi(3.494) - \Phi(-1.655)$ [= 0.99976 - (1 - 0.951) or 1]	M1	Correct handling of tails, needn't attempt to evaluate, needs 64
		= 0.951	A1	Final answer, a.r.t. 0.951.
			[3]	SR: One tail only used: M1M0A0. 0.951 from no working: B2

	Questic	on	Answer	Marks	Guidan	nce
1			Number CDs (sequentially) Select using random numbers	B1 B1 [2]	List needn't be stated, but must mention CDs. Not "select numbers randomly". Hat, etc: B1B0 Systematic: 66 or 67 B1, random start B1	Assume sequential unless stated otherwise. If "number CDs randomly", B1 max unless "sort by number". Stratified: apply scheme
2	(i)		$\left(\frac{71.2 - 72.0}{\sigma / \sqrt{40}}\right) = -0.3853$ $[\sigma = 13.13,] \text{ Var}(V) = 172.4$	M1 A1 B1 A1	Standardise with Φ^{-1} & $\sqrt{40}$, allow cc, $\sqrt{\text{errors eg }\sigma^2}$ Square roots and sign correct, no cc, no "1 –" error z in range (\pm) [0.385, 0.386] seen <i>Final</i> answer in range [172, 173], or 13.1 ² cwo	RHS must be Φ^{-1} , i.e. <i>not</i> 0.7411 or 0.2589 or 0.6368 or 0.35. "1 -" error or ×40/39: M1A0 [0.674 may be from "1 – 0.35 = 0.75"] Needs variance, not SD NB: Look out for –13.1 \rightarrow 172, M1A0B1A0
2	(ii)		Parent distribution not known <i>n</i> is large	B1 B1 [2]	Or clear equivalent. Not "sample not normal" Or clear equiv, e.g. sample size > 30. Extras: max 1 " n large, $n > n_0$ ": B1 if $n_0 \ge 30$.	Don't bother about order of these statements. If numerical must be 30. Ignore "continuous".
3		α:	H ₀ : $p = \frac{1}{3}$ [or 0.33 or better] H ₁ : $p \neq \frac{1}{3}$ [or 0.33 or better] B(12, $\frac{1}{3}$) stated or implied P(≥ 7) = 1 - 0.9336 = 0.0664 > 0.025	B2 M1 A1 A1	Allow π , but $\mu = \frac{1}{3}$ etc B1. Any other letter, B0 One-tailed, or no symbol, B1 max B(12, $\frac{1}{3}$) stated or implied, allow for N(4,8/3), Po(4) Probability in range [0.066, 0.067] Explicit comparison with 0.025, or $2p$ with 0.05	Not $\mu = 4$ (if in doubt, consult) If N used, or $P(\le 7)$ or $P(= 7)$, no more marks 1-tailed: A0 here regardless of value
		β:	CR is ≥ 8 , 7 not in CR Probability is 0.0188 Do not reject H ₀ . Insufficient evidence that statement is false.	A1 A1 M1 A1√ [7]	Needs explicit comparison of 7 with CV Must be $\geq 7,0.019$ or 0.0188 or better, allow 0.9812 Needs correct method, including like-with-like, correct tail, ≥ 7 (or ≤ 6). If CV, needs right tail A1 needs "evidence" or equivalent. "Statement" is enough context here	Need to be clear that CR is being used – look for comparison with 7. See also ζ . Allow from 1-tail. 0.9812 or 0.0188 or 0.0476: M0 unless " \geq 7" stated or clearly using β . $$ on their p/CR . Withhold if answer refers only to p .

	Question	Answer	Marks	Guida	nce
4	(i)	Crystals must occur independently of one another	B1	Allow interpreted, or "randomly" but nothing else. Must be contextualised; no other answers included.	Ignore "singly" (meaningless in this context). But allow "probability is independent"
4	(ii)	$e^{-3.2} \frac{3.2^5}{5!} = \mathbf{0.114(0)}$	[1] M1 A1 [2]	Formula, or .0608 or .1781 or .1075 or .1203 (tables) Answer a.r.t. 0.114, implies both marks	
4	(iii)	Po(2.368) $1-e^{-2.368}(1+2.368+\frac{2.368^2}{2})$ = 0.4219	M1 M1 A1 [3]	Po(0.74 × 3.2) stated or implied $1 - \text{correct Poisson terms}$, their λ , allow $\pm 1 \text{ term}$ Answer, a.r.t. 0.422, implies all 3 marks	Allow for 0.75×3.2 etc, e.g. Po(2.4) Don't allow second M1 from λ in tables, e.g. if MR, treat as E-1. If no working: don't give M1A0
4	(iv) $Po(32) \approx N(32, 32)$ $1 - \Phi\left(\frac{35.5 - 32}{\sqrt{32}}\right)$ $= 1 - \Phi(.619) = 0.2681$		M1 A1 M1 A1 A1 [5]	$N(\lambda, \lambda)$ stated or implied, allow $\sqrt{\lambda}$ or λ^2 for var $N(32, 32)$, allow $\sqrt{32}$ or 32^2 for var Standardise with λ and $\sqrt{\lambda}$ or λ , allow cc errors but not \sqrt{n} ; both cc and $\sqrt{\lambda}$ correct Final answer, a.r.t. 0.268	Needs $\lambda \ge 15$ Can get (M0A0) M1A1 from $\lambda < 15$ Typically, no cc $\rightarrow 0.2203$, or $32 \rightarrow 0.4565$, $3/5$ (but needs evidence, not just answer)

Q	uestio	on	Answer	Marks	Guida	nce
5			H_0 : $\mu = 6.1$	B2	Both: B2. One error, B1, but \overline{x} , x , r etc: 0. 6.2: B0	
	$\begin{aligned} \mathbf{H}_1: \ \mu \neq 6.1 \\ \hat{\mu} = \overline{x} = 6.2 \\ \hat{\sigma}^2 = \frac{80}{79} \left(\frac{3126}{80} - 6.2^2 \right) = 0.643 \end{aligned}$		B1 M1 M1	6.2 [31/5] seen somewhere (other than hypotheses) Correct formula for biased estimate [0.635 or 127/200] Divide by 79 somewhere	If single formula used, M2 or, if wrong, allow M1 for divisor 79 anywhere	
		α:	$z = \frac{6.2 - 6.1}{\sqrt{0.643/80}} = 1.115$	A1 M1	Variance estimate, a.r.t. 0.643, can be implied Standardise their 6.2 with reasonable variance attempt, needs 80, allow cc	[254/395 leading to 127/15800] 80 needed, otherwise M0 and no more marks If clearly $\mu = 6.2$ used, no more marks
			$[1 - \Phi(1.115) = 0.1325 > 0.05]$ $1.115 < 1.645$	A1 A1	$z \in [1.11, 1.12] \text{ (not -) or } p \in [0.1323, 0.1333]$ Compare z with 1.645 (allow -1.645 if $z < 0$) or $p (< 0.5)$ with 0.05	A1 uses number used for comparison Withhold if inequality incorrect or if 1-tailed Must be consistent signs/tails and like-with- like
		β:	CV $6.1+1.645 \times \sqrt{\frac{0.643}{80}}$ = 6.247 and 6.2 < 6.247	M1 A1 A1√	6.1 + $z\sqrt{(\sigma^2/80)}$, allow \pm , $\sqrt{\text{errors}}$ CV, a.r.t. 6.25, needs $z = 1.645$, allow biased $\hat{\sigma}^2$ Compare 6.2 with CV from + sign, $\sqrt{\text{on } z}$ (but not σ)	Allow 6.2 – (or \pm) but no more marks afterwards If no 79 earlier but used here, recovers M1A1 E.g. $1.96 \rightarrow 6.276$ or $1.282 \rightarrow 6.215$ [gets M1A0A1
			Do not reject H ₀ . Insufficient evidence that pH value is not 6.1	M1 A1√ [11]	Needs essentially correct method and comparison, needs 80 but no need for correct variance Needs context and "evidence" or equivalent, ft on their <i>z/p/CV</i>	First conclusion wrong: M0A0 even if second correct. "1.115 > 1.645 so do not reject H ₀ " etc: (A0)M1A1
Note	Notes:		Biased estimate used: typically B2B1 M1M0A0 M1A0A1 M1A [total 8]		\overline{x} and μ interchanged: allow final M1A1 if anywhere M0A0. This would typically get B0B0B1 M1M1A1 I [total 5]	

	Questic	n	Ans	swer	Marks	Guidar	nce
6	(i)		B(32, 0.4)		B1	B(32, 0.4) stated or implied, e.g. by Po(12.8)	Poisson [0.09888], or exact [0.046269]:B1max
			$\approx N(12.8, 7.68)$)	M1A1	N(their attempt at np , npq); N(12.8, 7.68)	SC: B(12.8, 7.68/32): M1A0
			Valid as 12.8 a		B1	Or " <i>n</i> large and <i>p</i> close to 0.5". Not npq or 7.68 > 5.	Allow np and nq both asserted > 5
			(17.5-12.8)		M1	Standardise, their <i>np</i> , <i>npq</i> , allow wrong/no cc	÷32: M0
			$1 - \Phi\left(\frac{17.5 - 12.8}{\sqrt{7.68}}\right)$			or no √	
			(v 7.00		A1	17.5 and \sqrt{npq} correct	
			$[=1-\Phi(1.696)]$	= 0.0449	A1	Answer, a.r.t. 0.045	
				, <u>-</u>	[7]		
6	(ii)		B(90, 0.01)		B1	B(90, 0.01) stated or implied.	Exact [0.049003]: B1 max.
			$\approx Po(0.9)$		M1	Po(their attempt at <i>np</i>)	Don't treat $p = 0.1$ as MR. If $np > 5$, M0M0
			$_{-0.9} 0.9^3$	0.0404	M1	Correct formula or use of tables, e.g. 0.1646 or	No working, wrong answer \Rightarrow M0A0, but
			$e^{-0.9} \frac{0.9^3}{3!} = 0$	U.U494		0.0112	right answer \Rightarrow M1A1 provided clearly Po
					A1	Final answer in range [0.049, 0.05) [i.e., not 0.05]	SC: B(90, 0.1), N(9, 8.1), [0.015, 0.016]
							cwo B2
					[4]		
7	(i)				M1	Positive parabola (only), through 0, nothing below	k < 0: M0 even if $k > 0$ as well.
			1 ,			x-axis	
				Values of X	A1	Clear truncation at ends	Don't need any scales, vertical line at a etc.
				close to a are			Can be vertical at A, needn't be horizontal at
				more likely	-		0.
			'	than those	B1	Withhold if concept misunderstood. Need to have	E.g.: "More likely to <i>occur</i> for <i>x</i> close to <i>a</i> ":
				close to 0		probability of <i>values</i> (not of <i>occurring</i>); not just	B0.
					[2]	shape. Allow for U-shape but nothing else	Ignore extra comments like "exponential"
7	(ii)	(a)	• 0	3	[3] M1	Attempt to integrate kx^2 , ignore limits	Must attempt integration
'	(11)	(a)	$\int_0^a kx^2 dx = 1 \Rightarrow k$	$k = \frac{3}{3}$	A1	Correct limits and equate to 1	Widst attempt integration
			. 2	a	M1	Attempt to integrate kx^3 , ignore limits	Must attempt integration
		(ii) $\begin{cases} a \\ \int_0^a kx^2 dx = 1 \Rightarrow k = \frac{3}{a^3} \\ \int_0^a \frac{3}{a^3} x^3 dx = \frac{9}{2} \Rightarrow a = 6 \end{cases}$		A1	Correct limits and equate to 4.5	Must attempt integration Don't need <i>k</i> in terms of <i>a</i> here	
			$\int_0^1 a^3$ 2			_	
					A1	One correct equation connecting k and a , can be	$ka^3 = 3$ or $ka^4 = 18$, a.e. simplified form
					A 1	implied	No montes explicitly for k [- 1/72 or
					A1	Correctly obtain $a = 6$ only	No marks explicitly for $k = 1/72$ or
					[6]		0.01388]
					լսյ		

C	uestic	n	Answer	Marks	Guidan	ice
7	(ii)	(b)	$\int_{0}^{6} \frac{1}{72} x^{4} dx \qquad [= \frac{108}{5}]$ $21.6 - 4.5^{2} = 1.35$	M1 A1 A1 [3]	Attempt to integrate kx^4 , their a , k , can be algebraic Subtract 4.5^2 (given in question) 1.35 or exact equivalent only	Must attempt integration; limits 0, a Somewhere [=27/20]
8	(i)		$30 + 1.645 \times \frac{8}{\sqrt{18}} = 33.102$ so CR is $\overline{X} > 33.1$	M1 A1 A1 A1√	$30 + z \times 8/\sqrt{18}$, allow $\sqrt{\text{errors}}$, cc 1.645, requires + only 33.1 a.r.t. 33.10 ≥ their RH CV $\sqrt{\text{ellow}}$, allow ≤ their LH CV <i>as well</i> , allow >, allow no letter or <i>X</i> but no other letter	Allow \pm but not – only. No 18: 0 in this part. Don't allow "accept if \leq 33.1, reject if $>$ 33.1" Inequality required in final line
	(ii)		Type I [error]	B1 [1]	Nothing else unless it's just an amplification. Allow "Type 1"	
	(iii)		B(20, 0.05): $P(\ge 4) = 0.0159$ so unlikely that $\mu = 30$	M1 A1 A1√	B(20, 0.05) stated or implied. Not B(20, 1/5) Probability, a.r.t. 0.016 Justified conclusion, e.g. "I think μ = 30 as not less than 0.01". FT on their p .	No reason: A0. Not over-assertive. But "I think $\mu = 30$ as probability is small" is A0.
	(iv)		$\frac{33.1 - \mu}{8 / \sqrt{18}} = -0.253$	M1 A1 A1	Needs Φ^{-1} , their CV, SD right or same as in (i), allow cc Signs correct, can be implied by answer > their CV z in range (±)[0.25, 0.26]	Not 30. Allow omission of √18 only if omitted in (i). "1 –" errors: can get M1A0A1
			$\mu = 33.58$	A1 [4]	Final answer $33.55 \le \mu \le 33.60$, 4 SF needed.	Typically 32.62 probably gets 2/4.

Q	Questic	on	Answer	Marks	Guidar	nce
1			n = 9	B1	Stated explicitly	
			$CR \text{ is } \leq 2$	M1A1	2 seen but not \leq : M1A0. Allow "P(\leq 2)"	CR must be stated explicitly for A1
			0.0083	A1	Or more SF.	$SR: \le 3 \text{ with } 0.0424: (B1)M1A0$
					" $n = 9$, CR ≥ 3 ", 0.0083 seen: B1M1A0A1	SR: If 0, give B1 for at least 3 of
						0.0083, 0.0113, 0.0026, 0.0197, 0.0034
				[4]		seen
2	(i)		$\hat{\mu} = \overline{x} = 38$	B1	38 stated separately	
			$\left[\frac{\Sigma x^2}{10} - 38^2\right]$ [=16.2]	M1	Use of $\sum x^2/n - \overline{x}^2$	Correct single formula: M2
			$\frac{10}{10}$ -38 [-10.2]	M1	Multiply by 10/9	If single formula, divisor of 9 seen
			×10/9 to get 18	A1	18 or a.r.t. 18.0 only	anywhere gets second M1
				[4]		
2	(ii)		(40-38) (0.4714) 0.2197	M1	Standardise with their μ and σ , allow cc,	$\sqrt{10}$ used: M0.
			$\Phi\left(\frac{40-38}{\sqrt{18}}\right) = \Phi(0.4714) = 0.3187$		√errors	
			(120)	A1	Answer, a.r.t. 0.319	Allow a.r.t. 0.311 [0.3106] from 16.2
				[2]		
3	(i)		Allocate 4-digit number to each DVD;	B1	"DVD" & "4 digits/1 to 9000/sequentially"	<i>Not</i> allocate "random" numbers, unless
					etc must be mentioned <i>somewhere</i>	subsequently sorted
			Select using random numbers	B1	Mention random numbers	If "pick random numbers in range 1 to
			Ignore random numbers outside range	B1	Unbiased method, mention of "outside	9000", must mention repeats
				[2]	range" or "repeats"	
2	(22)		D(100 0 24) N(24 10 24)	[3] M1	N(ottoment at un)	
3	(ii)		$B(100, 0.24) \approx N(24, 18.24)$	A1	N(attempt at np)	Allow 18.24/100 A1 but then M0A0
			$\Phi\left(\frac{19.5-24}{\sqrt{18.24}}\right) = \Phi(-1.0537)$	M1	Both parameters correct	Allow cc/\(\sigma\) errors.
			√18.24)	A1	Standardise with their np and \sqrt{npq} or npq	Allow cc/V errors.
			= 0.1461	A1	Both cc correct and \sqrt{npq} used	
			- 0.1701		Answer, a.r.t. 0.146	
				[5]		

Q	uestio	n	Answer	Marks	Guidan	nce
4	(i)		Values taken by <i>X</i>	B1	This answer only	Not "values taken by f"
			•	[1]	•	·
4	(ii)		$\int_{0}^{a} kx dx = 1 \Rightarrow k = \frac{2}{a^{2}}$	M1	Use definite integral and equate to 1,	Or clear argument from triangle area
			$\int_0^{\kappa} \kappa dx = 1 \implies \kappa = \frac{1}{a^2}$	A1	Correctly obtain $2/a^2$	
				[2]		
4	(iii)		$\begin{bmatrix} a \\ 1 \end{bmatrix}^a = \begin{bmatrix} x^3 \end{bmatrix}^a = \begin{bmatrix} x \end{bmatrix}^a$	M1	Attempt to integrate $xf(x)$, limits 0 and a	
			$\int_{0}^{a} kx^{2} dx = \left[k \frac{x^{3}}{3} \right]_{0}^{a} = \frac{2}{3} a$	B1	Correct indefinite integral seen	either here or for $x^2 f(x)$
				A1√	Correct mean <i>or</i> correct $E(X^2) = a^2/2$,	Can be in terms of <i>k</i>
			$\int_{0}^{a} kx^{3} dx = \left[k \frac{x^{4}}{4} \right]_{0}^{a} = \frac{a^{2}}{2}$		$\sqrt{\text{ on } k}$	
			$\begin{bmatrix} \mathbf{J}_0 \\ \mathbf{J}_0 \end{bmatrix} = \begin{bmatrix} \mathbf{K}_1 \\ \mathbf{J}_0 \end{bmatrix} = 2$	M1*	Attempt to integrate $x^2 f(x)$, limits 0, a	
			a^2 (2.122	1 3/1		
			$\frac{a^2}{2} - \left(\frac{2}{3}a\right)^2 = \frac{1}{18}a^2$	depM1	Subtract their μ^2	Or decimal, $0.056a^2$ or better
			2	A1	Correct final answer, ae exact f, no k now	Of decimal, 0.030a of better
5	(:)		D-(4200) N(4200 4200)	[6] M1	D-(60.1) stated an invalid	
3	(i)		$Po(4200) \approx N(4200, 4200)$	M1	Po(60λ) stated or implied	
			$1 - \Phi\left(\frac{4350.5 - 4200}{\sqrt{4200}}\right)$	M1	$N(60\lambda, 60\lambda)$	Allow wrong or no cc, or no √
			$\sqrt{4200}$	A1	Standardise with their 60λ and $\sqrt{60}\lambda$ or 60λ	$\sqrt{60\lambda}$ needn't be explicit
			$=1-\Phi(2.322)$ $=$ 0.010 (1)	A1	4350.5 explicitly seen and $\sqrt{60}\lambda$ not wrong Answer, allow a.r.t. 0.010	Allow [0.0103, 0.0106] from no CC,
					Answer, anow a.r.t. 0.010	but <i>not</i> 0.0105 from wrong CC
				[5]		but not 0.0103 from wrong ee
5	(ii)		B(30, 0.010(1))	M1	B(30, their (i)) stated or implied	
	, ,		$\approx \text{Po}(0.30(3))$	A1	Po(0.3) or 0.303 etc	$[0.30 \rightarrow 0.000266, 0.303 \rightarrow 0.000276]$
			1 - 0.9997 = 0.0003	A1	Final answer a.r.t. 0.0003	$0.309 \rightarrow 0.000297$
			or: $1 - (q^{30} + 30q^{29}p + 435q^{28}p^2 + 4060q^{27}q^3)$		Exact binomial: $1 - (3,4 \text{ or } 5 \text{ terms}) \text{ (M1)M1}$	Needs clear ${}^{n}C_{r}$ or right answer
			= 1 - (.7397 + .2242 + .0328 + .0031)		Answer a.r.t. 0.0002: A1	No mention of dist: assume exact
			= 1999777 = 0.0002226		Normal (0.3, 0.297) (M1)M1	
					Answer 0 (4 dp) ($z = 5.87$) A1	
				[3]		

(Question	Answer	Marks	Guidar	nce
6	(i)	H ₀ : $\mu = 28.0$ H ₁ : $\mu > 28.0$	B2	One error, e.g. p , or μ_0 , μ_1 , or 2-tail: B1.	But \bar{x} etc: B0
		α : $\frac{28.98 - 28}{12/\sqrt{30}} = 0.4473 \ [p = 0.3274]$ $z < 1.645, \text{ or } p > 0.05$ OR: CC: $28.98 - \frac{1}{60} \rightarrow 0.4397, p = 0.33$	M1 A1	Standardise with $\sqrt{30}$, allow $\sqrt{20}$ errors, cc Correct value of z or p: $z = \text{art } 0.447$ or p in range [0.327, 0.328] Compare z (incl 30) with 1.645, or p with 0.05, or with 0.95 if correct tail	CC is CORRECT here Not -0.447 but can be recovered if 0.327 used. Not $0.455/0.3246$ Needs μ and \overline{x} right way round
		β: $28 + 1.645 \times 12/\sqrt{30}$ = 31.6 28.98 < 31.6	M1 A1√ A1	$28 + z \times 12/\sqrt{30}$, allow $\sqrt{\text{errors}}$, cc Correct CV, $\sqrt{\text{on } z}$ (only) Explicitly compare 28.98	Ignore 28 –, do not allow 28.98 –
		γ : Totals used: $\frac{869.4 - 840}{12\sqrt{30}} = 0.4473$		Same scheme	NB: If totals used, allow ANY plausible CC or none
		Do not reject H_0 . Insufficient evidence of an increase in mean score	M1 A1	Consistent first conclusion Contextualised, "evidence" or exact equivalent somewhere	Needs correct method & comparison, 30 used, μ and \bar{x} right way round "Evidence" in either part of conclusion
		SD unchanged, or random sample/indept	B1 [8]	One of these seen, nothing irrelevant	
6	(ii)	Yes because population not stated to be normal	B2 [2]	Partial answer: B1 "Yes as parent distribution not normal" (i.e., "stated to be" omitted): B2 SR: "No as assumed normal" if in (i): B1	"Yes, because <i>n</i> large": B1 "Yes, as not normal and <i>n</i> large": B1 "Yes as not normal, but can be used as <i>n</i> large": B2
7	(i)	$\frac{\mu - 20}{\sigma / \sqrt{n}} = 1.0; \frac{35 - \mu}{\sigma / \sqrt{n}} = 2.0$ Solve to get $\sigma = 5\sqrt{n}$	M1 A1 B1 M1 A1	Standardise either 20 or 35, equate to Φ^{-1} Both equations completely correct Both correct z-values seen (to 3 SF at least) Correctly obtain $\sigma = k\sqrt{n}$ or $\sigma^2 = kn$ $\sigma = 5\sqrt{n}$ or $\sqrt{25n}$ only.	With \sqrt{n} or n and z , allow "1 –", cc Including signs, but can have wrong z Independent of previous marks Allow \sqrt{n} errors, ALLOW from not Φ^{-1} [only mark from 0.7998 & 0.8358]
7	(ii)	Binya is right	[5] B1	Binya stated	"Aidan" used: max B0B1M0
,	(11)	$\mu = 25$ $1 - \Phi\left(\frac{32 - \mu}{5}\right) = 1 - \Phi(1.4)$	B1 B1 M1	μ = 25 following no wrong working Standardise with their σ/\sqrt{n} and their numerical μ	But allow if \sqrt{n} omitted or wrong NB: use of 1.282 probably implies "Aidan"
		= 1 - 0.9192 = 0.0808	[4]	Answer, a.r.t. 0.081, CWO.	Aldan

	uestion	Answer	Marks	Guidan	ice
8	(i)	Failures do not occur at regular or	B1	Not equivalent of "independent".	Both right and wrong: B0
		predictable intervals		Not "equally likely at any moment"	
			[1]		
8	(ii)	Failures occur independently;	B1	"Failures" needed in one reason, else B0(B3)	<i>Not</i> "randomly", allow "singly" only if
		Might not happen if a power cut	B1	Plausible reason	also "independent" in this part
		and at constant average rate;	B1	Exact equivalents only	Not "equal probability", not "constant
		Might not happen if manipulated to change	B1	Must be during one day and not week/year	rate", but allow second mark if OK.
		more rapidly at peak times		Allow any answers that show correct	Extra wrong reason loses explanation
				statistical understanding, however	mark
			[4]	implausible	
8	(iii)	17 18	[4] M1	At least one correct formula	
0	(111)	$e^{-\lambda} \frac{\lambda^7}{7!} = e^{-\lambda} \frac{\lambda^8}{8!} \Rightarrow \lambda = 8$	A1	Both sides correct	
		7! 8!	M1	Cancel exp and some λ	
			A1	Obtain $\lambda = 8$ only, CWO	
		0.1396	B1√	Answer in range [0.139, 0.14], $$ on their λ	[before rounding]
			[5]	This wer in range [0.135, 0.14], Von then W	
9	(i)	4.81% or 0.0481	B1	One of these only, or more SF	$N(18, 7.2) \rightarrow 0.0468$: B1
			[1]		
9	(ii)	$P(\ge 14) = 0.7077$	M1	Allow M1 for answer 0.5722 or 0.8192	0.2923: 0
			A1	0.708 or 0.7077 or more SF	$N(15, 7.5) \rightarrow 0.78$: M1A1;
			[2]		0.8194 or 0.7674: M1A0
9	(iii)	Only way that $p = 0.5$ for second test is if	M1	$0.2 \times 0.7077 \times 0.2923 = 0.04137$	Normal:
		Type II error on first, where	M1	Consider 1 – 0.14154	$0.1416 \times 0.292 + 0.8584 \times 0.0468$ or
		$0.2 \times 0.7077 = 0.14154$. Therefore	M2	$0.2 \times (ii) \times (1 - (ii)) + (1 - [0.2 \times (ii)]) \times (i)$	0.00175+0.03569+0.00273+0.04135
		$0.14154 \times 0.2923 + 0.85846 \times 0.0481$		[=0.04137+0.04127]	= 0.0815: full marks
		= 0.0827	A1	Answer, a.r.t. 0.083	
				OD: 0.00.04910.0491.[0.00195]	
				OR: $0.8 \times 0.0481 \times 0.0481$ [0.00185] + $0.8 \times 0.9519 \times 0.0481$ [0.03663] M1	Any two of these three M1
				$+0.8 \times 0.9319 \times 0.0481$ [0.03603] M1 $+0.2 \times 0.2923 \times 0.0481$ [0.00281] M1	Third of these three M1
				$+0.2 \times 0.2923 \times 0.0481$ [0.00281] M1 $+0.2 \times 0.7077 \times 0.2923$ [0.04137] M1	This one M1
				$+0.2 \times 0.7077 \times 0.2923 [0.04137]$ M1 Add up 4 terms of 3 multiplications M1	
				Answer 0.0827 A1	SR: No 0.8 or 0.2 but 2 products: M1
			[5]	All Miswei 0.0027	4 products: M2

Q	uestio	n	Answer	Marks	Guidan	ce
1	(i)		89, 90, 91, 91, 92	B2	All correct; B2; one error (e.g. all –1), B1	Allow 088, etc
				2		
	(ii)		Not all equally likely (91 more than 90 etc)	B1	Imply different likelihood/probability	Not "same pupil is selected twice"
			Multiply by 1000 and ignore if > 853	B1	Or equivalent method. Not "ignore repeats". Ignore extras.	Number students, use random numbers and ignore outside range: B1
				2	ignore extrust	and ignore emister range. 21
2			$Po(2 \times 10^6)$	M1	N(their 40λ)	
			$\approx N(2 \times 10^6, 2 \times 10^6)$	A1	Both parameters correct, allow √ here	
			$\Phi\left(\frac{1998999.5 - 2 \times 10^6}{\sqrt{2 \times 10^6}}\right) = \Phi(-0.70746)$	A1	Standardise, mean 40λ , sd $\sqrt{40\lambda}$ (not 40λ)	Correct cc must be seen for this A1
			= 0.2396	A1	Answer, a.r.t. 0.240 (no cc: M1A1A0A1)	NB: no cc gives $\Phi(-0.7071)$, 0.23975, wrong cc gives $\Phi(-0.70675)$, 0.23986
				4		
3	(i)		$\frac{\mu - 157.18}{\sigma / \sqrt{80}} = 1.282 \; ; \; \frac{\mu - 164.76}{\sigma / \sqrt{80}} = 0.5244$	M1	Standardise once with $\sqrt{80}$ or 80 and z, signs may be wrong, allow "1–" errors	Allow cc, but <i>not</i> 0.1, 0.7, 0.9, 0.3 or Φ (these) [= .5398, .758, .8159, .6179]
				A1	Both correct <i>including signs</i> , no cc	z may be wrong (provided it is z)
				B1	1.28(155) seen anywhere, correct to 3 SF	Ignore signs
				B1	[0.524, 0.525] seen anywhere	Ignore signs
			Solve simultaneously: $\mu = 170$	A1	μ , a.r.t. 170 to 3 SF (169.98)	CWO \times 2 but allow from inaccurate z if
			σ = 89.44	A1	σ , in range [89, 90], <i>not</i> isw	answer(s) within limits. Look out for
					Don't allow surds, e.g. $40\sqrt{5}$	-89.44: A0A0
				6		
	(ii)	(a)	In using normal tables	B1	Or equiv, e.g. "standardising", "dist of \overline{Y} "	Any reference to $\sigma/\sqrt{80}$: B0
		(b)	Parent distribution not known	B1	Allow "it is not normal", etc	No extras
		(c)	n large, nothing wrong seen	B1	If numerical, must be of the form " $n > n_0$ " or	<i>Not</i> "≥ 80".
			[must be in correct order, no repeats]		" $n \ge n_0$ " with $30 \le n_0 \le 60$	
				3		

Q	uestion	n Answer	Marks	Guidance	
4		$H_0: \lambda = 3.2 \text{ (or } 0.32)$ [Allow μ] $H_1: \lambda > 3.2 \text{ (or } 0.32)$ [Allow μ]	B2	Both correct, B2. One error, e.g. wrong/ no/different symbols, or two-tail, B1	But x , \overline{x} , r , t etc: B0. E(X), words: B1 E.g. H ₀ : $\lambda_0 = 3.2$, H ₁ : $\lambda_1 > 3.2$: B1
		$R \sim \text{Po}(3.2)$	M1	Stated or implied, e.g. N(3.2, 3.2)	$P(=6)$ or (≤ 6) or > 6 or normal:
		α : $P(R \ge 6) = 0.1054$	A1	[0.105, 0.106] before rounding	no more marks, maximum B2M1.
		> 0.01	A1	Explicit comparison with 0.01	
		β: CR ≥ 9	A1	$CR \ge 9$ stated; allow $CV = 9$ if comparison ft	
		and $6 < 9$, with probability 0.0057	A1	0.0057 or 0.9943 seen, and 6 compared	
		Do not reject H ₀ . Insufficient evidence of an	M1	Consistent first conclusion	needs correct method and like-with-
		increase in the number of floods.	A1 ft	Conclusion, mentions "floods", "evidence"	like comparison, but 0.01 needn't be
				Not "evidence of no increase"	explicit
				$P(R \le 6) = 0.9554; P(R > 6) = 0.0446; P(R = 6)$	
				P(R < 6) = 0.8946 and compare 0.99 etc: can g	get full marks. Else A0A0M0A0
			7		
5	(i)	<u>†</u>	M1	Upwards parabola, not below <i>x</i> -axis	[scales/annotations not needed]
			A1	Correct place, not extending beyond limits, ignore pointed at <i>a</i>	Touching axes (not asymptotic)
			B1	Horizontal straight line, not beyond limits,	Don't need vertical lines
				y-intercept below curve (unless curve makes this meaningless)	i.e., 3/3 only if wholly right
			3		
	(ii)	$\int_{0}^{a} \frac{3}{a^{3}} x(x-a)^{2} dx$ $= \int_{0}^{a} \frac{3}{a^{3}} (x^{3} - 2ax^{2} + a^{2}x) dx$	M1	Attempt this integral, correct limits seen somewhere	
		$= \int_0^a \frac{3}{a^3} (x^3 - 2ax^2 + a^2x) dx$	M1	Method for $\int x f(x)$, e.g. multiply out or parts, independent of first M1	Multiplication: needs 3 terms
			A1	Correct form for integration, e.g. multiplied out correctly, or correct first stage of parts	E.g. $\frac{3}{a^3} x \frac{(x-a)^3}{3} - \int \frac{3}{a^3} \frac{(x-a)^3}{3} dx$
		$= \left[\frac{3}{a^3} \left(\frac{x^4}{4} - \frac{2ax^3}{3} + \frac{a^2 x^2}{2} \right) \right]_0^a$	B1	Correct indefinite integral	E.g. $\frac{3}{a^3} x \frac{(x-a)^3}{3} - \frac{3}{a^3} \frac{(x-a)^4}{12}$
		$=\frac{a}{4}$	A1 5	$\frac{a}{4}$ or exact equivalent (e.g. 0.25a) only	Limits not seen anywhere: can get M0M1A0B1A0

Q	Questio	n	Answer	Marks	Guidan	ce
5	(iii)		S is concentrated more towards 0	M1	Reason that shows understanding of PDF	Not, e.g., "T is constant"
			Therefore T has bigger variance	A1	Correct conclusion	
				2		
6			$H_0: \mu = 38.4$ [Allow E(X) both times]	B2	Both correct: B2. One error e.g. no or	But \overline{x} , x , t etc B0.
			$H_1: \mu \neq 38.4$		different symbols, one-tail etc, B1	E.g. H_0 : $\mu_0 = 38.4$, H_1 : $\mu_1 \neq 38.4$: B1
			$\hat{\mu} = \overline{x} = 36.68$	B1	36.68 seen anywhere	H_0 : $\mu = 36.68$, H_1 : $\mu \neq 36.68$: B0B0B1
						See below and exemplars
			$\hat{\sigma}^2 = \frac{50}{49} \left(\frac{70027.37}{50} - 36.68^2 \right) = 56.25$	M1	Use biased variance formula [55.125]	Single formula: M2 or M0. If M0, a
			$\delta = \frac{1}{49} \left(\frac{1}{50} - 30.08 \right)^{-30.23}$	M1	Multiply by 50/49	divisor of 49 seen anywhere gets M1
				A1	56.25	Allow rounded if clearly correct
			α : $z = \frac{36.68 - 38.4}{\sqrt{56.25/50}} = -1.62$	M1	Standardise using $\sqrt{50}$ or 50	If 50 missing, no more marks
			$\sqrt{56.25/50}$	A1	z, a.r.t. -1.62 or $p = 0.0525$	p in range [0.052, 0.053]
			> -2.576 [or $0.0525 > .005$]	A1ft	Compare $-z$ with -2.576 or $+z$ with 2.576	Ft on z. Or p explicitly with 0.005
			β : CV is $38.4 - 2.576 \sqrt{\frac{56.25}{50}} = 35.6677$	M1	CV $38.4 - z\sigma/\sqrt{50}$, ignore $38.4 +$ anything	$36.68 + z\sigma/\sqrt{50}$: M1A0A0, M0A0
			$p \cdot C = 18 \cdot 38.4 - 2.576 \sqrt{\frac{50}{50}} = 33.0077$	A1	A.r.t 35.7	
			36.68 > 35.6677	A1ft	CV ft and correct comparison	Ft on wrong z or on $$ only
			Do not reject H_0 .	M1	Correct first conclusion, needs correct	Like-with-like, needs μ and \overline{x} right
					method & comparison if seen	way round, needs 50
			Insufficient evidence of a change in crop	A1ft	Contextualised, "evidence" somewhere	Ft on wrong TS and/or CV
			yield		Not "evidence of no change"	
				_	rariance [55.125; -1.638 or 0.0508] can get B2B	
					[-1.529 or 0.0632, or -0.12162 or 0.4144]: B2B3	
				No √50	[-0.2293 or 0.4092]: B2B3	1 M1M1A1M0 (max 6)
				H_0/H_1 in	terms of 36.68: can get last 4 marks only if (36.	68 – 38.4) seen, and not (38.4 – 36.68)
				11		

Q	uestion	Answer	Marks	Guidan	ce
7		H_0 : $p = 0.35$	B2	One error (e.g. μ , no symbol, 2-tailed) B1,	H_0 : $\mu = 42$, H_1 : $\mu > 42$: B1 only
		H_1 : $p > 0.35$		but \overline{x} , t etc: B0. Allow π	
		B(120, 0.35)	M1	B(120, 0.35) stated or implied	
		\approx N(42, 27.3)	M1	$N(np, npq)$, their attempt at 120×0.35	$120 \times 0.35 \times 0.65$ Not N(np, nq).
		α : $z = \frac{49.5 - 42}{\sqrt{27.3}}$	A1ft	Standardise, with their np and \sqrt{npq} , right cc	$\sqrt{50}$ or $\sqrt{120}$: M1M1A0A0A1M0A0
		$\sqrt{27.3}$		Allow both 49.5 and 50.5 and both in CR	
		= 1.435	A1	z in range [1.43, 1.44] before rounding	Or <i>p</i> in range [0.075, 0.0764]
		> 1.282 [or $0.0757 < 0.1$]	A1ft	Comparison with 1.282, ft on z/p or $\sqrt{120}$	Or p explicit comparison with 0.1
		β: $CV = 42.5 + 1.282 \times \sqrt{27.3}$ [= 49.198]	A1ft	CV 42.5 + $z \times \sqrt{27.3}$, ignore LH, ft on np , npq	No cc: 48.618, can get A0A1A0
		z = 1.282 and compare 50	A1	z = 1.282 used in RH CV and compare 50	
		$CR \ge 50 \text{ or } \ge 49.2$	A1ft	CV correct ft on z, but don't worry about \geq	Must round up. 49 from 49.2: A1A1A0
		Reject H ₀ .	M1	Consistent first conclusion, needs correct method and comparison	Can give M1A1 even if comparison not explicit. Allow from exact binomial
		Significant evidence that proportion who know regulations has increased	A1ft	Contextualised, needs "who know regulations" or "pupils", and "evidence"	Ft on TS & CV Or exact equivalent somewhere
		np > 5 [= 42] from normal attempted	M1	From $p = 0.35$ or $5/12$, don't need 42	or n large or p close to 0.5 asserted
		nq = 78 > 5 and no others apart from n large	A1	Need 78, or 70 from 5/12, not npq	and the other qualitative reason asserted
		SC: If B0, B(120, 5/12):		Wrong or no cc [1.627, 0.0519 or 1.5311, 0.06	29]: loses (α) first two A1A1 only
		N(50, 29.17) M1M1		Exact B(120, 0.35): $P(\ge 50) = 0.076824$, $CR \ge$	50. B2M1, M0A0A0A0, M1A1M0A0
		np > 5, $nq = 70 > 5$: M1A1 Max 4		NB: If S3 difference of proports	ions test used, consult PE
		SC: P(≥ 42): B2 M1M1A0A0A1M0A0			
			11		
8	(i)	B(14, 0.25): Critical region ≥ 7	M1	Use B(14, 0.25) and find r for an upper tail All marks need upper tail	e.g. CV 5 or 6 or 7, or .1117, .0383, .0103, 0.8883, 0.9617, .9897
			A1	$CR \ge 7$ or $AR \le 6$ stated or clearly implied	Not just "CV = 7"
		B(14, 0.4): $P(\le 6)$	M1	Find P(in AR when $p = 0.4$) [indept of M1]	<i>Not</i> $P(\ge r)$, e.g. final answer 0.3075
		= 0.6925	A1 4	Answer 0.692 or 0.693 or a.r.t. 0.6925 or 0.6924 only, <i>not</i> isw [0.692452]	NB: expect CV 8 or 9 and answer 0.9825 or 0.9417: M0M0

	Question	Answer	Marks	Guidan	ce
	(ii)	(a) Decreases	B1	One correct answer & one correct reason <i>or</i> two correct answers	Allow from numerical calculation
		(b) Decreases; increased prob (Type I) ⇔	B1	Two correct answers and one correct reason,	Allow equivalent or similar reason
		decreased prob (Type II)		e.g. "CR becomes larger", etc	Allow from numerical calculation
			2		
9	(i)	Constant <i>average</i> rate; <i>or</i> [*] same statement <i>plus</i> "breakdowns independent"	B1	State "average" or equiv, "random" or "uniform".	No extras apart from independence (ignore "singly")
		Otherwise it means that they occur at exactly regular intervals	B1	Correct explanation	Can't get from [*]
			2		
	(ii)	No because breakdowns more likely in rush hours, etc	B1	Any plausible reason for either "yes" or "no" that shows understanding of what the <i>statistical</i> concept means	Not "equally likely". <i>Not</i> reason for (in)dependence, unless [*], which needs <i>both</i> conditions if affirmed
			1		
	(iii)	13	B1		
		0.0739	B1	0.074 or a.r.t. 0.0739. Marks independent	
			2		
	(iv)	$e^{-\lambda} \frac{\lambda^2}{2!} = 0.0072$	M1*	Correct formula = their 0.0072 seen	
		$\lambda = \sqrt{(0.0144e^{\lambda})}$	M1dep	Rearrange $e^{-\lambda}$ and square root, to get $\lambda = f(\lambda)$	Allow even if left with e^{λ} or $e^{-\lambda}$ or exact equivalent
		$=0.12e^{\lambda/2}$	A1	Correctly obtain AG, with $k = 0.5$	
		$8.5 \rightarrow 8.4126; 8.6 \rightarrow 8.8440$	A1	Two correct evaluations to 4 dp at least	4 dp explicitly required
		Therefore solution between 8.5 and 8.6	A1 5	All completely correct and deduction stated	CWO, except allow if only 3 SF

Qı	iestion	Answer/Indicative content	Marks	Guidance	
1		N(35, 10.5)	M1	Normal, mean 35	
			A1	Both parameters correct, allow $\sqrt{10.5}$ or 10.5^2	
		$(40.5-35) = 1$ $\Phi(1.607)$	M1	Standardise, their np , npq , allow no $$ or 10.5^2 , allow wrong or no cc	
		$1 - \Phi\left(\frac{40.5 - 35}{\sqrt{10.5}}\right) = 1 - \Phi(1.697)$	A1	Both 40.5 and \sqrt{npq} [Ans 0.0448 or 0.9552 can imply first 4 marks]	
		= 1 - 0.9552 $= 0.0448$	A1	Answer, a.r.t. 0.045. [Exact binomial (0.040232): 0/5]	
			[5]		
2	(i)		M1	Consider any two conditions, out of np , nq (allow npq), size of n , size of p	
		np = 147 > 5 so not Poisson	A1	147 stated, or "p not small", no wrong conditions for Poisson seen	
		nq = 3 < 5 so not normal	A1	3 [not just 2.94] stated, or "p not close to $\frac{1}{2}$ ", no wrong conditions for normal seen	
				(apart from <i>npq</i>)	
				If spurious extra reasons seen ("not independent" etc), max 2/3	
			[3]		
2	(ii)	$A \sim B(150, 0.98)$ so $150 - A \sim B(150, 0.02)$	M1	Clearly consider complement, with $p = 0.02$	
		$\approx Po(3)$	A1		
		P(A < 146) = P(150 - A > 4) = 1 - 0.8153	M1	1 – Po(3) probability, e.g. 0.3528 or 0.0839	
		= 0.1847	A1	0.185 or better [Exact binomial (0.1830): 0/4. N(3, 2.94): M1A0M0A0]	
			[4]		
3	(i)	$\frac{\mu - 40}{2} = 0.9544$	M1	Standardise with μ and σ and equate to Φ^{-1} , allow σ^2 but not \sqrt{n} , allow 1–, cc, wrong	
		σ		signs. P(): M0 here. But can recover both marks from part (ii).	
			B1	[0.954, 0.955] seen	
			[2]		
3	(ii)	$\frac{60-\mu}{\sigma} = 0.674(5)$	M1	Standardise as in (i) but do not give if "1 –" or wrong signs in <i>either</i> equation	
			B1	[0.674, 0.675] seen. (Other errors lead to loss of A marks.)	
		Solve to get $\sigma = 12.3$ [12.278]	A1	σ , a.r.t. 12.3, cwo	
		$\mu = 51.7(18)$	A1	μ , a.r.t. 51.7, cwo [NB: <i>CARE!</i> either or both can be obtained from wrong equns.]	
			[4]	{note for scoris zoning – (i) to be visible in marking (ii)}	
3	(iii)	Based on a sample/small sample, etc	B1	Any similar comment, e.g. "frequencies not probabilities" (but not <i>just</i> "n is small")	
				and no wrong comments. Not "because data is grouped". No scattergun.	
			[1]		

4	(i)	Snakes must occur independently of one another	B1	Contextualised ("snakes" must be mentioned); not <i>just</i> "singly" but allow both
				independent and singly. Allow explanation, e.g. "Occurrence of one snake doesn't
				affect occurrences of others". Allow "snakes must occur randomly". Otherwise, more
				than one condition, "e.g. "randomly, independently, singly and at constant rate": 0.
			[1]	
4	(ii)	$1 - P(\leq 5)$	M1	Give M1 for 0.3712, 0.1107 or 0.2307. Answer 0.7851 is M0.
		= 1 - 0.7851 $= 0.2149$	A1 [2]	Answer, a.r.t. 0.215
4	(iii)	Po(3.08)	M1	Po(3.08) stated or implied. [Just $\lambda = 3.08$ is M0 unless Poisson later.]
		3.08^2 3.08^3	M1	Correct formula for Po $(r > 0)$ used at least once, can be implied
		$e^{-3.08} \left(\frac{3.08^2}{2!} + \frac{3.08^3}{3!} \right) = [= 0.2180 + 0.2238]$	A1ft	Completely correct formula for their λ (not 4), can be implied
		= 0.4418	A1	Final answer, a.r.t. 0.442
			[4]	No working: last 3 marks either 0 or 3, no "nearly right".
5	(i)	$\begin{bmatrix} \mathbf{c}^1 \pi & \dots & \begin{bmatrix} 1 & \dots \end{bmatrix}^1 & 1 & \begin{pmatrix} 1 \end{pmatrix} & \dots & \begin{bmatrix} 1 & \dots \end{bmatrix}^T \end{bmatrix}$	M1	Attempt to integrate $f(x)$, limits $(0, 1)$ somewhere, evidence e.g. "from calculator"
		$\int_{0}^{1} \frac{\pi}{2} \sin(\pi x) dx = \left[-\frac{1}{2} \cos(\pi x) \right]_{0}^{1} = \frac{1}{2} - \left(-\frac{1}{2} \right) = 1$	B1	Correctly integrate $\sin(\pi x)$ to $-\frac{1}{2}\cos(\pi x)$
			A1	Fully correct, need to see $-\frac{1}{2}\cos(\pi x)$ and final 1, no wrong working seen
		and function non-negative for all x in range	B1	Non-negative asserted explicitly, allow positive or equivalent. Not just graph drawn.
			[4]	(Most will not get this mark!)
5	(ii)	A	M1	Correct shape, through 0, allow below axis outside range. Allow partial curve if clearly
				part of sine curve.
			A1	Fully correct including no extension beyond [0, 1]. Don't worry about grads at ends.
				Ignore labelling of axes
		$E(X) = \frac{1}{2}$	B1	$\frac{1}{2}$ or 0.5, needs to be simplified, no working needed, no ft
			[3]	
5	(iii)	$\int_{a}^{1} \frac{1}{2} \pi \sin(\pi x) dx = 0.75; \left\{ \left[-\frac{1}{2} \cos(\pi x) \right]_{q}^{1} = 0.75 \right\}$	M1	Equate integral to correct probability, correct limits somewhere
		$\int_{q}^{2} 2^{n \sin(nx) dx} = 0.75, \left(\left[\frac{2}{2} \cos(nx) \right]_{q}^{2} = 0.75 \right)$		allow complementary probability (= 0.25) only if limits (0, q)
		$\cos(\pi q) = 0.5$	A1	$cos(\pi q) = 0.5$ or exact equivalent
		Solve to get $q = \frac{1}{3}$	A1	$q = \frac{1}{3}$ or a.r.t. 0.333.
			[3]	SR: Numerical (no working needed): 0.333 B3, 0.33 B2
5	(iv)	$\int_{0}^{1} \frac{\pi}{2} x^{2} \sin(\pi x) dx - \left(\frac{1}{2}\right)^{2}$	M1	Integral part correct, allow limits omitted, ignore dx
		$\int_0^{\infty} \frac{1}{2} \sin(\lambda x) dx - \left(\frac{1}{2}\right)$	A1ft	Subtract their $[E(X)]^2$, allow μ in form of integral, correct limits needed, not just " μ^2 "
			[2]	{note for scoris zoning – (ii) needs to be visible here}
5	(v)	Values of x in range close to $E(X)$ are more	B1	Need to see "values of x" or equivalent, and probably not "occur"
		likely than those further away		Not "the probability of x is greater when x is close to $E(X)$ " etc. Not "PDF greater"
ł			[1]	

6	(i)	Sample is random	B1	Indicate random sample. Allow "unbiased sample" or "randomly selected" or "all
				equally likely". Allow "representative" provided it's clearly "of company" (not city)
			[1]	Not just "independent". Withhold if extra wrong bits.
6	(ii)	List population, number sequentially	B1	List can be implied; must imply employees or people. "Sequential" can be assumed.
		Select using random numbers	B1	Not "select numbers randomly", Don't need "ignore outside range" etc.
				Number randomly and select randomly, B1, but "assign random nos & arrange", B2
				SC: Put names into hat/lottery machine and take them out: <u>B2</u>
			[2]	SC: Systematic: B1 for list, can get second B1 if starting-point random
6	(iii)	H_0 : $p = 0.4$; H_1 : $p < 0.4$	B2	Both correct, B2. Allow π . One error, e.g, μ or no symbol, B1, but \overline{x} , z etc: B0.
		B(12, 0.4)	M1	B(12, 0.4) stated or implied. Can be implied by N(4.8, 2.88) but no further marks.
				0.1673, 0.0398, 0.1513, 0.0421: M1A0(A1M1A1)
	α :	$P(\leq 2) = 0.0834$	A1	$P(\le 2) = 0.0834$, or $P(> 2) = 0.9166$.
		> 0.05	A1	Compare numerical $P(\le 2)$ with 0.05, or $P(> 2)$ with 0.95
	β:	$CR \text{ is } \leq 1$	A1	CR is ≤ 1 stated.
		0.0196 seen and compare 2 with ≤ 1	A1	Explicitly compare 2 with CR, probability 0.0196 must be seen
		Do not reject H ₀ .	M1	Correct first conclusion, needs $P(\le 2 \mid p = 0.4)$ or fully consistent equivalent
		Insufficient evidence that proportion of	A1ft	In context (mention "employees", "city" etc), acknowledge uncertainty ("evidence")
		employees from group Z is less.		Not "there is evidence that the proportion of employees is 0.4"
				FT on wrong p-value or wrong critical value if previous mark gained
			[7]	SC: Normal: B2 M1 max
				SC: $P(=2)$ or $P(\ge 2)$ or $P(<2)$: B2 M1 max
				SC: two-tailed: can get B1B0 M1A1A0 M1A1 (don't give second A1 for 0.05)
6	(iv)	Yes as H ₀ is rejected	M1	Realise this changes conclusion (FT!), or "more likely to reject H ₀ ", "larger CR"
			A1 [2]	More supportive [just "more supportive" without evidence is M0A0]
7	(i)	$\hat{\mu} = \overline{x} = 81$	B1	81 only, can be implied
		329800	M1	Correct formula for biased estimate, their "81", can be implied
		$\frac{329800}{50} - 81^2 \qquad [= 35]$		
		$\times \frac{50}{49}$; = 35.71	M1	Multiply by 50/49. SC: single formula: M2, or M1 if wrong but divisor 49 anywhere
		$\left \begin{array}{c} \times \overline{49} \end{array}\right $		[can be recovered if correctly done in part (ii)]
			A1	A.r.t. 35.7 – <u>can't</u> be recovered from part (ii). Can be implied
		(90-81)	M1	Standardise with their μ and σ , allow σ^2 , cc but not $\sqrt{50}$
		$1 - \Phi\left(\frac{90 - 81}{\sqrt{35.71}}\right) = 1 - \Phi(1.506) = 1 - 0.9339$		
		= 6.61% or 0.0661	A1	Answer, a.r.t. 6.6% or 0.066
			[6]	

7	(ii)	H_0 : $\mu = 80$	B2	Correct, B2. One error, e.g. wrong or no symbol, $>$, B1, but x or \overline{x} or t etc, or 81, B0.
		H_1 : $\mu \neq 80$		NB: If both hypotheses involve 81, <i>can't</i> get final M1
	α:	$z = \frac{81 - 80}{\sqrt{35.71/50}} = 1.183 [or \ p = 0.1183]$	M1	Standardise, with $\sqrt{50}$, allow $\sqrt{100}$, sign or cc errors, allow from biased variance
		$z = \sqrt{35.71/50} = 1.163 [01 \ p = 0.1163]$	A1	z, a.r.t. 1.18, or p, a.r.t. 0.118. <u>Allow –1.18</u> .
		< 1.645	B1	Their $z < 1.645$ or $p > 0.05$, not if one-tail. Allow $-1.18 > -1.645$. Not just 1.645 seen.
	β:	$CV 80 + 1.645 \sqrt{\frac{35.71}{50}} = 81.39$	M1	$80 + zs/\sqrt{50}$, allow $\sqrt{\text{or cc errors}}$, ignore – (no marks for – alone);
	,	$ \begin{array}{c c} \hline $	B1	z = 1.645 used in this expression (not just seen), <i>not</i> from one-tail
		81 < 81.39	A1	Compare CV with 81, allow 81.08 from one-tailed ($z = 1.282$) (but not on their σ)
				SC: $81-1.645\sqrt{\frac{35.71}{50}}$: If H ₀ : $\mu = 80$: (B2) M1B1A0M0A0.
				If H_0 : $\mu = 81$: (B0) M1B1A1 (79.61) M0A0
		Do not reject H_0 .	M1	Correct first conclusion, needs $\sqrt{50}$, correct comparison type, μ and \bar{x} not consistently
				wrong way round (thus H_0 : $\mu = 81$ can get B0 M1A1A1 M0A0, max 3/7)
				In method β , it needs to be clear that comparison involves \overline{x} .
		Insufficient evidence that the mean time is not	A1ft	Contextualised (mention "time"), acknowledge uncertainty ("evidence that")
		80 minutes.		Not "significant evidence that mean time is 80"
				FT on wrong z-value or wrong critical value if previous mark gained
			[7]	SC: One-tailed: can get B1B0 M1A1B0 M1A1, max 5/7
				No √50: can get B2 M0 B1 M0, max 3/7
7	(iii)	(a) Yes (single observation only)	B1	No reason needed, but withhold if wrong reason seen. Allow "yes, no dist" given"
		(b) No, CLT applies to large sample	B1	"No" and refer to central limit theorem or "large sample"
-			[2]	{note for scoris zoning – (a) and (b) to be in single zone}
8	(i)	$P(W=0 \mid \lambda=3.6)$	M1	Use this conditional probability. <i>Not</i> 0.9727, not <i>just</i> 2.5% etc
		= 0.0273 or 2.73%	A1	Answer a.r.t. 0.0273 or 2.73%. ISW if appropriate (e.g. "0.0273, ∴2.5%")
_		1	[2]	
8	(ii)	$1 - e^{-\lambda_0} = 0.8$	M1	Use $P(W > 0 \mid \lambda = \lambda_0)$, formula needed but allow if wrong
		$e^{-\lambda_0} = 0.2$	A1	This exact equation, or $e^{\lambda_0} = 5$, or exact equivalent RHS
		$\lambda_0 = -\ln(0.2)$	M1	Solve using ln or otherwise [independent of first M1, e.g. $-\ln(0.8) = 0.223$ is M1 here]
		= 1.609	A1	Final answer, exact or a.r.t. 1.61, cwo
				SC: No working: 1.60 (tables etc): B0. 1.61 (T&I): SC B4.
			[4]	