(i)	$X \sim N(11,3^2)$		
	$P(X < 10) = P\left(Z < \frac{10-11}{3}\right)$	M1 for standardizing	
	= P(Z < -0.333)	M1 for use of tables with	
	$=\Phi(-0.333)=1-\Phi(0.333)$	their <i>z</i> -value M1 <i>dep</i> for correct tail	
	= 1 - 0.6304 = 0.3696	A1CAO (must include use of differences)	4
(ii)	P(3 of 8 less than ten)		
	$= \binom{8}{3} \times 0.3696^3 \times 0.6304^5 = 0.2815$	M1 for coefficient M1 for 0.3696 ³ × 0.6304 ⁵ A1 FT (min 2sf)	3
(iii)	100 0.2505 25.05	M1 C N 1	
	$\mu = np = 100 \times 0.3696 = 36.96$ $\sigma^2 = npq = 100 \times 0.3696 \times 0.6304 = 23.30$	M1 for Normal approximation with correct (FT) parameters	
	<i>Y</i> ~ N(36.96,23.30)	D1 for continuity com	
	$P(Y \ge 50) = P\left(Z > \frac{49.5 - 36.96}{\sqrt{23.30}}\right)$	B1 for continuity corr.	
	$\sqrt{23.30}$ = $P(Z > 2.598) = 1 - \Phi(2.598) = 1 - 0.9953$	M1 for standardizing and	4
	= 0.0047	using correct tail A1 CAO (FT 50.5 or omitted CC)	
(iv)	H 11. H 11	P1 for H as soon	
(iv)	H ₀ : $\mu = 11$; H ₁ : $\mu > 11$ Where μ denotes the mean time taken by the new hairdresser	B1 for H ₀ , as seen. B1 for H ₁ , as seen.	
		B1 for definition of μ	3
(v)	Test statistic = $\frac{12.34 - 11}{1.34} = \frac{1.34}{1.34}$	M1 must include $\sqrt{25}$	
	Test statistic = $\frac{12.34 - 11}{3/\sqrt{25}} = \frac{1.34}{0.6}$ = 2.23	A1 (FT their μ)	
	5% level 1 tailed critical value of z = 1.645	B1 for 1.645	
	2.23 > 1.645, so significant. There is sufficient evidence to reject H ₀	M1 for sensible comparison leading to a conclusion	
	It is reasonable to conclude that the new hairdresser does take longer on average than other staff.	A1 for conclusion in words in context (FT their μ)	5
			19

(i)	$\begin{array}{ c c c c c c c c c }\hline x & 2.61 & 2.73 & 2.87 & 2.96 & 3.05 & 3.14 & 3.17 & 3.24 & 3.76 & 4.1 \\ \hline y & 3.2 & 2.6 & 3.5 & 3.1 & 2.8 & 2.7 & 3.4 & 3.3 & 4.4 & 4.1 \\ \hline Rank x & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 \\ \hline Rank y & 6 & 10 & 3 & 7 & 8 & 9 & 4 & 5 & 1 & 2 \\ \hline d & 4 & -1 & 5 & 0 & -2 & -4 & 0 & -2 & 1 & -1 \\ \hline d^2 & 16 & 1 & 25 & 0 & 4 & 16 & 0 & 4 & 1 & 1 \\ \hline \end{array}$ $r_s = 1 - \frac{6\Sigma d^2}{n(n^2 - 1)} = 1 - \frac{6 \times 68}{10 \times 99}$ $= 0.588 \text{ (to 3 s.f.)} [allow 0.59 \text{ to 2 s.f.}]$	M1 for ranking (allow all ranks reversed) M1 for d^2 A1 for $\Sigma d^2 = 68$ M1 for method for r_s A1 f.t. for $ r_s < 1$ NB No ranking scores zero	5
(ii)			
(11)	H ₀ : no association between <i>x</i> and <i>y</i> H ₁ : positive association between <i>x</i> and <i>y</i> Looking for positive association (one–tail test): critical value at 5% level is 0.5636 Since 0.588> 0.5636, there is sufficient evidence to reject	B1 for H_0 , in context. B1 for H_1 , in context. NB $H_0 H_1$ not ito ρ B1 for ± 0.5636	
	H_0 , i.e. conclude that there is positive association between true weight x and estimated weight y .	M1 for sensible comparison with c.v., provided $ r_s < 1$ A1 for conclusion in words & in context, f.t. their r_s and sensible cv	5
(iii)	$\Sigma x = 31.63, \ \Sigma y = 33.1, \ \Sigma x^2 = 101.92, \ \Sigma y^2 = 112.61,$ $\Sigma xy = 106.51.$ $S_{xy} = \Sigma xy - \frac{1}{n} \Sigma x \Sigma y = 106.51 - \frac{1}{10} \times 31.63 \times 33.1$	M1 for method for S_{xy}	
	$ \begin{aligned} &= 1.8147 \\ S_{xx} &= \Sigma x^2 - \frac{1}{n} (\Sigma x)^2 = 101.92 - \frac{1}{10} \times 31.63^2 = 1.8743 \\ S_{yy} &= \Sigma y^2 - \frac{1}{n} (\Sigma y)^2 = 112.61 - \frac{1}{10} \times 33.1^2 = 3.049 \\ r &= \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}} = \frac{1.8147}{\sqrt{1.8743 \times 3.049}} = 0.759 \end{aligned}$	M1 for method for at least one of S_{xx} or S_{yy} A1 for at least one of S_{xy} , S_{xx} , S_{yy} correct. M1 for structure of r A1 (awrt 0.76)	5
(iv)	$\sqrt{S_{xx}S_{yy}}$ $\sqrt{1.8743 \times 3.049}$ Use of the PMCC is better since it takes into account not just the ranking but the actual value of the weights. Thus it has more information than Spearman's and will therefore provide a more discriminatory test.	E1 for has values, not just ranks E1 for contains more information Allow alternatives.	
	Critical value for rho = 0.5494 PMCC is very highly significant whereas Spearman's is only just significant.	B1 for a cv E1 dep	19

	(A) $P(X = 1) = 0.1712 - 0.0408 = 0.1304$	M1 for tables	
(i)	$OR = e^{-3.2} \frac{3.2^1}{1!} = 0.1304$	A1 (2 s.f. WWW)	
	(B) $P(X \ge 6) = 1 - P(X \le 5) = 1 - 0.8946$	M1	
	= 0.1054	A1	4
(ii)	(A) $\lambda = 3.2 \div 5 = 0.64$	B1 for mean (SOI)	
	$P(X=1) = e^{-0.64} \frac{0.64^{1}}{1!} = 0.3375$	M1 for probability A1	4
	(B) P(exactly one in each of 5 mins) = $0.3375^5 = 0.004379$	B1 (FT to at least 2 s.f.)	7
(iii)	Mean no. of calls in 1 hour = $12 \times 3.2 = 38.4$ Using Normal approx. to the Poisson, $X \sim N(38.4, 38.4)$	B1 for Normal approx. with correct parameters (SOI)	
	$P(X \le 45.5) = P\left(Z \le \frac{45.5 - 38.4}{\sqrt{38.4}}\right)$	B1 for continuity corr.	4
	$= P(Z \le 1.146) = \Phi(1.146) = 0.874 (3 \text{ s.f.})$	M1 for probability using correct tail A1 CAO, (but FT 44.5 or omitted CC)	
(iv)	(A) Suitable arguments for/against each assumption:	E1, E1	
	(B) Suitable arguments for/against each assumption:	E1, E1	4
			16

(i)	-	association be ne association	~ ~	•		B1 (in context)	
	Expected		Se	X	Row		
	Ехреси	-p	Male	Female	totals		
	1	Under 40	81.84	42.16	124		
	Age group	40 – 49	73.92	38.08	112		
		50 and over	42.24	21.76	64		
	Colu	ımn totals	198	102	300	M1 A1 for expected values (to 2dp)	
		ribution to	Se	X			
	test	statistic	Male	Female		M1 for valid attempt at (O–E) ² /E	
		Under 40	1.713	3.325			_
	Age group	40 – 49	0.059	0.114		M1dep for summation	6
	group	50 and over	2.255	4.378			
	$X^2 = 11$.84				A1CAO for X^2	4
	Refer to Ξ_2^2 Critical value at 5% level = 5.991 Result is significant There is some association between age group and sex . NB if $H_0 H_1$ reversed, or 'correlation' mentioned, do not award first				B1 for 2 deg of f B1 CAO for cv B1 dep on their cv & X ² E1 (conclusion in context)		
(ii)	The analysis suggests that there are more females in the under 40 age group and less in the 50 and over age group than would be expected if there were no association. The reverse is true for males. Thus these data do support the suggestion.					3	
(iii)	Binomial(300, 0.03) soi n = 300, p = 0.03 so EITHER: use Poisson approximation to Binomial with $\lambda = np = 9$ Using tables: $P(X \ge 12) = 1 - P(X \le 11)$ = 1 - 0.8030 = 0.197 OR: use Normal approximation N(9, 8.73) $P(X > 11.5) = P\left(Z > \frac{11.5 - 9}{\sqrt{8.73}}\right)$ $= P(Z > 0.846)) = 1 - 0.8012 = 0.199$				B1 CAO EITHER: B1 for Poisson B1dep for Poisson(9) M1 for using tables to find $1 - P(X \le 11)$ A1 OR: B1 for Normal B1dep for parameters M1 for using tables with correct tail (cc not required for M1) A1	5	
							18