Edexcel Maths S2

Mark Scheme Pack

2005-2015

Stewart House 32 Russell Square London WC1B 5DN

June 2001

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject STATISTICS 6684

Question number	Scheme	Marks
(a)	(i) small village so use census	Bi
	e.g. we electoral register or some othersuitable list	B1.
i.	(m) a la company	Bı
Variation ((ii) Sample survey eg. list of times and days when no of vehicles travelling through can be counted. (some suitable list of time periods)*	ß(4)
,,,	eg. X = no. of vehicles passing through in a 10min period	BI
(6)	X could have a <u>Poisson</u> distribution	B1 (2)
	* time period must be specified e.g. 10 mins, 1 hour, 7 an-7pm but < 1 day	6
2. (a)	1 - U - L 20-H X0P0(0.9)	B1 cs.o. (1)
(૯)	Y = no. of accidents in next 6 months. Y~Po(5.4)	Bi
Ċ	$P(Y = 2) = e^{-5.4} (5.4)^2$ = 0.06585 0.065819	MI, AI (3)
(c)	M= no. of months with no accidents Identify Correct binomial	BI (T their (a))
	$P(H=2) = {4 \choose 2} (0.407)^2 (0.593)^2 = 0.3495 (0.349 \sim 0.350)$	1
		₹
•		

Stewart House 32 Russell Square London WC1B 5DN .

June 2001

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject STATISTICS 6684

Question number	Scheme	Marks
3.	Ho: ρ= 1/4 ; H,: ρ ≠ 1/4	B1; B1
·	X = no. of gold leads in sample of 20. Under Ho Xalle, &	
	Critical Region P(x ≤ 8) = 0.9591 Probability Or. Ax P(x ≤ 2)	MI
	C.R. $\times 1$ $P(\times) = 1 - 0.8982$ = 2×0.0913 = 0.1826	A1 each value. A1
	Not significant (either x = 2 not in c.k. a pro-	МІ
	Insufficient evidence of a change in proportion of gold leads	A1√ (7)
4.	X = no. of letters marked 1st class X~B(10.0.20)	
(a`	$P(x > 3) = 1 - P(x \le 2), = 1 - 0.6778 = 0.3222 0.0372$	MI, A1 (2)
(6)	$P(X < 2) = P(X \le 1)$, = 0-3758 a 0.376	M1, A1 (2)
(c)	1	MI (Normal aprox)
	$P(F \le 12) \approx P(Z \le \frac{12 \cdot 5 - 14}{\sqrt{11 \cdot 2}})$ $f(F \le 12) \approx P(Z \le \frac{12 \cdot 5 - 14}{\sqrt{11 \cdot 2}})$ Standardizing	AI JU AI GOGO ² MI MI
	$\frac{11 + 12 + 13}{11 + 12 + 13} = \rho(2 \le -0.4482) Awrt = 0.45$	Al
	= 1-0-6736	
	-0.45 (AWRT 0.826~0.327)	AI (7)
(d)	The 70 letters form a random sample or are representative	Bi (1)
	or letters are independent	(12)

Stewart House 32 Russell Square London WC1B 5DN

June 2001

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject STATISTICS 6684

Question	Scheme	Ma	ırks
number	•		
5.	X= no. of requests for bulbs in a week. X~Po(2)		·
(a)	$P(X=4) = e^{-2} \cdot 2^{4} \text{or} \left[P(X \le 4) - P(X \le 3) \right]$	Hi ·	
	4! 0.9473 - 0.8571 = 0.0902 or 0.090	Αţ	(2)
$\bigcirc \omega$	$P(x>5) = 1 - P(x \le 5), = 1 - 0.9834 = 0.0166$	MI, AI	(2)
		ē1	
(c)	Y=no. of requests in 3 weeks. Y~ Po(6)	H1, A1	(3)
	P(Y < 5), = 0-4457	111, 141	(3)
(d)	Ho: λ=2 (σ-μ=8); H1: λ<2 (σ-μ<8)	B1; B1	
	R= no. of requests in 4 weeks. R~Po(8)	HI, AI	
<u>[</u>	P(R & 3) = 0.0424 [C.R. & 3 & prob < 5%] sig	1	(5)
	there is evidence that the rate of requests has decreased	AIJ	(1)
6 (a)	$f(x) = df(x) = \frac{1}{27} \left(-3x^2 + 12x \right)$ Attempt de	MI	
	Q.A.	A2/110	(3)
((e)	$\frac{d\left[f(x)\right]=0}{dx}=-6x+12=0, \Rightarrow x=1 \text{ is mode}$	MI, AI	(2)
(2)	F(x) 1	B1	
	z, f(x) axes maked and at least 1, 4	81	(3)
(d)	$\mu = \int_{1}^{4} \left(\frac{4z^{2}-z^{3}}{q^{2}} \right) dz$ Attempt $\int_{\infty}^{\infty} f(x) dx$	lx Mi a	e integration Herphad
	$= \frac{1}{9} \left[\frac{4x^3}{3} - \frac{x^4}{4} \right]_{1}^{4} = \left(\frac{256}{27} - \frac{256}{36} \right) - \left(\frac{4}{27} - \frac{1}{36} \right)$ Use of the correct limits and the correct limits are considered as the correct limits are correct limits are considered as the correct limits are correct limits	s MI	
,	= 1.25 or 9/4	Al	(3)
(e)	(4,007 0.51)	01	(1)
(+)	F(11) >0.5 => 11 > median		(from(e)) (10) (2)
	$F(2) = \frac{1}{27} (-8 + 24 - 5) = \frac{1}{27} = 0.407 \implies \text{mode} < \text{median}$	Q1	(14) (2)

Stewart House 32 Russell Square London WC1B 5DN

June 2001

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject STATISTICS 6684

Question number	Scheme	Marks
7,	(a) $f(\tau(0.2)) = 0.2$	B1 (1)
	(b) $\mu = E(\tau) = 0.5$	B ₁ (1)
	(c) $E(\tau^2) = \int_0^1 bt^2 dt = \left[t_3^3\right]_0^1$ [3]	MI-7 AI dep
	$Var(\tau) = (\frac{1}{3}) - (0) - \mu^2 = \frac{1}{12}$ $\frac{1}{12}$	HI (4)
	(d) X = no. of children with T<0.2 X 2B(20,0.2) Identify	1 .
	$P(x \leq 4)_{,} = 0.6296$	HI, AI (3)
	(e) Expect mean to still be close to 0.5 (or no change) Expect variace to be <u>reduced</u>	B1 (2)
	(f) $P(T<0.2) = \int_0^{0.2} 4t dt$ $= \left[4t_{1/2}^2\right]_0^{0.2}$ Afterpt $\int 4t dt$ between $0, 0.2$	н
	$= 2 \times (0.2)^2 - 0 = 0.08 $	Al cs.o. (2)
	(g) Y= no. of players stopping star in under 25.	M(
	7 56(13) 5 5 5	N ₁
	$f(Y)7) = 1 - f(Y \le 7)$ $= 1 - 0.7440$ $= 0.256$	A1 (4)
		(7)
(S.c.	Nomal Approx N(6,5.52) \$ 5, \$ 5.52 M1 } 18.2/4 0.	الخ

Stewart House 32 Russell Square London WC1B 5DN

Jan 2002

Advanced Subsidiary /Advanced Level

General Certificate of Education

Subject STATISTICS 6684

	Question number	Scheme	Marks
	1. (a)	Collection / group / set of individuals or items	B1
	(b)	A r.v. that is a function of known observations from a population	B1B1 (2
)	(c)	College students. Mean approval rating of 75%	B1.B1
	(d)	(Probability) distribution of all possible mean approval ratings of sample size 50 Dependent	B1 B1
			7
	2.	$H_0: \lambda = 2.5; H_1: \lambda > 2.5 \text{ (Accept } H_0: \lambda = 10; H_1: \lambda > 10)$	B1,B1
ļ		1 week $X \sim Po(2.5)$, 4 weeks $X \sim Po(10)$ $Po(10)$	B1
		$P(X \ge 14) = 1 - 0.8645 = 0.1355$ Insufficient evidence to reject H ₀	M1A1 M1
		Sales have not increased after appointment of new salesman. Context [Note; $P(X \le 14) = 0.9165$, $P(X \le 15) = 0.9153$ for M1A1]	Alft
)			(7)
	3. (a)	X is no of passengers who do not turn up for this flight.	MI
		$X \sim Bin(200, 0.03)$ both	M1 A1
	(b)	$X \sim Po(6)$	B 1
		P(X < 4) = 0.1512 Strict inequality, 0.1512	M1A1
	(c)	P(X > 4) = 1 - 0.2851 = 0.7149 [Notes: (b) Use of N(6,5.82) B1 P(X<3.5)M1A0 (c) P(X>4.5)M1A0 (b) Use of N(6,6) B0 (b) Exact Bin no credit.]	M1A1 7

Stewart House 32 Russell Square London WC1B 5DN

Jun 2002

Advanced Subsidiary /Advanced Level

General Certificate of Education

Subject STATISTICS 6684

Paper No. 82

uestion umber	So	cheme		Marks	

1					1
					6
					4
4.	Continuous Uniform (Rect	tangular) Y - II[0 14]		-	įį́
(a)	Continuous Onixonii (Acci	tangular), 2 ~ 0 [0,14]		B1,B1	
a >	$_{E(K)}$ (14+0)		F 9 7		(2
(b)	$E(X) = \frac{(14+0)}{2} = 7$	•	Form & sub, 7	M1A1	9
	Mean arrival time is 8.02a	m	8.02am		
				A1	72
(c)	$P(X \le x) = \int_0^x \frac{1}{14} dt = \frac{x}{14}$		Integral x		ાય
(6)	$f(A \le x) - \int_0^1 \frac{1}{14} dx - \frac{1}{14}$		Integral, $\frac{x}{14}$	M1,A1	S) A
	0	<i>x</i> <0			

	$F(x) = \frac{x}{14}$	$0 \le x \le 14$	Centre		
	14			B1ft	
		<i>x</i> >14	Ends		. 4
				B 1	
(d)	P(X > 10) = 1 - F(10)		nus'or valid integral		(4
	$=1-\frac{10}{14}=\frac{2}{7}$		$\frac{2}{7}$	M1 A1	ी
	14 /		,	A.	(2
					_
					11
			•		
)
					1 1
	•				7

Stewart House 32 Russell Square London WC1B 5DN

Jan 2002

Advanced Subsidiary /Advanced Level

General Certificate of Education

Subject STATISTICS 6684

	Question number	Scheme	4.	Marks
	5.(a)	Failed connections occur singly, indeper constant rate of 3 per hour, randomly	idently and at a Any two	B1,B1
	(b) (i)	X is no of failed connections every hour.	P(X=0) = 0.0498	M1A1
	(fi)	P(X > 4) = 1 - 0.8153 = 0.1847	Require '1 minus', 0.1847	M1A1
	(c)	$X \sim Po(24)$		B1 (2
	(d)	Y is no of users that fail to connect at the $Y \sim N(24, 24)$	eir first attempt Normal, both	B1,B1
		$P(Y \ge 12) = 1 - P(Z < \frac{11.5 - 24}{\sqrt{24}})$	From above, all correct	M1,A1
. !		= P(Z < -2.55) $= 0.9946$	-2.55	A1 A1 13 (6
	6. (a)	$X \sim Bin(20, 0.4)$	Bin, 20 & 0.4	B1,B1
• . . !	(b)	$P(5 < X < 15) = 0.9984 - 0.1256 \le 0.8728$	14&≤5, Subtract, both correct	(M1,M1(dep) A1A1
· · ·)	(c)	$E(X) = 20 \times 0.4 = 8$	8	B1
مستريد		$sd = \sqrt{20 \times 0.4 \times 0.6} = 2.19$	Sub in \sqrt{npq} , 2.19	M1,A1
•	(d)	$H_0: p = 0.4$ $H_1: p > 0.4$	Both	B1 M1
		$P(X \ge 8 n = 10, p = 0.4) = 1 - 0.9877$ =0.0123	Require '1 minus'	A1
		Reject H_0 Proportion of diners who prefer to eat of is higher than trade magazine's claim [Note; $P(X \le 6) = 0.9452$, $P(X \le 7) = 0.9877$	Context	M1 A1ft

Stewart House 32 Russell Square London WC1B 5DN

Jen 2002

Advanced Subsidiary /Advanced Level

General Certificate of Education

Subject STATISTICS 6684

uestion umber	Scheme	Marks	
7. (a)	$8k = 1, k = \frac{1}{8}$ cso	B1	
(b)	F(m) = 0.5	M1	. (
	$x^{2} + 2x - 4 = 0$ $x = \sqrt{5} - 1 = 1.236$ awa	A1 t 1.24 A1	
		· · · · · · · · · · · · · · · · · · ·	(
(c)	$f(x) = \frac{1}{4}(x+1),$ $0 \le x \le 2$ Differentiation, all con-	rect M1A1	
	= 0, otherwise 0 and range	es A1	. (
(d)			
	f(x)	B1 vals& labels	t ·
	3 4	B1 slope B1 f(x)=	
	$\frac{1}{4}$	22 1(-)	· ·
	0 2 x		
(e)	 mode= 2	2 B1	
(f)	$E(X) = \int_0^2 x(\frac{1}{4}(x+1))dx$ Attempt $\int_0^2 xf(x) dx$	(x)dx M1	
	$= \left[\left(\frac{1}{12} x^3 + \frac{1}{8} x^2 \right) \right]_0^2$ Expression all co	4.1	
	[`12 8 ´] ₀ 7	A1	
(g)	= 6 6 mean <median<mode compariso<="" negative="" skew="" td="" ⇒=""><td>n, both M1A1</td><td></td></median<mode>	n, both M1A1	

_	stion nber	Scheme	Marl	KS
1.	(a)	Survey is less time consuming.	B1	
	(<i>b</i>)	It is easier/quicker to analyse the results	B1	(2)
	(c)	List of members	B1	(1)
	(<i>d</i>)	The members	B1	(1)
			(4 m	arks)
2.	(a)	Y is the random variable consisting of any function of the X_i that involves no other quantities.	B1 B1	(2)
	(b)	$Y = \overline{X} = \frac{\sum X}{n}$	B1	(1)
	(c)	values form a probability distribution (known as the sampling distribution	B1 B1	(2)
		of <i>Y</i>)	(5 m	arks)
3.		$E(R) = \frac{\alpha + \beta}{2} = 3, \Rightarrow \alpha + \beta = 6$	M1 A1	
	(b)	$Var(R) = \frac{(\beta - \alpha)^2}{12} = \frac{25}{3}, \Rightarrow (\beta - \alpha)^2 = 100$ $\alpha = -2, \beta = 8$ $P(R < 6.6) = \frac{1}{10} \times 8.6 = 0.86$	M1 A1	
		$\alpha = -2, \beta = 8$	M1 A1 A	1 (7)
		$P(R < 6.6) = \frac{1}{10} \times 8.6 = 0.86$	M1 A1	(2)
			(9 m	arks)
4.	(a)	$H_0: \rho = 0.20, H_1: \rho < 0.20$	B1 B1	
		$X =$ number buying single packets, $X \sim B(25, 0.20)$		
		$P(X \le 2) = 0.0982$	M1 A1	
		0.0982 > 5%, so not significant (comparison)	M1	
		No reason to suspect the percentage who bought crisps in single packets that day was lower than usual (context)	A1 ft	(2)
		$H_0: \rho = 0.03, H_1: \rho \neq 0.03$	B1 B1	
		$Y =$ number buying bumper packs, $Y \sim B(300, 0.03) \Rightarrow Y \sim Po(9)$	M1	
		$P(Y \le 3) = 0.0212$ and $P(Y \le 15) = 0.9780 \Rightarrow P(Y \ge 16) = 0.0220$	M1 A1	
		Critical region $Y \le 3$ and $Y \ge 16$	A1	(6)
		Significance level = $0.0212 + 0.0220 = 0.0432$	B1 ft	(1)
			(13 m	arks)

Ques Num		Scheme	Marks
5.	(a)	$L \sim N(\mu, 0.3^2), P(L < 150) = 0.05 \Rightarrow P\left(Z < \frac{150 - \mu}{0.3}\right) = 0.05$	
		$\Rightarrow \frac{150 - \mu}{0.3} = , -1.6449$	M1 A1, B1
		$\mu = 150.49347 = 150.5$ 150μ	A1 (4)
	(b)	X represents number less than 150cm. $X \sim B(10, 0.05)$	B1
		$P(X \le 2) = 0.9885$	M1 A1 (3)
	(c)	Normal approximation $\mu = 500 \times 0.05 = 25$, $\sigma^2 = 23.75$ or 25	B1, B1
		$P(X < 35) \approx P(Z < \frac{34.5 - 25}{\sqrt{23.75 \text{ or } 25}})$ ±0.5, standardise	M1, M1
		$\approx P(Z < 1.95 \text{ or } 1.9)$	A1
		$\approx 0.9744 \text{ or } 0.9713$	A1 (6)
			(13 marks)
6.	(a)	X represents number of faults per 25 m \Rightarrow X ~ Po(1.5)	B1
		P(X = 4) = 0.0471	B1 (2)
	(b)	Y represents number of faults per 100 m \Rightarrow Y ~ Po(6.0)	B1
		$P(Y < 6) = P(Y \le 5) = 0.4457$	B1
		R represents number of 100 m balls containing fewer than 6 faults	
		$R \sim B(3, 0.4457)$	M1 A1
		$P(R=1) = C_1^3 \times 0.4457 \times (1 - 0.4457)^2 = 0.41082$ accept 0.411	M1 A1 (6)
	(c)	S represents number of faults in a 500 m ball \Rightarrow S ~ Po(30)	B1
		$P(23 \le S \le 33) \approx P(\frac{22.5-30}{\sqrt{30}} \le Z \le \frac{33.5-30}{\sqrt{30}})$ ±0.5, standardise	M1, M1 A1
		$\approx P(-1.37 \le Z \le 0.64)$	A1
		≈ 0.6536	A1 (6)
			(14 marks)

Question Number	Scheme	Marks
7. (a)	f(x)	
		B1 (labels)
	$\frac{2}{15}$	B1 (graph)
	15	B1 (axes)
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
(b)	(i) $F(x) = \int_0^x \frac{x}{15} dx = \frac{x^2}{30}$ for $0 \le x \le 2$	B1
	$F(x) = \frac{12}{15} + \int_{7}^{x} \left(\frac{4}{9} - \frac{2x}{45}\right) dx = \frac{4x}{9} - \frac{x^{2}}{45} - \frac{11}{9} \text{ for } 7 \le x \le 10$	B1 M1 A1
	(ii) $F(x) = \frac{2}{15} + \int_2^x \frac{2}{15} dx = \frac{2x}{15} - \frac{2}{15}$ for $2 \le x \le 7$	B1 M1 A1
	(iii) $F(x) = 0, x < 0, F(x) = 1, x > 10$	B1 (8)
(c)	$P(X \le 8.2) = F(8.2) = 0.928$	M1 A1 (2)
(d)	$E(X) = \int_0^2 \frac{x^2}{15} dx + \int_2^7 \frac{2x}{15} dx + \int_7^{10} \left(\frac{4x}{9} - \frac{2x^2}{45}\right) dx$	M1 A1
	$= \left[\frac{x^3}{45}\right]_0^2 + \left[\frac{x^2}{15}\right]_2^7 + \left[\frac{2x^2}{9} - \frac{2x^3}{125}\right]_7^{10} = 4.78$	A1 A1 (4)
		(17 marks)

_	estion mber	Scheme	Marks	
1.	(a)	Continuous uniform (Rectangular) U(-0.5, 0.5)	B1 B1	(2)
	(<i>b</i>)	P(error within 0. 2 cm) = $2 \times 0.2 = 0.4$	M1 A1	(2)
	(c)	P(both within 2 cm) = $0.4^2 = 0.16$	M1 A1	(2)
			(6 ma	arks)
2.	(a)	$X \sim \text{Po}(7)$	B1	
		$P(X \le 2) = 0.0296$	B1	
		$P(X \ge 13) = 1 - 0.9370 = 0.0270$	M1 A1	
		Critical region is $(X \le 2) \cup (X \ge 13)$	A1	(5)
	(<i>b</i>)	Significance level = $0.0296 + 0.0270 = 0.0566$	B1	(1)
	(c)	$x = 5$ is not the critical region \Rightarrow insufficient evidence to reject H ₀	M1 A1	(2)
			(8 ma	arks)
3.	(a)	Weeds grow independently, singly, randomly and at a constant rate (weeds/m²) any 2	B1 B1	(2)
	(<i>b</i>)	Let X represent the number of weeds/m ²		
		$X \sim \text{Po}(0.7)$, so in 4 m ² , $\lambda = 4 \times 0.7 = 2.8$	B1	
		P(Y < 3) = P(Y = 0) + P(Y = 1) + P(Y = 2)	M1	
		$= e^{-2.8} \left(1 + 2.8 + \frac{2.8^2}{2} \right)$	A1	
		= 0.46945	A1	(4)
	(c)	Let <i>X</i> represent the number of weeds per 100 m ²		
		$X \sim \text{Po}(100 \times 0.7 = 70)$	B1	
		$P(X > 66) \approx P(Y > 66.5)$ where $Y \sim N(70, 70)$	M1 M1 A1	
		$\approx P\left(Z > \frac{66.5 - 70}{\sqrt{70}}\right)$	M1	
		$\approx P(Z > -0.41833) = 0.6628$	A1	(6)
			(12 ma	arks)

Question Number	Scheme	Marks	
4 . (a)	P(X > 0.7) = 1 - F(0.7) = 0.4267	M1 A1	(2)
(b)	$f(x) = \frac{d}{dx}F(x) = \frac{4}{3} \times 2x - \frac{4x^2}{3}$	M1	
	$= \frac{4x}{3}(2 - x^2) \text{ for } 0 \le x \le 1$	A1	(2)
(c)	$E(X) = \int_0^1 \frac{4}{3} (2x^2 - x^4) dx = \left[\frac{4}{3} \left(\frac{2x^3}{3} - \frac{x^5}{5} \right) \right]_0^1$	M1 A1	
	$=\frac{28}{45}=0.622$	A1	
	Var $(X) = \int_0^1 \frac{4}{3} (2x^3 - x^5) dx - \left(\frac{28}{45}\right)^2$	M1	
	$= \left[\frac{4}{3} \left(\frac{2x^4}{4} - \frac{x^6}{6}\right)\right]_0^1 - \left(\frac{28}{45}\right)^2$	A1	
	$=\frac{116}{2025}=0.05728$	A1	(6)
(d)	$f(x) = \frac{4}{3}(2 - 3x^2) = 0$	M1	
	$\Rightarrow \text{mode} = \sqrt{\frac{2}{3}} = 0.816496$	A1	
	skewness = $\frac{\frac{28}{45} - \sqrt{\frac{2}{3}}}{\sqrt{\frac{116}{2025}}} = -0.81170$	M1 A1	(4)
		(14 ma	rks)

Question Number	Scheme	Marks	s
5 . (a)	Let <i>X</i> represent the number of double yolks in a box of eggs	B1	
	$X \sim B(12, 0.05)$	B1	
	$P(X = 1) = P(X \le 1) - P(X \le 0) = 0.8816 - 0.5404 = 0.3412$	M1 A1	(3)
(b)	$P(X > 3) = 1 - P(X \le 3) = 1 - 0.9978 = 0.0022$	M1 A1	(2)
(c)	$P(\text{only 2}) = C_2^3 (0.3412)^2 (0.6588)^2$	M1 A1	
	= 0.230087	A1	(3)
(d)	Let <i>X</i> represent the number of double yolks in 10 dozen eggs		
	$\therefore X \sim B(120, 0.05) \Rightarrow X = Po(6)$	B1	
	$P(X \ge 9) = 1 - P(X \le 8) = 1 - 0.8472$	M1 A1	
	= 0.1528	A1	
(e)	Let X represent the weight of an egg : $W \sim N(65, 2.4^2)$	M1	
	$P(X > 68) = P\left(Z > \frac{68 - 65}{2.4}\right)$	A1	
	= P(Z > 1.25)	A1	
	= 0.1056	A1	(3)
		(15 m	arks)

_	stion nber	Scheme	Mark	ΚS
6.	(a)	All subscribers to the magazine	B1	(1)
	(b)	A list of all members that had paid their subscriptions	B1	(1)
	(c)	Members who have paid	B1	(1)
	(<i>d</i>)	Advantage: total accuracy	B1	
		Disadvantage: time consyming to obtain data and analyse it	B1	(2)
	(<i>e</i>)	Let X represent the number agreeing to change the name		
		$X \sim B(25, 0.4)$	B1	
		$P(X = 10) = P(X \le 10) - P(X \le 9) = 0.1612$	M1 A1	(3)
	<i>(f)</i>	H_0 : $p = 0.40$, H_1 : $p < 0.40$	B1, B1	
		$P(X \le 6) = 0.0736 > 0.05 \Rightarrow \text{not significant}$	M1 A1	
		No reason to reject H ₀ and conclude % is less than the editor believes	A1	(5)
	(g)	Let X represent the number agreeing to change the name $\therefore X \sim B(200, 0.4)$		
		$P(71 \le X \le 83) \approx P(70.5 \le Y \le 82.5)$ where $Y \sim N(80, 48)$	B1 B1	
		$\approx P\left(\frac{70.5 - 80}{\sqrt{48}} \le X < \frac{82.5 - 80}{\sqrt{48}}\right)$	M1 M1	
		$\approx P(-1.37 \le X < 0.36)$	A1 A1	
		=0.5533	A1	(7)
			(20 n	narks)

PROVISIONAL MARK SCHEME

Question number		Mark scheme		ks
1.	(a)	A random variable; that is, a function involving no unknown quantities	B1; B1 (2	
	(b)	If all possible samples are taken; then their values will form a probability distribution called the sampling distribution		(2)
			(4 m	arks)
2.	(a)	λ is large or $\lambda > 10$	B1	(1)
	(<i>b</i>)	$Y \sim N(30, 30)$ may be implied $P(Y > 28) = 1 - P(Y \le 28.5)$	B1	
		$P(Y > 28) = 1 - P(Y \le 28.5)$	M1 A1	
		$=1-P\left(Z\leq \frac{28.5-30}{\sqrt{30}}\right)$	M1 A1	
		$= 1 - P(Z \le -0.273)$		
		= 0.607	A1	(6)
			(7 marks)	

PROVISIONAL MARK SCHEME

Que	stion aber	Mark scheme	Mai	rks
3.	(a)	$X \sim B(4, 0.3)$	B1 B1	(2)
	(b)			
		0.4		
		0.3 (0.2646)		
		(0.240) iiii opeo 0.2		
		0.1 (0.0756)		
		(0.0081)		
		0 1 2 3 4 No of residents		
		All probabilities correct	B1	
		Scales and labels	B1	
		Correct diagram	B1	(3)
	(c)	1 resident	B1	(1)
	(<i>d</i>)	E(X) = np = 1.2	B1	
		Var(X) = np(1-p)		
		$= 4 \times 0.3 \times 0.7$	M1	
		= 0.84	A1 (9 n	(3) narks)

PROVISIONAL MARK SCHEME

_	estion mber	Mark scheme		Mark	S
4.	(a)	Fixed number of independent trials		B1 B1	
		2 outcomes		B1	
		Probability of success constant		B1	(4)
	(b)	$P(X = 5) = \frac{2}{7}$; $P(X \neq 5) = \frac{5}{7}$	may be implied	B1; B1 ft	:
		P(5 on sixth throw) = $\left(\frac{5}{7}\right)^2 \times \left(\frac{2}{7}\right)$	$p^n(1-p)$	M1 A1 ft	:
		= 0.0531		A1	(5)
	(c)	P(exactly 3 fives in first eight throws) = $\binom{8}{3} \left(\frac{2}{7}\right)^3 \left(\frac{5}{7}\right)^3$	use of ${}^{n}C_{r}$ needed	M1 A1 ft	
		= 0.243		A1	(3)
				(12 ma	ırks)
5.	(a)	$f(x) = \begin{cases} 0.05 & 180 \le x \le 200 \\ 0 & \text{otherwise} \end{cases}$		B1 B1	
		$f(x) \uparrow$			
		0.05	labels	B1	
			3 parts	B1	(4)
		180 200 x			
	(b)(i)	$P(X \le 183) = 3 \times 0.05$		M1	
		= 0.15		A1	
	(ii)	P(X = 183) = 0		B1	(3)
	(c)	IQR = 10		B1	(1)
	(<i>d</i>)	$0.05(200 - x); = 0.05(x - 180) \times 2$		M1; A1	
		200 - x = 2x - 360			
		$x = 186 \frac{2}{3}$		A1	(3)
	(e)	$\frac{1}{3}$ of all cups of lemonade dispensed contains $186\frac{2}{3}$ ml or less		B1 B1 ft	(2)
		(or $\frac{2}{3}$ of all cups of lemonade dispensed contains $186\frac{2}{3}$ ml or more)			
				(13 ma	ırks)

PROVISIONAL MARK SCHEME

Question number	Mark scheme	Marl	ΚS
6. (a)	Po(1)	B1 B1	
	Each patient seen singly <i>or</i> patients with disease seen randomly <i>or</i> seen constant rate of once per week <i>or</i> each patient assumed independent of the next	B1	(3)
(<i>b</i>)	$X \sim Po(4)$ may be implied	B1	
	$P(X > 3) = 1 - P(X \le 3)$	M1	
	=1-0.4335	A1	
	= 0.5665	A1	(4)
(c)	H_0 : $\lambda = 6$	B1	
	$H_1: \lambda < 6$	B1	
	$P(X \le 2) = 0.0620$ $\alpha = 0.05 \Rightarrow \text{critical region } X \le 1$	M1 A1	
	0.0620 > 0.05 2 not in critical region	M1	
	The number of patients with the disease seen by the doctor has not been reduced	A1	(6)
(<i>d</i>)	This does not support the model as the disease will occur in outbreaks; the patients seen by the doctor are unlikely to be independent of each other/don't occur singly	B1; B1	(2)
		(15 ma	arks)

PROVISIONAL MARK SCHEME

Question number	Mark scheme	Marks
7. (a)	$\int_{-1}^{0} k(x^2 + 2x + 1) dx = 1$ limits needed and =1	M1
	$\left[k \left(\frac{x^3}{3} + x^2 + x \right) \right]_{-1}^{0} = 1$ attempt at integration	M1 A1
	k=3 (*)	A1 (4)
(b)	$E(X) = \int_{-1}^{0} x.f(x) dx$	M1
	$= \int_{-1}^{0} (3x^3 + 6x^2 + 3x) dx$ limits needed	A1
	$= \left[\frac{3x^4}{4} + 2x^3 + \frac{3x^2}{2} \right]_{-1}^{0}$ integration and substituting limits	M1
	$=-\frac{1}{4}$	A1 (4)
(c)	$\int_{-1}^{x_0} (3x^3 + 6x^2 + 3x) dx = \left[x^3 + 3x^2 + 3x \right]_{-1}^{x_0}$	M1
	$= x_0 + 3x_0^2 + 3x_0 + 1$	A1
	$F(x) = \begin{cases} 0 & x < -1 \\ x^3 + 3x^2 + 3x + 1 & -1 \le x \le 0 \\ 1 & x > 0 \end{cases}$	B1 B1 (4)
(d)	P(-0.3 < X < 0.3) = F(0.3) - F(-0.3)	M1
	= 1 - 0.343	A1
	= 0.657	A1 (3)
		(15 marks)

Stewart House 32 Russell Square London WC1B 5DN

January 2004

Advanced Subsidiary/Advanced Level

General Certificate of Education

Subject STATISTICS 6684

Question number	Scheme	Marks	
1. (a)	List of patients registered with the practice. Require 'list' or 'register' or database or similar	B1	(1)
(b)	The patient(s)	B1	(1)
(c)	Adv: Quicker, cheaper, easier, used when testing results in destruction of item, quality of info about each sampling unit is often better. Any one Disadv: Uncertainty due to natural variation, uncertainty due to bias, possible	B1	(1)
	bias as sampling frame incomplete, bias due to subjective choice of sample, bias due to non-response. Any one	B 1	 \
(d)	Non-response due to patients registered with the practice but who have left the area	B 1	(2)
	(°	Total 5 Ma	(1) rks)
2(a)	$P(R \ge 4) = 1 - P(R \le 3) = 0.6533$ Require 1 minus and correct inequality	M1A1	
(b)	$P(S \le 1) = P(S = 0) + P(S = 1), = e^{-2.71} + 2.71e^{-2.71}, = 0.2469$ awrt 0.247	M1,A1,A1	
(c)	$P(T \le 18) = P(Z \le \frac{18-25}{5}), = P(Z \le -1.4) = 0.0808$ 4 dp, cc no marks	M1,A1	(3)
		Total 7 Ma	(2) rks)
3(a)	$p = \frac{1}{2}$	B1	· ·
(b)	Binomial distribution is symmetrical	B1	(1)(1)
(c)	Since <i>n</i> is large and $p \approx 0.5$ then use normal approximation, Can be implied below $np = 96$ and $npq = 49.92$	M1 A1A1	(1)
	$P(90 \le X < 105) \approx P(89.5 \le Y \le 104.5)$ where $Y \square N(96,49.92) \pm 0.5$ cc on both	M1,	
	$\approx P\left(\frac{89.5 - 96}{\sqrt{49.92}} \le Z \le \frac{104.5 - 96}{\sqrt{49.92}}\right)$ Standardisation of both	M1	
	$\approx P(-0.92 \le Z \le 1.20)$ awrt -0.92 & 1.20	A1	
	$\approx 0.7055 - 0.7070$ 4dp in range	A1	
	C	Total 9 Ma	(7) rks)

Stewart House 32 Russell Square London WC1B 5DN

January 2004

Advanced Subsidiary /Advanced Level

General Certificate of Education

Subject STATISTICS 6684

Question number	Scheme	Marks	
4 (a)	n large, p small	B1,B1	
(b)	Let <i>X</i> represent the number of people catching the virus, $X \square B\left(12, \frac{1}{150}\right)$ Implied	(2) B1	
	$P(X = 2) = C_2^{12} \left(\frac{1}{150}\right)^2 \left(\frac{149}{150}\right)^{10}, = 0.0027 \text{ Use of Bin including } C_2^{12}, 0.0027(4) \text{ only}$	M1A1,A1	
(c)	$X \square Po(np) = Po(8)$ Poisson, 8 $P(X < 7) = P(X \le 6) = 0.3134$ $X \le 6$ for method, 0.3134	(4) B1,B1 M1A1 (4) otal 10 Marks)	
5(a)	Vehicles pass at random / one at a time / independently / at a constant rate	B1B1den	
(b)	X is the number of vehicles passing in a 10 minute interval,	(2)	
	$X \square \operatorname{Po}\left(\frac{51}{60} \times 10\right) = \operatorname{Po}(8.5) $ Implied Po(8.5) B1		
	$P(X=6) = \frac{8.5^6 e^{-8.5}}{6!}$, = 0.1066 (or 0.2562-0.1496=0.1066) Clear attempt using 6, 4dp	M1A1	
(c)	$P(X \ge 9) = 1 - P(X \le 8) = 0.4769$ Require 1 minus and correct inequality	(3) M1A1	
(d)	$H_0: \lambda = 8.5, H_1: \lambda < 8.5$ One tailed test only for alt hyp	(2) B1∫,B1∫	
	$P(X \le 4 \lambda = 8.5) = 0.0744, > 0.05$ $X \le 4 \text{ for method, } 0.0744$	M1,A1	
	(Or P($X \le 3 \lambda = 8.5$) = 0.0301, < 0.05 so CR $X \le 3$ correct CR	M1,A1)	
	Insufficient evidence to reject H_0 , 'Accept	' M1	
	so no evidence to suggest number of vehicles has decreased. Context	A1 ∫	
	(Te	(6) otal 13 Marks)	

Stewart House 32 Russell Square London WC1B 5DN

January 2004

Advanced Subsidiary /Advanced Level

General Certificate of Education

Subject STATISTICS 6684

Question number	Scheme	Marks	
6 (a)	Let X represent the number of plant pots with defects, $X \square B(25,0.20)$ Implied $P(X \le 1) = 0.0274, P(X \ge 10) = 0.0173$ Clear attempt at both tails required, 4dp Critical region is $X \le 1, X \ge 10$	B1 M1A1A1 A1	
(b) (c)	Significance level = $0.0274+0.0173=0.0447$ Accept % 4dp $H_0: \lambda = 10, \ H_1: \lambda > 10 \ (or \ H_0: \lambda = 60, \ H_1: \lambda > 60)$	B1 cao	(5
	Let Y represent the number sold in 6 weeks, under H_0 , $Y \square Po(60)$ $P(Y \ge 74) \approx P(W > 73.5)$ where $W \square N(60,60)$ ± 0.5 for cc ,73.5 $\approx P(Z \ge \frac{73.5 - 60}{\sqrt{60}}) = P(Z > 1.74) = 0.0407 - 0.0409 < 0.05$ Standardise using $60\sqrt{60}$ Evidence that rate of sales per week has increased.		(5
		Γotal 13 Ma	(' irk

Stewart House 32 Russell Square London WC1B 5DN

January 2004

Advanced Subsidiary /Advanced Level

General Certificate of Education

Subject STATISTICS 6684

Question number	Scheme	Ма	urks	
7 (a)	. 4			
(a)	$\int_0^4 kx(5-x)\mathrm{d}x = 1$ Limits	required	M1	
	$k \left[\frac{5x^2}{2} - \frac{x^3}{3} \right]_0^4 = 1 \qquad \left[\frac{5x^2}{2} - \frac{x^3}{3} \right]_0^4 = 1$	$-\frac{x^3}{3}$	A1	
	Sub in limits and solve to give **** $k = \frac{3}{50}$ **** Correc	t solution	A1	
	56			(3)
(b)	$F(x) = \int_0^{x_0} f(x) dx = \int_0^{x_0} \frac{3}{56} x (5 - x) dx = \frac{3}{56} \left[\frac{5x^2}{2} - \frac{x^3}{3} \right]_0^{x_0} $ Variable up	pper limit required	i M1	(3)
	$= \frac{x_0^2}{112} (15 - 2x_0)$ $0 \qquad x < 0$		A1	
	$F(x) = \frac{x^2}{112}(15 - 2x) \qquad 0 \le x \le 4$	Ends, middle.	B1,B1 ∫	
	1 x > 4			(4)
(c)	$E(x) = \int_0^4 \frac{3}{56} x^2 (5 - x) dx = \frac{3}{56} \left[\frac{5x^3}{3} - \frac{x^4}{4} \right]_0^4 = 2.29 \int x f(x) dx, \left[\frac{5x^3}{3} - \frac{x^4}{4} \right]_0^4 = 2.29 \int x f(x) dx$	$-\frac{x^4}{4}$, $3\operatorname{sf}(2\frac{2}{7})$) M1A1A1	
(d)	$\frac{3}{3}$	(7 0) 0 -		(3)
	$f'(x) = \frac{3}{56}(5-2x) = 0 \implies \text{Mode}=2.5 $ Attempt $f'(x)$,	(5-2x) = 0, 2.5	M1A1A1	
(a)	(Or Sketch M1,	, x=0&5 A1, Mod	e=2.5 A1)	(3)
(e)	F(2.3)=0.491, F(2.5)=0.558 Their F, awrt 0.491 & 0.558 or $F(m)=0.5 \implies m$ lies between 2.3 and 2.5	or 0.984 & -6.5 cso A1	M1,A1	(3)
(f)			70.4	(5)
	Mean (2.29) <median (2.3-2.5)<mode="" (2.5)="" negative="" skew<="" td=""><td></td><td>B1 B1 dep</td><td></td></median>		B1 B1 dep	
		(T	Total 18 Mai	(2) rks)
		(-		/

Qn no.	Scheme Ma	ırks	
1(a)	A <u>list of</u> (all) the members of the <u>population</u>	B1	
(b)	A random variable that is a <u>function</u> of a random <u>sample</u> that contains <u>no unknown parameters</u>	B1 B1	(1)
		Total 3 mar	(2) (ks)
2(a)	$P(X < 2.7) = \frac{3.7}{5} = 0.74$	B1	
(b)			(1)
(0)	$E(X) = \frac{4-1}{2} = 1.5$ Require minus or complete attempt at integration, 1.5	M1A1	
(c)	$Var(X) = \frac{1}{12}(4+1)^2 = \frac{25}{12} = 2.08\dot{3}$ Require plus, $\frac{25}{12}or2\frac{1}{12}or2.08\dot{3}or2.08$		(2)
		Total 5 mar	(2)
3	$H_0: p = 0.25, H_1: p > 0.25$ 1 tailed		KS)
	Under H_0 , $X \square Bin(25,0.25)$ Implied by probability		
	$P(X \ge 10) = 1 - P(X \le 9) = 0.0713 > 0.05$ Correct inequality, 0.0713		
	Do not reject H_0 , there is insufficient evidence to support Brad's claim. DNR, context	A1A1	
4(a)	Fixed no of trials/ independent trials/ success & failure/ Probab of success is constant any 2	Total 7 mar B1B1	(7) eks) (2)
(b)	X is rv 'no of defective components $X \square Bin(20,0.1)$ Bin(20,0.1)	B1	
(c)	P(X = 0) = 0.1216 = 0, 0.1216 M1A1		(1) (2)
(d)	$P(X > 6) = 1 - P(X \le 6) = 1 - 0.9976 = 0.0024$ Strict inequality & 1- with 6s, 0.0024		(2)
(e)	E(X)=20x0.1=2 2 Var(X)=20x0.1x0.9=1.8 1.8	B1 B1	
(f)	$X \square Bin(100,0.1)$ Implied by approx used	B1	(2)
	$X \square P(10)$ $P(X > 15) = 1-P(X \le 15) = 1-0.9513 = 0.0487$ Strict inequality and 1- with 15, 0.0487	B1 M1 A 1	
	$P(X > 15) = 1 - P(X \le 15) = 1 - 0.9315 = 0.0487$ Strict inequality and 1- with 15, 0.0487 (OR $X \square N(10,9)$, $P(X > 15.5) = 1 - P(Z < 1.83) = 0.0336 (0.0334)$ with 15.5	BIMIAI	
	(OR $X \square N(10,10)$, $P(X > 15.5) = 1 - P(Z < 1.74) = 0.0409 (0.0410)$ with 15.5	<i>B1M1A1</i>)	
		otal 13 mar	(4) (ks)

Qn no.	Scheme Ma	rks	
5 (a)	A range of values of a test statistic such that if a value of the test statistic		
	obtained from a particular sample lies in the critical region, then the null hypothesis is rejected (or equivalent). B1B1		
	then the null hypothesis is rejected (or equivalent).		(2)
(b)	P(X < 2) = $P(X = 0) + P(X = 1)$ both	M1	(=)
	$\frac{1}{1}$		
	$=e^{-\frac{1}{7}} + \frac{e^{-\frac{1}{7}}}{7}$ both	A1	
	=0.990717599=0.9907 to 4 sf awrt 0.991	A1	
	-0.550/1/3550.550/ to 7 81 awit 0.551	AI	(3)
(a)	$\mathbf{v} \cap \mathbf{p}(14 \times \frac{1}{2}) = \mathbf{p}(2)$	D1	` '
(c)	$X \square P(14 \times \frac{1}{7}) = P(2)$	B1	
	$P(X \le 4) = 0.9473$ Correct inequality, 0.9473	M1A1	
			(3)
(d)	$H_0: \lambda = 4, \ H_1: \lambda < 4$ Accept $\mu \& H_0: \lambda = \frac{1}{7}, \ H_1: \lambda < \frac{1}{7}$	B1B1	
	1		
	$X \square P(4)$ Implied		
	$P(X \le 1) = 0.0916 > 0.05$, Inequality 0.0916		
	So insufficient evidence to reject null hypothesis Number of breakdowns has not significantly decreased	A1 A1	
	Number of ofeakdowns has not significantly decreased	AI	(7)
	T)	Cotal 15 ma	
6 (a)	No of defects in carpet area a sq m is distributed $Po(0.05a)$ Poisson, $0.05a$	B1B1	
	Defects occur at a constant rate, independent, singly, randomly Any 1	B1	
(b)	$X \square P(30 \times 0.05) = P(1.5)$	D1	(3)
		DI	
	$P(X = 2) = \frac{e^{-1.5} \times 1.5^{2}}{2} = 0.2510$ Tables or calc 0.251(0)	M1A1	
			(2)
(c)	$P(X > 5) = 1 - P(X \le 5) = 1 - 0.9955 = 0.0045$ Strict inequality, 1-0.9955, 0.0045	M1M1A1	(3)
	$1(X > 3) - 1 - 1(X \le 3) - 1 - 0.9933 - 0.0043$ Strict inequality, 1-0.9933, 0.0043	WIIWIIAI	(3)
(d)	$X \square P(17.75)$ Implied	B1	
		B1	
	$P(X \ge 22) = P\left(Z > \frac{21.5 - 17.75}{\sqrt{17.75}}\right)$ Standardise, accept 22 or ± 0.5	M1M1	
		A1	
	$-\Gamma(Z > 0.89)$ awit 0.89 = 0.1867 0.1867,		
	0.1007	111	(6)
	Γ)	Cotal 15 ma	

EDEXCEL STATISTICS S2 (6684) – JUNE 2004 PROVISIONAL MARK SCHEME

Qn no.	Scheme	Ma	ırks	
7(a)	$E(X) = \int_0^1 \frac{1}{3} x dx + \int_1^2 \frac{8x^4}{45} dx$ $\int x f(x) dx, 2 t dx$	erms added	M1M1	
	$= \left[\frac{1}{6}x^2\right]_0^1 + \left[\frac{8x^5}{225}\right]_1^2$ Express	ions, limits	A1A1	
	$= 1.26\dot{8} = 1.27 \text{ to } 3 \text{ sf} \text{or } \frac{571}{450} \text{ or } 1\frac{121}{450}$	awrt1.27	A1	(-)
(b)	$F(x_0) = \int_0^{x_0} \frac{1}{3} dx = \frac{1}{3} x_0 \text{ for } 0 \le x < 1 $ variable upper limit on $\int f(x_0) dx = \int_0^{x_0} \frac{1}{3} dx = \int_0^{x_0$	$(x)\mathrm{d}x,\frac{1}{3}x_0$	M1A1	(5)
	$F(x_0) = \frac{1}{3} + \int_1^{x_0} \frac{8x^3}{45} dx \text{ for } 1 \le x \le 2$ their fraction + v.u.1 on $\int f(x) dx$	x &2 terms	M1	
	$= \frac{1}{3} + \left[\frac{8x^4}{180} \right]_1^{x_0}$	$\frac{8x^4}{180}$	A1	
	$=\frac{1}{45}(2x_0^4+13)$		A1	
	0 x < 0			
	$F(x) = \frac{1}{3}x \qquad 0 \le x < 1$ middle	pair, ends	B1,B1	
	$\frac{1}{45}\left(2x^4+13\right) \qquad 1 \le x \le 2$,	
(c)	1 x > 2			(7)
	45\ ' 2	unction=0.5	M1A1ft	
	$m^4 = 4.75$ m = 1.48 to 3 sf	awrt1.48	A1	(2)
(d)	mean <median negative="" skew<="" td=""><td>dep</td><td>B1 B1</td><td>(3)</td></median>	dep	B1 B1	(3)
		()	Total 17 ma	

190 High Holborn London WC1V 7BH

January 2005

Advanced Subsidiary/Advanced Level

General Certificate of Education

Subject:

Statistics

Paper: S2

Subject:	Statistics Paper: Si	2		
Question Number	Scheme	Marks		1
1.	(a) P(R=5) = P(R < 5) - P(R < 4) = 0.7216 - 0.555 Can be inflied	MI		
·	* 0.2061 AWRT 0.2061	Al	(2)	
	$(0R: {}^{5}C_{5}(0.3)^{5}(0.7)^{10} = 0.206130)$ $(b) P(S=5) = 0.2414 - 0.1321 = 0.1093 Accept 0.1093 & 0.1094 0.1093 & 0.1094 AMET AMET$		(1)	
	(c) P(T=5) =0	Bı	(i)	
⊋.	(e) (i) A collection of individuals or items	81		
•	in A list of all sompling units in the population	Bı	(د)	
·	(6) Not always possible to keep this list up to date	BI	(1)	
	(c) (i) eg:- Publis in year 12 - small easily listed various	₹ 1		
	Population known & easily accessed	B≀ 7.		
	in Students in a University - Large not easily listed	& (.		
	Population known but too true consuming expensive to interview	81	(4)	
	all of them.			
	() SR (i) Definition of census by example B1			
	(ii) Vanfle B1			

FINAL PMT

190 High Holborn London WC1V 7BH

January 2005

Advanced Subsidiary/Advanced Level

General Certificate of Education

Subject:

Statistics

		•
Question Number	Scheme	Marks
3.	(a) Continuous uniform/Rectangular	81
	$f(x) = \begin{cases} 1/2, & 0 \le x \le L \\ 0 & \text{otherwise} \end{cases}$	B1 (3)
	(1) $P(X < \frac{1}{2}L) = \frac{1}{L} \times \frac{L}{3} = \frac{1}{3}$	Thur try MIAI (2)
	(c) E(x)= 12	B1 (1)
	(d) $\frac{1}{3} \left(\frac{1}{3} \right)^2 = \frac{1}{3}$	(b) ² MI Ay/(2)
4.	(a) Probability of success/failure is cons Trials are independent	tant B1 B1 (2)
	(b) Let p represent proportion of steechen distinguish detenden brands Ho: p = 0.1; Hi: p > 0.1	to who can (both) B1
	4= 0.01; CR: 2 > 2.3263	2-3263 81
	up = 25, upq = 22.5	both B1 Combe juplied
	$3 = \frac{39.5 - 25}{\sqrt{22.5}} = 3.0568$	Standardication M1 Sik ±0.52 New 144 AWRT 3.02 A1
	Riject Ho: claim count be accepted	Based on clear At (6) evidence from fort
	(c) 29:- np, nap box 75 - true so accept p close to 0.5 - not true, and successful ne not clear cut no indefendance - one student influ	table supplies not net B1 (2) suess willy

⁽b) Aliter 8= 3.06 * p=0.9989 >0.99 } B1 equar to 2.3263

190 High Holborn London WC1V 7BH

January 2005

Advanced Subsidiary/Advanced Level

General Certificate of Education

Subject:

Statistics

Question lumber	Scheme	Marks	
5.	Let X représent the number of defective article .: X ~ B(10,0.032)	lu	
	(a) $f(X=2) = \frac{10}{2} (0.032)^{2} (1-0.031)^{6}$	2 4 1	√ }} Δ.
	~ 0·0355274		41 41 (3
	(s) Large n small p ⇒ Poisson apploximation with 1= 100×0.032 = 3.2	Seen of inflied	Bı
	$P(\chi_{4}) = P(\chi_{4}) = P(x) + P(1) + P(2) + P(3)$	p(X < 3) stated p	AI
	18 Horacel = 0/4 = = 3.2 { 1+3.2 + (3.2) + (3.2) } } Approx	All conrect A) (
	= 0.602519	Awero-bod 1	41 <i>(</i> 4
	(c) np 2 ng bok >5 => Hornal affronimention	n Nathan	41
	with np = 32 and npg = 30.976	h .	Ŋ
	P(X > 42) = P(Y > 42.5) where Y = M(32, 30	TO THE PARTY OF TH	Λŧ
	= P(Z > 42.5-32)	their np, vary	
	= P(2 > 1.8845)	All correct A Awar 1.89 A	fi i
1	= 0.0294	0.0194-0.0197 A	1 (6

190 High Holborn London WC1V 7BH

January 2005

Advanced Subsidiary/Advanced Level

General Certificate of Education

Subject:

Statistics

Question Number	Scheme	Marks
6.	het X represent number of accidents/month: X~Po(3)	BI
	(a) $P(X>4) = 1 - P(X=4); = 1 - 0.8513 - 0.1847$	MI; AI (3)
	(b) Let Yrepresent number of accidents in 3 worther : Yn Po (3x3 = 9) Can be in	piced Bi
	P(Y>4)= 1-0.0560 = 0.9450	B1 (2)
	(c) Ho: $\lambda = 3$; H: $\lambda < 3$ 2 stailed; alow 8 of M1 (0.025) AD	8 1
-	P(X = 1 \lambda = 3) = 0.1991; > 0.05	81; MI
	insufficient evidence to cuffert the claim that the need weather of accident han been reduced. (M8: CR: X =0; X=1 not in CR; same conclusion => B1, M1,	AI√ (4) AI)
	(d) Ho: \ = 24x3=72; H1: \ \ 272 Can be implied \ \ \	
	K= 0.05 => CR: 3 <-1.644) -1.64	tred Bi Fath Bi
	Using Hornal approximation with JL= 5 2 The Condition	eplied B1
	8= 55.5-72 = -1.94454 ±0.6, me	with all
	Since -1.944 is in the CR, the 11 rejected. There Conters is evidence that the restriction has reduced clear evidence	+ & AIV (7)
į	the number of accidents.	
	Aliker (d) p=0.0262 < 0.05 Awer 0.026 &1 equal =	to -1.6449

190 High Holborn London WC1V 7BH

January 2005

Advanced Subsidiary/Advanced Level

General Certificate of Education

Subject:

Statistics

Question Number	Scheme	larks
7.	(a) $k \int_{-\infty}^{+\infty} (-x^{2} + 5x - 4) dx = 1$ Using $\int_{-\infty}^{+\infty} (-x^{2} + 5x - 4) dx = 1$	МІ
	$\therefore \left[\frac{1}{3} + \frac{5x^{2}}{2} - 4x \right]^{4} = 1$ All correct integing with limits	Aı
		A1 (3)
	(b) $E(x) = \int_{-2/9}^{4/9} (-x^3 + 5x^2 - 4x) dx$ Ung $\int x f(x) dx$	MI
	$= \frac{2}{9} \left[-\frac{14}{4} + \frac{5x^2}{3} - \frac{4x^2}{1} \right]_{1}^{4}$ Comet integ.	#1
	= 5/2 Cao	A((3)
	(c) $\frac{d}{dx}f(x) = \frac{2}{3}(-2x+5) = 0$; \Rightarrow Mode = $\frac{5}{3}$ Diff. If (a)	MI; AI (2)
	(d) $F(x) = \int_{-49}^{2} (-x^2 + 5x - 4) dx$ Un # fleicht	Mi
	$= \left[\frac{4}{9}\left(-\frac{x^{2}}{3} + \frac{5x^{2}}{2} - 4x\right]^{3} \right]$ Integ ⁴ with limits	Ai
	$= \frac{2}{9} \left\{ -\frac{1}{3} + \frac{510^{1}}{2} - 410 + \frac{11}{1} \right\}$ auf	Ar
	$F(x) = \begin{cases} 0 \\ 249 \left[-\frac{x^3}{1} + 5x^2 - 4x + \frac{11}{6} \right] \end{cases} \begin{cases} x < 1 \\ 1 \le x \le 4 \end{cases}$ $1 \le x \le 4$ $1 \le x \le 4$	B ₁ (s)
	(e) $P(x=2.5) = F(2.5) = 0.5$ [August 1] (e) $P(x=2.5) = F(2.5) = 0.5$ [August 2] [August 2]	MI AI (2)
	(f) Median = 2.5; Distribution is eguenetreed	Blibl(2)

GCE

Edexcel GCE Statistics S2 (6684)

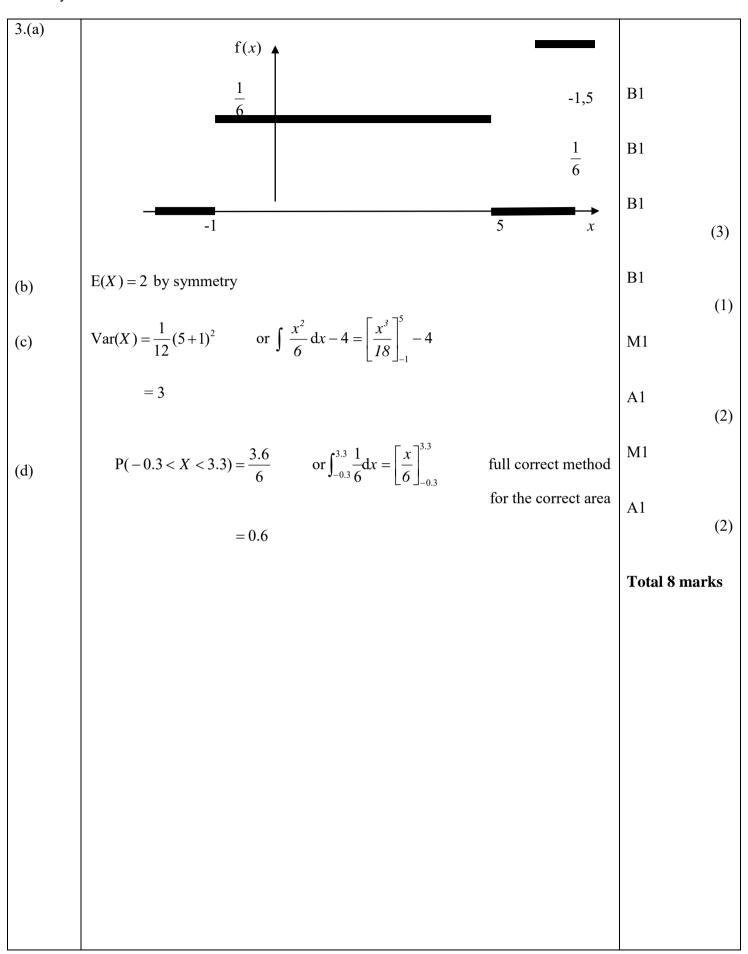
Summer 2005

advancing learning, changing lives

Mark Scheme (Results)

June 2005 6684 Statistics S2 Mark Scheme

Question Number	Scheme	Mar	ks
1(a)	$X \sim B(n, 0.04)$ Implied	B1	
	E(X) = np $5 = 0.04n$ Use of $np = 5$	M1	
	n = 125 125	A1	(3)
(b)	E(X) = 3 $np = 3$ $np = 3$	B1	(3)
	$sd = \sqrt{npq} = \sqrt{3(1 - 0.04)}$ Use of npq	M1	
	$= \sqrt{2.88} $ = 1.70	A1 A1	
			(4) al 7
2(a)	$f(x) = \frac{1}{4} , \ 2 \le x \le 6 $ $\frac{1}{4} \text{ and range}$	B1	
	= 0 , otherwise 0 and range	B1	
(b)	E(X) = 4 by symmetry or formula 4	B1	(2)(1)
(c)	$Var(X) = \frac{(6-2)^2}{12}$ Use of formula	M1	
	Var (X) = $\frac{(6-2)^2}{12}$ Use of formula = $\frac{4}{3}$ 1.3 or $1\frac{1}{3}$ or $\frac{4}{3}$ or 1.33	A1	(2)
(d)	$F(x) = \int_{2}^{x} \frac{1}{4} dt = \left[\frac{1}{4} t \right]_{2}^{x}$ Use of $\int f(x) dx$	M1	
	$= \frac{1}{4}(x-2) \text{ or equiv.}$	A1	
	$F(x) = \frac{1}{4}(x-2), \ 2 \le x \le 6$ $\frac{1}{4}(x-2) \text{ and range}$	B1ft	
	= 1 , x > 6	B1	(4)
(e)	$P(2.3 < X < 3.4) = \frac{1}{4} (3.4 - 2.3)$ Use of area or F(x)	M1	
	$= 0.275$ 0.275 or $\frac{11}{40}$	A1 Total	(2) 11


Question Number	Scheme	Marks
3(a)	Misprints are random / independent, occur singly in space and at a constant rate Context, any 2	B1, B1 (2)
(b)	$P(X = 0) = e^{-2.5}$ = 0.08208 = 0.0821	M1 A1 (2)
(c)	$Y \sim Po(5)$ for 2 pages $P(Y > 7) = 1 - P(X \le 7)$ Use of 1 – and correct inequality $= 1 - 0.8666 = 0.1334$	B1 M1 A1 (3)
(d)	For 20 pages, $Y \sim P_o$ (50) $Y \sim N(50, 50)$ approx $Y \sim N(50, 50)$	B1 B1
	$P(Y < 40) = P(Y \le 39.5)$ $= P\left(Z \le \frac{39.5 - 50}{\sqrt{50}}\right)$ cc \pm 0.5 standardise above all correct	M1 M1 A1
	$= P (Z \le -1.4849)$ $= 1 - 0.93 = 0.07$ awrt - 1.48 0.07	A1 A1 (7)
		Total 14
4(a)	Individual member or element of the population or sampling frame	B1 (1)
(b)	A <u>list</u> of <u>all</u> sampling units or <u>all</u> the population	B1
(c)	All possible <u>samples</u> are chosen from a population; the <u>values</u> of a <u>statistic</u> and the associated <u>probabilities</u> is a sampling distribution	B1 B1 (2)
		Total 4

Question Number	Scheme		Marks
5(a)	$X \sim B(200, 0.02)$ <u>n large, P small</u> so $X \sim Po(np) = Po(4)$	Implied conditions, $P_0(4)$	B1 B1, B1
	$P(X = 5) = \frac{e^{-4}4^{5}}{5!}$ $= 0.1563$	$P(X \le 5) - P(X \le 4) $ 0.1563	M1 A1 (5)
(b)	$P(X < 5) = P(X \le 4)$ = 0.6288	$P(X \le 4)$ 0.6288	M1 A1 (2) Total 7
6(a)	$\int_{0}^{2} k(4x-x^3) \mathrm{d}x = 1$	$\int f(x)dx = 1, \text{ all correct}$	M1 A1
	$\int_{0}^{2} k(4x - x^{3}) dx = 1$ $k \left[2x^{2} - \frac{1}{4}x^{4} \right]_{0}^{2} = 1$ $k(8 - 4) = 1$ $k = \frac{1}{4}$	[*]	A1
	$k = \frac{1}{4}$		(4)
(b)	$E(X) = \int_{0}^{2} x \cdot \frac{1}{4} (4x - x^{3}) dx$	$\int x f(x) dx$	M1
	$= \left[\frac{1}{3} x^3 - \frac{1}{20} x^5 \right]_0^2$	[*]	A1
	$=\frac{16}{15}$	1.07 or $1\frac{1}{15}$ or $\frac{16}{15}$ or $1.0\dot{6}$	A1 (3)
(c)	At mode, $f'(x) = 0$ $4 - 3x^2 = 0$	Implied Attempt to differentiate	M1 M1
	$x = \frac{2}{\sqrt{3}}$	$\sqrt{\frac{4}{3}}$ or 1.15 or $\frac{2}{\sqrt{3}}$ or $\frac{2\sqrt{3}}{3}$	A1 (3)
(d)	At median, $\int_{0}^{x} \frac{1}{4} (4t - t^{3}) dt = \frac{1}{2}$	$F(x) = \frac{1}{2} \text{ or } \int f(x) dx = \frac{1}{2}$	M1
	$\frac{1}{4} \left(2x^2 - \frac{1}{4}x^4 \right) = \frac{1}{2}$ $x^4 - 8x^2 + 8 = 0$	Attempt to integrate	M1
	$x^{2} - 8x^{2} + 8 = 0$ $x^{2} = 4 \pm 2\sqrt{2}$ $x = 1.08$	Attempt to solve quadratic Awrt 1.08	M1 A1 (4)

(e)	mean (1.07) < median (1.08) < mode (1.15) \Rightarrow negative skew	any pair cao	M1 A1 (2)
(f)	f(x)	lines $x<0$ and $x>2$, labels, 0 and 2	B1
		negative skew between 0 and 2	B1 (2)
_	0 2		Total 18
			10tai 10
7 (a)	$X \sim B(10, p)$	Binomial (10, 0.75)	B1, B1 (2)
(b)	P(X = 6) = 0.9219 - 0.7759 = 0.1460	$P(X \le 6) - P(X \le 5) \\ 0.1460$	M1 A1
(a)	H 0.75 (0.25)	C 4H	(2)
(c)	H_0 : $p = 0.75$ (or $p = 0.25$)	Correct H ₀	B1
	H_1 : $p < 0.75$ (or $p > 0.25$)	One tailed H ₁	B1
	Under H_0 , $X \sim B(20, 0.75)$ (or $Y \sim B(20, 0.25)$)	Implied	B1
	$P(X \le 13) = 1 - 0.7858 = 0.2142 \text{ (or } P(Y \ge 7))$ Insufficient evidence to reject H ₀ as $0.2412 > 0.05$	$P(X \le 13)$ and 1 -, 0.2142	M1, A1
	Doctor's belief is not supported by the sample	Context	A1
	$(OR\ CR\ P(X \le 12) = 1 - 0.8982 = 0.1018$ $(or\ P(Y \ge 8))$		(6)
	$P(X \le 11) = 1 - 0.9591 = 0.0409$ (or $P(Y \ge 9)$) 13 outside critical region	either	(M1 A1)
(d)	$(or 7)$) $P(X \le c) \le 0.01 \text{ for p=0.75}$ $(or P(Y \ge 20\text{-}c) \le 0.01 \text{ for p=0.25})$ $P(X \le 9) = 1 - 0.9961 = 0.0039 \text{ (or P}(Y \ge 11))$ $P(X \le 10) = 1 - 0.9861 = 0.0139 \text{ (or P}(Y \ge 10))$ C. R. is [0,9], so greatest no. of patients is 9.	0.9961 or 0.9981 9	M1 A1 B1 B1 (4) Total 14

Question Number	Schen	ne	Marks
1.(a)	Let X be the random variable the number of horizontal $X \sim \text{Bin}(4, 0.5)$	eads.	
	$P(X = 2) = C_2^4 0.5^2 0.5^2$ $= 0.375$	Use of Binomial including "Cr or equivalent	M1 A1 (2)
(b)	P(X = 4) or P(X = 0)	(0.5)4	B1
	$= 2 \times 0.5^4$ $= 0.125$	$(0.5)^4$ or equivalent	M1 A1 (3)
(c)	$P(HHT) = 0.5^3$ = 0.125	no ${}^{n}Cr$ or equivalent	M1 A1
	or $P(HHTT) + P (HHTH)$ = 2×0.5 ⁴ = 0.125		(2) Total 7 marks
	1a) 2,4,6 acceptable as use of binomial.	•	

Question Number	Scheme		Marks
2.(a)	Let X be the random variable the no. of accidents	per week	
	X ~Po(1.5)	λ need poisson and must be in part (a)	B1 (1)
(b)	$P(X=2) = \frac{e^{-1.5}1.5^2}{2}$	$\frac{e^{\mu}\mu^2}{2} \text{ or } P(X \le 2) - P(X \le 1)$	M1
	= 0.2510	awrt 0.251	A1 (2)
(c)	$P(X \ge 1) = 1 - P(X = 0) = 1 - e^{-1.5}$	correct exp awrt 0.777	B1
	= 0.7769		
	P(at least 1 accident per week for 3 weeks)		
	$=0.7769^3$	(p) ³	M1
	= 0.4689	awrt 0.469	A1 (3)
(d)	$X \sim Po(3)$	may be implied	(3) B1
	$P(X > 4) = 1 - P(X \le 4)$		M1
	= 0.1847	awrt 0.1847	A1 (3)
			Total 9 marks
	c) The 0.7769 may be implied		

Question Number	Scheme	Marks
4.	$X = \text{Po} (150 \times 0.02) = \text{Po} (3)$ po,3	B1,B1(dep)
	$P(X > 7) = 1 - P(X \le 7)$	M1
	= 0.0119 awrt 0.0119	A1
	Use of normal approximation max awards B0 B0 M1 A0 in the use 1- $p(x < 7.5)$	
	$z = \frac{7.5 - 3}{\sqrt{2.94}} = 2.62$ $p(x > 7) = 1 - p(x < 7.5)$ $= 1 - 0.9953$ $= 0.0047$	Total 4 marks
5.(a)	$\int_{2}^{3} kx(x-2)dx = 1$ $\int f(x) = 1$	M1
	$\int_{2}^{3} kx(x-2)dx = 1$ $\left[\frac{1}{3}kx^{3} - kx^{2}\right]_{2}^{3} = 1$ attempt \int need either x^{3} or x^{2}	M1
	correct	A1
	$(9k-9k) - (\frac{8k}{3} - 4k) = 1$ $k = \frac{3}{4} = 0.75$ * cso	A1 (4)

Question Number	Scheme	Marks
(b)	$E(X) = \int_2^3 \frac{3}{4} x^2 (x - 2) dx$ attempt $\int x f(x)$	M1
	$= \left[\frac{3}{16}x^4 - \frac{1}{2}x^3\right]_2^3 \qquad \text{correct } \int$	A1
	$=2.6875 = 2\frac{11}{16} = 2.69 \text{ (3sf)}$ awrt 2.69	A1 (3)
(c)	$F(x) = \int_2^x \frac{3}{4} (t^2 - 2t) dt$	M1
	$= \left[\frac{3}{4} \left(\frac{1}{3} t^3 - t^2 \right) \right]_1^x$ correct integral	A1
	lower limit of 2 or $F(2) = 0$ or $F(3) = 1$	A1
	$=\frac{1}{4}(x^3-3x^2+4)$	A1
	$0 x \le 2$	
	$F(x) = \frac{1}{4}(x^3 - 3x^2 + 4) 2 < x < 3 middle, ends$ $1 x \ge 3$	B1√,B1 (6)
(d)	$F(x) = \frac{1}{2}$ $\frac{1}{4}(x^3 - 3x^2 + 4) = \frac{1}{2}$ their F(x) = 1/2	M1
	$x^{3}-3x^{2}+2=0$ $x = 2.75, x^{3}-3x^{2}+2>0$ $x = 2.70, x^{3}-3x^{2}+2<0 \Rightarrow$ root between 2.70 and 2.75	M1 (2)
	(or F(2.7)=0.453, F(2.75)=0.527 \Rightarrow median between 2.70 and 2.75	
		Total 15 marks

6.(a)	$ \begin{array}{c cccc} X & 1 & 2 & 5 \\ P(X = x) & \frac{1}{2} & \frac{1}{3} & \frac{1}{6} \end{array} $	
1	Mean = $1 \times \frac{1}{2} + 2 \times \frac{1}{3} + 5 \times \frac{1}{6} = 2$ or 0.02 $\sum x \cdot p(x)$ need $\frac{1}{2}$ and $\frac{1}{3}$	M1A1
1	Variance= $= 1^2 \times \frac{1}{2} + 2^2 \times \frac{1}{3} + 5^2 \times \frac{1}{6} - 2^2 = 2$ or 0.0002	M1A1 (4)
(b)	$\sum x^2 \cdot p(x) - \lambda^2$	(4)
	(1,1) (1,2) and (2,1)	B2
6	(1,5) and (5,1) (1,5) and (5,1) e.e. (2,2)	B1 (3)
	(2,5) and (5,2) repeat of "theirs" on RHS (5,5)	B1
(c) [\overline{x} 1 1.5 2 3 3.5 5	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1A1
	1.5+,-1ee	M1A2 (6)
		Total 13 marks
	Two tail	

7.(a)(i)		
, ((3)(1)	$H_0: p = 0.2, H_1: p \neq 0.2$ $p =$	B1B1
	$P(X \ge 9) = 1 - P(X \le 8)$ or attempt critical value/region	M1
	$= 1 - 0.9900 = 0.01 \qquad \text{CR } X \ge 9$	
	$0.01 < 0.025$ or $9 \ge 9$ or $0.99 > 0.975$ or $0.02 < 0.05$ or lies in interval with correct interval stated.	A1
	Evidence that the percentage of pupils that read Deano is not 20%	A1
(ii)	$X \sim Bin (20, 0.2)$ may be implied or seen in (i) or (ii)	B1
	So 0 or [9,20] make test significant. 0,9,between "their 9" and 20	B1B1B1 (9)
(b)	$H_0: p = 0.2, H_1: p \neq 0.2$	B1
	$W \sim \text{Bin} (100, 0.2)$	
	$W \sim N (20, 16)$ normal; 20 and 16	B1; B1
	$P(X \le 18) = P(Z \le \frac{18.5 - 20}{4}) \text{or} \frac{x(+\frac{1}{2}) - 20}{4} = \pm 1.96 \pm \text{ cc, standardise}$ $= P(Z \le -0.375)$ or use z value, standardise	M1M1A1
	$= 0.352 - 0.354 \qquad \text{CR } X < 12.16 \text{ or } 11.66 \text{ for } \frac{1}{2}$	A1
	[0.352 > 0.025 or $18 > 12.16$ therefore insufficient evidence to reject H_0]	
	Combined numbers of Deano readers suggests 20% of pupils read Deano	A1 (8)
(c)	Conclusion that they are different.	B1
	Either large sample size gives better result Or	D1
	Looks as though they are not all drawn from the same population.	B1 (2)
		Total 19 marks
	One tail	
7(a)(i)	$H_0: p = 0.2, H_1: p > 0.2$	B1B0

	$P(X \ge 9) = 1 - P(X \le 8)$ or attempt critical value/region	M1
	$= 1 - 0.9900 = 0.01 \qquad \qquad \text{CR } X \ge 8$	A0
	$0.01 < 0.05$ or $9 \ge 8$ (therefore Reject H_0 ,)evidence that the percentage of pupils that read Deano is not 20%	A1
(::)	$X \sim Bin (20, 0.2)$ may be implied or seen in (i) or (ii)	B1
(ii)	So 0 or [8,20] make test significant. 0,9,between "their 8" and 20	B1B0B1 (9)
(b)	$H_0: p = 0.2, H_1: p < 0.2$	B1 √
	$W \sim \text{Bin} (100, 0.2)$	
	$W \sim N$ (20, 16) normal; 20 and 16	B1; B1
	$P(X \le 18) = P(Z \le \frac{18.5 - 20}{4})$ or $\frac{x - 20}{4} = -1.6449$ ± cc, standardise	M1M1A1
	or standardise, use z value = $P(Z \le -0.375)$	
	= 0.3520 CR X < 13.4 or 12.9 awrt 0.352	A1
	[0.352 > 0.05 or 18 > 13.4 therefore insufficient evidence to reject H_0]	
	Combined numbers of Deano readers suggests 20% of pupils read Deano	A1 (8)
(a)	Conclusion that they are different.	B1
(c)	Either large sample size gives better result Or	B1
	Looks as though they are not all drawn from the same population.	(2)
		Total 19 marks
	I.	

GCE
Edexcel GCE
Statistics S2 (6684)

June 2006

advancing learning, changing lives

Mark Scheme (Results)

J une 6684 Statistics S2 Mark Scheme

Question Number	Scheme	Ma	rks
1.(a)	Saves time / cheaper / easier any one or A census/asking all members takes a long time or is expensive or difficult to carry out	B1	(1)
(b)	<u>List, register or database</u> of <u>all</u> club <u>members/golfers</u> or <u>Full membership list</u>	B1	(1)
(c)	Club member(s)	B1	(1)
2.(a)	P(L < -2.6) = $1.4 \times \frac{1}{8} = \frac{7}{40}$ or 0.175 or equivalent	B1	(1)
(b)	P (L < -3.0 or L > 3.0) = $2 \times \left(1 \times \frac{1}{8}\right) = \frac{1}{4}$ M1 for 1/8 seen	M1;A1	(2)
(c)	P (within 3mm) = $1 - \frac{1}{4} = 0.75$ B(20,0.75) recognises binomial Using B(20,p) Let X represent number of rods within 3mm	B1 M1	
	$P(X \le 9/p = 0.25)$ or $1 - P(X \le 10/p = 0.75)$	M1	
	= 0.9861 awrt 0.9861	A1	(4)

Question Number	Scheme		Maı	·ks
3.	Let <i>X</i> represent the number of properties sold in a week			
a)	$\therefore X \sim P_o(7)$	must be in part a	B1	
	Sales occur independently/randomly, singly, at a constant rate	context needed once	B1 B1	(2)
b)	$P(X=5) = P(X \le 5) - P(X \le 4)$ or $\frac{7^5 e^{-7}}{5!}$		M1	(3)
	= 0.3007 - 0.1730 = 0.1277	awrt 0.128	A1	(2)
c)	$P(X > 181) \approx P(Y \ge 181.5)$ where $Y \sim N(168, 168)$	N (168, 168)	B1	(2)
	$= P \left(z \ge \frac{181.5 - 168}{\sqrt{168}} \right)$	±0.5 stand with μ and σ	M1 M1	
	Give A1 for 1.04 = $P(z \ge 1.04)$	or correct expression	A1	
	= 1 - 0.8508	attempt correct area $1-p$ where $p > 0.5$	M1	
	= 0.1492	awrt 0.149	A1	(6)
				(0)

Question Number	Scheme	Marks
4.	Let <i>X</i> represent the number of breakdowns in a week.	
a)	$X \sim P_o (1.25)$ implied	B1
	$P(X < 3) = P(0) + P(1) + P(2)$ or $P(X \le 2)$	M1
	$= e^{-1.25} \left(1 + 1.25 + \frac{(1.25)^2}{2!} \right)$	A1
	= 0.868467 awrt 0.868 or 0.8685	A1
b)	$H_0: \lambda = 1.25; H_1: \lambda \neq 1.25$ (or $H_0: \lambda = 5; H_1: \lambda \neq 5$) $\lambda \text{ or } \mu$	B1 B1 (4
	Let Y represent the number of breakdowns in 4 weeks	
	Under H_0 , $Y \sim P_0(5)$ may be implied	B1
	$P(Y \ge 11) = 1 - P(Y \le 10)$ or $P(X \ge 11) = 0.0137$	M1
	One needed for M $P(X \ge 10) = 0.0318$	
	$= 0.0137$ CR $X \ge 11$	A1
	$0.0137 < 0.025, 0.0274 < 0.05, 0.9863 > 0.975, 0.9726 > 0.95 \text{ or } 11 \ge 11$ any .allow %	M1
	$\begin{array}{c} \sqrt{\text{ from } H_1} \\ \text{Evidence that the rate of breakdowns has changed /decreased} \end{array}$	B1√ (7

Question Number	Scheme			Marks
5. (a)	Binomial		B1	(1)
	Let <i>X</i> represent the number of green mugs in a sample			(1)
(b)	X~B(10, 0.06)	may be implied or seen in part a	B1	
	$P(X=3) = {}^{10}C_3(0.06)^3(0.94)^7$	${}^{10}\text{C}_3(p)^3(1-p)^7$	M1	
	= 0.016808	awrt 0.0168	A1	(2)
(c)	Let <i>X</i> represent number of green mugs in a sample of size 125			(3)
(i)	$X \sim P_0(125 \times 0.06 = 7.5)$	may be implied	В1	
	$P(10 \le X \le 13) = P(X \le 13) - P(X \le 9)$		M1	
	=0.9784-0.7764			
	= 0.2020	awrt 0.202	A1	(3)
(ii)	$P(10 \le X \le 13) \approx P(9.5 \le Y \le 13.5)$ where Y \cup N(7.5, 7.05)	7.05	В1	(3)
	$= P\left(\frac{9.5 - 7.5}{\sqrt{7.05}} \le z \le \frac{13.5 - 7.5}{\sqrt{7.05}}\right)$	9.5, 13.5 ± 0.5 stand.	B1 M1 M1	
	, , ,	h correct expressions. awrt 0.75 and 2.26	A1	
	= 0.2147	awrt 0.214or 0.215	A1	(6)

Question Number	Schem	е	Mari	ks
6a)	$\int_{1}^{4} \frac{l+x}{k} dx = 1$	$\int f(x) = 1$ Area = 1	M1	
	$\left[\frac{x}{k} + \frac{x^2}{2k}\right]_1^4 = 1$	correct integral/correct expression	A1	
	$k = \frac{21}{2} *$	cso	A1	(3)
(b)	$P(X \le x_0) = \int_1^{x_0} \frac{2}{21} (1+x)$	$\int f(x)$ variable limit or +C	M1	(0)
	$= \left[\frac{2x}{21} + \frac{x^2}{21} \right]_1^{x_0}$	correct integral + limit of 1 May have k in	A1	
	$= \frac{2x_0 + {x_0}^2 - 3}{21} \text{ or } \frac{(3+x)(x-1)}{21}$	May have k in	A1	
	$F(x) = \begin{cases} 0, & x < 1 \\ \frac{x^2 + 2x - 3}{21} & 1 \le x < 4 \\ 1 & x \ge 4 \end{cases}$	middle; ends	B1√; B1	(5)
(c)	$E(X) = \int_{1}^{4} \frac{2x}{21} (1+x) dx$	valid attempt $\int x f(x)$	M1	(0)
	$= \left[\frac{x^2}{21} + \frac{2x^3}{63}\right]_1^4$	x^2 and x^3 correct integration	A1	
	$=\frac{171}{63}=2\frac{5}{7}=\frac{19}{7}=2.7142$	awrt 2.71	A1	(3)

Question Number	Scheme	Marks
	$F(m) = 0.5 \implies \frac{x^2 + 2x - 3}{21} = \frac{1}{2}$ putting their $F(x) = 0.5$	M1
	$\therefore 2x^2 + 4x - 27 = 0 \text{or equiv}$ $\therefore x = \frac{-4 \pm \sqrt{16 - 4.2(-27)}}{4}$ $\therefore x = -1 \pm 3.8078$ i.e. $x = 2.8078$ awrt 2.81	M1 A1 (3)
e) f)	Mode = 4 Mean < median < mode (⇒ negative skew) Or Mean < median allow numbers in place of words	B1 (1) B1 (1)
	w diagram but line must not cross y axis	

Question Number	Scheme			rks
7.a)	Let <i>X</i> represent the number of bowls with minor defects.			
	$X \sim B; (25, 0.20)$	may be implied	B1; B1	
	$P(X \le 1) = 0.0274$ or $P(X = 0) = 0.0038$	need to see at least one. prob for $X \le \text{no For M1}$	M1A1	
	$P(X \le 9) = 0.9827; \Rightarrow P(X \ge 10) = 0.0173$	either	A1	
	$\therefore CR \text{ is } \{X \le 1 \cup X \ge 10\}$		A1	
၁)	Significance level = $0.0274 + 0.0173$			(6
	= 0.0447 or $4.477%$	awrt 0.0447	B1	(1
c)	$H_0: p = 0.20; H_1: p < 0.20;$		B1 B1	(1
	Let Y represent number of bowls with minor defects			
	Under $H_0 Y \sim B (20, 0.20)$	may be implied	B1	
	P ($Y \le 2$) or P($Y \le 2$)= 0.2061 P($Y \le 1$)= 0.0692	either	M1	
	$= 0.2061$ CR $Y \le 1$		A1	
	0.2061 > 0.10 or $0.7939 < 0.9$ or $2 > 1$	their p	M1	
	Insufficient evidence to suggest that the proportion of	f defective bowls has decreased.	B1√	(7

Mark Scheme (Results) January 2007

GCE

GCE Mathematics

Statistics S2 (6684)

January 2007 6684 Statistics S2 Mark Scheme

Question Number	Scheme	Marks
1. (a)	A random variable; function of known observations (from a population). data OK	B1 B1 (2)
(b) (i)	Yes	B1 (1)
(ii)	No	(1) B1 (1)
		Total 4
2.		
(a)	$P(J \ge 10) = 1 - P(J \le 9)$ or =1-P(J<10)	M1
	= 1 - 0.9919 implies method	
	= 0.0081 awrt 0.0081	A1 (2)
(b)	$P(K \le 1) = P(K = 0) + P(K = 1)$ both, implied below even with '25' missing	M1
	= $(0.73)^{25} + 25(0.73)^{24}(0.27)$ clear attempt at '25' required	M1
	= 0.00392 awrt 0.0039 implies M	A1 (3) Total 5

Question Number	So	cheme	Marks
3. (a)	Let W represent the number of white pl W ~ B(12,0.45) P(W=5) = P(W \leq 5) - P(W \leq 4) $= 0.5269 - 0.3044$	ants. use of $C_50.45^50.55^7$ or equivalent award B1M1 values from correct table implies B	B1 M1
	= 0.2225	awrt 0.222(5)	A1 (3)
(b)	$P(W \ge 7) = 1 - P(W \le 6)$	or =1- $P(W < 7)$	M1
	=1-0.7393	implies method	
	= 0.2607	awrt 0.261	A1 (2)
(c)	P(3 contain more white than coloured)	$= \frac{10!}{3!7!} (0.2607)^3 (1 - 0.2607)^7 \text{ use of B,n=10}$	M1A1∫
	= 0	.256654 awrt 0.257	A1 (3)
(d)	mean = $np = 22.5$; $var = npq = 12.375$		B1B1
	$P(W > 25) \approx P\left(Z > \frac{25.5 - 22.5}{\sqrt{12.375}}\right)$	\pm standardise with σ and $\mu;\pm0.5$ c.c.	M1;M1
	$\approx P(Z > 0.8528)$	awrt 0.85	A1
	≈1 − 0.8023	'one minus'	M1
	≈ 0.1977	awrt 0.197 or 0.198	A1
			(7)
			Total 15

Question Number		Scheme	Marks
4. (a)	$\lambda > 10$ or large	μ ok	B1
(b)	The Poisson is discrete and the normal	·	(1) B1 (1)
(c)	Let <i>Y</i> represent the number of yachts h	nired in winter	
	$P(Y<3) = P(Y \le 2)$	$P(Y \le 2) \& Po(5)$	M1
	= 0.1247	awrt 0.125	A1 (2)
(d)	Let <i>X</i> represent the number of yachts l	nired in summer X~Po(25).	
	N(25,25) all correct, ca	n be implied by standardisation below	B1
	$P(X > 30) \approx P\left(Z > \frac{30.5 - 25}{5}\right)$	± standardise with 25 & 5; ±0.5 c.c.	M1;M1
	$\approx P(Z > 1.1)$	1.1	A1
	≈ 1 – 0.8643	'one minus'	M1
	≈ 0.1357	awrt 0.136	A1 (6)
(e)	no. of weeks = 0.1357×16	ANS (d)x16	M1
	= 2.17 or 2 or 3	ans>16 M0A0	A1 (2)
			Total 12

Question Number	Scheme	Marks
5. (a)	$f(x) = \begin{cases} \frac{1}{\beta - \alpha}, & \alpha < x < \beta, \\ 0, & \text{otherwise.} \end{cases}$ function including inequality, 0 otherwise	B1,B1 (2)
(b)	$\frac{\alpha+\beta}{2}=2$, $\frac{3-\alpha}{\beta-\alpha}=\frac{5}{8}$ or equivalent	B1,B1
	$\alpha + \beta = 4$ $3\alpha + 5\beta = 24$	
	$3(4-\beta)+5\beta=24$ attempt to solve 2 eqns $\beta=6$	M1
	$\alpha = -2$ both	A1 (4)
(c)	$E(X) = \frac{150 + 0}{2} = 75 \text{ cm}$ 75	B1 (1)
(d)	Standard deviation = $\sqrt{\frac{1}{12}(150-0)^2}$	M1
	= 43.30127 cm $25\sqrt{3}$ or awrt 43.3	A1 (2)
(e)	$P(X < 30) + P(X > 120) = \frac{30}{150} + \frac{30}{150}$ 1st or at least one fraction, + or double	M1,M1
	$= \frac{60}{150} \text{ or } \frac{2}{5} \text{ or } 0.4 \text{ or equivalent fraction}$	A1
		(3)
		Total 12

Question Number	Scheme	Marks
6. (a)	$H_0: p = 0.20, H_1: p < 0.20$	B1,B1
	Let X represent the number of people buying family size bar. $X \sim B$ (30, 0.20)	
	$P(X \le 2) = 0.0442$ or $P(X \le 2) = 0.0442$ awrt 0.044 $P(X \le 3) = 0.1227$ $CR X \le 2$	M1A1
	0.0442 < 5%, so significant. Significant	M1
	There is evidence that the no. of family size bars sold is lower than usual.	A1 (6)
(b)	$H_0: p = 0.02, H_1: p \neq 0.02$	B1
	Let Y represent the number of gigantic bars sold.	
	$Y \sim B (200, 0.02) \Rightarrow Y \sim Po (4)$ can be implied below	M1
	$P(Y = 0) = 0.0183$ and $P(Y \le 8) = 0.9786 \Rightarrow P(Y \ge 9) = 0.0214$ first, either	B1,B1
	Critical region $Y = 0 \cup Y \ge 9$ $Y \le 0$ ok	B1,B1
	N.B. Accept exact Bin: 0.0176 and 0.0202	
(c)	Significance level = $0.0183 + 0.0214 = 0.0397$ awrt 0.04	B1 (1)
		Total 13

Question Number	Scheme	Marks
7. (a)	$1 - F(0.3) = 1 - (2 \times 0.3^2 - 0.3^3)$ 'one minus' required = 0.847	M1 A1 (2)
(b)	F(0.60) = 0.5040 $F(0.59) = 0.4908$ both required awrt 0.5, 0.49 $0.5 lies between therefore median value lies between 0.59 and 0.60.$	M1A1 B1 (3)
(c)	$f(x) = \begin{cases} -3x^2 + 4x, & 0 \le x \le 1, \\ 0, & \text{otherwise.} \end{cases}$ attempt to differentiate, all correct	M1A1 (2)
(d)	$\int_0^1 x f(x) dx = \int_0^1 -3x^3 + 4x^2 dx$ attempt to integrate $x f(x)$	M1
	$= \left[\frac{-3x^4}{4} + \frac{4x^3}{3} \right]_0^1$ sub in limits	M1
	$= \frac{7}{12} \text{ or } 0.58\dot{3} \text{ or } 0.583 \text{ or equivalent fraction}$	A1 (3)
(e)	$\frac{\mathrm{df}(x)}{\mathrm{d}x} = -6x + 4 = 0$ attempt to differentiate f(x) and equate to 0	M1
	$x = \frac{2}{3}$ or $0.\dot{6}$ or 0.667	A1
(f)	mean < median < mode, therefore negative skew. Any pair, cao	(2) B1,B1 (2)
		Total 14

Mark Scheme (Results) Summer 2007

GCE

GCE Mathematics

Statistics S2 (6684)

June 2007 6684 Statistics S2 Mark Scheme

Question Number	Scheme	Marks
1(a)	Continuous uniform distribution or rectangular distribution.	B1
	$ \begin{array}{c c} f(x) \\ \hline 1 \\ \hline 5 \end{array} $ 0 may be implied by start at y axis $ \begin{array}{c c} \hline 0 \\ \hline \end{array} $	B1 B1 (3)
(b)	E(X) = 2.5 ft from their a and b, must be a number	B1ft
	$Var(X) = \frac{1}{12}(5-0)^2 \qquad \text{or attempt to use } \int_0^5 f(x)x^2 dx - \mu^2 \qquad \text{use their } f(x)$	M1
	$=\frac{25}{12}$ or 2.08 o.e awrt 2.08	A1
		(3)
(c)	$P(X > 3) = \frac{2}{5} = 0.4$ 2 times their 1/5 from diagram	B1ft (1)
(d)	P(X=3)=0	B1 (1)
		(Total 8)

Question		Scheme	Marks
Number 2	= 1 - 0.9858 $= 0.0142$ $0.0142 < 0.05$	may use λ or	B1 B1 M1 M1 A1 M1 B1
	is polluting the river with bator or The scientists claim is justified Method 2 $H_0: \lambda = 5 \ (\lambda = 2.5)$ $H_1: \lambda > 5 \ (\lambda > 2.5)$ $X \sim \text{Po} (2.5)$ $P(X < 7)$ = 0.9858	may use λ or μ may be implied $ \begin{vmatrix} P(X < 5) = 0.8912 \\ P(X < 6) = 0.9580 \end{vmatrix} $ att $P(X < 7)$ $ \begin{vmatrix} P(X < 6) \\ P(X < 6) \end{vmatrix} $ CR $X \ge 6$ wrt 0.986 $ \begin{vmatrix} P(X < 6) \\ P(X < 6) \end{vmatrix} $ cant evidence at the 5% significance level that the factory acteria.	(7) Total 7

Question Number	Scheme			Marks
3(a)	$X \sim \text{Po} (1.5)$	need Po and 1.5	B1	(1)
(b)	Faulty components occur at a constant rate. Faulty components occur independently or randomly. Faulty components occur singly.	any two of the 3 only need faulty once	B1 B1	(2)
(c)	$P(X=2) = P(X \le 2) - P(X \le 1)$ or $\frac{e^{-1.5}(1.5)^2}{2}$		M1	
	=0.8088-0.5578			
	= 0.251	awrt 0.251	A1	453
(d)	$X \sim \text{Po}(4.5)$	4.5 may be implied	B1	(2)
(d)	$P(X \ge 1) = 1 - P(X = 0)$ = 1 - e ^{-4.5}	may be implied	M1	
	= 1 - 0.0111 = 0.9889	awrt 0.989	A1	(3)
				Total 8

Question Number	Scheme		Marks
4	Attempt to write down combinations	at least one seen	M1
	(5,5,5), $(5,5,10)$ any order $(10,10,5)$ any order, $(10,10,10)$		A1
	(5,10,5), (10,5,5), (10,5,10), (5,10,10),	all 8 cases considered. May be implied by (10,5,10) and 3 * (5,5,10)	A1
	median 5 and 10		B1
	Median = 5 $P(M = m) = \left(\frac{1}{4}\right)^3 + 3\left(\frac{1}{4}\right)^2 \left(\frac{3}{4}\right) = \frac{10}{64} = 0.15625$	add at least two prob	M1 A1
		using ½ and ¾. identified by having same median of 5 or 10 Allow no 3 for M	
	Median = 10 P(M = m) = $\left(\frac{3}{4}\right)^3 + 3\left(\frac{3}{4}\right)^2 \left(\frac{1}{4}\right) = \frac{54}{64} = 0.84375$		A1 (7)
			Total 7

Question Number	Scheme		Marks	
5(a)	If $X \sim B(n,p)$ and n is large, $n > 50$ p is small, $p < 0.2$ then X can be approximated by $Po(np)$		B1 B1	(2)
(b)	P(2 consecutive calls) = 0.01^2 = 0.0001		M1 A1	(2)
(c)	$X \sim B(5, 0.01)$	may be implied	B1	
	P(X>1) = 1 - P(X=1) - P(X=0) = 1 - 5(0.01)(0.99) ⁴ - (0.99) ⁵ = 1 - 0.0480298 0.95099		M1	
	= 0.00098	awrt 0.00098	A1	(3)
(d)	$X \sim B(1000, 0.01)$ Mean = $np = 10$ Variance = $np(1-p) = 9.9$	may be implied by correct mean and variance	B1 B1 B1	(3)
(e)	$X \sim \text{Po}(10)$			
	$P(X > 6) = 1 - P(X \le 6)$ = 1 - 0.1301 = 0.8699	awrt 0.870	M1 A1	(2)
				(2) Total 12

Question Number		Scheme		Marks
6	$\frac{\text{One tail test}}{\text{Method 1}}$ $H_o: p = 0.2$ $H_1: p > 0.2$			B1 B1
	$X \sim B(5, 0.2)$	may	be implied	M1
	$P(X \ge 3) = 1 - P(X \le 2)$ = 1 - 0.9421	$P(X \ge 3) = 1 - 0.9421 = 0.0579$ $P(X \ge 4) = 1 - 0.9933 = 0.0067$	att $P(X \ge 3)$ $P(X \ge 4)$	M1
	= 0.0579	$CR X \ge 4$	awrt 0.0579	A1
	0.0579 > 0.05	$3 \le 4$ or 3 is not in critical region or	· 3 is not significant	M1
		insufficient evidence at the 5% signifumber of times the taxi/driver is late.	ficance level that	B1 (7) Total 7
	$\frac{\text{Method 2}}{H_o: p = 0.2}$ $H_1: p > 0.2$			B1 B1
	$X \sim B(5, 0.2)$	may	be implied	M1
	P(X < 3) =	[P(X < 3) = 0.9421] $P(X < 4) = 0.9933$	att $P(X < 3)$ $P(X < 4)$	
	0.9421	$\operatorname{CR} X \geq 4$	awrt 0.942	M1A1
	0.9421 < 0.95	$3 \le 4$ or 3 is not in critical region or	3 is not significant	M1
		insufficient evidence at the 5% signifumber of times the taxi/driver is late. If it is a late.	ficance level that	B1 (7)

$\frac{\text{Two tail test}}{\text{Method 1}}$ $H_o: p = 0.2$ $H_1: p \neq 0.2$				B1 B0	
$X \sim X \sim B(5, 0.2)$	n	nay be implie	ed	M1	
			1	M1	
$P(X \ge 3) = 1 - P(X \le 2)$ = 1 - 0.9421	$[P(X \ge 3) = 1 - 0.9421 = 0.0579]$ $P(X \ge 4) = 1 - 0.9933 = 0.0067$	att $P(X \ge 3)$	$P(X \ge 4)$	A1	
= 0.0579	$CR X \ge 4$	awrt 0.0579		M1	
0.0579 > 0.025	$3 \le 4$ or 3 is not in critical region or 3	is not sign	ificant	B1	
• ,	insufficient evidence at the 5% significant significant evidence at the 5% significant evidence evi	cance level	that		(7)
M-4-12				B1 B0	
$\frac{\text{Method 2}}{H_o: p = 0.2} \\ H_1: p \neq 0.2$				M1	
$X \sim X \sim B(5, 0.2)$	n	nay be implie	ed		
P(X < 3) =	[P(X < 3) = 0.9421] P(X < 4) = 0.9933	att $P(X < 3)$	P(X < 4)		
0.9421	$CR X \ge 4$	awrt 0.942		M1A1	
0.9421 < 0.975	$3 \le 4$ or 3 is not in critical region or 3	3 is not sign	nificant	M1	
3 *	sufficient evidence at the 5% significant sufficient evidence evidence evidence at the 5% significant sufficient evidence evidence evidence evidence evidenc	ance level th	hat	B1	(7)
Special Case					
If they use a probability of	$\frac{1}{7}$ throughout the question they may g	gain B1 B1	M0 M1		
A0 M1 B1.	1				
NB they must attempt to wo	ork out the probabilities using $\frac{1}{7}$				

Question Number	Scheme	
7(a) i	If $X \sim B(n,p)$ and n is large or $n > 10$ or $np > 5$ or $nq > 5$ p is close to 0.5 or $nq > 5$ and $np > 5$ then X can be approximated by $N(np,np(1-p))$	
ii	mean = np	B1 (2)
	variance = $np(1-p)$ must be in terms of p	B1
		(2)
(b)	$X \sim N (60, 58.2)$ or $X \sim N (60, 7.63^2)$ 60, 58.2	B1, B1
	$P(X \ge 40) = P(X > 39.5)$ using 39.5 or 40.5	M1
	$=1-P\left(z<\pm\left(\frac{39.5-60}{\sqrt{58.2}}\right)\right)$ standardising 39.5 or 40 or 40.5 and their μ and σ $=1-P(z<-2.68715\ldots)$	M1
	= 0.9965 allow answers in range $0.996 - 0.997$	Aldep on both M
		(5)
(c)	E(X) = 60 may be implied or ft from part (b)	B1ft
	Expected profit = $(2000 - 60) \times 11 - 2000 \times 0.70$ = £19 940.	M1 A1 (3)
		Total 12

Question Number	Scheme	Marks
8(a)	axis 0.5 $0 \text{ may be implied by start at y}$ 0 both patio $0 \text{ must be straight}$	B1 B1 B1
(b)	Mode is $x = 3$	(3) B1 (1)
(c)	$F(x) = \int_0^x \frac{1}{6}t dt (\text{for } 0 \le x \le 3)$ $= \frac{1}{12}x^2$ $F(x) = \int_3^x 2 - \frac{1}{2}t dt; + \int_0^3 \frac{1}{6}t dt (\text{for } 3 < x \le 4)$ $= 2x - \frac{1}{4}x^2 - 3$ ignore limits for M must use limit of 0 need limit of 3 and variable upper limit; need limit 0 and 3	M1 A1 M1; M1
(d)	$F(x) \begin{cases} 0 & x < 0 \\ \frac{1}{12}x^2 & 0 \le x \le 3 \\ 2x - \frac{1}{4}x^2 - 3 & 3 < x \le 4 \\ 1 & x > 4 \end{cases}$ middle pair ends $F(m) = 0.5$ either eq eq for their $0 \le x \le 3$ $x = \sqrt{6} = 2.45$ $\sqrt{6}$ or awrt 2.45	B1 ft B1 (7) M1 A1ft A1 (3) Total 14

Mark Scheme (Results) January 2008

GCE

January 2008 Statistics S2 Mark Scheme

Question Number	Scheme	Marks
1. (a)	A census is when <u>every member</u> of the <u>population</u> is investigated.	B1
(b)	There would be no cookers left to sell.	B1
(c)	A list of the unique identification numbers of the cookers. A cooker	B1
(d)		B1
		(4)
Notes	B1 Need one word from each group	
1. (a)	 (1) Every member /all items / entire /oe (2) population/collection of individuals/sampling frame/oe 	
	enumerating the population on its own gets B0	
(b)	B1 Idea of Tests to destruction. Do not accept cheap or quick	
(c)	B1 Idea of list/ register/database of cookers/serial numbers	
(d)	B1 cooker(s) / serial number(s)	
	The sample of 5 cookers or every 400^{th} cooker gets B1	

2 (a)	Let <i>X</i> be the random variable the number of faulty bolts	M1
	$P(X \le 2) - P(X \le 1) = 0.0355 - 0.0076$ or $(0.3)^2 (0.7)^{18} \frac{20!}{18!2!}$	A1 (2)
	= 0.0279 $= 0.0278$	M1 A1
(b)	$1 - P(X \le 3) = 1 - 0.1071$ = 0.8929	(2)
	or $1 - (0.3)^3 (0.7)^{17} \frac{20!}{17!3!} - (0.3)^2 (0.7)^{18} \frac{20!}{18!2!} - (0.3)(0.7.)^{19} \frac{20!}{19!1!} - (0.7)^{20}$	M1A1√A1
(c)	$\frac{10!}{4!6!}(0.8929)^6(0.1071)^4 = 0.0140.$	(3)
Notes:		
2. (a)	M1 Either attempting to use $P(X \le 2) - P(X \le 1)$	
	or attempt to use binomial and find $p(X = 2)$. Must have $(p)^2 (1-p)^{18} \frac{20!}{18!2!}$,	
	with a value of p	
	A1 awrt 0.0278 or 0.0279.	
(b)	M1 Attempting to find $1 - P(X \le 3)$	
	A1 awrt 0.893	
(c)	At awit 0.073	
	M1 for $k(p)^6(1-p)^4$. They may use any value for p and k can be any number or ${}^{\rm n}{\rm C}_6 p^6 (1-p)^{\rm n-6}$	
	A1 $\sqrt{\frac{10!}{4!6!}}$ (their part b) ⁶ (1 – their part b) ⁴ may write ¹⁰ C ₆ or ¹⁰ C ₄ A1 awrt 0.014	
	THE UNIT OF STATE OF	D1 D1
		B1 B1 (2)

		<u> </u>
3. (a)		
	Events occur at a constant rate. any two of the 3 Events occur independently or randomly. Events occur singly.	B1
(b)	Let <i>X</i> be the random variable the number of cars passing the	M1
(i)	observation point.	A1
	$e^{-6}6^4$	M1
	$P(X \le 4) - P(X \le 3) = 0.2851 - 0.1512 \qquad \text{or } \frac{e^{-6} 6^4}{4!}$ $= 0.1339$	A1
<i>(</i>)		B1 (5)
(ii)	$1 - P(X \le 4) = 1 - 0.2851 \qquad \text{or } 1 - e^{-6} \left(\frac{6^4}{4!} + \frac{6^3}{3!} + \frac{6^2}{2!} + \frac{6}{1!} + 1 \right)$	M1 A1
(c)	= 0.7149	A1
	P (0 car and 1 others) + P (1 cars and 0 other)	(4)
	$= e^{-1} \times 2e^{-2} + 1e^{-1} \times e^{-2}$ $= 0.3679 \times 0.2707 + 0.3674 \times 0.1353$ $= 0.0996 + 0.0498$ $= 0.149$	
	$ \begin{array}{l} \underline{\text{alternative}} \\ P_o(1+2) = P_o(3) & B1 \\ P(X=1) = 3e^{-3} & M1 \ A1 \\ = 0.149 & A1 \end{array} $	
Notes 3(a)	B1 B1 Need the word events at least once. Independently and randomly are the same reason. Award the first B1 if they only gain 1 mark Special case. If they have 2 of the 3 lines without the word events they get B0 B1	
	B1 Using Po(6) in (i) or (ii)	
(b) (i)	M1 Attempting to find $P(X \le 4) - P(X \le 3)$ or $\frac{e^{-\lambda} \lambda^4}{4!}$	

	A1 awrt 0.134	
	M1 Attempting to find $1 - P(X \le 4)$	
(ii)	A1 awrt 0.715	
(11)		
	B1 Attempting to find both possibilities. May be implied by doing $e^{-\lambda_1} \times \lambda_2 e^{-\lambda_2} +$	
(c)	$e^{-\lambda_2} \times \lambda_1 e^{-\lambda_1}$ any values of λ_1 and λ_2	
	M1 finding one pair of form $e^{-\lambda_1} \times \lambda_2 e^{-\lambda_2}$ any values of λ_1 and λ_2	
	A1 one pair correct A1 awrt 0.149	
	Alternative. B1 for Po(3)	
	M1 for attempting to find $P(X=1)$ with $Po(3)$ A1 $3e^{-3}$	
	A1 3e ⁻³ A1 awrt 0.149	
	All awit 0.149	

	$K(2^4 + 2^2 - 2) = 1$ K = 1/18	M1 A1	(2)
(b)	$1 - F(1.5) = 1 - \frac{1}{18}(1.5^4 + 1.5^2 - 2)$	M1	(2)
	$= 0.705$ or $\frac{203}{288}$	A1	(2)
(c)	$f(y) = \begin{cases} \frac{1}{9}(2y^3 + y) & 1 \le y \le 2\\ 0 & otherwise \end{cases}$	M1 A1	
	0 otherwise	B1	(3)
Notes			
4. (a)	M1 putting $F(2) = 1$ or $F(2) - F(1) = 1$ A1 cso. Must show substituting $y = 2$ and the $1/18$		
(b)	M1 either attempting to find $1 - F(1.5)$ may write and use $F(2) - F(1.5)$ A1 awrt 0.705		
(c)	M1 attempting to differentiate. Must see either a $y^n \rightarrow y^{n-1}$ at least once		
	A1 for getting $\frac{1}{9}(2y^3 + y)$ o.e and $1 \le y \le 2$ allow $1 < y < 2$		
	B1 for the 0 <i>otherwise</i> . Allow 0 for $y < 1$ and 0 for $y > 2$		
	Allow them to use any letter		

5	$H_0: p = 0.3; H_1: p > 0.3$	B1 B1
	Let X represent the number of tomatoes greater than 4 cm : $X \sim B(40, 0.3)$	B1
	$P(X \ge 18) = 1 - P(X \le 17)$ $P(X \ge 18) 1 - P(X \le 17) = 0.0320$ $P(X \ge 17) = 1 - P(X \le 16) = 0.0633$ $= 0.0320$ $CR X \ge 18$	M1 A1
	$0.0320 < 0.05$ $18 \ge 18$ or 18 in the critical region	
	no evidence to Reject H ₀ or it is significant	M1
	New fertiliser has <u>increased</u> the probability of a <u>tomato</u> being greater than 4 cm Or Dhriti's claim is true	Bld cao (7)
5	B1 for correct H ₀ must use p or pi	
	B1 for correct H_1 must use p and be one tail.	
	B1 using B(40, 0.3). This may be implied by their calculation	
	M1 attempt to find $1 - P(X \le 17)$ or get a correct probability. For CR method must attempt to find $P(X \ge 18)$ or give the correct critical region	
	A1 awrt 0.032 or correct CR.	
	$\mathbf{M1}$ correct statement based on their probability , H_1 and 0.05 or a correct contextualised statement that implies that.	
	B1 this is not a follow through .conclusion in context. Must use the words increased, tomato and some reference to size or diameter. This is dependent on them getting the previous M1	
	If they do a two tail test they may get B1 B0 B1 M1 A1 M1 B0 For the second M1 they must have accept Ho or it is not significant or a correct contextualised statement that implies that.	

6a (i)	Let X represent the number of sunflower plants more than 1.5m high	
	$X \sim \text{Po}(10)$ $\mu = 10$	
	$P(8 \le X \le 13) = P(X \le 13) - P(X \le 7)$	
	=0.8645-0.2202	B1
	= 0.6443 awrt 0.644	M1
ii)	<i>X</i> ∼ N(10,7.5)	
	$P(7.5 \le X \le 13.5) = P\left(\frac{7.5 - 10}{\sqrt{7.5}} \le X \le \frac{13.5 - 10}{\sqrt{7.5}}\right)$	A1
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1
	$= P (-0.913 \le X \le 1.278)$	
	= 0.8997 - (1 - 0.8186)	M1 M1
	= 0.7183 awrt 0.718 or 0.719	A1 A1
b)		M1
	Normal approx /not Poisson since (n is large) and p close to half.	A1
	or (np = 10 npq = 7.5) mean \neq variance or np (= 10) and nq (= 30) both >5.	(10)
	or exact binomial = 0.7148	B1
		B1dep (2)
6a (i)	B1 mean = 10 May be implied in (i) or (ii)	
	M1 Attempting to find $P(X \le 13) - P(X \le 7)$	
	A1 awrt 0.644	
ii)	B1 $\sigma^2 = 7.5$ May be implied by being correct in standardised formula	
	M1 using 7.5 or 8.5 or 12.5 or 13.5.	
	M1 standardising using 7.5 or 8 or 8.5 or 12.5 or 13 or 13.5 and their mean and standard deviation.	

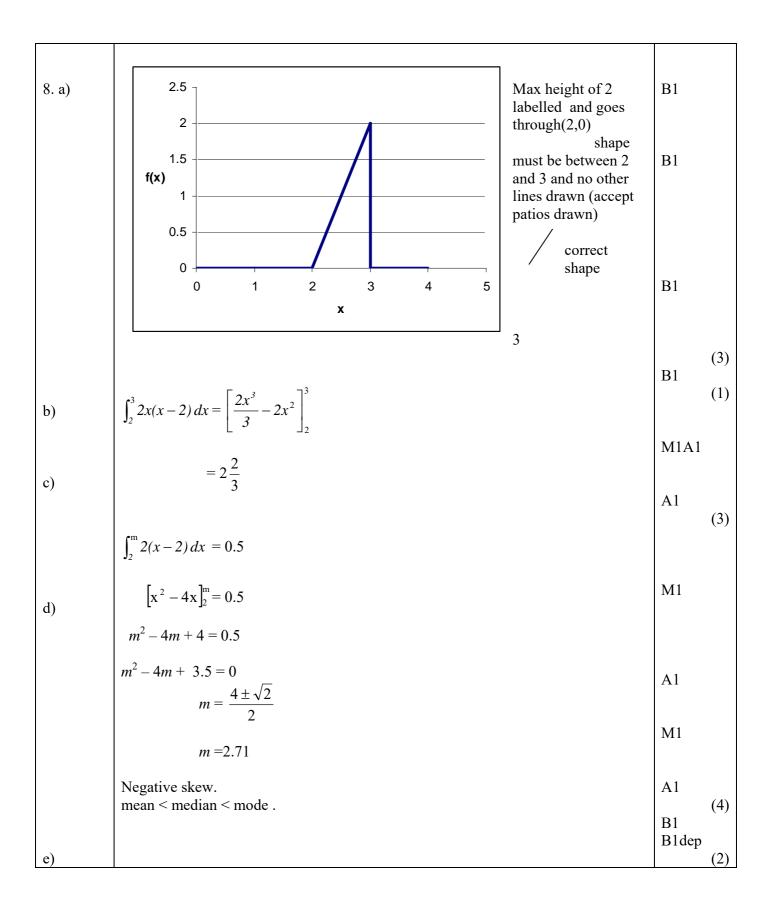
A1 award for either $\frac{7.5-10}{\sqrt{7.5}}$ or awrt -0.91

A1 award for either $\frac{13.5-10}{\sqrt{7.5}}$ or awrt 1.28

M1 Finding the correct area. Following on from their 7.5 and 13.5. Need to do a Prob > 0.5 - prob < 0.5 or prob < 0.5 + prob < 0.5

A1 awrt 0.718 or 0.719 only. Dependent on them getting all three method marks.

No working but correct answer will gain all the marks


first B1 normal

second **B1**p close to half,
or mean ≠ variance
or np and nq both > 5. They may use a number bigger than 5
or they may work out the exact value 0.7148 using the binomial distribution.

Do not allow np> 5 and npq>5

		1	
7 ai)	A hypothesis test is a mathematical procedure to <u>examine a value of</u> <u>a population parameter proposed by the null hypothesis compared</u> <u>with an alternative hypothesis.</u>	B1	
ii)	The critical region is the <u>range of values</u> or <u>a test statistic or region where the test is significant</u> that would lead <u>to the rejection of H_0</u> .	B1g B1h	(2)
(b)	Let X represent the number of incoming calls : $X \sim Po(9)$	B1	(3)
	From table $P(X \ge 16) = 0.0220$	M1 A1	
	$P(x \le 3) = 0.0212$	A1 B1	
	Critical region $(x \le 3 \text{ or } x \ge 16)$		(5)
(c)	Significance level = 0.0220 + 0.0212 = 0.0432 or4.32%	В1	(1)
(d)	$H_o: \lambda = 0.45; H_1: \lambda < 0.45 (\mbox{ accept}: H_o: \lambda = 4.5; H_1: \lambda < 4.5)$ Using X ~ Po(4.5)	B1 M1 A1	
	$P(X \le 1) = 0.0611$ $CR X \le 0$ awrt 0.0611	M1	
	$0.0611 > 0.05$. $1 \ge 0$ or 1 not in the critical region	B1cao	(5)
	There is evidence to Accept H ₀ or it is not significant		
Notes	There is no evidence that there are less calls during school holidays.		
7 ai)	B1 Method for deciding between 2 hypothesis.		
ii)	B1 range of values. This may be implied by other words. Not region on its own B1 which lead you to reject H_0		

Give the first B1 if only one mark awarded. B1 using $P_o(9)$ (b) M1 attempting to find $P(X \ge 16)$ or $P(x \le 3)$ A1 0.0220 or P(X>16)A1 0.0212 or $P(x \le 3)$ These 3 marks may be gained by seeing the numbers in part c B1 correct critical region A completely correct critical region will get all 5 marks. Half of the correct critical region eg $x \le 3$ or $x \ge 17$ say would get B1 M1 A0 A1 B0 if the M1 A1 A1 not already awarded. B1 cao awrt 0.0432 (c) B1 may use λ or μ . Needs both H₀ and H₁ (d) M1 using $P_o(4.5)$ A1 correct probability or CR only M1 correct statement based on their probability, H₁ and 0.05 or a correct contextualised statement that implies that. **B1** this is not a follow through .Conclusion in context. Must see the word calls in conclusion If they get the correct CR with no evidence of using P₀(4.5) they will get M0 A0 SC If they get the critical region $X \le 1$ they score M1 for rejecting H₀ and B1 for concluding the rate of calls in the holiday is lower.

Notes 8.	B1 the graph must have a maximum of 2 which must be labelled	
(a)	B1 the line must be between 2 and 3 with not other line drawn except patios. They can get this mark even if the patio cannot be seen.	
	B1 the line must be straight and the right shape.	
	B1 Only accept 3	
(b)	M1 attempt to find $\int x f(x) dx$ for attempt we need to see $x^n \to x^{n+1}$. ignore limits	
(c)	A1 correct integration ignore limits	
	A1 accept $2\frac{2}{3}$ or awrt 2.67 or 2.6	
	M1 using $\int f(x)dx = 0.5$ A1 $m^2 - 4m + 4 = 0.5$ oe	
(d)	M1 attempting to solve quadratic.	
	A1 awrt 2.71 or $\frac{4+\sqrt{2}}{2}$ or $2+\frac{\sqrt{2}}{2}$ oe	
(e)	First B1 for negative Second B1 for mean < median< mode. Need all 3 or may explain using diagram.	

Mark Scheme (Results) June 2008

GCE

June 2008 6684 Statistics S2 Mark Scheme

Question Number	Scheme	Marks
1(a)	E(X) = 5	B1
	Var(X) = $\frac{1}{12}(10-0)^2$ or attempt to use $\int \frac{x^2}{10} dx - \mu^2$	M1
	$= \frac{100}{12} = \frac{25}{3} = 8\frac{1}{3} = 8.3$ awrt 8.33	A1
(b)	$P(X \le 2) = (2-0) \times \frac{1}{10} = \frac{1}{5}$ or $\frac{2}{10}$ or 0.2	M1 A1 (2)
(c)	$\left(\frac{1}{5}\right)^5 = 0.00032 \text{ or } \frac{1}{3125} \text{ or } 3.2 \times 10^{-4} \text{ o.e.}$	M1 A1 (2)
(d)	$P(X \ge 8) \text{ or } P(X > 8)$ $P(X \ge 8 \mid X \ge 5) = \frac{P(X \ge 8)}{P(X \ge 5)}$	M1 M1
	$= \frac{\frac{2}{10}}{\frac{5}{10}}$	
	$=\frac{2}{5}$	A1 (3)
	alternative remaining time $\sim U[0,5]$ or $U[5,10]$ $P(X \ge 3 \text{ or } 8) = \frac{2}{5}$	M1 M1 A1 (Total 10)
	Notes (a) B1 cao M1 using the correct formula $\frac{(a-b)^2}{12}$ and subst in 10 or 0 or for an attempt at the integration they must increase the power of x by 1 and subtract their $E(X)$ squared. A1 cao (b) M1 for $P(X \le 2)$ or $P(X < 2)$ A1 cao (c) M1 (their b) 5. If the answer is incorrect we must see this. No need to check with your calculator A1 cao (d) writing $P(X \ge 8)$ (may use > sign). If they do not write $P(X \ge 8)$ then it must be about from their working that they are finding it 0.2 on its own with no working gets.	
	clear from their working that they are finding it. 0.2 on its own with no working gets M0 M1 For attempting to use a correct conditional probability.	

	P
A1 2/5 Full marks for 2/5 on its own with no incorrect working	
Alternative M1 for $P(X \ge 3)$ or $P(X \ge 8)$ may use $>$ sign M1 using either $U[0,5]$ or $U[5,10]$ A1 2/5	

Question Number	Scheme	Marks
2	$X \sim B(100, 0.58)$ $Y \sim N (58, 24.36)$	B1 B1 B1
	$[P(X > 50)] = P(X \ge 51)]$ using 50.5 or 51.5 or 49.5 or 48.5 $= P\left(z \ge \pm \left(\frac{50.5 - 58}{\sqrt{24.36}}\right)\right)$ standardising 50.5, 51, 51.5, 48.5,49, 49.5 and their μ and σ for M1 $= P(z \ge -1.52)$ $= 0.9357$	M1 M1 A1 A1
	alternative $X \sim B(100,0.42)$ $Y \sim N (42, 24.36)$ [P($X < 50$) = P($X \le 49$)] using 50.5 or 51.5 or 49.5 or 48.5 = P($X \le \pm \left(\frac{49.5 - 42}{\sqrt{24.36}}\right)$ standardising 50.5, 51, 51.5, 48.5,49, 49.5 and their μ and σ for M1 = P($X \le \pm 1.52$) = 0.9357	(7) B1 B1 B1 M1 M1 A1 A1 (Total 7)
	Notes The first 3 marks may be given if the following figures are seen in the standardisation formula: -58 or 42 , 24.36 or $\sqrt{24.36}$ or $\sqrt{24.4}$ or awrt 4.94 . Otherwise B1 normal B1 58 or 42 B1 24.36 M1 using 50.5 or 51.5 or 49.5 or 48.5. ignore the direction of the inequality. M1 standardising 50.5, 51, 51.5, 48.5, 49, 49.5 and their μ and σ . They may use $\sqrt{24}$ or $\sqrt{24.36}$ or $\sqrt{24.4}$ or awrt 4.94 for σ or the $\sqrt{60}$ of their variance. A1 \pm 1.52. may be awarded for $\pm \left(\frac{50.5 - 58}{\sqrt{24.36}}\right)$ or $\pm \left(\frac{49.5 - 42}{\sqrt{24.36}}\right)$ o.e. A1 awrt 0.936	

Question Number					Sch	neme					Ма	rks
3(a)	$X \sim \text{Po}(9)$				may b	e implied	by calc	ulations	in part a	or b	M1	
	$P(X \le 3) = P(X \ge 16) =$											
	$CR X \leq 3;$	∪ <i>X</i> ≥	16								A1; A1	(3)
(b)	P(rejecting H	Ho) = 0.	0212 + 0	0.0220							M1	
		= 0.	0432 or	0.0433							A1 cao	
												(2)
											То	otal 5
		15, 0.97 correct r ≤ 3 or ≥ 16 or dentify t g. Do not see 0.021 art a. If their critical	780, 0.95 region. $X < 4$ cor $X > 15$ the critic of accept 2 and 0.4 they have cal regio	ondone of all region $P(X \le 3)$ $P(X \ge 3)$ $P(X \ge 3)$ $P(X \ge 3)$ $P(X \ge 3)$	89,0.011 c1 or CR as at the e etc gets y can gai the corresmaller t	instead and r A0 in these r ect number	or may of X not just h marks reg ers they) You m	ave then gardless must be ay need	ned by at a spart of the criadding t	of tical he		
	0.006	: 0432 / 0).0433 aı		0.958 5	0.978 0	0.988 9	0.994 7	0.997 6			

Question Number	Scheme	Marks
4(a)	$X \sim B(11000, 0.0005)$	M1 A1 (2)
(b)	$E(X) = 11000 \times 0.0005 = 5.5$	B1
	$Var (X) = 11000 \times 0.0005 \times (1 - 0.0005)$ = 5.49725	B1 (2)
(c)	$X \sim Po(5.5)$	M1 A1
	$P(X \le 2) = 0.0884$	dM1 A1 (4)
		Total 8
	<u>Notes</u>	
	(a) M1 for Binomial, A1 fully correct These cannot be awarded unless seen in part a	
	(b)B1 cao B1 also allow 5.50, 5.497, 5.4973, do not allow 5.5	
	 (c) M1 for Poisson A1 for using Po (5.5) M1 this is dependent on the previous M mark. It is for attempting to find P(X ≤ 2) A1 awrt 0.0884 	
	Special case If they use normal approximation they could get M0 A0 M1 A0 if they use 2.5 in their standardisation.	
	NB exact binomial is 0.0883	

Question Number		Scheme	Mai	rks
5(a)	$X \sim B(15, 0.5)$		B1 B1	(2)
(b)	$P(X=8) = P(X \le 8) - P(X$	≤ 7) or $\left(\frac{15!}{8!7!}(p)^8(1-p)^7\right)$	M1	(2)
	=0.6964-0.5		. 1	
	= 0.1964	awrt 0.196	A1	(2)
(c)	$P(X \ge 4) = 1 - P(X \le 3)$		M1	
	= 1 - 0.0176			
	= 0.9824		A1	(2)
(d)	$H_o: p = 0.5$ $H_1: p > 0.5$		B1 B1	
	$X \sim B(15, 0.5)$			
	= 1 - 0.9963	$P(X \ge 12) = 1 - 0.9824 = 0.0176$] att $P(X \ge 13)$ $P(X \ge 13) = 1 - 0.9963 = 0.0037$	M1	
	= 0.0037	$CR \ X \ge 13$ awrt 0.0037/ $CR \ X \ge 13$	A1	
		$3 \ge 13$		
	Reject H ₀ or it is significant or	r a correct statement in context from their values	M1	
	There is sufficient evidence at favour of heads Or	the 1% significance level that the coin is <u>biased in</u>	A1	(6)
	There is evidence that Sues bel	lief is correct		
	Notes			
	(a) B1 for Binomial B1 for 15 and 0.5 must be in This need not be in the form			
	(b) M1 attempt to find P (X = A1 awrt 0.196 Answer only full marks	8) any method. Any value of <i>p</i>		
	(c) M1 for 1 - P $(X \le 3)$. A1 awrt 0.982			

(d) B1 for correct H_0 . must use p or π	
B1 for correct H_1 must be one tail must use p or π	
M1 attempt to find $P(X \ge 13)$ correctly. E.g. $1 - P(X \le 12)$ A1 correct probability or CR	
711 concert productinely of CR	
To get the next 2 marks the null hypothesis must state or imply that $(p) = 0.5$	
M1 for correct statement based on their probability or critical region or a correct contextualised statement that implies that. not just 13 is in the critical region.	
contextualised statement that implies that. Not just 13 is in the critical region.	
A1 This depends on their M1 being awarded for rejecting H ₀ . Conclusion in	
context. Must use the words biased in favour of heads or biased against tails	
or sues belief is correct. NB this is a B mark on EPEN.	
NB this is a B mark on EPEN.	
They may also attempt to find $P(X < 13) = 0.9963$ and compare with 0.99	

Question Number		Scheme		Ma	arks
6(a)	Calls occur singly Calls occur at a constant rate Calls occur independently or		any two of the 3 only need calls once	B1 B1	(2)
(b) (i)	$X \sim Po(4.5)$ $P(X = 5) = P(X \le 5) - P(X \le 5) - P(X \le 5) = 0.7029 - 0.533$	used or see $X \le 4$)	en in (i) or (ii)	M1 M1	
	= 0.1708			AI	(3)
(ii)	$P(X>8) = 1 - P(X \le 8)$ = 1 - 0.9597			M1	
(c)	= 0.0403			A1	(2)
(c)	$H_o: \lambda = 9 \ (\lambda = 18)$ $H_1: \lambda > 9 \ (\lambda > 18)$	m	ay use λor μ	B1	
	<i>X</i> ∼ Po (9)	m	ay be implied	B1	
	$P(X \ge 14) = 1 - P(X \le 13)$ $= 1 - 0.9261$ $= 0.0739$	$[P(X \ge 14) = 1 - 0.9261 = 0.0739]$ att Port of the proof of the proo	$(X \ge 14)$ $P(X \ge 15)$	M1 A1	
	0.0739 > 0.05	$14 \le 15$			
	Accept H_0 . or it is not signifi	cant or a correct statement in context from	their values	M1	
	There is insufficient evidenc agent has <u>increased</u> .	e to say that the <u>number of calls per hour</u> ha	andled by the	A1	(6)
	same reason. Award the first B1 if the Special case if they don't pu award B0B1 (b) correct answers only score	te to the word calls but write two correct starts to the word calls but write two correct starts to the word calls but write two correct starts to the word calls but write two correct starts to the word calls but write two correct starts to the word calls but write two correct starts to the word calls but write two correct starts to the word calls but write two correct starts to the word calls but write two correct starts to the word calls but write two correct starts to the word calls but write two correct starts to the word calls but write two correct starts to the word calls but write two correct starts to the word calls but write two correct starts to the word calls but write two correct starts to the word calls but write two correct starts to the word calls but write two correct starts to the word calls but write two correct starts to the word calls but write two corrects to the word calls but with the word call but with the word calls but with the word calls but with the word calls but with th	atements		

- (ii) M1 for $1 P(X \le 8)$ A1 only awrt 0.0403
- (c) B1 both . Must be one tail test. They may use λ or μ and either 9 or 18 and match H_0 and H_1
- M1 Po (9) may be implied by them using it in their calculations.
- M1 attempt to find $P(X \ge 14)$ eg $1 P(X \le 13)$ or $1 P(X \le 14)$
- A1 correct probability or CR

To get the next2 marks the null hypothesis must state or imply that $(\lambda) = 9$ or 18

M1 for a correct statement based on their probability or critical region or a correct contextualised statement that implies that.

A1. This depends on their M1 being awarded for accepting H_0 . Conclusion in context. Must have <u>calls per hour</u> has <u>not increased</u>. Or the <u>rate</u> of <u>calls</u> has <u>not increased</u>.

Any statement that has the word **calls** in and implies the **rate not increasing** e.g. no evidence that the rate of calls handled has increased Saying the number of calls has not increased gains A0 as it does not imply rate NB this is an A mark on EPEN

They may also attempt to find P(X < 14) = 0.9261 and compare with 0.95

Question Number	Scheme	e	Marks
7(a)	$\int_0^1 \frac{1}{2} x dx = \left[\frac{1}{4} x^2 \right]_0^1 = \frac{1}{4} \qquad \text{oe}$	attempt to integrate both parts	M1
	$\int_{1}^{2} kx^{3} dx \left[\frac{1}{4} kx^{4} \right]_{1}^{2} = 4k - \frac{1}{4}k \text{oe}$	both answer correct	A1
	$\frac{1}{4} + 4k - \frac{1}{4}k = 1$ $\frac{15k}{4} = \frac{3}{4}$	adding two answers and putting = 1	dM1dep on previous M
	$k = \frac{1}{5}$		A1 (4)
(b)	$\int_0^1 \frac{1}{2} x^2 dx = \left[\frac{1}{6} x^3 \right]_0^1 = \frac{1}{6}$	attempt to integrate $xf(x)$ for one part	M1
	L 10	1/6	A1
	$\int_{1}^{2} \frac{1}{5} x^{4} dx = \left[\frac{1}{25} x^{5} \right]_{1}^{2} = \frac{32}{25} - \frac{1}{25}$ $= \frac{31}{25} \text{ or } 1.24$		A1
	$E(X) = \frac{1}{6} + \frac{31}{25}$		
(c)	$=\frac{211}{150}=1\frac{61}{150}=1.40^{\circ}$		A1 (4)
	$F(x) = \int_0^x \frac{1}{2}t dt (\text{for } 0 \le x \le 1)$	ignore limits for M	M1
	$=\frac{1}{4}x^2$	must use limit of 0	A1
	$F(x) = \int_{1}^{x} \frac{1}{5} t^{3} dt; + \int_{0}^{1} \frac{1}{2} t dt \text{(for } 1 < x \le 2\text{)}$	need limit of 1 and variable upper	M1; M1
	- -	limit; need limit 0 and 1	
	$= \frac{1}{20}x^4 + \frac{1}{5}$		A1

	$F(x) \begin{cases} 0 & x < 0 \\ \frac{1}{4}x^2 & 0 \le x \le 1 \\ \frac{1}{20}x^4 + \frac{1}{5} & 1 < x \le 2 \\ 1 & x > 2 \end{cases}$ middle pair ends	B1 ft B1	(7)
(d)	F(m) = 0.5 either eq $\frac{1}{20}m^4 + \frac{1}{5} = 0.5$ eq for their $1 \le x \le 2$ $m = \sqrt[4]{6}$ or 1.57 or awrt 1.57	M1 A1ft	(3)
(e)	negative skew This depends on the previous B1 being awarded. One of the following statements which must be compatible with negative skew and their figures. If they use mode then they must have found a value for it Mean < Median Mean < mode Mean < mode) Median < mode Sketch of the pdf.	B1 dB1	(2)
	Notes (a) M1 attempting to integrate both parts A1 both answers correct M1 dependent on the previous M being awarded adding the two answers together A1 cso (b) M1 attempting to use integral of x f(x) on one part A1 1/6 A1 31/25 A1 awrt 1.41 (c) M1 Att to integrate $\frac{1}{2}$ t (they need to increase the power by 1). Ignore limits for method mark A1 $\frac{1}{4}x^2$ allow use of t. must have used/implied use of limit of 0. This must be on its own without anything else added M1 att to integrate $\int_{1}^{x} \frac{1}{5}t^3 dt$ and correct limits.		

M1 $\int_0^1 \frac{1}{2}t \, dt + Att$ to integrate using limits 0 and 1. no need to see them put 0 in .

they must add this to their $\int_1^x \frac{1}{5} t^3 dt$. may be given if they add 1/4

Alternative method for these last two M marks

M1 for att to
$$\int \frac{1}{5} t^3$$
 dt and putting + C

M1 use of F(2) = 1 to find C

A1
$$\frac{1}{20}x^4 + \frac{1}{5}$$
 must be correct

B1 middle pair followed through from their answers. condone them using < or \leq incorrectly they do not need to match up

B1 end pairs. condone them using < or \le . They do not need to match up

NB if they show no working and just write down the distribution. If it is correct they get full marks. If it is incorrect then they cannot get marks for any incorrect part. So if 0 < x < 1 is correct they can get M1 A1 otherwise M0 A0. if 3 < x < 4 is correct they can get M1 A1A1 otherwise M0 A0A0. you cannot award B1ft if they show no working unless the middle parts are correct.

(d) M1 either of their
$$\frac{1}{4}x^2$$
 or $\frac{1}{20}x^4 + \frac{1}{5} = 0.5$
A1 for their $F(X) = 1 < x < 2 = 0.5$
A1 cao

If they add both their parts together and put = 0.5 they get M0 I they work out both parts separately and do not make the answer clear they can get M1 A1 A0

(e) B1 negative skew only

B1 Dependent on getting the previous B1. their reason must follow through from their figures.

Mark Scheme (Results) January 2009

GCE

January 2009 6684 Statistics S2 Mark Scheme

Question Number	Scheme	Mark	.S
1	The random variable X is the number of daisies in a square. Poisson(3)	B1	
(a) (b)	$1 - P(X \le 2) = 1 - 0.4232 \qquad 1 - e^{-3}(1 + 3 + \frac{3^2}{2!})$ $= 0.5768$ $P(X \le 6) - P(X \le 4) = 0.9665 - 0.8153 \qquad e^{-3} \left(\frac{3^5}{5!} + \frac{3^6}{6!}\right)$	M1 A1	(3)
(c)	$P(X \le 6) - P(X \le 4) = 0.9665 - 0.8153 \qquad e^{-3} \left(\frac{5!}{5!} + \frac{6!}{6!}\right)$ $= 0.1512$ $\mu = 3.69$	M1 A1 B1	(2)
(6)	$Var(X) = \frac{1386}{80} - \left(\frac{295}{80}\right)^2$ = 3.73/3.72/3.71 accept s ² = 3.77	M1 A1	(2)
(d)	For a Poisson model, Mean = Variance; For these data 3.69≈3.73 ⇒ Poisson model	B1	(3)
(e)	$\frac{e^{-3.6875}3.6875^4}{4!} = 0.193$ allow their mean or var Awrt 0.193 or 0.194	M1 A1 ft	(2)

Question Number	Scheme	Marks	
2 (a)	$f(x) = \begin{cases} \frac{1}{9} & -2 \le x \le 7\\ 0 & otherwise \end{cases}$	B1 B1	(2)
(b)	-2 7	B1 B1	(2)
(c)	$E(X) = \underline{2.5} Var(X) = \frac{1}{12}(7+2)^2 \text{ or } \underline{6.75}$ both	B1	
	$E(X^2) = Var(X) + E(X)^2$	M1	
	$= 6.75 + 2.5^{2}$ = 13 alternative	A1	(3)
	$\int_{-2}^{7} x^2 f(x) dx = \left[\frac{x^3}{27}\right]_{-2}^{7}$ attempt to integrate and use limits of -2 and 7 $= 13$	B1 M1	
(d)	$P(-0.2 < X < 0.6) = \frac{1}{9} \times 0.8$	M1	
	$=\frac{4}{45}$ or 0.0889 Or equiv awrt 0.089	A1	
			(2)

	stion nber	Scheme	Mark	(S
3	(a)	$X \sim B(20, 0.3)$	M1	
		$P(X \le 2) = 0.0355$		
		$P(X \ge 11) = 1 - 0.9829 = 0.0171$		
		Critical region is $(X \le 2) \cup (X \ge 11)$	A1 A1	(3)
	(b)	Significance level = $0.0355 + 0.0171$, = 0.0526 or 5.26%	M1 A1	(2)
	(c)	Insufficient evidence to reject H_0 Or sufficient evidence to accept H_0 /not significant	B1 ft	
		x = 3 (or the value) is not in the critical region or 0.1071> 0.025	B1 ft	(2)
		Do not allow inconsistent comments		

Question Number	Scheme	Marks
Number 4 (a) (b)	Scheme $\int_{0}^{10} k t dt = 1 \qquad \text{or Area of triangle} = 1$ $\left[\frac{kt^{2}}{2}\right]_{0}^{10} = 1 \qquad \text{or } 10 \times 0.5 \times 10 \text{k} = 1 \text{ or linear equation in k}$ $50k = 1 \qquad \text{cso}$ $\int_{6}^{10} k t dt t = \left[\frac{kt^{2}}{2}\right]_{6}^{10} = \frac{16}{25}$ $E(T) = \int_{0}^{10} k t^{2} dt = \left[\frac{kt^{3}}{3}\right]_{0}^{10} = 6\frac{2}{3}$ $Var(T) = \int_{0}^{10} k t^{3} dt - \left(6\frac{2}{3}\right)^{2} = \left[\frac{kt^{4}}{4}\right]_{0}^{10}; -\left(6\frac{2}{3}\right)^{2}$ $= 50 - \left(6\frac{2}{3}\right)^{2}$ $= 5\frac{5}{9}$ 10	Marks M1 M1 A1 (3) M1 A1 (2) M1 A1 M1;M1dep A1 (5) B1 (1) B1 (1)

Question Number	Scheme	Mark	S
5 (a)	X represents the number of defective components.		
	$P(X=1) = (0.99)^9 (0.01) \times 10 = 0.0914$	M1A1	(5)
(b)	$P(X \ge 2) = 1 - P(X \le 1)$ $= 1 - (p)^{10} - (a)$ $= 0.0043$	M1 A1√ A1	(3)
(c)	$X \sim \text{Po}(2.5)$	B1B1	
	$P(1 \le X \le 4) = P(X \le 4) - P(X = 0)$ $= 0.8912 - 0.0821$	M1	
	= 0.809	A1	
			(4)
	Normal distribution used. B1for mean only		
	Special case for parts a and b If they use 0.1 do not treat as misread as it makes it easier. (a) M1 A0 if they have 0.3874 (b) M1 A1ft A0 they will get 0.2639 (c) Could get B1 B0 M1 A0 For any other values of p which are in the table do not use misread. Check using the tables. They could get (a) M1 A0 (b) M1 A1ft A0 (c) B1 B0 M1 A0		

Question Number	Scheme	Marks
6 (a)(i)	$H_0: \lambda = 7$ $H_1: \lambda > 7$	B1
	$X =$ number of visits. $X \sim Po(7)$	B1
	$P(X \ge 10) = 1 - P(X \le 9) = 0.1695 1 - P(X \le 10) = 0.0985 1 - P(X \le 9) = 0.1695$	M1
	$-0.1093 1 - Y(X \le 9) - 0.1093 CR X \ge 11$	A1
	$0.1695 > 0.10$, $CR X \ge 11$ Not significant or it is not in the critical region or do not reject H_0 The rate of visits on a Saturday is not greater/ is unchanged	M1 A1 no ft
(ii)	X = 11	B1 (7)
(b)	(The visits occur) randomly/ independently or singly or constant rate	(7) B1 (1)
(c)	$[H_0: \lambda = 7 \qquad H_1: \lambda > 7 (\text{ or } H_0: \lambda = 14 \qquad H_1: \lambda > 14)]$	
	$X \sim N;(14,14)$	B1;B1
	$P(X \ge 20) = P\left(z \ge \frac{19.5 - 14}{\sqrt{14}}\right) + /- 0.5, \text{ stand}$ $= P(z \ge 1.47)$ $= 0.0708 \text{or } z = 1.2816$	M1 M1 A1dep both
	0.0708 < 0.10 therefore significant. The rate of visits is greater on a Saturday	A1dep 2 nd M (6)

Question Number	Scheme	Mark	S
7 (a)	$F(x_0) = \int_1^x -\frac{2}{9}x + \frac{8}{9} dx = \left[-\frac{1}{9}x^2 + \frac{8}{9}x \right]_1^x$	M1A1	
	$= \left[-\frac{1}{9} x^2 + \frac{8}{9} x \right] - \left[-\frac{1}{9} + \frac{8}{9} \right]$ $= -\frac{1}{9} x^2 + \frac{8}{9} x - \frac{7}{9}$	A1	(3)
(b)	$F(x) = \begin{cases} 0 & x < 1 \\ -\frac{1}{9}x^2 + \frac{8}{9}x - \frac{7}{9} & 1 \le x \le 4 \\ 1 & x > 4 \end{cases}$	B1B1√	
	F(x) = 0.75; or F(2.5) = $-\frac{1}{9} \times 2.5^2 + \frac{8}{9} \times 2.5 - \frac{7}{9}$	M1;	(2)
	$-\frac{1}{9}x^2 + \frac{8}{9}x - \frac{7}{9} = 0.75$		
	$4x^{2} - 32^{x} + 55 = 0$ $-x^{2} + 8x - 13.75 = 0$ $x = 2.5$ $= 0.75$ cso	A1	
	and $F(x) = 0.25$ $-\frac{1}{9}x^2 + \frac{8}{9}x - \frac{7}{9} = 0.25$	M1	
	$-x^{2} + 8x - 7 = 2.25$ $-x^{2} + 8x - 9.25 = 0$ $x = \frac{-8 \pm \sqrt{8^{2} - 4 \times -1 \times -9.25}}{2 \times -1}$ quadratic 3 terms =0	M1 dep M1 dep	
(4)	x = 1.40	A1 M1	(6)
(d)	$Q_3 - Q_2 > Q_2 - Q_1$ Or mode = 1 and mode < median Or mean = 2 and median < mode Sketch of pdf here or be referred to if in a different part of the question Box plot with Q_1 , Q_2 , Q_3 values marked on	IVI I	
	Positive skew	A1	(2)

Mark Scheme (Results) Summer 2009

GCE

June 2009 6684 Statistics S2 Mark Scheme

Question Number	Scheme	Marl	KS
Q1 (a)	$[X \sim B(30, 0.15)]$		
	$P(X \le 6)$, = 0.8474 awrt 0.847	M1, A1	(2)
(b)	$Y \sim B(60, 0.15) \approx Po(9)$ for using Po(9)	B1	
	$P(Y \le 12), = 0.8758$ awrt 0.876	M1, A1	(3)
			[5]
	[N.B. normal approximation gives 0.897, exact binomial gives 0.894]		
(a)	M1 for a correct probability statement $P(X \le 6)$ or $P(X < 7)$ or $P(X = 0) + P(X = 1) + P(X = 2) + P(X = 4) + P(X = 5) + P(X = 6)$. (may be implied by long calculation) Correct answer gets M1 A1. allow 84.74%		
(b)	B1 may be implied by using Po(9). Common incorrect answer which implies this is 0.9261		
	M1 for a correct probability statement $P(X \le 12)$ or $P(X < 13)$ or $P(X = 0) + P(X = 1) + + P(X = 12)$ (may be implied by long calculation) and attempt to evaluate this probability using their Poisson distribution.		
	Condone P ($X \le 13$) = 0.8758 for B1 M1 A1		
	Correct answer gets B1 M1 A1		
	Use of normal or exact binomial get B0 M0 A0		

Question Number	Scheme	Mark	S
Q2	H_0 : $\lambda = 2.5$ (or $\lambda = 5$) H_1 : $\lambda < 2.5$ (or $\lambda < 5$) λ or μ	B1B1	
	$X \sim \text{Po}(5)$	M1	
	$P(X \le 1) = 0.0404$ or $CR \ X \le 1$	A1	
	[0.0404 $<$ 0.05] this is significant or reject H_0 or it is in the critical region	M1	
	There is evidence of a <u>decrease</u> in the (mean) <u>number/rate</u> of <u>deformed blood cells</u>	A1	(6) [6]
	1 st B1 for H ₀ must use lambda or mu; 5 or 2.5. 2 nd B1 for H ₁ must use lambda or mu; 5 or 2.5		
	1 st M1 for use of Po(5) may be implied by probability(must be used not just seen) eg. P ($X = 1$) = 0.0404 would score M1 A0		
	1 st A1 for 0.0404 seen or correct CR 2 nd M1 for a correct statement (this may be contextual) comparing their probability and 0.05 (or comparing 1 with their critical region). Do not allow conflicting statements.		
	2 nd A1 is not a follow through. Need the word decrease, number or rate and deformed blood cells for contextual mark.		
	If they have used \neq in H ₁ they could get B1 B0 M1 A1 M1A0 mark as above except they gain the 1 st A1 for $P(X \le 1) = 0.0404$ or CR $X \le 0$		
	2 nd M1 for a correct statement (this may be contextual) comparing their probability and 0.025 (or comparing 1 with their critical region)		
	They may compare with 0.95 (one tail method) or 0.975 (one tail method) Probability is 0.9596.		

Quest Numl		Scheme	Ma	arks
Q3	(a)	A statistic is a function of X_1, X_2, X_n	B1	
		that does not contain any unknown parameters	B1	(2)
	(b)	The <u>probability</u> distribution of Y or the distribution of all possible values of Y (o.e.)	B1	(1)
	(c)	Identify (ii) as not a statistic Since it contains unknown parameters μ and σ .	B1 dB1	(2)
				[5]
	(a)	Examples of other acceptable wording:		
		B1 e.g. is a function of the sample or the data $/$ is a quantity calculated from the sample or the data $/$ is a random variable calculated from the sample or the data		
		B1 e.g. does not contain any unknown parameters/quantities contains only known parameters/quantities only contains values of the sample		
		Y is a function of X_1, X_2, X_n that does not contain any unknown parameters B1B1		
		is a function of the values of a sample with no unknowns is a function of the sample values B1B1		
		is a function of the sample values B1B0 B1B0		
		A random variable calculated from the sample B1B0		
		A random variable consisting of any function B0B0		
		A function of a value of the sample B1B0		
		A function of the sample which contains no other values/ parameters B1B0		
	(b)	Examples of other acceptable wording		
		All possible values of the statistic together with their associated probabilities		
	(c)			
		1 st B1 for selecting only (ii)		
		2 nd B1 for a reason. This is dependent upon the first B1. Need to mention at least one		
		of mu (mean) or sigma (standard deviation or variance) or unknown parameters. Examples		
		since it contains mu B1		
		since it contains sigma B1		
		since it contains unknown parameters/quantities B1 since it contains unknowns B0		
		Since it contains unknowns by		

Question Number	Scheme	Mar	ks
Q4 (a)	$X \sim B(20, 0.3)$ $P(X \le 2) = 0.0355$ $P(X \le 9) = 0.9520 \text{so} P(X \ge 10) = 0.0480$ Therefore the critical region is $\{X \le 2\} \cup \{X \ge 10\}$	M1 A1 A1 A1A1	(5)
(b)	0.0355 + 0.0480 = 0.0835 awrt (0.083 or 0.084)	B1	(1)
(c)	11 is in the critical region there is evidence of a <u>change/ increase</u> in the <u>proportion/number</u> of <u>customers buying single tins</u>	B1ft B1ft	(2) [8]
(a)	M1 for B(20,0.3) seen or used 1^{st} A1 for 0.0355 2^{nd} A1 for 0.048 3^{rd} A1 for $(X) \le 2$ or $(X) < 3$ or $[0,2]$ They get A0 if they write $P(X \le 2/X < 3)$ 4^{th} A1 $(X) \ge 10$ or $(X) > 9$ or $[10,20]$ They get A0 if they write $P(X \ge 10/X > 9)$ 10 $\le X \le 2$ etc is accepted To describe the critical regions they can use any letter or no letter at all. It does not have to be X .		
(b)	B1 correct answer only		
(c)	1^{st} B1 for a correct statement about 11 and their critical region. 2^{nd} B1 for a correct comment in context consistent with their CR and the value 11 Alternative solution 1^{st} B0 $P(X \ge 11) = 1 - 0.9829 = 0.0171$ since no comment about the critical region 2^{nd} B1 a correct contextual statement.		

Question Number	Scheme	M	arks
Q5 (a)	$X = \text{the number of errors in } 2000 \text{ words}$ so $X \sim Po(6)$ $P(X \ge 4) = 1 - P(X \le 3)$ = 1 - 0.1512 = 0.8488 awrt 0.849	B1 M1 A1	(3)
(b)	Y = the number of errors in 8000 words. $Y \sim \text{Po}(24)$ so use a Normal approx $Y \approx N(24, \sqrt{24}^2)$	M1 A1	
	Require $P(Y \le 20) = P\left(Z < \frac{20.5 - 24}{\sqrt{24}}\right)$	M1 M1	
	= P(Z < -0.714) $= 1 - 0.7611$	A1 M1	
	= 0.2389 awrt (0.237~0.239)	A1	(7)
	[N.B. Exact Po gives 0.242 and no \pm 0.5 gives 0.207]		[10]
(a)	B1 for seeing or using Po(6) M1 for 1 - P($X \le 3$) or 1 - [P($X = 0$) + P($X = 1$) + P($X = 2$) + P($X = 3$)] A1 awrt 0.849		
SC	If B(2000, 0.003) is used and leads to awrt 0.849 allow B0 M1 A1 If no distribution indicated awrt 0.8488 scores B1M1A1 but any other awrt 0.849 score	s B0M	[1A1
(b)	1 st M1 for identifying the normal approximation 1 st A1 for [mean = 24] and [sd = $\sqrt{24}$ or var = 24]		
	These first two marks may be given if the following are seen in the standardisation formula: 24 $\sqrt{24}$ or awrt 4.90		
	√24 or awrt 4.90		
	2 nd M1 for attempting a continuity correction (20/28 ± 0.5 is acceptable) 3 rd M1 for standardising using their mean and their standard deviation.		
	2 nd A1 correct z value awrt ± 0.71 or this may be awarded if see $\frac{20.5 - 24}{\sqrt{24}}$ or $\frac{27.5 - 24}{\sqrt{24}}$		
	4^{th} M1 for 1 - a probability from tables (must have an answer of < 0.5) 3^{rd} A1 answer awrt 3 sig fig in range $0.237 - 0.239$		

Question Number	Scheme	N	larks
Q6 (a)	$P(A > 3) = \frac{2}{5} = 0.4$	B1	(1)
	$(0.4)^3$,= 0.064 or $\frac{8}{125}$	M1,	A1 (2)
(c)	$f(y) = \frac{d}{dy}(F(y)) = \begin{cases} \frac{3y^2}{125} & 0 \le y \le 5\\ 0 & otherwise \end{cases}$	M1A	1 (2)
(d)	(o omerwise	B1	
	Shape of curve and start at (0,0) Point (5, 0) labelled and curve between 0 and 5 and	B1	(2)
	$5 pdf \ge 0$		
(e)	Mode = 5	B1	(1)
(f)	$E(Y) = \int_{0}^{5} \left(\frac{3y^{3}}{125}\right) dy = \left[\frac{3y^{4}}{500}\right]_{0}^{5} = \frac{15}{4} \text{ or } 3.75$	M1M	1A1 (3)
(g)	$P(Y > 3) = \begin{cases} \int_{3}^{5} \frac{3y^{2}}{125} dy \\ \text{or } 1 - F(3) \end{cases} = 1 - \frac{27}{125} = \frac{98}{125} = 0.784$	M1A	1 (2) [13]
(a) (b)	B1 correct answer only(cao). Do not ignore subsequent working		
(c)	M1 for cubing their answer to part (a) A1 cao M1 for attempt to differentiate the cdf. They must decrease the power by 1 A1 fully correct answer including 0 otherwise. Condone < signs		
(d)	B1 for shape. Must curve the correct way and start at (0,0). No need for y = 0 (patios) lines B1 for point (5,0) labelled and pdf only existing between 0 and 5, may have y=0 (patios) for other values		
(e)	B1 cao		
(f)	1 st M1 for attempt to integrate their $yf(y) y^n \rightarrow y^{n+1}$. 2 nd M1 for attempt to use correct limits A1 cao		
(g)	M1 for attempt to find $P(Y > 3)$.		
	e.g. writing $\int_3^5 their f(y)$ must have correct limits		
	or writing $1 - F(3)$		

			1	
	stion nber	Scheme	Mark	(S
Q7	(a)	E(X) = 2 (by symmetry)	B1	(1)
	(b)	$0 \le x < 2$, gradient $= \frac{1}{2} = \frac{1}{4}$ and equation is $y = \frac{1}{4}x$ so $a = \frac{1}{4}$	B1	
		$b - \frac{1}{4}x$ passes through $(4, 0)$ so $b = 1$	B1	(2)
	(c)	$E(X^{2}) = \int_{0}^{2} \left(\frac{1}{4}x^{3}\right) dx + \int_{2}^{4} \left(x^{2} - \frac{1}{4}x^{3}\right) dx$	M1M1	
		$= \left[\frac{x^4}{16} \right]_0^2 + \left[\frac{x^3}{3} - \frac{x^4}{16} \right]_2^4$	A1	
		$= 1 + \frac{64 - 8}{3} - \frac{256 - 16}{16} = 4\frac{2}{3} \text{ or } \frac{14}{3}$	M1A1	
		Var(X) = E(X ²) - [E(X)] ² = $\frac{14}{3}$ - 2 ² , = $\frac{2}{3}$ (so $\sigma = \sqrt{\frac{2}{3}}$ = 0.816) (*)	M1 A1cso	(7)
		$P(X \le q) = \int_{0}^{q} \frac{1}{4} x dx = \frac{1}{4}, \qquad \frac{q^2}{2} = 1 \text{ so } q = \sqrt{2} = 1.414 \qquad \text{awrt } 1.41$	M1A1,A	1 (3)
	(e)	2 1194 co 2 2 -ia widow then IOD the wafers are attended to 0.5	M1,A1	(2)
	(a)	2- σ = 1.184 so 2 - σ , 2 + σ is wider than IQR, therefore greater than 0.5		[15]
	(b)	B1 for value of a. B1 for value of b		
	(c)	1 st M1 for attempt at $\int ax^3$ using their a. For attempt they need x^4 . Ignore limits.		
		2^{nd} M1 for attempt at $\int bx^2 - ax^3$ use their a and b. For attempt need to have either x^3 or	or x ⁴ . Ign	ore
		limits 1 st A1 correct integration for both parts 3 rd M1 for use of the correct limits on each part		
		2^{nd} A1 for either getting 1 and $3\frac{2}{3}$ or awrt 3.67 somewhere or $4\frac{2}{3}$ or awrt 4.67		
		4^{th} M1 for use of E(X^2) – $[E(X)]^2$ must add both parts for E(X^2) and only have subtraction	cted the	
		mean ² once. You must see this working		
	(d)	3^{rd} A1 $\sigma = \sqrt{\frac{2}{3}}$ or $\sqrt{0.66667}$ or better with no incorrect working seen.		
	(-)	M1 for attempting to find LQ, integral of either part of $f(x)$ with their 'a' and 'b' = 0.25		
		Or their F(x) = 0.25 i.e. $\frac{ax^2}{2} = 0.25$ or $bx - \frac{ax^2}{2} + 4a - 2b = 0.25$ with their a and b)	
		If they add both parts of their $F(x)$, then they will get M0. 1 st A1 for a correct equation/expression using their 'a'		
	(e)	2^{nd} A1 for $\sqrt{2}$ or awrt 1.41		
	(0)	M1 for a reason based on their quartiles		
		• Possible reasons are P(2 - $\sigma < X < 2 + \sigma$)= 0.6498 allow awrt 0.65		
		• 1.184 < LQ(1.414)		
		A1 for correct answer > 0.5	correct	
		NB you must check the reason and award the method mark. A correct answer without a reason gets M0 A0	COHECL	

Question Number	Scheme	Mar	ks
Q8 (a)	$X \sim \text{Po}(2)$ $P(X = 4) = \frac{e^{-2} \times 2^4}{4!} = 0.0902$ awrt 0.09	M1 A1	(2)
(b)	$Y \sim \text{Po}(8)$ $P(Y > 10) = 1 - P(Y \le 10) = 1 - 0.8159 = 0.18411$ awrt 0.184	B1 M1A1	(3)
(c)	$F = \text{no. of faults in a piece of cloth of length } x$ $F \sim \text{Po}(x \times \frac{2}{15})$ $e^{-\frac{2x}{15}} = 0.80$ $e^{-\frac{2}{15} \times 1.65} = 0.8025, e^{-\frac{2}{15} \times 1.75} = 0.791$	M1A1 M1	(4)
(d)	These values are either side of 0.80 therefore $x = 1.7$ to 2 sf Expected number with no faults $= 1200 \times 0.8 = 960$ Expected number with some faults $= 1200 \times 0.2 = 240$ So expected profit $= 960 \times 0.60 - 240 \times 1.50$, $= £216$	M1 A1 M1, A1	(4) (4) [13]
(a)	M1 for use of Po(2) may be implied A1 awrt 0.09		
(b)	B1 for Po(8) seen or used M1 for $1 - P(Y \le 10)$ oe A1 awrt 0.184		
(c)	1^{st} M1 for forming a suitable Poisson distribution of the form $e^{-\lambda} = 0.8$ 1^{st} A1 for use of lambda as $\frac{2x}{15}$ (this may appear after taking logs) 2^{nd} M1 for attempt to consider a range of values that will prove 1.7 is correct OR for use of logs to show lambda = 2^{nd} A1 correct solution only. Either get 1.7 from using logs or stating values either side		
S.C	for $e^{-\frac{2}{15} \times 1.7} = 0.797 \approx 0.80$ $\therefore x = 1.7$ to 2 sf allow 2 nd M1A0		
(d)	1^{st} M1 for one of the following 1200 p or 1200 (1 – p) where p = 0.8 or 2/15. 1^{st} A1 for both expected values being correct or two correct expressions. 2^{nd} M1 for an attempt to find expected profit, must consider with and without faults 2^{nd} A1 correct answer only.		

Mark Scheme (Results) January 2010

GCE

Statistics S2 (6684)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http://www.edexcel.com/Aboutus/contact-us/

January 2010
Publications Code UA023029
All the material in this publication is copyright
© Edexcel Ltd 2010

January 2010 6684 Statistics S2 Mark Scheme

Ques Num		Scheme		Mark	S
Q1	(a)	$X \sim B(20,0.05)$	B1	B1	(2)
	(b)	$P(X = 0) = 0.95^{20} = 0.3584859$ or 0.3585 using tables.	M1	A1	(2)
	(c)	$P(X > 4) = 1 - P(X \le 4)$	M1		
		=1-0.9974			
		=0.0026	A1		(2)
	(d)	$Mean = 20 \times 0.05 = 1$	B1		
		Variance = $20 \times 0.05 \times 0.95 = 0.95$	B1		(2)
			-	Total	(2) [8]
		<u>Notes</u>			
Q1	(a)	1 st B1 for binomial			
		2nd B1 for 20 and 0.05 o.e These must be in part (a)			
	(b)	M1 for finding $(p)^{20}$ $0 this working needs to be seen if answer incorrect to gain the M1A1 awrt 0.358 or 0.359.$			
	(c)	M1 for writing $1 - P(X \le 4)$			
	(-)	or $1 - [P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4)]$ or $1 - 0.9974$ or $1 - 0.9568$			
		A1 awrt 0.0026 or 2.6×10^{-3} , do not accept a fraction e.g. 26/10000			
	(d)	1 st B1 for 1 2 nd B1 for 0.95			
		NB In parts b, c and d correct answers with no working gain full marks			

Ques		Scheme	Mark	(S
Q2	(a)	P(X < 0) = F(0)	M1	
		$=\frac{2}{6}=\frac{1}{3}$	A1	(2)
	(b)	$f(x) = \frac{dF(x)}{dx}$	M1	
		$f(x) = \frac{dF(x)}{dx}$ $f(x) = \begin{cases} \frac{1}{6} & -2 \le x \le 4\\ 0 & \text{otherwise} \end{cases}$	A1 B1	(3)
	(-)		D1	()
	(c)	Continuous Uniform (Rectangular) distribution	B1	(1)
	(d)	Mean = 1	B1	
		Variance is $\frac{(42)^2}{12} = 3$	M1 A1	(3)
	(e)	P(X=1)=0	B1	(4)
			Total	(1) [10]
		<u>Notes</u>	10001	[]
Q2	(a)	M1 for attempting to find F(0) by a correct method eg subst 0 into F(x) or $\int_{-2}^{0} \frac{1}{6} dx$		
		Do NOT award M1 for $\int_{-2}^{0} \frac{x+2}{6} dx$ or $\frac{1}{2} \times \frac{1}{3} \times 2$ both of which give the correct		
		answer by using $F(x)$ as the pdf A1 1/3 o.e or awrt 0.333 Correct answer only with no incorrect working gets M1 A1		
	(b)	M1 for attempting to differentiate $F(x)$. (for attempt it must have no x s in) A1 for the first line. Condone < signs B1 for the second line. – They must have 0×-2 and $x > 4$ only.		
	(c)	B1 must have "continuous" and "uniform" or "Rectangular"		
	(d)	B1 for mean = 1		
		M1 for attempt to use $\frac{[\pm (b-a)]^2}{12}$, they must subst in values and not just quote the		
		formula, or using $\int_{-2}^{4} x^2 (their f(x)) - (their mean)^2$, including limits. Must get x^3		
		when they integrate. A1 cao .		
	(e)	B1 cao		

Ques	stion	Scheme	Mark	s
Q3	(a)	$Y \sim \text{Po}(0.25)$	B1	
	, ,	$P(Y=0) = e^{-0.25} = 0.7788$	M1 A1	(0)
	(b)	$X \sim \text{Po}(0.4)$	B1	(3)
		P(Robot will break down) = $1 - P(X = 0)$ = $1 - e^{-0.4}$	M1	
		=1-0.067032		
		= 0.3297	A1	(3)
	(c)	$P(X=2) = \frac{e^{-0.4}(0.4)^2}{2}$	M1	
		=0.0536	A1	(2)
	(d)	0.3297 or answer to part (b) as Poisson events are <u>independent</u>	B1ft B1 dep	(2)
			Total	[10]
		<u>Notes</u>		
Q3	(a)	B1 for seeing or using Po(0.25) M1 for finding P(Y =0) either by e^{-a} , where a is positive (a needn't equal their λ) or using tables if their value of λ is in them Beware common Binomial error using, $p = 0.05$ gives 0.7738 but scores B0 M0 A0 A1 awrt 0.779		
	(b)	B1 for stating or a clear use of $Po(0.4)$ in part (b) or (c) M1 for writing or finding $1 - P(X=0)$ A1 awrt 0.33		
	(c)	M1 for finding P(X=2) e.g $\frac{e^{-\lambda}\lambda^2}{2!}$ with their value of λ in		
		or if their λ is in the table for writing $P(X \le 2)$ - $P(X \le 1)$ A1 awrt 0.0536		
	(d)	1^{st} B1 their answer to part(b) correct to 2 sf or awrt 0.33 2^{nd} B1 need the word independent. This is dependent on them gaining the first B1 SC Use of Binomial. Mark parts a and b as scheme. They could get (a) B0,M0,A0 (b) B0 M1 A0 In part c allow M1 for ${}^{n}C_{2}(p)^{2}(1-p)^{n-2}$ with "their n" and "their p ". They could get (c) M	M1,A0	
		DO NOT GIVE for $p(x \le 2) - p(x \le 1)$ In (d) they can get the first B1 only. They could get (d) B1B0		

Question	Scheme	Marks
Number Q4 (a)	$\int_0^3 k(x^2 - 2x + 2) dx + \int_3^4 3k dx = 1$	M1
	$k\left[\frac{1}{3}x^3 - x^2 + 2x\right]_0^3 + \left[3kx\right]_3^4 (=1) \text{or} k\left[\frac{1}{3}x^3 - x^2 + 2x\right]_0^3 + 3k (=1)$	A1 M1 dep
	$9k = 1$ $k = \frac{1}{9} **given**$ cso	A1 (4)
(b)	For $0 < x \le 3$, $F(x) = \int_0^x \frac{1}{9} (t^2 - 2t + 2) dt$	M1
	$= \frac{1}{9} \left(\frac{1}{3} x^3 - x^2 + 2x \right)$	A1
	For $3 < x \le 4$, $F(x) = \int_3^x 3k dt + \frac{2}{3}$ = $\frac{x}{3} - \frac{1}{3}$	M1 A1
	$ \begin{pmatrix} 0 & x \leq 0 \\ 1 & 3 & 2 & 2 + 6 \end{pmatrix} $	
	$F(x) = \begin{cases} 0 & x \le 0 \\ \frac{1}{27}(x^3 - 3x^2 + 6x) & 0 < x \le 3 \\ \frac{x}{3} - \frac{1}{3} & 3 < x \le 4 \\ 1 & x > 4 \end{cases}$	B1 ft B1 (6)
(c)	$E(X) = \int_0^3 \frac{x}{9} (x^2 - 2x + 2) dt + \int_3^4 \frac{x}{3} dx$	M1
	$= \frac{1}{9} \left[\frac{1}{4} x^4 - \frac{2}{3} x^3 + x^2 \right]_0^3 + \left[\frac{1}{6} x^2 \right]_3^4$	A1
	$=\frac{29}{12}$ or 2.416 or awrt 2.42	A1 (3)
(d)	F(m) = 0.5	M1
	$F(2.6) = \frac{1}{27}(2.6^3 - 3 \times 2.6^2 + 6 \times 2.6) = \text{awrt } 0.48$	M1
	$F(2.7) = \frac{1}{27}(2.7^3 - 3 \times 2.7^2 + 6 \times 2.7) = \text{awrt } 0.52$	A1
	Hence median lies between 2.6 and 2.7	A1 dA (4) Total [17]

Notes

- 04
- 1st M1 attempting to integrate at least one part (at least one $x^n \to x^{n+1}$) (ignore
- 1st A1 Correct integration. Limits not needed.
- 2nd M1 dependent on the previous M being awarded. Adding the two answers together, putting equal to 1 and have the correct limits.
- 2^{nd} A1 cso
- **1st M1** Att to integrate $\frac{1}{9}(t^2 2t + 2)$ (at least one $x^n \to x^{n+1}$). Ignore limits for method mark
 - 1st A1 $\frac{1}{9} \left(\frac{x^3}{3} x^2 + 2x \right)$ allow use of t. Must have used/implied use of limit of 0.

This must be on its own without anything else added

 2^{nd} M1 attempting to find $\int_3^x 3k + \dots$ (must get 3kt or 3kx) and they must use the correct limits and add $\int_0^3 \frac{1}{Q} (t^2 - 2t + 2)$ or $\frac{2}{3}$

or use + C and use F(4) = 1

- $2^{\text{nd}} \text{ A} 1 \frac{x}{3} \frac{1}{3}$ must be correct
- 1st B1 middle pair followed through from their answers. condone them using < or < incorrectly they do not need to match up

2nd B1 end pairs. condone them using < or <. They do not need to match up

NB if they show no working and just write down the distribution. If it is correct they get full marks. If it is incorrect then they cannot get marks for any incorrect part. So if $0 \le x \le 3$ is correct they can get M1 A1 otherwise M0 A0. If $3 \le x \le 4$ is correct they can get M1 A1 otherwise M0 A0. you cannot award B1ft if they show no working unless the middle parts are correct.

- 1^{st} M1 attempting to use integral of x f(x) on one part (c) 1st A1 Correct Integration for both parts added together. Ignore limits. **2nd A1** cao or awrt 2.42
- 1^{st} M1 for using F(X) = 0.5. This may be implied by subst into F(X) and comparing answers with 0.5.

 2^{nd} M1 for substituting both 2.6 and 2.7 into "their F(X)" – 0.5 or "their F(X)"

 1^{st} A1 awrt 0.48 and 0.52 if using "their F(X)"

and awrt -0.02 and 0.02 or if using "their F(X)" 0.5

Other values possible. You may need to check their values for their **correct** equation NB these last two marks are B1 B1 on ePEN but mark as M1 A1

2nd A1 for conclusion but only award if it follows from their numbers. Dependent on previous A mark being awarded

SC using calculators

M1 for sign of a suitable equation

M1 A1 for awrt 2.66 provided equation is correct

A1 correct comment

Que: Num	stion ber	Scheme	Marks
Q5	(a)	$X \sim \text{Po}(10)$ $P(X < 9) = P(X \le 8)$ = 0.3328	B1 M1 A1 (3)
	(b)	Y ~ Po(40) Y is approximately N(40,40) $P(Y > 50) = 1 - P(Y \le 50)$ $= 1 - P\left(Z < \frac{50.5 - 40}{\sqrt{40}}\right)$ = 1 - P(Z < 1.660) = 1 - 0.9515 = 0.0485 N.B. Calculator gives 0.048437 .	M1 A1 M1 M1 A1 A1 A1 Total [9]
		Poisson gives 0.0526 (but scores nothing)	
Q5	(a)	Notes B1 for using Po(10) M1 for attempting to find $P(X \le 8)$: useful values $P(X \le 9)$ is 0.4579(M0), using Po(6) gives 0.8472, (M1). A1 awrt 0.333 but do not accept $\frac{1}{3}$	
	(b)	1 st M1 for identifying the normal approximation 1 st A1 for [mean = 40] and [sd = $\sqrt{40}$ or var = 40] NB These two marks are B1 M1 on ePEN These first two marks may be given if the following are seen in the standardisation formula: 40 and $\sqrt{40}$ or awrt 6.32	
		2 nd M1 for attempting a continuity correction (50 or 30 ± 0.5 is acceptable) 3 rd M1 for standardising using their mean and their standard deviation and using either 49.5, 50 or 50.5. (29.5, 30, 30.5) accept \pm 2 nd A1 correct z value awrt ± 1.66 or this may be awarded if see $\pm \frac{50.5 - 40}{\sqrt{40}}$ or $\pm \frac{29.5 - 40}{\sqrt{40}}$ 3 rd A1 awrt 3 sig fig in range $0.0484 - 0.0485$	

Ques Num		Scheme	Marks
Q6	(a)	The set of values of the test statistic for which the null hypothesis is rejected in a hypothesis test.	B1 B1
	(b)	$X \sim B(30,0.3)$	(2) M1
		$P(X \le 3) = 0.0093$	
		$P(X \le 2) = 0.0021$	A1
		$P(X \ge 16) = 1 - 0.9936 = 0.0064$	
		$P(X \ge 17) = 1 - 0.9979 = 0.0021$	A1
		Critical region is $(0 \le)x \le 2$ or $16 \le x (\le 30)$	A1A1 (5)
	(c)	Actual significance level 0.0021+0.0064=0.0085 or 0.85%	B1 (1)
	(d)	15 (it) is not in the critical region	Bft 2, 1, 0
		not significant No significant evidence of a change in $p = 0.3$	
		accept H_0 , (reject H_1)	
		$P(x \ge 15) = 0.0169$	(2)
			Total [10]
		<u>Notes</u>	
Q6	(a)	1 st B1 for "values/ numbers" 2 nd B1 for "reject the null hypothesis" o.e or the test is significant	
	(b)	M1 for using B(30,0.3) 1 st A1 $P(x \le 2) = 0.0021$ 2 nd A1 0.0064	
		3^{rd} A1 for $(X) \le 2$ or $(X) \le 3$ They get A0 if they write $P(X \le 2/X \le 3)$ 4^{th} A1 $(X) \ge 16$ or $(X) > 15$ They get A0 if they write $P(X \ge 16 X > 15)$ NB these are B1 B1 but mark as A1 A1	
	(c)	 16≤ X≤2 etc is accepted To describe the critical regions they can use any letter or no letter at all. It does not have to be X. B1 correct answer only 	
	(d)	Follow through 15 and their critical region B1 for any one of the 5 correct statements up to a maximum of B2 - B1 for any incorrect statements	

Ques Num	stion ber	Scheme	Marks
Q7	(a)	$\begin{array}{c cccc} x & 1p & 2p \\ P(X=x) & \frac{1}{4} & \frac{3}{4} \end{array}$	
		$\mu = 1 \times \frac{1}{4} + 2 \times \frac{3}{4} = \frac{7}{4} \text{ or } 1\frac{3}{4} \text{ or } 1.75$	B1
		$\sigma^2 = 1^2 \times \frac{1}{4} + 2^2 \times \frac{3}{4} - \left(\frac{7}{4}\right)^2$	M1
		$=\frac{3}{16}$ or 0.1875	A1 (3)
	(b)	(1,1,1), $(1,1,2)$ any order, $(1,2,2)$ any order, $(2,2,2)$	B1
		(1,2,1) (2,1,1) (2,1,2) (2,2,1) all 8 cases considered. May be implied by $3 * (1,1,2)$ and $3*(1,2,2)$	B1 (2)
	(c)	$ \begin{array}{ c c c c c c } \hline \overline{x} & 1 & \frac{4}{3} & \frac{5}{3} & 2 \\ \hline P(\overline{X} = \overline{x}) & \frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} = \frac{1}{64} & 3 \times \frac{1}{4} \times \frac{1}{4} \times \frac{3}{4} = \frac{9}{64} & 3 \times \frac{1}{4} \times \frac{3}{4} \times \frac{3}{4} = \frac{27}{64} & \frac{3}{4} \times \frac{3}{4} \times \frac{3}{4} = \frac{27}{64} \end{array} $	B1 M1 A1 M1 A1A1
			(6) Total [11]
Q7	(a)	Notes B1 1.75 oe M1 for using $\sum (x^2 p) - \mu^2$ A1 0.1875 oe	
	(b)	ignore repeats	
	(c)	$1^{\rm st}$ B1 4 correct means (allow repeats) $1^{\rm st}$ M1 for p^3 for either of the ends 1st A1 for 1/64or awrt 0.016 and 27/64 or awrt 0.422 $2^{\rm nd}$ M1 $3 \times p^2 (1-p)$ for either of the middle two $0 May be awarded for finding the probability of the 3 samples with mean of either 4/3 or 5/3 . 2^{\rm nd} A1 for 9/64 (or 3/64 three times) and 27/64 (or 9/64 three times) accept awrt 3dp. 3^{\rm rd} A1 fully correct table, accept awrt 3dp.$	

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481

Email <u>publications@linneydirect.com</u>

Order Code UA023029 January 2010

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH

Mark Scheme (Results) Summer 2010

GCE

GCE Statistics S2 (6684/01)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http://www.edexcel.com/Aboutus/contact-us/

Summer 2010
Publications Code UA024768
All the material in this publication is copyright
© Edexcel Ltd 2010

June 2010 Statistics S2 6684 Mark Scheme

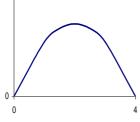
Question Number Scheme		Scheme	Ma	ırks
Q1	(a)	A population is collection of all items	B1	(1)
	(b)	(A random variable) that is a function of the sample which contains no unknown quantities/parameters.	B1	(1)
	(c)	The voters in the town	B1	
		Percentage/proportion voting for Dr Smith	B1	
	(d)	Probability Distribution of those voting for Dr Smith from all possible samples (of	B1	(2)
		size 100)		(1)
				[5]
		Notes		
	(a)	B1 – collection/group all items – need to have /imply all eg entire/complete/every		
	(b)	B1 – needs function/calculation(o.e.) of the sample/random variables/observations and unknown quantities/parameters(o.e.) NB do not allow unknown variables e.g. "A calculation based solely on observations from a given sample." B1 "A calculation based only on known data from a sample" B1 "A calculation based on known observations from a sample" B0 B1 – Voters	nly imp	
		Do not allow 100 voters.		
		B1 – percentage/ proportion voting (for Dr Smith) the number of people voting (for Dr Smith) Allow 35% of people voting (for Dr Smith) Allow 35 people voting (for Dr Smith) Do not allow 35% or 35 alone		
	(d)	B1 – answers must include all three of these features (i) All possible samples, (ii) their associated probabilities, (iii) context of voting for Dr Smith.		
		e.g "It is all possible values of the percentage and their associated probabilities." B0 no	contex	ĸt

Questio Numbe		Scheme	Ма	rks
Q2 ((a)	Let <i>X</i> be the random variable the number of games Bhim loses. $X \sim B(9, 0.2)$	B1	
		$P(X \le 3) - P(X \le 2) = 0.9144 - 0.7382$ or $(0.2)^3 (0.8)^6 \frac{9!}{3!6!}$	M1	
		= 0.1762 $= 0.1762$ awrt 0.176	A1	(3)
((b)	$P(X \le 4) = 0.9804$ awrt 0.98	M1A1	(2)
((c)	Mean = 3 variance = 2.85, $\frac{57}{20}$	B1 B'	1 (2)
((d)	Po(3) poisson	M1	
		$P(X > 4) = 1 - P(X \le 4)$	M1	
		= 1 - 0.8153		
		= 0.1847	A1	(3)
		Notes		[10]
((a)	B1 – writing or use of B(9, 0.2)		
		M1 for writing/using $P(X \le 3) - P(X \le 2)$ or $(p)^3 (1-p)^6 \frac{9!}{3!6!}$		
		A1 awrt 0.176		
((b)	M1 for writing or using $P(X \le 4)$ A1 awrt 0.98		
((c)	B1 3 B1 2.85, or exact equivalent		
((d)	M1 for using Poisson M1 for writing or using $1 - P(X \le 4)$ NB $P(X \le 4)$ is 0.7254 Po(3.5) and 0.8912 Po(2. A1 awrt 0.185	5)	
		Special case :Use of Po(1.8) in (a) and (b)		
		(a) can get B1 M1 A0 – B1 if written B(9, 0.2), M1 for $\frac{e^{-1.8}1.8^3}{3!}$ or awrt to 0.161		
		If B(9, 0.2) is not seen then the only mark available for using Poisson is M1. (b) can get M1 A0 - M1 for writing or using $P(X \le 4)$ or may be implied by awrt 0.964 Use of Normal in (d)		

Question Number		Scheme		Marks
Q3	Method 1	Method 2	Method 3	
	$P(X > 6) = \frac{1}{6}$	$P(4 < X < 6) = \frac{1}{3}$	$P(X > 6) = \frac{1}{6}$	B1 M1
	$P(X < 4) = \frac{1}{2}$		$Y \sim U[3,9] P(Y > 6) = \frac{1}{2}$	A1
	$total = \frac{1}{6} + \frac{1}{2} = \frac{2}{3}$	$1 - \frac{1}{3} = \frac{2}{3}$	$total = \frac{1}{6} + \frac{1}{2} = \frac{2}{3}$	M1dep B A1 (5)
				[5]
	Notes Methods 1 and 2 B1 for 6 and 4 (allow if seen on M1 for $P(X > 6)$ or $P(6 < X < 6)$ or $P(6$	or $P(X < 4)$ or $P(1 < X)$ or $P(X < 4)$ or $P(1 < X)$ or $P(X < 4)$ o	- their "P($4 < X < 6$)" dep	

Question Number	Scheme	Marl	ks
Q4 (a)	$\frac{4}{9}(m^2 + 2m - 3) = 0.5$	M1	
	$m^{2} + 2m - 4.125 = 0$ $m = \frac{-2 \pm \sqrt{4 + 16.5}}{2}$	M1	
	m = 1.26, -3.264 (median =) 1.26	A1	(3)
(b)	Differentiating $\frac{d\left(\frac{4}{9}(x^2+2x-3)\right)}{dx} = \frac{4}{9}(2x+2)$	M1 A1	
	$f(x) = \begin{cases} \frac{8}{9}(x+1) & 1 \le x \le 1.5\\ 0 & \text{otherwise} \end{cases}$	B1ft	(3)
(c)	$P(X \ge 1.2) = 1 - F(1.2)$ = 1 - 0.3733	M1	
	$=\frac{47}{75}$, 0.6267 awrt	A1	(2)
(d)	$(0.6267)^4 = 0.154$ awrt 0.154 or 0.155	M1 A1	(2)
			[10]
	<u>Notes</u>		
(a)	M1 putting $F(x) = 0.5$ M1 using correct quadratic formula. If use calc need to get 1.26 (384) A1 cao 1.26 must reject the other root. If they use Trial and improvement they have to get the correct answer to gain the second	ond M m	nark.
(b)	M1 attempt to differentiate. At least one $x^n \to x^{n-1}$ A1 correct differentiation		
(c)	B1 must have both parts- follow through their F'(x) Condone < M1 finding/writing $1 - F(1.2)$ may use/write $\int_{1.2}^{1.5} \frac{8}{9}(x+1) dx$ or $1 - \int_{1}^{1.2} \frac{8}{9}(x+1) dx$	1	
	or $\int_{1.2}^{1.5}$ "their f(x)" dx. Condone missing dx		
(d)	A1 awrt 0.627 M1 (c) ⁴ If expressions are not given you need to check the calculation is correct to 2sf. A1 awrt 0.154 or 0.155		

Question Number	Scheme	Marks
Q5 (a)	Connecting occurs at random/independently, singly or at a constant rate	B1 (1)
(b) (i) (ii)	Po (8) P(X = 0) = 0.0003 $P(X \ge 4) = 1 - P(X \le 3)$	B1 M1A1 M1
(c)	$= 1 - 0.0424$ $= 0.9576$ $H_0: \lambda = 4 (48) H_1: \lambda > 4 (48)$ $N(48,48)$	A1 (5) B1 M1 A1
	Method 1 $P(X \ge 59.5) = P\left(Z \ge \frac{59.5 - 48}{\sqrt{48}}\right)$ Method 2 $\frac{x - 0.5 - 48}{\sqrt{48}} = 1.6449$	M1 M1 A1
	$= P (Z \ge 1.66)$ $= 1 - 0.9515$ $= 0.0485$ $x = 59.9$	A1
	0.0485 < 0.05 Reject H ₀ . Significant. 60 lies in the Critical region The number of failed connections at the first attempt has increased.	M1 A1 ft (9) [15]
(a) (b) (i) (ii) (c)	M1 identifying normal	
	A1 using or seeing mean and variance of 48 These first two marks may be given if the following are seen in the standardisation formula: 48 and $\sqrt{48}$ or awrt 6.93 M1 for attempting a continuity correction (Method 1: 60 ± 0.5 / Method 2: $x \pm 0.5$) M1 for standardising using their mean and their standard deviation and using either Method 1 [59.5, 60 or 60.5. accept \pm z.] Method 2 [($x\pm0.5$) and equal to a $\pm z$ value) A1 correct z value awrt ±1.66 or $\pm\frac{59.5-48}{\sqrt{48}}$, or $\frac{x-0.5-48}{\sqrt{48}}$ =1.6449	
	A1 awrt 3 sig fig in range $0.0484 - 0.0485$, awrt 59.9 M1 for "reject H_0 " or "significant" maybe implied by "correct contextual comment" If one tail hypotheses given follow through "their prob" and 0.05 , $p < 0.5$ If two tail hypotheses given follow through "their prob" with 0.025 , $p < 0.5$ If one tail hypotheses given follow through "their prob" and 0.95 , $p > 0.5$ If two tail hypotheses given follow through "their prob" with 0.975 , $p > 0.5$	
	If no H ₁ given they get M0 A1 ft correct contextual statement followed through from their prob and H ₁ need the number of failed connections/log ons has increased o.e. Allow "there are more failed connections" NB A correct contextual statement alone followed through from their prob and H s \$2 (6684) Summer 2010	


Question Number	Scheme	Mar	ks	
Q6 (a)	2 outcomes/faulty or not faulty/success or fail	B1		
	A constant probability	B1		
	Independence		(0)	
	Fixed number of trials (fixed n)		(2)	
(b)	$X \sim B(50,0.25)$	M1		
	P(X < 6) = 0.0194			
	$P(X \le 7) = 0.0453$			
	$P(X \ge 18) = 0.0551$			
	$P(X \ge 19) = 0.0287$			
	$CR X \leq 6$ and $X \geq 19$	A1 A1	(3)	
(c)	0.0194 + 0.0287 = 0.0481	M1A1	(2)	
(d)	8(It) is not in the Critical region or $8(It)$ is not significant or $0.0916 > 0.025$;	M1;		
()	There is evidence that the probability of a faulty bolt is 0.25 or the company's claim	A1ft		
	is correct.		(2)	
(-)	Y 0.05 Y 0.05	D1D1		
(e)	$H_0: p = 0.25$ $H_1: p < 0.25$	B1B1		
	$P(X \le 5) = 0.0070 \text{ or } CR X \le 5$	M1A1		
	0.007 < 0.01,	N/1		
	5 is in the critical region, reject H_0 , significant.	M1	۷)	
	There is evidence that the probability of faulty bolts has decreased	A1ft	6) [15]	
	Notes		[.0]	
(a)	B1 B1 one mark for each of any of the four statements. Give first B1 if only one correct	t statem	ent	
	given. No context needed.			
(b)	M1 for writing or using B(50,0.25) also may be implied by both CR being correct. Con	done us	e of	
	P in critical region for the method mark.			
	A1 $(X) \le 6$ o.e. $[0,6]$ DO NOT accept $P(X \le 6)$			
(c)	A1 $(X) \ge 19$ o.e. [19,50] DO NOT accept $P(X \ge 19)$ M1 Adding two probabilities for two tails. Both probabilities must be less than 0.5			
	A1 awrt 0.0481			
(d)	M1 one of the given statements followed through from their CR.			
	A1 contextual comment followed through from their CR.			
	NB A correct contextual comment <u>alone</u> followed through from their CR.will get M1 A	A 1		
(e)	B1 for H_0 must use p or $\pi(pi)$			
	B1 for H_1 must use p or π (pi)	•.• 1		
	M1 for finding or writing P($X \le 5$) or attempting to find a critical region or a correct critical region of a correct critical reg	ritical re	gion	
	A1 awrt $0.007/CR \times 5$			
	M1 correct statement using their Probability and 0.01 if one tail test or a correct statement using their Probability and 0.005 if two tail test.			
	The 0.01 or 0.005 needn't be explicitly seen but implied by correct statement compatible with their			
	H_1 . If no H_1 given M0			
	A1 correct contextual statement follow through from their prob and H ₁ . Need faulty bol	lts and		
	decreased. NB A correct contextual statement <u>alone</u> followed through from their prob and H ₁ get N	M1 A1		
13D A correct contextual statement atome followed unrough from their providing High Al				

	stion nber	Scheme	Mark	(S
Q7	(ai)	$f(y) \ge 0 \text{ or } f(3) \ge 0$	M1	
		$ky(a-y) \ge 0$ or $3k(a-3) \ge 0$ or $(a-y) \ge 0$ or $(a-3) \ge 0$		
		$a \ge 3$	A1 cso	
	(ii)	$\int_{0}^{3} k(ay - y^{2})dy = 1$ integration	M1	
		$\left[k\left(\frac{ay^2}{2} - \frac{y^3}{3}\right)\right]_0^3 = 1$ answer correct	A1	
		$k\left(\frac{9a}{2} - 9\right) = 1$ answer = 1	M1	
		$k\left[\frac{9a-18}{2}\right] = 1$		
		$k = \frac{2}{9(a-2)} *$	A1 cso	6)
	(b)	$\int_0^3 k(ay^2 - y^3) dy = 1.75$ Int $\int x f(x)$	M1	
			A1	
		$\left[k\left(\frac{ay^3}{3} - \frac{y^4}{4}\right)\right]_0^3 = 1.75$ Correct integration $\int xf(x) = 1.75 \text{ and limits } 0,3$	M1dep	
		$k\left(9a - \frac{81}{4}\right) = 1.75$		
		$2\left(9a - \frac{81}{4}\right) = 15.75(a - 2)$ subst k	M1dep	
		$2.25a = -31.5 + \frac{81}{2}$		
		a = 4 *	A1cso	
		$k = \frac{1}{9}$	B1	(6)

	Scheme	IVIC	ırks
(c)		B1 B1	
	0 3		(2)
(d)	mode = 2	B1	(1)
	Notes		[15]
(a) (i)	M1 for putting $f(y) \ge 0$ or $f(3) \ge 0$ or $ky(a-y) \ge 0$ or $3k(a-3) \ge 0$ or $(a-y) \ge 0$ or $(a-y) \ge 0$	$(a-3)^{\frac{1}{2}}$	<u>≥</u> 0
(ii)	or state in words the probability can not be negative o.e. A1 need one of $ky(a-y) \ge 0$ or $3k(a-3) \ge 0$ or $(a-y) \ge 0$ or $(a-3) \ge 0$ and $a \ge 3$ M1 attempting to integrate (at least one $y^n \to y^{n+1}$) (ignore limits) A1 Correct integration. Limits not needed. And equals 1 not needed. M1 dependent on the previous M being awarded. Putting equal to 1 and have the correct limits. Limits do not need to be substituted.		
(b)	A1 cso M1 for attempting to find $\int yf(y) dy$ (at least one $y^n \to y^{n+1}$) (ignore limits)		
(c)	A1 correct Integration M1 $\int yf(y) = 1.75$ and limits 0,3 dependent on previous M being awarded M1 subst in for k. dependent on previous M being awarded A1 cso 4 B1 cao 1/9 B1 correct shape. No straight lines. No need for patios. B1 completely correct graph. Needs to go through origin and the curve ends at 3. Special case: If draw full parabola from 0 to 4 get B1 B0 Allow full marks if the portion between $x = 3$ and $x = 4$ is dotted and the rest of the curve solid.		

(d) **B1** cao 2

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481

Email publications@linneydirect.com

Order Code UA024768 Summer 2010

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH

Mark Scheme (Results) January 2011

GCE

GCE Statistics S2 (6684) Paper 1

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http://www.edexcel.com/Aboutus/contact-us/

January 2011
Publications Code UA026667
All the material in this publication is copyright
© Edexcel Ltd 2011

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - B marks are unconditional accuracy marks (independent of M marks)
 - Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol √will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- L The second mark is dependent on gaining the first mark

January 2011 Statistics S2 6684 Mark Scheme

Question Number	Scheme	Marks
1. (a)	Occurrences of the disease are independent The probability of catching the disease remains constant.	B1 B1 (2)
(b)	$X \sim \text{Bin}(10,0.03)$ $P(X = 2) = \frac{10 \times 9}{2} (0.03)^{2} (0.97)^{8} = 0.0317$	B1 M1A1 (3)
(c)	$E(X) = 100 \times 0.03 = 3$ $Var(X) = 100 \times 0.03 \times 0.97 = 2.91$	B1cao B1cao (2)
(d)	$\lambda = 100 \times 0.03 = 3$ $Y \sim \text{Po}(3)$ $P(Y > 5) = 1 - P(Y \le 5)$ $= 1 - 0.9161$ $= 0.0839$	B1 (use of) dM1 A1 (3) [10]
	<u>Notes</u>	
(a)	B1 independent B1 <u>probability</u> remains <u>constant</u> . One of these must have the context of disease. No context only one correct B0B0 If only one mark awarded give the first B1 SC if they are both correct without context award B1B0	
(b)	B1 for writing or using B(10,0.03) M1 for writing or using $(p)^2 (1-p)^8 \frac{10!}{2!8!}$ allow $^{10}C_2$, $\binom{10}{2}$ etc Allow P(X\le 2) - P(X\le 1) A1 awrt 0.0317	
(d)	B1 for <u>using</u> Poisson. Any mean. Common values which imply Poisson used 0.8153 dM1 for writing or using $1 - P(X \le 5)$ - use of binomial gets M0. This is dependent on them being awarded the previous B mark. A1 awrt 0.0839 SC: Use of Normal in (d) Can get B0 M1 A0 for M1 we must see $1 - P(X \le 5)$ or $1 - P(X \le 5.5)$ oe or get awrt 0.071	l are 0.9665 and

1

Question Number	Scheme	Marks			
2.	$H_0: p = 0.2$ $H_1: p > 0.2$	B1			
	Under H_0 , $X \sim Bin(10,0.2)$	B1			
	$P(X \ge 4)$ = 1 – $P(X \le 3)$ OR $P(X \le 4) = 0.9672$	M1			
	$= 1 - 0.8791 P(X \ge 5) = 0.0328$				
	$= 0.1209$ CR $X \ge 5$	A1			
	$0.1209 > 0.05$. Insufficient evidence to reject H_0 so teacher's claim is	M4 A 4 C			
	supported.	M1A1ft			
		[6]			
	Notes	1			
	B1 for both H_0 and H_1 correct. Must use p or π (pi)				
	B1 for writing or using Bin(10,0.2)				
	M1 for finding or writing $1 - P(X \le 3)$ or $P(X \le 4) = 0.9672$				
	$P(X \ge 5) = 0.0328$ oe or a correct critical region A1 awrt 0.121 or CR $X \ge 5$				
	M1 need $p < 0.5$ and:				
	correct statement using their Probability and 0.05 if one tail test or				
	correct statement using their Probability and 0.025 if two tail test (cond	lone a			
	comparison with 0.05 instead of 0.025 for a two tail test).				
	Do not allow non-contextual conflicting statements eg "significant" and	"accept H ₀ "			
	A1ft correct contextual statement followed through from "their prob".				
	Either a comment on whether the teacher's claim was correct or on whether the student was guessing the answers.				
	NB if a correct contextual statement only is given for their probability then	award M1 A1			
	If $p > 0.5$				
	They may compare with 0.95 (one tail method) or 0.975 (two tail method) Probability is 0.8791.				

Question Number	Scheme	Marks
3. (a)	$E(X) = \frac{3-1}{2} = 1$	B1 cao
	2	(1)
(b)	$Var(X) = \frac{(3+1)^2}{12} = \frac{4}{3} \text{ oe}$	M1A1 (2)
(c)	$E(X^2) = \frac{4}{3} + 1, = \frac{7}{3}$ oe	M1,A1
		(2)
(d)	P(X<1.4)=0.6	B1 cao (1)
(e)	P(X<0)=0.25	B1
	Y is number of values less than 0	
	$Y \sim \operatorname{Bin}(40, 0.25)$	M1A1
	$P(Y \ge 10) = 1 - P(Y \le 9)$	M1
	=1-0.4395=0.5605	A1 (5)
		(5) [11]
	<u>Notes</u>	
(b)	M1 $\frac{(3-1)^2}{12} or \frac{(3+1)^2}{12} or \frac{(31)^2}{12}$ A1 awrt 1.33	
(c)	M1 "their(b)" + ["their (a)"] ² or $\int_{-1}^{3} \frac{x^2}{4} dx$	
(0)	A1 awrt 2.33	
(e)	B1 For writing or using the probability of a negative = 0.25 M1 Writing or use of B(40, p)	
	A1 Writing or use of $B(40, 0.25)$	
	M1 Writing or using $1 - P(Y \le 9)$ A1 awrt 0.561 or 0.560	

Question Number	Scheme	Marks			
4.	H_0 : $\lambda = 8$ or $\mu = 2$ H_1 : $\lambda < 8$ or $\mu < 2$	B1 B1			
	Under H_0 , $X \sim Po(8)$	M1			
	$P(X \le 3) = 0.0424$ $CR X \le 3$	A1			
	0.0424 < 0.05, Reject H ₀ . Richard's claim is supported.	M1A1ft			
		[6]			
	<u>Notes</u>				
	B1 for H ₀ correct. Must use λ or μ and 8 or 2				
	B1 for H ₁ correct. Must use λ or μ and 8 or 2				
	M1 for writing or using Po(8) – may be implied by correct CR				
	A1 awrt 0.0424 or CR $X \le 3$				
	M1 need <i>p</i> <0.5 and: correct statement using their Probability and 0.05 if one tail test or correct statement using their Probability and 0.025 if two tail test (condone a comparison with 0.05 instead of 0.025 for a two tail test). Do not allow non-contextual conflicting statements eg "significant" and "accept A1ft correct contextual statement followed through from "their prob". Either a comment on whether Richard's claim was correct or on whether the service has improved.				
	NB if a correct contextual statement only is given for their probability then av	ward M1 A1			
	They may compare with 0.95 (one tail method) or 0.975 (two tail method) Probability is 0.9576				

Question Number	Scheme	Marks	
	$m = -\frac{4}{0.5} = -8$ $f(x) = 4 - 8x (*)$ $f(x) = \begin{cases} -8x + 4 & 0 \le x \le 0.5 \\ 0 & otherwise \end{cases}$	M1 A1cso B1 B1	(4)
(b)	$F(x) = \int_0^x (-8x + 4) dx$ $= \left[-4x^2 + 4x \right]_0^x$ $F(x) = \begin{cases} 0 & x < 0 \\ -4x^2 + 4x & 0 \le x \le 0.5 \\ 1 & x > 0.5 \end{cases}$	M1 M1 A1 B1	(4)
(c)	$-4x^{2} + 4x = 0.5$ $x = \frac{1}{4}(2 - \sqrt{2}) = 0.146$	M1 M1A1	(3)
(d)	x = 0	B1 ((1)
(e)	Positive Skew as mode <median< td=""><td>B1ft</td><td>(1)</td></median<>	B1ft	(1)

Question Number	Scheme	Marks		
	<u>Notes</u>			
(a)	M1 for $\pm \frac{4}{0.5}$ or attempt at gradient			
	A1cso for proceeding to given expression with no incorrect working seen B1 for top line. Must have $f(x)$ and $\{$ and more than one line. Condone use of $<$. B1 for 0 otherwise and no other parts.			
(b)	M1 correct limits used or +C and either $F(0) = 0$ or $F(0.5) = 1$, may be implied by seeing $4x - 4x^2$			
	A1 middle line. May write $4x - 4x^2$ B1 top and bottom line			
(c)	M1 Their $F(x) = 0.5$ M1 attempting to solve – either correct use of quadratic formula or correct completion of the square A1 awrt 0.146 or $\frac{2-\sqrt{2}}{4}$ o.e			
(d)	B1 for 0			
(e)	B1 ft their mode and median. Need direction and correct corresponding reason OR B1 positive skew from tail on right hand side in diagram	n		

Question Number	Scheme	Mark	S
6.			
(a)	X~Po(2.5)	M1A1	
			(2)
(b)	Cars arrive at the toll booth independently/randomly		
	Cars arrive one at a time	B1	
	The <u>rate of arrival</u> at a toll booth remains <u>constant</u> at 2.5 per minute	B1	
			(2)
(c)(i)	$P(X=0) = e^{-2.5} = 0.0821$	B1	
			(1)
(c)(ii)	$P(X > 3) = 1 - P(X \le 3)$	M1	
	= 0.2424	A1	
			(2)
(d)	Use of Po(10)	M1	
	1 - 0.0487 = 0.9513	M1	
	m=15	A1 cao	
			(3)
(e)	$Y \sim N(25,25)$	B1B1	
	$P(X < 15) = P(Y \le 14.5)$	M1	
	$= P\left(Z \le \frac{14.5 - 25}{5}\right)$	M1	
	5)	1	
	$= P(Z \le -2.1)$	A1	
	= 0.01786	A1	
			(6)
			[16]

Question Number	Scheme	Marks		
	<u>Notes</u>			
(a)	M1 Poisson A1 2.5			
(b)	Any two of the statements or equivalent. At least one must be in context. Need words that imply "cars arrive" or "rate of arrival." SC no context but 2 correct reasons B1B0 No context but 1 correct reason B0B0			
(c) (i)	B1 awrt 0.0821	B1 awrt 0.0821		
(ii)	M1 for writing or finding 1 - $P(X \le 3)$			
(d)	A1 awrt 0.242 M1 writing or using Po(10) M1 for 1- 0.0487 or 0.9513 seen or implied by correct value for m			
(e)	B1 using or seeing mean and variance of 25 These first two marks may be given if the following are seen in the correct plastandardisation formula: 25 and $\sqrt{25}$ or 5 M1 for attempting a continuity correction (14 ± 0.5) or (15 ± 0.5) M1 for standardising using their mean and their standard deviation and using 13.5, 15 or 15.5] accept \pm z. A1 correct z value \pm 2.1 or \pm $\frac{14.5 - 25}{5}$, A1 awrt 0.0179 NB use of calculator gets full marks if the answer is awrt 0.0179.			

Question Number	Scheme	Marks	5
7. (a)	$\int_0^9 k(81x - x^3) \mathrm{d}x = 1$	M1	
	$\int_0^9 k(81x - x^3) dx = 1$ $k \left[\frac{81}{2} x^2 - \frac{1}{4} x^4 \right]_0^9 = 1$	M1	
	$k(\frac{6561}{2} - \frac{6561}{4}) = 1$	A1 cso	
	$k = \frac{4}{6561} **ag**$		(3)
(b)	$E(X) = \int_0^9 kx^2 (81 - x^2) dx$		(-)
	$= k \left[\frac{81}{3} x^3 - \frac{x^5}{5} \right]_0^9$	M1A1	
	= k(19683 - 11809.8)	dM1	
	= 4.8	A1 cao	(4)
(c)	$P(X > 5) = \int_{5}^{9} k(81x - x^{3})$	M1	()
	$= k \left[\frac{81}{2} x^2 - \frac{1}{4} x^4 \right]_5^9$	M1d	
	$= k \left(\frac{6561}{4} - 856.25 \right) = \text{awrt } 0.478 \text{ or } \frac{3136}{6561}$	A1	
(1)			(3)
(d)	P(At least 2 queue for more than 5 mins) = $3(1-0.478)(0.478)^2 + 0.478^3$	M1A1ft	
	= 0.467	A1	(3)
			[13]

Question Number	Scheme	Marks		
	<u>Notes</u>			
(a)	M1 putting integral = 1 ignore limits. =1 must appear at least once in the wor	_		
	M1 attempting to integrate at least one part must have correct power of x (ign	nore limits)		
	A1cso subst of at least 9. Allow 1/1640.25			
(b)	M1 attempt to use $xf(x)$ and attempt to multiply out bracket and attempt at integration – must have x^3 and x^5 terms (ignore limits) A1 correct integration (ignore limits) dM1 substituting correct limits (need not explicitly see 0). Dependent on having been awarded the first M1.			
(c)	M1 attempting to integrate at least one part must have correct power of x (ignore limits) M1 dep on previous M being awarded, substituting correct limits [may use $1 - \int_0^5 k(81x - x^3)$ with limits 0 and 5]			
(d)	M1 3(1-p) $p^2 + p^3$ or $1 - (1-p)^3 - 3(1-p)^2 p$ 3 not need A1 for 3(1-p) $p^2 + p^3$ $1 - (1-p)^3 - 3(1-p)^2 p$ where p is their solution to part (c) A1 awrt 0.467	led		

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publications@linneydirect.com</u> Order Code UA026667 January 2011

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH

Mark Scheme (Results)

June 2011

GCE Statistics S2 (6684) Paper 1

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025 or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our **Ask The Expert** email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

June 2011
Publications Code UA028840
All the material in this publication is copyright
© Edexcel Ltd 2011

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - B marks are unconditional accuracy marks (independent of M marks)
 - Marks should not be subdivided.

Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod benefit of doubt
- ft follow through
- the symbol will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- · dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark

June 2011 6684 Statistics S2 Mark Scheme

	Mark Scheme				
Question Number	Scheme	Marks			
1. (a)	The <u>list</u> of <u>ID numbers</u>	B1 (1)			
(b)	$F \sim B(50,0.02)$	B1 B1 (2) 3			
Notes: (a) (b)	B1 for idea of list/register/database and identity numbers NB B0 if referring to the sample or 50 or only part of the population. These must be in part (b) to gain the marks 1^{st} B1 for Binomial distribution 2^{nd} B1 for $n = 50$ and $p = 0.02$ or $(50,0.02)$ NB $(0.02, 50)$ is B0 Po(1) alone is B0B0 For a probability table 1^{st} B1 Use of B $(50,0.02)$ NB P $(X = 0) = 0.3642$ 2^{nd} B1 Table must have all 50 values and their probabilities.				

Question Number	Scheme	Scheme Marks		
2. (a)	Poisson		B1 (1)	
(b)	$H_0: \mu = 9 \text{ (or } \lambda = 36)$ $H_1: \mu > 9 \text{ (or } \lambda > 36)$		B1 B1	
` ,	$X \sim \text{Po}(9)$ and $P(X \ge 12) = 1 - P(X \le 11)$ or $= 1 - 0.8030 = 0.197$	$P(X \le 14) = 0.9585$ $P(X \ge 15) = 0.0415$ $CR[X] \ge 15$	M1 A1	
	$(0.197 > 0.05)$ so not significant/ accept H_0 / Not in CR he does not have evidence to switch on the speed r	_	M1d A1ft	
(c)	Let $Y =$ the number of vehicles in 10 s then $Y \sim P$	0(6)	B1	
	Tables: $P(Y \le 10) = 0.9574$ so $P(Y \ge 11) = 0.0426$		M1	
	so need	ds <u>11</u> vehicles	A1 (3)	
(b)	B1 for Poisson or Po. Ignore their value for the mean. 1^{st} B1 for $H_0: \mu/\lambda = 9$ or $\mu/\lambda = 36$ 2^{nd} B1 for $H_1: \mu/\lambda > 9$ or $\mu/\lambda > 36$ One tail 1^{st} M1 for writing or using $1 - P(X \le 11)$ or writing $P(X \le 14) = 0.9585$ or $P(X \ge 15) = 0.0415$ May be implied by correct CR. or probability $= 0.197$ A1 for 0.197 or a correct CR. Allow $X > 14$. NB $P(X \le 11) = 0.8030$ on its own scores M1A 2^{nd} M1 dependent on the 1^{st} M1 being awarded. For a correct statement based on the table be Do not allow non-contextual conflicting statements eg "significant" and "accept H_0 ". Ignore comparisons . 2^{nd} A1 for a correct contextualised statement. NB A correct contextual statement on its own so M1A1. $\begin{array}{ c c c c c c c c c c c c c c c c c c c$			

Question		Scheme		Marks
Number	•			Marks
	comparis	sons . r a correct contextualised statement. N	B A correct contextual statement on its	s own scores
	M1A1.	Ta contect contextualised statement.	271 correct contextual statement on in	own scores
		0.025	p < 0.025 or p > 0.975	
	2 nd M1	not significant/ accept H ₀ / Not in CR	significant/ reject H ₀ / In CR	
	2 nd A1	Insufficient evidence to switch on the speed restrictions	speed restrictions	ie
(c)	B1 for identifying Po(6) - may be implied by use of correct tables M1 any one of the probs 0.9574 or 0.0426 or 0.9799 or 0.0201 may be implied by correct answer of 11 A1 cao do not accept $X \ge 11$ NB answer of 11 with no working gains all three marks.			
3. (a)		3 from graph	o marks.	B1 (1)
	3	Γ. 3 73		(1)
(b)	$\int_{0}^{5} kx^{2} dx =$	$= 0.5 \implies \left[\frac{kx^3}{3}\right]_0^3 = 0.5$ $-0 = 0.5 \implies k = \frac{1}{18}$		M1 A1
	So $\frac{27k}{3}$	$-0 = 0.5 \implies k = \frac{1}{18}$	(using median $= 3$)	M1d A1
				(4)
(c)	Height of	$ftriangle = \frac{1}{18} \times 3^2 = \frac{1}{2}$		B1ft
	Area of ta	riangle = $\frac{1}{2} \times (a-3) \times \frac{1}{2} = \frac{1}{2}$		M1
		so $a = 5$		A1
		C	10	
(d)	_	aph distribution is negative skew (left t ian for negative skew so $E(X) < 3$	ail is longer)	B1 B1d
		· ·		(2)
	[N.B. E(.	$X) = 2\frac{23}{24}$		10
Notes: (b)	1 st A1 2 nd M1 and set ed	for attempt to integrate $f(x)$ (need x^3). I for correct integration. Ignore limits for Dependent on the previous M mark be qual to 0.5 - leading to a linear equation for $k = \frac{1}{18}$ or exact equivalent	r these two marks. ng awarded. For use of correct limits	
	NB $k = \frac{1}{1}$	$\frac{1}{8}$ with no working gains M0A0M0A0		
	$k = \frac{\frac{1}{2}}{9} =$	= $\frac{1}{18}$ without sight of integration is M0z	A0M0A0	
		brrect height of triangle using their k . is		of triangle.
(c)	Or correc	et gradient of line ie $\frac{9k}{(3-a)}$ o.e.		

Question	advancing learning	
Number	Scheme	Marks
	M1 for a correct linear equation for a, in the form $\pm \frac{1}{2} \times (a-3) \times 9k = \frac{1}{2}$ (Must see	the halves)
	NB if they have stated their height and then used their height rather than 9k allow M1 A1 cao	
	NB stating $a = 5$ and then verifying area of the triangle = 0.5 is acceptable. NB $a = 5$ on its own is B0M0A0 SC Integration of both parts = 1 or Integration of line = 0.5, leading to $a^2 = 8a + 15 = 0$	cata D1
	SC Integration of both parts = 1 or Integration of line = 0.5 leading to $a^2 - 8a + 15 = 0$ M1 and if they identify $a = 5$ A1	gets B1
(d)	$1^{\text{st}} B1$ for identifying negative skew dependent on previous B mark being awarded. For correct deduction $E(X) < 3$	
4 (a)	$\frac{9.5-7}{10-7}$	M1
	$=\frac{5}{6}$ awrt 0.833	A1 (2)
(b)	P(Longest > 9.5) = 1 - P(all < 9.5) = $1 - \left(\frac{5}{6}\right)^3$	M1
	$=\frac{91}{216}$ or 0.421	A1 (2)
(c)	$P(a \text{ stick} < 7.6) = \frac{0.6}{3} = 0.2$	(2) B1
(-)	Let $Y =$ number of sticks (out of 6) <7.6 then $Y \sim B(6, 0.2)$ $P(Y > 4) = 1 - P(Y \le 4)$	M1 M1
	$= 1 - 0.9984$ $= 0.0016 \text{ or } \frac{1}{625}$	A1 (4)
Notes:		8
(a)	M1 for an expression for the probability e.g. $\int_{7}^{9.5} \frac{1}{3} dx$	
(b)	M1 for $1-(a)^3$ or $(1-a)^3+3(1-a)^2a+3(1-a)a^2$	
(c)	A1 awrt 0.421 B1 0.2 may be implied by at least one correct probability 1^{st} M1 for writing or using B(6, p) may be implied by $np^x(1-p)^{6-x}$ using their p and n 2^{nd} M1 for writing or using $1 - P(Y \le 4)$ or $np^5(1-p) + p^6$ (n is an integer > 1) A1 cao	 ≥1
	NB 0.0016 with no working gets B0M0M0A0	
5. (a)	$X \sim \text{Po}(5); P(X \le 3) = 0.2650$	M1 A1
. /		(2)

0 .:		g, changing live
Question Number	Scheme	Marks
(b)	Let $Y =$ the no. of planks with at most 3 defects, $Y \sim \text{Binomial}$ $Y \sim B(6, 0.265)$ $P(Y < 2) = P(Y \le 1)$ $= \left[0.735^6 + 6 \times 0.265 \times 0.735^5 \right]$ = 0.4987 awrt 0.499 or 0.498	M1 A1ft M1 A1
	- 0.4767 awit 0.477 01 0.476	$\int_{0}^{A_{1}}$
(c)	Let $T =$ total number of defects on 6 planks, $T \sim Po(30)$ so $T \approx S \sim Normal$ $S \sim N(30, 30)$ $P(T < 18) = P(S < 17.5)$ $= P\left(z < \frac{17.5 - 30}{\sqrt{30}}\right)$	M1 A1 M1
	= P(Z < - 2.28) = 0.01123 awrt 0.0112 or 0.0113	A1 A1 (6)
Notes:		1
(a) (b)	M1 for identifying Po(5) - it should be clearly seen somewhere or implied A1 for correct probability. Allow 0.265 1^{st} M1 for writing or using the binomial - may be implied by use of $nq^x(1-q)^{6-x}$ with $n = 1^{st}$ A1ft for $n = 6$ and $p = 1$ their (a) may be implied by $6p(1-p)^5$ or $(1-p)^6$ NB if they write B(6,(a)) they get M1 A1 2^{nd} M1 for writing P($Y \le 1$) or P($Y = 0$) + P($Y = 1$) or $(1-q)^6 + nq(1-q)^5$ with $n \ge 1$ 2^{nd} A1 $(1-p)^6 + 6p(1-p)^5$ where $p = 1$ their (a) 3^{rd} A1 for awrt 0.499 SC use of a probability in the tables – lose last two marks – could get M1A1M1 M0 A1 1^{st} M1 for a normal approx 1^{st} A1 for correct mean and sd 1^{st} M1 for use of continuity correction, either 17.5 or 18.5 or 42.5 or 41.5 seen 1^{rd} M1 Standardising with their mean and their sd and 17.5 or 18 or 18.5 or 41.5 or 42. NB if they have not written down a mean and sd then they need to be correct in the state to gain this mark. 1^{rd} A1 for $z = \pm 2.28$ or better. May be awarded for $z = \pm 1.5 - 30$ [NB no continuity continuity continuity continuity and the state of $z = 1.5 - 30$ [NB no continuity continuity continuity and $z = 1.5 - 30$ [NB no continuity	.0 2 or 42.5 andardisation

Question		advancing learning	
Number	Scheme		Marks
6. (a)	$H_0: p = 0.15$ $H_1: p \neq 0.15$		B1 B1
(a)	$X \sim B(30, 0.15)$		M1
	$X \sim B(30, 0.15)$ $P(X \le 1) = 0.0480 \text{ or CR}: X = 0$		A1
	(0.0480 > 0.025)		
	not a significant result or do not reject H_0 or not in		M1
	there is no evidence of a <u>change</u> in the <u>proportion</u>	of customers buying an item from	A1ft
	the display.		(6)
(b)	$H_0: p = 0.2$ $H_1: p > 0.2$		B1
, ,	Let $S =$ the number who buy sandwiches, $S \sim B(120)$	0, 0.2),	
	$S \approx W \sim N\left(24, \sqrt{19.2}^2\right)$	•	M1 A1
	,		
	$P(S \ge 31) = P(W \ge 30.5)$		M1
	$= P\left(Z > \frac{30.5 - 24}{\sqrt{19.2}}\right) \text{or} \frac{x - 0.5 - 1}{\sqrt{19.2}}$	$\frac{-24}{2}$ = 1.2816	M1
		2	
	[= P(Z>1.48)] = 1 - 0.9306		M1
	= 0.0694	x = 30.1	A1
	< 0.10 so a significant result, there is evidence that	at more customers are purchasing	B1ft
	sandwiches or the shopkeepers claim is correct.		(8)
Notes:	1^{st} B1 for H ₀ must use $p = 2^{\text{nd}}$ B1 for H ₁ must use p		14
(a)	1^{st} M1 for writing or using B(30,0.15) – may be in		
	1^{st} A1 0.0480 or $X = 0$. Allow $X \le 0$. Ignore upper 0		e tail test.
	2 nd M1 A correct statement (see table below) Do no		tatements
	eg"significant" and "accept H ₀ ". Ignore compariso		مد ما سیرس
	2 nd A1 for a correct statement in context. For conte of customers buying from display – may use differen		
	its own scores M1A1	The world of the content content and the	
	Two tail $0.025 or$	Two tail $p < 0.025$ or $p > 0.975$ or	•
	One tail 0.05	One tail $p < 0.05$ or $p > 0.95$	1
	2 nd not significant/ accept H ₀ / Not in CR or M1 contextual	significant/ reject H ₀ / In CR or cor	itextual
	2 nd There is no evidence of a <u>change/decrease</u>	There is evidence of a change/decr	ease in
	A1 in the proportion of customers buying an	the proportion of customers buying	
	item from the <u>display</u>	from the <u>display</u> .	
(b)	1^{st} B1 both hypotheses correct – must use p .		
	1 st M1 for a normal approx 1 st A1 for correct mean and sd		
	2 nd M1 for use of continuity correction, either 30.5	or 31.5 or $(x \pm 0.5)$ seen	
	3 rd M1 standardising with their mean and their sd	and 30.5, 31 or 31.5 or x or $(x \pm 0.5)$)
	4 th M1 for 1 - tables value or 1.2816		
	2^{nd} A1 for awrt 0.069 or $x = 30.1$	their much chility and 0.1 Females	+ xxxo 4= = = 1
	2 nd B1ft For a correct conclusion in context using idea of more customers buying sandwiches – may		we need
	I raca of more customers ouying sandwiches — may	abe different words	

		advancing learning,	changing lives
Question Number	Scheme		Marks
	One tail $0.1 or Two tail 0.05 One tail p < 0.05 or p > 0.05$	0 < 0.1 or $p > 0.9$ or Two table 0.95	il p <
	2 nd not significant/ accept H ₀ / Not in CR or significant M1 contextual	reject H ₀ / In CR or context	tual
		idence of a change/increase of customers buying sandw	
	SC using $P(X \le 31.5) - P(X \le 30.5)$ can get B1M1 A1 M1 M1	M0A0B0	
7 (a)	\cap shape which does not go below the x-axis [condone miss Graph must end at the points (1,0) and (5,0) and the points la		B1 B1 (2)
(b)	E(X) = 3 (by symmetry)		B1 (1)
(c)	$\left[E(X^{2})\right] = \int x^{2} f(x) dx = \frac{3}{32} \int (6x^{3} - x^{4} - 5x^{2}) dx$		M1
	$= \frac{3}{32} \left[\frac{6x^4}{4} - \frac{x^5}{5} - \frac{5x^3}{3} \right]_1^5$		A1
	$= \frac{3}{32} \left[\left[\frac{6 \times 625}{4} - 625 - \frac{625}{3} \right] - \left[\frac{6}{4} - \frac{1}{5} - - \frac{1}{5}$	$\left[\frac{5}{3}\right] = 9.8 \ (*)$	M1 A1 cso (4)
(d)	s.d. = $\sqrt{9.8 - E(X)^2}$,		M1
	= 0.8944	awrt 0.894	A1 (2)
(e)	$F(1) = 0 \Rightarrow \frac{1}{32} (a - 15 + 9 - 1) = 0$, leading to $\underline{a} = 7$		M1 A1 (2)
(f)	F(2.29) = 0.2449, F(2.31) = 0.2515 Since $F(q_1) = 0.25$ and these values are either side of 0.25 th	nen 2.29< $q_1 < 2.31$	M1 A1 A1 (3)
(g)	Since the distribution is symmetric $q_3 = 5 - 1.3 = \underline{3.7}$	cao	B1 (1)
(h)	We know P($q_1 = 2.3 < X < 3.7 = q_3$) = 0.5		(1)
(11)	so $k\sigma = 0.7$		M1
	so $k = \frac{0.7}{0.894} = 0.7826 = $ awrt 0.78		
			A1 (2)
			17

	The state of the s	ing tearning, changing tives
Question Number	Scheme	Marks
Notes:		
(c)	This part is a "show that" therefore we need to see all the steps in the working	
, ,	1 st M1 for showing intention of doing $\int x^2 f(x)$ and attempt to multiply out 1	bracket
	1 st A1 for correct integration, cao, ignore limits for this mark. 2 nd M1 for use of correct limits. Need to see evidence of subst both 5 and 1. 2 nd A1 for cso leading to 9.8. Do not ignore subsequent working for this final	l A mark.
(d)	M1 for a correct expression for standard deviation, must include $$	
	A1 allow awrt 0.894, $\sqrt{0.8}$, $\frac{2\sqrt{5}}{5}$ oe	
(e)	M1 for a correct method to find a. e.g $F(5) = 1$ or $\int_1^5 f(x) = 1$	
(f)	M1 for an attempt at $F(2.29)$ or $F(2.31)$ or put $F(x) = 0.25$	(ft their value of
	a) 1^{st} A1 for both values seen. awrt 0.245 and 0.252 find 3 solutions 2.305, -0.064 2^{nd} A1 for comparison with 0.25 and stating Q_1 state only 2.30 in Q_1	awrt 6.76/6.75, n range and stating
	lies between 2.29 and 2.31 lies between 2.2	9 and 2.31
(h)	M1 For $k\sigma = \text{awrt } 0.7$	
	A1 Allow awrt 0.78	
	NB a correct awrt 0.78 gains M1 A1	

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467

Fax 01623 450481

Email <u>publication.orders@edexcel.com</u>

Order Code UA028840 June 2011

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

Mark Scheme (Results)

January 2012

GCE Statistics S2 (6684) Paper 1

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our **Ask The Expert** email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

January 2012
Publications Code UA030902
All the material in this publication is copyright
© Pearson Education Ltd 2012

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod benefit of doubt
- ft follow through
- the symbol / will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

General Principals for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^2 + bx + c) = (x + p)(x + q), \text{ where } |pq| = |c|, \text{ leading to } x = \dots$$

$$(ax^2 + bx + c) = (mx + p)(nx + q), \text{ where } |pq| = |c| \text{ and } |mn| = |a|, \text{ leading to } x = \dots$$

2. Formula

Attempt to use <u>correct</u> formula (with values for a, b and c), leading to x = ...

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c, \quad q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. ($x^n \rightarrow x^{n+1}$)

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

January 2012 6684 Statistics S2 Mark Scheme

Question Number	Scheme	Mark	(S
1 (a)	$E(X) = \frac{9+3}{2} = 6$	B1	(1)
(b)	$Var(X) = \frac{(9-3)^2}{12} = 3$	M1A1	(2)
(c)	$P(X > 7) = (9-7) \times \frac{1}{6} = \frac{1}{3}$	M1A1	
(d)	$P(X < 6 X > 4) = \frac{P(4 < X < 6)}{P(X > 4)}$	M1A1	(2)
	$=\frac{\frac{2}{6}}{\frac{5}{6}}=\frac{2}{5}$	A1	
	$\frac{-}{6}$		(3) 8
	Notes		
(b)	M1 $\frac{(9-3)^2}{12}$ or $\frac{(9+3)^2}{12}$		
(c)	M1 $\frac{(9-7)}{6}$ or $1 - \frac{(7-3)}{6}$ or $\int_{7}^{9} \frac{1}{6} dx$ or $1 - \int_{3}^{7} \frac{1}{6} dx$		
(d)	A1 Also acceptable 0.3 , 0.33 and awrt 0.333 M1 $\frac{P(4 < X < 6)}{P(X > 4)}$ or $\frac{P(X < 6)}{P(X > 4)}$ or $\frac{\frac{2}{6}}{5}$ or $\frac{\frac{3}{6}}{5}$ or $1 - \frac{P(X > 6)}{P(X > 4)}$ or $\frac{6 - 4}{9 - 4}$ or $\frac{3}{5}$		
	A1 $\frac{P(4 < X < 6)}{P(X > 4)}$ or $\frac{\frac{2}{6}}{\frac{5}{6}}$ or $1 - \frac{P(X > 6)}{P(X > 4)}$ or $\frac{6 - 4}{9 - 4}$		
	An answer of $\frac{2}{5}$ gains all 3 marks.		
	$NB \le and \ge are$ accepted in the above formulae		

Question Number	Scheme	Marks
		D.1
2	$H_0: p = 0.5$	B1
	$H_1: p > 0.5$	B1
	$X \sim B(30,0.5)$ Using correct Bin	M1
	$P(X \ge 21) = 1 - P(X \le 20)$ or $P(X \le 19) = 0.9506$ $P(X \ge 20) = 0.0494$	M1
	= 1 - 0.9786	
	$= 0.0214$ CR $X \ge 20$	A1
	so significant/reject H ₀ /in Critical region	M1 dep
	Evidence to suggest David's claim is incorrect	A1
	or The weather forecast produced by the local radio is better than those achieved by	(7)
	tossing/flipping a coin	
		7
	Notes	•

Notes

 $1^{\text{st}}B1 \text{ for } H_0: p = 0.5$

 2^{nd} B1 for $H_1: p > 0.5$

SC If both hypotheses are correct but a different letter to *p* is used they get B1 B0. If no letter is used they get B0 B0.

1st M1 writing or using B(30,0.5)

One tail

 2^{nd} M1 for writing or using 1 - P($X \le 20$) or writing P($X \le 19$) = 0.9506 or P($X \ge 20$) = 0.0494. May be implied by correct CR.or probability = 0.0214

A1 for 0.0214 or CR $X \ge 20/X > 19$. **NB** $P(X \le 20) = 0.9786$ on its own scores M1A1

 3^{rd} M1 dependent on the 2^{nd} M1 being awarded. For a correct statement based on the table below. Do not allow non-contextual conflicting statements eg "significant" and "accept H_0 ". **Ignore comparisons**. 2^{nd} A1 for a correct contextualised statement. NB A correct contextual statement on its own scores M1A1.

	0.05	p < 0.05 or p > 0.95
3 rd M1	not significant/ accept H ₀ / Not in CR	significant/ reject H ₀ / In CR
2 nd A1	David's claim is correct	David's claim incorrect
	weather forecast produced by the local radio is	weather forecast produced by the local radio is
	no better than those achieved by	better than those achieved by tossing/flipping a
	tossing/flipping a coin	coin

Two tail

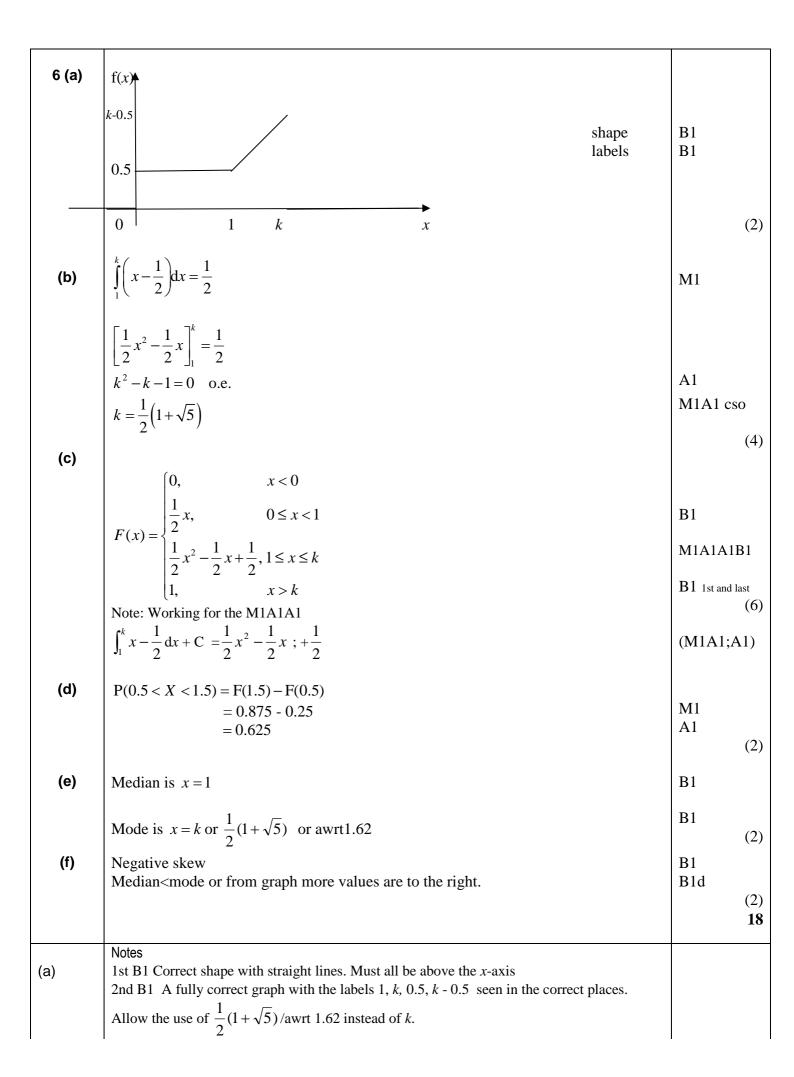
1st M1 for writing or using 1 - $P(X \le 20)$ or writing $P(X \le 20) = 0.9786$ or $P(X \ge 21) = 0.0214$. May be implied by correct CR. or probability = 0.197

A1 for 0.0214 or CR $X \ge 21/X > 20$. **NB** $P(X \le 20) = 0.9786$ on its own scores M1A1

 3^{rd} M1 dependent on the 2^{nd} M1 being awarded . For a correct statement based on the table below. Do not allow non-contextual conflicting statements eg"significant" and "accept H_0 " . **Ignore comparisons**.

2nd A1 for a correct contextualised statement. NB A correct contextual statement on its own scores M1A1.

	0.025	p < 0.025 or p > 0.975
3 rd M1	not significant/ accept H ₀ / Not in CR	significant/ reject H ₀ / In CR
2 nd A1	David's .claim is correct weather forecast produced by the local radio	David's claim incorrect weather forecast produced by the local radio
	is no better than those achieved by	is better than those achieved by
	tossing/flipping a coin	tossing/flipping a coin


Question	Scheme	Marks

Number			
3 (a)	$P(X = 0) = 0.85^{10}$ or from tables	M1	
	= 0.1969 awrt 0.197	A1	(2)
(b)	$P(X > 3) = 1 - P(X \le 3)$	M1	(2)
	= 1 - 0.6477 $= 0.3523$ awrt 0.352	A1	
(c)	$n \times 0.15 = 5$	M1	(2)
	n = 33 or 34	A1	
(d)	1 - P(X = 0) > 0.95	M1	(2)
, ,	$1 - (0.85)^n > 0.95.$	A1	
	$0.85^n < 0.05$		
		A1	
			(3) 9
	Notes		
(a)	M1 $(p)^{10}$ with 0		
(b)	M1writing or using 1 - P($X \le 3$)		
(c)	M1 $np = 5$ 0 < p < 1		
(d)	M1 writing or using $1 - P(X = 0) > 0.95$ or $P(X = 0) < 0.05$ (also accepted are $= \text{ or } \ge \text{ i}$ and $= \text{ or } \le \text{ instead of or } <)$ $P(X \le 0)$ is equivalent to $P(X = 0)$ A1 writing or using $1 - (0.85)^n > 0.95$ or $(0.85)^n < 0.05$ (also accepted are $\ge \text{ instead instead of or } <)$. Any value of n may be used A1 cao		
	NB an answer of 18.4 gets M1 A1 A0		
	An answer of 19 gets M1 A1 A1 unless it follows from clearly incorrect working.		

Question Number	Scheme	Mark	S
4 (a)	Poisson	B1	(1)
(b)	Hits occur singly in time Hits are independent <u>or</u> Hits occur randomly Hits occur at a constant rate	B1B1	(2)
(c)	<i>X</i> ~ Po(5)	B1	
	$P(X = 10) = P(X \le 10) - P(X \le 9)$ or $\frac{e^{-5} 5^{10}}{10!}$	M1	
	= 0.9863 - 0.9682 = 0.0181 awrt 0.0181	A1	(3)
(d)	<i>X</i> ∼ Po(10)	B1	(3)
	$P(X \ge 15) = 1 - P(X \le 14)$	M1	
	= 1 - 0.9165 = 0.0835 awrt 0.0835	A1	(3)
(e)	X~ Po(50)	D1D1	, ,
	Approximated by $N(50,50)$	B1B1 M1M1	
	$P(X > 70) = P\left(Z > \frac{70.5 - 50}{\sqrt{50}}\right)$	IVIIIVII	
	= P(Z > 2.899)	A1	
	=1-0.9981	M1	
	= 0.0019 awrt 0.0019	A1	(7)
			(7) 16
(b)	Notes 1st B1 Any one of the 3 statements - no context required. NB It must be a constant (mean) rate constant probability or a constant mean. 2nd B1 A different statement with context of		

Question Number	Scheme	Mark	(S
5 (a)	$X \sim B(120, 0.075)$	B1	
	Approximated by Po(9)	M1A1	
	$P(X > 3) = 1 - P(X \le 3)$	M1	
	=1-0.0212		
	= 0.9788 awrt 0.979	A1	(5)
(b)	P(At least 4 defective components in each box) = $P(X>3)\times P(X>3)$	M1	(5)
	$=0.9788^2$		
	= 0.95804944 awrt 0.958	A1	(2)
			7
	Notes		
(a)	B1 Writing or use of B(120,0.075) may be implied by using Po(9) or N(9,8.325) 1st M1 writing or use of Poisson		
	1st A1 writing or use of Po(9)		
	2nd M1 for writing or using 1- P($X \le 3$) or this may be implied by an awrt 0.972 using normal approximation.		
(b)	M1 ((their (a)) 2 or 0.979^2 or 0.9788^2 or 0.98^2		

Question	Scheme	Marks
Number		

1							
(b)	1st M1 $\int_{1}^{k} x - \frac{1}{2} dx = 0.5$						
	or $\int_1^k x - \frac{1}{2} dx + 0.5 = 1$ ignore limits						
	or $\int_{1}^{k} x - \frac{1}{2} dx + \int_{1}^{k} \frac{1}{2} dx = 1$						
	or $\frac{1}{2}(k-0.5+0.5)(k-1) = 0.5$ or any correct method of finding the area						
	1st A1 for a quadratic equation in the form $a(k^2 - k - 1) = 0$ or $ak^2 - ak = a$. where a is a constant. 2^{nd} M1 correct method for solving a quadratic of the form $ak^2 - bk + c = 0$ where $a,b,c \neq 0$. There must be at least one correct step before the final answer. Allow substituting in k into a quadratic of the form $ak^2 - bk + c = 0$.						
	$2^{\text{nd}} \text{ A1 } \cos \text{ for } k = \frac{1}{2} (1 + \sqrt{5})$						
(c)	1st B1 for second line. Do not penalise the use of $<$ instead of \le and vice versa						
	M1 for use of $\int_1^k x - \frac{1}{2} dx + C$ ignore limits. For use they must have $x \to x^2$						
	1st A1 correct integration $\frac{1}{2}x^2 - \frac{1}{2}x$						
	$2nd A1 C = \frac{1}{2}$						
	NB M1A1A1 may be implied by correct 3rd line in $F(x)$						
	2nd B1 for 3rd line. Statement of the form $\frac{1}{2}x^2 - \frac{1}{2}x \pm C$. Do not penalise the use of < instead of \leq and						
	vice versa. Allow k or value of k . C may equal 0 .	1					
	3rd B1 for first and last line. Do not penalise the use of \leq instead of $<$ and \geq instead of $>$. Allow k or value of k						
(d)	M1 <u>Using</u> $F(1.5) - F(0.5)$. 1.5 must be put into the third line of the c.d.f. and 0.5 must be put into the second line of the c.d.f						
	or $\int_{0.5}^{1} \frac{1}{2} x dx + \int_{1}^{1.5} x - \frac{1}{2} dx$ need to attempt integration, at least one $x^n \rightarrow x^{n+1}$						
	or seeing 0.25 + 0.375 or any correct method of finding the area (NB if they have not used + C or C = 0 they will get 0.125. This will get M1A0). An answer of 0.125 from an incorrect method gains M0 A0.						
(e)	If it is not clear which one is the mode and which one is the median assume the median is the						
(f)	first answer and mode the second. B1 negative/negative skew(ness). Do not allow negative correlation. B1 dependent on previous B mark being awarded. Reason must follow from their values or diagram.						

_	estion nber	Scheme	Mark	S
7 (2	a) (i)	The range of values/region/area/set of values of the test statistic that would lead you	B1	
		to <u>reject H</u> ₀		
(a)) (ii)	The probability of incorrectly rejecting H_0 or	B1	
		Probability of rejecting H_0 when H_0 is true		(2)

i	i					,
(b) (i)	$X \sim Po(8)$				M1	
	$P(X \le 4) = 0.0996$					
	$P(X \le 3) = 0.0424$					
	Critical region [0,3]				A1	
(b) (ii)	awrt 0.0424				B1	(3)
(c)	$H_0: \lambda = 0$	$H_0: \lambda = 8 (\text{or } \mu = 8)$				
	$H_1: \lambda > 8 (\text{or } \mu > 8)$					
	$P(X \ge 13) = 1 - P(X \le 12)$ or $P(X \le 13) = 0.9658$				M1	
	or $P(X \ge 14) = 0.0342$			4) = 0.0342		
		= 1 - 0.9362				
		=0.0638	$CR X \ge 14$		A1	
	so insufficient evidence to reject H_0 /not significant/ not in critical region				M1 dep	
	There in insufficient evidence of an increase/change in the <u>rate/number</u> of sales per			the <u>rate/number</u> of sales per	A1	
Nutra	month	or the estate agents cla	aim is incorrect			(5)
Notes	Allow accept H_1 instead of reject H_0 . It must be clear which hypothesis gets rejected/accepted.					10
(a)(i)			t must be clear which hypo	otnesis gets rejected/accepted.		
(ii)	_	ivalent wording.			Ī	
(b)		g or using Po(8). May be in				
				ed but not $P(X \le 3)$. This must be on it	s own.	
(c)	-	ypotheses correct. Must use	λ or μ .			
	One tail	r writing or using 1 - P(Y /	12) or writing $P(Y \le 13) =$	0.9658 or $P(X \ge 14) = 0.0342$. May be	implied by	
	correct CR	R. or probability = 0.0638		•	implied by	
		$0.0638 \text{ or } X \ge 14. \text{ Allow } X > 0.0638 \text{ or } X \ge 14. \text{ or } X \ge 14.$		on its own scores M1A1 atement based on the table below. Do not	ot allow nor	
		conflicting statements eg "r			ot allow hor	1-
	2 nd A1 for		ement. NB A correct conte	extual statement on its own scores M1A	1.	-
	2 nd M1	$0.05not significant/ accept H0/$	Not in CR	p < 0.05 or $p > 0.95significant/ reject H0/ In CR$		-
	2^{nd}A1	Insufficient evidence of an		Sufficient evidence of an increase/cha	ange in the	
		<u>rate/number</u> of sales per		<u>rate/number</u> of sales per month		
	Two tail	1.1 D/W	10) '' D/Y/14)	0.0007 P/Y>15) 0.0172 W 1	. 1. 1.	
		R.or probability = 0.0638	12) or writing $P(X \le 14) =$	0.9827 or $P(X \ge 15) = 0.0173$. May be	ітрпеа бу	
	A1 for 0.0	638 or $X \ge 15$. Allow $X > 14$				
				tement based on the table below. Do not	ot allow nor	1-
		contextual conflicting statements eg "not significant" and "reject H ₀ ". Ignore comparisons. 2 nd A1 for a correct contextualised statement. NB A correct contextual statement on its own scores M1A1.				
	0.025 $p < 0.025 or p > 0.975$]
	2 nd M1 not significant/ accept H ₀ / Not in CR significant/ reject H ₀ / In CR					
	2 nd A1 Insufficient evidence of an increase/change in the rate/number of sales per month Sufficient evidence of an increase/change in the rate/number of sales per month				nge in the	
	Tutto number of sailes per month					

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u> Order Code UA030902 January 2012

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

Mark Scheme (Results)

Summer 2012

GCE Statistics S2 (6684) Paper 1

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2012
Publications Code UA033140
All the material in this publication is copyright
© Pearson Education Ltd 2012

Summer 2012 6684 Statistics 2 S2 Mark Scheme

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- •All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod benefit of doubt
- ft follow through
- the symbol / will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

Summer 2012 6684 Statistics S2 Mark Scheme

Question Number	Scheme	Mark	s
1(a)	$P(L>24) = \frac{1}{15} \times 6$ = $\frac{2}{5}$ or 0.4 oe	M1 A1	(2)
(b)	Let <i>X</i> represent the number of sweets with $L > 24$		
	$X \sim B(20, 0.4)$	M1	
	$P(X \ge 8) = 1 - P(X \le 7)$	M1dep	
	= 1 - 0.4159		
	= 0.5841 awrt 0.584	A1	
			(3)
(c)	$P(both X \ge 8) = (0.5841)^2$	M1	
	= 0.341	A1 ft	
			(2)
		Tot	al 7
	notes		
1(a)	M1 $\frac{1}{15}$ ×(6 or 5.5 or 6.5 or (30 – 24)) or 1 - $\frac{1}{15}$ ((24 – 15) or (23.5 – 15) or (24.5 – 15)	() ()	
(b)	M1 using B(20, "their (a))		
	M1 dependent on 1 st M1. Writing or use of $1 - P(X \le 7)$		
	NB Use of normal/normal approximation/ Poisson/uniform gets M0 M0 A0		
(c)	M1 $(\text{their}(b))^2$ or $(0.58)^2$ or $(0.5841)^2$ or $(0.584)^2$		
	A1ft —either awrt 0.34 or follow through their answer to part (b) must be to 2sf or better.		
	Note you will have to check this.		

Question Number	Sche	me	Ma	arks
2.(a)	$X \sim B(25, 0.5)$	may be implied by calculations in part a or b	M1	
	$P(X \le 7) = 0.0216$ $P(X \ge 18) = 0.0216$			
	$CR X \le 7; \ \cup \ X \ge 18$		A1,A1	
<i>(</i> 1.)				(3)
(b)	P(rejecting H_0) = 0.0216 + 0.0216		M1	
	= 0.0432	awrt 0.0432/0.0433	A1 Total 5	(2)
	Notes			
2(a)	Note Just seeing either $P(X \le 7)$ or $P(X \le 7)$	ities in the tables for values other than 7 or 18. $0 \le X \le 7$ or $0 \le X < 8$ on e.g. [0, 8) or a full list or $7 - 0$ for the A mark. or $18 \le X \le 25$ or $17 < X \le 25$ on e.g. (17, 25]	n part a or	b
(b)	awrt 0.0432 If they add their critical regions' probability as their answer then it is M e.g. $0.0216 + 0.0216 = 0.0432$ then 0 e.g. $0.0216 + 0.0216 = 0.0432$ < 0.050	0.05 - 0.0432 = 0.0068 gets M0 A0		

Question Number	Scheme		Marks
3(a)	$n - \text{large/high/big/} \ n > 50$		B1
	p – small/close to $0 / p < 0.2$		B1
	P STATES OF THE P STATES		(2)
(b)	$H_0: p = 0.03$ $H_1: p > 0.03$ $Po(6)$		B1,B1 B1
	· ·	$X \le 10$) = 0.9574	M1
	·	$X \ge 11$) = 0.0426	
	= 0.0201 CR	<i>X</i> ≥ 11	A1
	(0.0201 < 0.05)		N/1 1
	Reject H_0 or Significant or 12 lies in the Critical regi There is evidence that the proportion of defective bo		M1 dep. A1 ft
	There is evidence that the proportion of defective bo	its has increased.	(7)
			Total 9
(b)	Notes 1^{st} B1 for $H_0: p = 0.03$ 2^{nd} B1 for $H_1: p > 0.03$ SC If both hypotheses are correct but a different letter Also allow B1 B0 for $H_0: \lambda = 6$ and $H_1: \lambda > 6$ B1 writing or using Po(6) $\frac{1}{2^{nd}}$ M1 for writing or using $1 - P(X \le 11)$ or giving P($\frac{1}{2^{nd}}$ M2 be implied by correct CR or probability = $\frac{1}{2^{nd}}$ M1 dependent on the $\frac{1}{2^{nd}}$ M1 being awarded. For a callow non-contextual conflicting statements eg "significa $\frac{1}{2^{nd}}$ A1 ft for a correct contextualised statement. NB A can M1A1. $\frac{1}{2^{nd}}$ M1 not significant/ accept $\frac{1}{2^{nd}}$ Not in CR $\frac{1}{2^{nd}}$ A1 ft $\frac{1}{2^{nd}}$ The $\frac{1}{2^{nd}}$ Proportion/number/amount/percentage of of defective bolts has not increased/is not higher/oe Two tail $\frac{1}{2^{nd}}$ M1 for writing or using $\frac{1}{2^{nd}}$ P($\frac{1}{2^{nd}}$ M1 for o.0201 or CR $\frac{1}{2^{nd}}$ A1 for 0.0201 or CR $\frac{1}{2^{nd}}$ ND being awarded. For a callow non-contextual conflicting statements eg "significa 2" A1 for 0.0201 or CR $\frac{1}{2^{nd}}$ M1 being awarded. For a callow non-contextual conflicting statements eg "significa 2" A1 ft for a correct contextualised statement. NB A context A1 ft for a correct contextualised statement.	$X \le 10$) = 0.9574 or giving $P(X \ge 10.0201)$ = 0.9799 on its own scores M1A1 correct statement based on the table beant" and "accept H_0 ". Ignore compari correct contextual statement on its own $p < 0.05$ or $p > 0.95$ significant/ reject H_0 / In CR The proportion/number/amount/percope of defective bolts has increased/is h $ \ge 12) = 0.0201 \text{ or giving } P(X \le 11) = 0.9799 \text{ on its own scores M1A1} $ correct statement based on the table beant" and "accept H_0 ". Ignore compari	elow. Do not sons. entage igher/oe elow. Do not sons.
	M1A1.		
	0.025	p < 0.025 or p > 0.975	

	0.025	p < 0.025 or p > 0.975
$2^{nd} M1$	not significant/ accept H ₀ / Not in CR	significant/ reject H ₀ / In CR
2 nd A1	The proportion/number/amount/percentage	The proportion/number/amount/percentage
	<u>oe</u> of	oe of defective bolts has increased/is higher/oe
	defective bolts has not increased/is not	
	higher/oe	

Use of N(6,5.82) May get B1 B1 B0 M1 (must use 11.5)A0 M1dep A1 ft

Question Number	Scheme	Marks
4(a)	Let <i>X</i> be the random variable the number of houses sold.	
	$X \sim Po(8)$	B1
(i)	$P(X \le 3) - P(X \le 2) = 0.0424 - 0.0138$ or $\frac{e^{-8}8^3}{3!}$	M1
	= 0.0286 awrt 0.0286	A1
(ii)	$P(X > 5) = 1 - P(X \le 5)$ = 1 - 0.1912	M1
	= 0.8088 awrt 0.809	A1 (5)
(b)	Let <i>Y</i> be the random variable = the number of periods where more than 5 houses are sold	
	<i>Y</i> ~ B(12,0.8088)	M1
	$P(Y=9) = (0.8088)^{9} (1 - 0.8088)^{3} \frac{12!}{9!3!}$	M1
	= 0.228 awrt 0.228	A1 (3)
(c)	N(20,20)	M1A1
	$P(X > 25) = 1 - P\left(Z \le \frac{25.5 - 20}{\sqrt{20}}\right)$ $= 1 - P\left(Z \le 1.23\right)$ $= 1 - 0.8907$ $= 0.1093 / 0.1094$ awrt 0.109	M1,M1,A1 A1 (6) Total 14
(a)	Notes 1st B1 for writing or using Po(8) in either (i) or (ii)	1014114
(i)	M1 writing or using $P(X \le 3) - P(X \le 2)$ or $\frac{e^{-8}8^3}{3!}$	
(ii)	M1 writing or using 1 - $P(X \le 5)$	
(b)	M1 writing or attempting to use B(12,their (a(ii))) NB ft their a(ii) to at least 2sf M1 $\frac{12!}{9!3!}$ (a(ii)) ⁹ (1- a(ii)) ³ allow ¹² C ₃ or ¹² C ₉ or 220 instead of $\frac{12!}{9!3!}$ NB ft their a(ii) to at	
(c)	least 1sf but an expression must be seen (No use of tables) 1^{st} M1 for writing or using a normal approximation 1^{st} A1 for correct mean and sd (may be given if correct in standardisation formula) 2^{nd} M1 Standardising using their mean and their sd and using [24.5, 25, 25.5, 26 or 26.5] and correct area by doing $1 - P(Z \le \text{"their } 1.23\text{"})$ NB if they have not written down a mean and sd then they need to be correct in the standardisat this mark. 3^{rd} M1 for attempting a continuity correction (26 \pm 0.5)	-
	2^{nd} A1 for $\pm \frac{25.5 - 20}{\sqrt{20}}$ or $\pm \text{ awrt } 1.2 \text{ or better.}$	ı
	SC using P(X< 26.5/25.5) – P(X<25.5/24.5) can get M1A1 M0M1A0A0	

Question Number	Scheme	Marks
5(a)	$\int_0^k \frac{3}{32} x(k-x) = 1$	M1
	$\left[\frac{3}{32} \left[\frac{kx^2}{2} - \frac{x^3}{3} \right]_0^k = 1 \right]$	A1
	$32 \begin{bmatrix} 2 & 3 \end{bmatrix}_{0}$ $\frac{3k^{3}}{64} - \frac{3k^{3}}{96} = 1$ $3k^{3} - 2k^{3} = 64$	M1 dep
	$k^3 = 64$ $k = 4$	Alcso
b	[E(X) =] 2	(4) B1
c	$E(X^2) = \int_0^4 \frac{3}{32} x^3 (4 - x)$	M1 (1)
	$= \left[\frac{3x^4}{32} - \frac{3x^5}{160} \right]_0^4$ $= \left[\frac{3 \times 4^4}{32} - \frac{3 \times 4^5}{160} \right]$	
	= 4.8 Var $(X) = 4.8 - 4$ $= 0.8$	A1 M1 A1 (4)
d	$\int_{1.5}^{2.5} \frac{3}{32} x(4-x) = \left[\frac{3x^2}{16} - \frac{x^3}{32} \right]_{1.5}^{2.5} \qquad \text{or} \qquad \int_{0}^{1.5} \frac{3}{32} x(4-x) = \left[\frac{3x^2}{16} - \frac{x^3}{32} \right]_{0}^{1.5}$	M1
	$= \frac{47}{128} = 0.3671875 \qquad \qquad = \frac{81}{256} = 0.31640625$	
	$1 - \frac{47}{128} = \frac{81}{128} \text{ awrt } 0.633$ $2 \times \frac{81}{256} = \frac{81}{128} \text{ awrt } 0.633$	M1depA1
(a)	Notes 1^{st} M1 for an attempt to multiply out bracket and for attempting to integrate $f(x)$. Both $x^n \rightarrow x^{n+1}$	Total 12 (3)
(u)	1 st A1 for correct integration. Ignore limits for these two marks. Need $\frac{3}{32} \left(\frac{kx^2}{2} - \frac{x^3}{3} \right)$ oe	
	2 nd M1 Dependent on the previous M mark being awarded. For correct use of correct limits and set equ	al to 1. No need
	to see 0 substituted in. For verifying they must have $\frac{3}{32} \left(\frac{4^3}{2} - \frac{4^3}{3} \right)$	
	2^{nd} A1 cso or for verifying $\frac{3}{32} \left(\frac{4^3}{2} - \frac{4^3}{3} \right) = 1$ oe eg $3(4)^3 - 2(4)^3 = 64$ and a correct comment "so $k = 2$ "	4"
(c)	1 st M1 attempt to multiply out bracket and attempting $\int x^2 f(x)$ Limits not needed. Both $x^n \to x^{n+1}$	
(d)	2^{nd} M1 for their $E(X^2)$ – (their mean) ² 1^{st} M1 Multiply out brackets, attempting to integrate (both $x^n \rightarrow x^{n+1}$), with either limits (their(b) \pm 0.5) 0.5 and 0) Accept 2 sf for their limits.	
(d)	1 st M1 Multiply out brackets, attempting to integrate (both $x^n \rightarrow x^{n+1}$), with either limits (their(b) \pm 0.5)	

Question Number	Scheme		Marks
6	Attempt to write down combinations	at least one seen	M1
	(1,1,1), $(1,1,2)$ any order $(1,2,2)$ any order, $(2,2,2)$	no extra combinations	A1
	Range 0 and 1	0 and 1 only	B1
	[P(range = 0) =] $(0.65)^3 + (0.35)^3$ = 0.3175 or $\frac{127}{400}$	either range	M1 A1cao
	[P(range = 1) =] $(0.35)^2(0.65) \times 3 + (0.65)^2(0.35) \times 3$ = 0.6825 or $\frac{273}{400}$		A1cao (6)
	Notes		Total 6
	First M1 may be implied by either $(0.65)^3$ or $(0.35)^3$ or $(0.65)^2$ (No need for x3 2^{nd} M1 $(p)^3 + (1-p)^3$ or $(1-p)^2(p) \times 3 + (p)^2(1-p) \times 3$ A1 for 0.3175 cao or exact equivalent e.g $\frac{254}{800}$ A1 for 0.6825 cao or exact equivalent e.g $\frac{546}{800}$ NB These probabilities do not need to be associated with the		

Question Number	Scheme	Marks
7(a)	0.25 0.25 0.15 0.10 0.10 0.10 0.10 0.10 0.10 0.1	B1 B1 B1 B1dep 0.2,3,4,10
(b)	$F(x) = \begin{cases} 0 & x < 0 \\ \frac{x^3}{135} & 0 \le x \le 3 \\ \frac{x}{5} - \frac{2}{5} & 3 < x < 4 \end{cases}$ $\begin{cases} \frac{x}{3} - \frac{x^2}{60} - \frac{2}{3} & 4 \le x \le 10 \\ \frac{x}{3} - \frac{x^2}{60} - \frac{2}{3} & x > 10 \end{cases}$	(4)
	$ \begin{array}{c c} $	M1A1
	$F(x) = \begin{cases} \frac{x}{5} - \frac{2}{5} \\ x + x^2 + 2 \end{cases}$ 3 < x < 4	M1A1
	$\begin{vmatrix} \frac{x}{3} - \frac{x}{60} - \frac{2}{3} & 4 \le x \le 10 \\ 1 & x > 10 \end{vmatrix}$	M1A1
	$1^{\text{st}} \text{ M1 For } 0 \le x \le 3, F(x) = \int_0^x \frac{t^2}{45} dt$ $= \left[\frac{t^3}{135} \right]_0^x$ $2^{\text{nd}} \text{ M1 For } 3 < x < 4, F(x) = \int_3^x \frac{1}{5} dt + \frac{1}{5} \text{or } F(x) = \int \frac{1}{5} dx + C \text{ and uses } F(3) = \frac{1}{5}$ $= \left[\frac{t}{5} \right]_3^x + \frac{1}{5} \frac{1}{5} = \left[\frac{3}{5} \right] + C$ $3^{\text{rd}} \text{ M1 For } 4 \le x \le 10, F(x) = \int_4^x \frac{1}{3} - \frac{x}{30} dt + \frac{2}{5} \text{or } F(x) = \int \frac{1}{3} - \frac{x}{30} dx + C \text{ and uses}$ $F(4) = \frac{2}{5} \text{or } F(10) = 1$ $F(x) = \left[\frac{t}{3} - \frac{t^2}{60} \right]_4^x + \frac{2}{5} \frac{2}{5} = \frac{4}{3} - \frac{4^2}{60} + C \text{ or } 1 = \frac{10}{3} - \frac{10^2}{60} + C$	
	Top line of $F(x)$ ie 0 $x < 0$ Bottom line of $F(x)$ ie 1 $x > 10$	B1 B1 (8)
(c)	$F(8) = \frac{8}{3} - \frac{8^2}{60} - \frac{2}{3}$ $= \frac{14}{15} = 0.933$	M1 A1 cso (2) Total 14

N	lotes

- (a) 1^{st} B1 for a curve. It must start at (0, 0) and have the correct curvature.
 - 2nd B1 for a horizontal line that joins the first section of the graph (not by a dotted line)
 - 3^{rd} B1 for a straight line with negative gradient that joins the horizontal line and stops on the positive x axis.
 - 4th B1 dependent on first 3 marks being gained. Fully correct graph with labels 0.2, 3,4,10 in correct places
- (b) For all the M marks, the attempt to integrate must have at least one $x^n \rightarrow x^{n+1}$ All A marks are for the correct expressions and ranges.

Do not penalise the use of \leq instead of < and \geq instead of >.

<u>**1**st **M1**</u> for attempt to integrate $\int_0^x \frac{t^2}{45} dt$ ignore limits

2nd M1

for attempt to integrate $\int_3^x \frac{1}{5} dt + \text{their F(3)}$ using correct limits.

or

for attempt to integrate $\int \frac{1}{5} dx + C$ and substituting in 3 and putting = to their F(3) or substituting in 4 and putting = to their F(4) from their $4 \le x \le 10$ line

3rd M1

for attempt to integrate $\int_4^x \frac{1}{3} - \frac{x}{30} dt$ + their F(4) using correct limits.

or

for attempt to integrate $\int \frac{1}{3} - \frac{x}{30} dt + C$ and substituting in 4 and putting = to their F(4) or substituting in 10 and putting = 1

(c) M1 substituting 8 into the 4th line of their cdf or F(3) + F(4) – F(3) + F(8) – F(4) or $1 - \int_8^{10} \frac{1}{3} - \frac{x}{30}$ (attempt to integrate needed) or use areas e.g $1 - \frac{1}{2} \times 2 \times \frac{1}{15}$ or $1 - \frac{1}{15}$

A1 14/15 awrt 0.933 from correct working.

NB If using F(3) + F(4) - F(3) + F(8) - F(4) then F(x) must be correct.

Question Number	Scher	me			Mark	ΚS
8(a)	Let <i>X</i> be the random variable the number of	mber	of customers asking for water	er.		
(i)	X ~B(10,0.6)	<i>Y</i> ∼B	(10,0.4)		B1	
	$P(X = 6) = (0.6)^{6} (0.4)^{4} \frac{10!}{6!4!}$	P(<i>Y</i> =	$=4)=(0.4)^4(0.6)^6\frac{10!}{6!4!}$		M1	
		= 0.2	508	awrt 0.251	A1	
(ii)	$X \sim B(10,0.6)$		<i>Y</i> ~B(10,0.4)			
(11)	P(X < 9) = 1 - (P(X = 10) + P(X = 9))	9))	$P(X < 9) = 1 - P(Y \le 1)$		M1	
	$= 1 - (0.6)^{10} - (0.6)^{9} (0.4)^{1} = 0.0000000000000000000000000000000000$	10!	1 00464			
	= 0.9536	9!1!	= 1 - 0.0464 = 0.9536	awrt 0.954	A1	
				1	1	(5)
(b)	$X \sim B(50,0.6)$ $Y \sim B(50,0.4)$				M1	
	$P(X < n) \ge 0.9$					
	, <u> </u>		(X < 34) = 0.8439 awrt 0.8		M1	
	$P(Y \le 50 - n) \le 0.1 50 - n < 15$	P((X < 35) = 0.9045 awrt 0.9	04/0.905	M1	
	$n \ge 35$					
	n=35				A1	(3)
					Te	otal 8
	Notes					
(a)	B1 writing or using B(10,0.6) / B(1	0,0.4)	in either part(i) or (ii)			
(i)	M1 $(0.6)^6(1-0.6)^4\frac{10!}{6!4!}$ Allow $^{10}C_6$ oe					
	or writing or using $P(X \le 6)$ - $P(X \le 6)$		using B(10,0.6)			
	or $P(X \le 4)$ - $P(X \le 3)$ if using B(10 NB use of Poisson will gain M0A0	0,0.4)				
(ii)	M1 writing or using $1 - (P(X = 10))$	+ P(X	(1 = 9)) if using B(10,0.6)			
	or $1 P(V < 1) \text{ if using } P(10.0.4)$					
	$1 - P(Y \le 1)$ if using B(10,0.4) NB use of Poisson will gain M0A0					
(b)	1 st M1 for writing or using either Bo	(50,0.	6) or B(50,0.4)			
	2^{nd} M1 P(Y > 50 - n) \ge 0.9 or P(Y 0.904/0.905 or 50 - n = 15 or 50 - n	$\frac{7}{50} \le 50$	$(-n) \le 0.1 \text{ or } P(X < 34) = \text{as}$	Vrt 0.844 or $P(X < 16)$	< 35) = int lette	awrt
	A1 cao 35. Do not accept $n \ge 35$ for			ro – anow unicie		15
	SC use of normal.					
	M1 M0 A0 for use of N(30,12) lead:	ing to	an answer of 35			

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u> Order Code UA033140 Summer 2012

For more information on Edexcel qualifications, please visit our website $\underline{www.edexcel.com}$

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

Mark Scheme (Results)

January 2013

GCE Statistics S2 (6684/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.btec.co.uk for our BTEC qualifications.

Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson. Their contact details can be found on this link: www.edexcel.com/teachingservices.

You can also use our online Ask the Expert service at www.edexcel.com/ask. You will need an Edexcel username and password to access this service.

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2013
Publications Code UA034852
All the material in this publication is copyright
© Pearson Education Ltd 2013

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Unless indicated in the mark scheme a correct answer with no working should gain full marks for that part of the question.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

In some instances, the mark distributions (e.g. M1, B1 and A1) printed on the candidate's response may differ from the final mark scheme.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used.

- bod benefit of doubt
- ft follow through
- the symbol √ will be used for correct ft
 cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but incorrect answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

8. The maximum mark allocation for each question/part question(item) is set out in the marking grid and you should allocate a score of '0' or '1' for each mark, or "trait", as shown:

	0	1
аМ		•
аА	•	
bM1		•
bA1	•	
bB	•	
bM2		•
bA2		•

January 2013 6684 Statistics S2 Mark Scheme

Question Number	Scheme	Marks
1(a)	n large	B1
	p small	B1
		(2)
(b)	Let <i>X</i> be the random variable the number of letters delivered to the wrong house	
	<i>X</i> ~B(1000,0.01)	
	Po(10)	B1
	$P(X \ge 4) = 1 - P(X \le 3)$	M1
	= 1 - 0.0103	
	= 0.9897	A1
		(3)
		Total 5
(a) (b)	Notes B1 Accept n (the number of trials) large / high / big / n > 50 (accept any number larger than 50) B1 Accept p (the probability) small / close to $0 / p < 0.2$ (accept any number less than 0.2). Do not accept low. These must appear in part (a). B1 writing or using Po(10) M1 using a Poisson (λ need not equal 10) and for writing or using $1 - P(X \le 3)$. (Do not accept writing $1 - P(X \le 4)$ unless they have used $1 - P(X \le 3)$). A1 0.9897 cao must be 4 dp NB An awrt 0.990 on its own gains B0M0A0 unless there is evidence that Po(10) is used. In which case it gets B1M1A0 Using B(1000,0.01) gives 0.989927 and gains B0M0A0	

Question Number	Scheme	Marks
2 (a)	Let <i>X</i> be the random variable the number power cuts.	
	$X \sim \text{Po}(3)$	B1
(i)	$P(X = 7) = P(X \le 7) - P(X \le 6) \qquad \text{or } \frac{e^{-3}3^7}{7!}$ = 0.9881 - 0.9665	M1
	= 0.0216 awrt 0.0216	A1
(ii)	$P(X \ge 4) = 1 - P(X \le 3)$ $= 1 - 0.6472$	M1
	= 0.3528 awrt 0.353	A1 (5)
(b)	$X \sim \text{Po}(30)$	(5)
	N(30,30)	M1A1
	$P(X < 20) = P\left(Z < \frac{19.5 - 30}{\sqrt{30}}\right)$ = P(Z < -1.92)	M1M1 A1
	= 1 - 0.9726	
	=0.0274-0.0276	A1
		(6)
	Notes	Total 11
(a)	B1 Writing or using Po(3) in either (i) or (ii)	
(i)	M1 writing or using $P(X \le 7) - P(X \le 6)$ or $\frac{e^{-\lambda} \lambda^7}{7!}$	
(ii) (b)	M1 writing or using $1 - P(X \le 3)$. (Do not accept writing $1 - P(X \le 4)$ unless they have used $1 - P(X \le 3)$). 1^{st} M1 for writing or using a normal approximation 1^{st} A1 for correct mean and sd (may be given if correct in standardisation formula) 2^{nd} M1 Standardising using their mean and their sd and using [18.5, 19, 19.5, 20 or 20.5] and for finding correct area by doing $1 - P(Z \le \text{"their 1.92"})$ If they have not written down a mean and sd then these need to be correct here to award the mark 3^{rd} M1 for attempting a continuity correction (19 ± 0.5) i.e. 18.5 or 19.5 only . 2^{nd} A1 for $\pm \frac{19.5 - 30}{\sqrt{30}}$ or $\pm \text{awrt 1.9}$ or better. 3^{rd} A1 awrt 0.0274 , 0.0275 or 0.0276 SC using $P(X \le 20.5/19.5) - P(X \le 19.5/18.5)$ can get M1A1 M0M1A0A0	

Question Number	Scheme	Marks		
3(a) (i)	P(X < 5) = 0.8424 awrt 0.842	B1		
(ii)	$P(X \ge 7) = 1 - P(X \le 6)$	M1		
	= 1 - 0.9857			
	= 0.0143 awrt 0.0143	A1		
		(3)		
(b)	$P(X=0) = (1-p)^{12}$			
	$(1-p)^{12} = 0.05$	M1		
	$(1-p) = \sqrt[12]{0.05}$	M1		
	p = 0.221 awrt 0.221	A1		
		(3)		
(c)	Variance $=12p(1-p)$			
	12p(1-p) = 1.92	M1		
	$12p - 12p^2 = 1.92$			
	$12p^2 - 12p + 1.92 = 0$ or $p^2 - p + 0.16 = 0$ $25p^2 - 25p + 4 = 0$			
	$p = \frac{12 \pm \sqrt{12^2 - 4 \times 12 \times 1.92}}{24} $ (5p-1)(5p-4) = 0	M1		
	p = 0.2 or 0.8	A1,A1		
		(4)		
	Notes	Total 10		
(a) (ii)	M1 writing or using $1 - P(X \le 6)$ Do not accept $1 - P(X \le 7)$ unless $1 - P(X \le 6)$ has been used			
(b)	$1^{\text{st}} \text{ M1 } (1-p)^n = 0.05$ $2^{\text{nd}} \text{ M1 taking } n \text{th root.}$ If they have used logs they need to get to a correct expression			
(c)	for $1-p$ for their equation. $1^{\text{st}} \text{ M1 } 12p(1-p) = 1.92 \text{ o.e.}$ $2^{\text{nd}} \text{ M1 solving a quadratic either by factorising / completing the square / or formula.}$			
	Working must either be correct for their quadratic (they may use a quadratic from an			
	incorrect rearrangement) or they must have written the appropriate formula down correctly and only made 1 error substituting into it. May be implied by a correct value			
	of p. 1 st A1 for 0.2			
	2 nd A1 for 0.8			

Question Number	Scheme	Mar	ks
4 (a)	Mean = 1	B1	(1)
(b)	$P(X \le 2.4) = (2.44) \times \frac{1}{10}$	M1	
	$= 0.64 \text{ or } \frac{16}{25}$	A1	
()		2.61	(2)
(c)	P(-3 < X - 5 < 3) = P(2 < X < 6) = 0.4	M1 A1	
	0.4	AI	(2)
(d)	$\int_{a}^{4a} \frac{y^2}{4a-a} dy = \left[\frac{y^3}{9a} \right]^{4a}$	M1 M1 de	
	$= \frac{64a^3 - a^3}{9a}$	A1	
	$= 7a^2 *AG$	Alcso	(4)
(e)	$Var(Y) = \frac{1}{12}(4a - a)^{2} \qquad \text{or} Var(Y) = 7a^{2} - \left(\frac{5}{2}a\right)^{2}$	M1	` '
	$=\frac{3}{4}a^2$	Alcso	
			(2)
(f)	$\begin{vmatrix} \frac{2}{3} = \frac{1}{3a} \left(\frac{8}{3} - a \right) \\ a = \frac{8}{9} \end{vmatrix}$	M1 A1	
	$a = \frac{8}{9}$	A1	(3)
		Tota	(3) al 14
	NT. 4		
(b)	Notes M1 $(2.4-4) \times \frac{1}{10}$ or $1-(6-2.4) \times \frac{1}{10}$ o.e		
(c)	M1 finding $P(2 \le X \le 6)$ or $P(X \ge 2)$ or $1 - P(X \le 2)$. May be implied by a correct answer if there is no incorrect working. Do not ignore subsequent incorrect working. NB if they change the distribution to U[-9,1] then M1 is for finding $P(-3 \le X \le 1)$ or $P(X \ge -3)$ or $1 - P(X \le -3)$. May be implied by a correct answer if there is no incorrect working. Do not ignore subsequent incorrect working.		
(d)	NB remember the answer is given (AG) so they must show their working		
	$\int_a^{4a} y^2 f(y) dy$ with correct limits used at some point. Condone		
	omission of dy. $f(y)$ does not need to be correct.		
	2^{nd} M1 dependent on previous M being awarded. Attempting to integrate at $y^n \to \frac{y^{n+1}}{n+1}$		
	1 st A1 correct expression - the correct limits must be substituted. 2 nd A1 cso		

(e)	$(b - a)^2$	
	M1 either use of $\frac{(b-a)^2}{12}$ or $E(Y^2) - [E(Y)]^2$:- they may use their part (d) for $E(Y^2)$	
(f)	M1 using $\frac{1}{3a} \left(\frac{8}{3} - a \right) = $ a probability or $\frac{1}{3a} \left(4a - \frac{8}{3} \right) = $ a probability	
	An answer of $\frac{8}{9}$ with no incorrect working gains M1A1A1	

Question Number	Scheme		Ma	arks
5(a)	$P(T > t) = \frac{225}{(t+15)^2}$ $P(T \le t) = 1 - P(T > t)$ $= 1 - \frac{225}{(t+15)^2}$ $F(t) = \begin{cases} 1 - \frac{225}{(t+15)^2} & t \ge 0\\ 0 & \text{otherwise.} \end{cases}$		B1	
	0 otherwise.			(1)
(b)	$P(T < 3) = 1 - \frac{225}{(3+15)^2}$ $= \frac{11}{36} \text{ or } 0.30555$		M1 A1	
(c)	awrt 0.306 $P(T > 8 T > 3) = \frac{P(T > 8)}{P(T > 3)}$ $= \frac{\frac{225}{23^{2}}}{\frac{225}{18^{2}}}$		M1 M1	(2)
	$=\frac{324}{529}$ or 0.612	awrt 0.612 /	A1	
(d)	0.6125 $1 - F(t) = 0.1$ $\frac{225}{(t+15)^2} = 0.1$ or $1 - \frac{225}{(t+15)^2} = 0.9$ $\frac{225}{0.1} = (t+15)^2$ $t = \sqrt{\frac{225}{0.1}} - 15$ $t = 32.4, \text{ also accept } 32/33$		M1 A1	(3)
	$t = \sqrt{\frac{225}{0.1}} - 15$ $t = 32.4, \text{ also accept } 32/33$		M1 A1	(4)
			1	otal 10

Notes

(a) B1 The line $P(T \le t) = 1 - P(T > t)$ or F(t) = 1 - P(T > t) or both of the following statements $P(T > t) = \frac{225}{(t+15)^2}$ and $P(T \le t) / F(t) = 1 - \frac{225}{(t+15)^2}$ must be seen and no errors. Allow equivalent

in words.

Condone use of \leq instead of \leq or > instead of \geq and vice versa.

The cdf must be given. Allow t > 0

- (b) M1 substituting 3 into F(t)
- (c) 1st M1 The conditional probability must,
 - be a quotient and
 - have P(T > 3) or 'their numerical equivalent' for the denominator and
 - have P(T > 8) or P(T > 5) or $P(T > 8 \cap T > 3)$ or $P(T > 5 \cap T > 3)$ or 'their numerical equivalent' for the numerator.

Allow \geq in place of >

 2^{nd} M1 writing or using P(T > 8) or $P(T \ge 8)$.

NB This is independent of the first M mark.

- (d) 1^{st} M1 writing or using 1 F(t) = 0.1 or $P(T \ge t) = 0.1$ May be implied by $\frac{225}{(t+15)^2} = 0.1$ o.e.
 - 2nd M1 either square rooting or solving a quadratic either by factorising / completing the square / using the formula must be correct for their quadratic.

A1 awrt 32.4 or 32 or 33. Do not accept $15\sqrt{10} - 15$

Question Number	Scheme	Marks	
6(a)	A statement concerning a population parameter	B1	
(b)	A critical region is the <u>range</u> / <u>set of values</u> / <u>answers</u> or a <u>test statistic</u> or <u>region/area</u> or <u>values</u> (where the test is significant)	B1	
	that would lead to the rejection of H0 / acceptance of H ₁	B1	
			(3)
(c)	$H_0: p = 0.45$ $H_1: p < 0.45$ (or $p \ne 0.45$)		
	$X \sim B(20, 0.45)$	M1	
	$P(X \le 5) = 0.0553$ CR $X \le 4$	A1	
	Accept H ₀ . Not significant. 5 does not lie in the Critical region.	M1d	
	There is no evidence that the proportion who voted for Mrs George is not 45% or there is evidence to support Mrs George's claim	Alcso	
	11 ———————————————————————————————————		(4)
(d)	B(8, 0.45): $P(0) = 0.0084$	M1	
	B(7, 0.45): $P(0) = 0.0152$	A1	
	Hence smallest value of n is 8	B1	(2)
	Alternative		(3)
	$(0.55)^n < 0.01$	M1	
	$n\log 0.55 < \log 0.01$		
	n > 7.7	A1	
	Hence smallest value of n is 8	B1cso	
(a) (c)	Notes It must be a statement including the words population parameter . 1^{st} M1 using B(20, 0.45) and finding P($X \le 5$) or P($X \ge 6$) Using the normal approximation to the binomial is M0 A1 0.0553 (allow 0.9447) if not using CR or CR $X \le 4$ or $X \le 5$ 2^{nd} M1 dependent on previous M being awarded. A correct statement (do not allow if there are contradicting non contextual statements nor award if 2 probabilities are given which would result in different conclusions) A1cso Conclusion must contain the words Mrs George . There must be no incorrect working seen. If there are no hypotheses you cannot award this mark. NB A correct contextual statement on it's own will score M1 A1.	Total	10
(d)	M1 Attempt to find P(0) from B(n , 0.45) or $(0.55)^n < 0.01$ or $(0.55)^n = 0.01$ or $(0.55)^n > 0.01$ A1 P(0) = 0.0084 and P(0) = 0.0152 or getting 7.7 May be implied by correct answer. B1 cso. $n = 8$ should not come from incorrect working. NB An answer of 8 on its own with no working gains M1A1B1		

Question	Scheme	Marks
Number		
7(a)	$\int_0^5 a + bx \mathrm{d}x = 1$	M1
	$\left[ax + \frac{bx^2}{2}\right]_0^5 = 1$	A1
	$5a + \frac{25b}{2} = 1$	M1dep
	10a + 25b = 2	Alcso
(b)	$\int_{0}^{5} ax + bx^{2} \mathrm{d}x = \frac{35}{12}$	(4) M1
	$\left[\frac{ax^2}{2} + \frac{bx^3}{3}\right]_0^5 = \frac{35}{12}$	A1
	$\frac{25a}{2} + \frac{125b}{3} = \frac{35}{12}$	A1 (3)
(c)	30a + 100b = 7 $30a + 100b = 7$	M1
	10a + 25b = 2 a = 0.1 b = 0.04	A1,A1 (3)
(d)	$\int_{0}^{m} 0.1 + 0.04x \mathrm{d}x = 0.5$	M1
	$\left[0.1x + \frac{0.04x^2}{2}\right]_0^m = 0.5$ $0.1m + 0.02m^2 - 0.5 = 0$	A1ft
	$m = \frac{-0.1 \pm \sqrt{0.1^2 + 4 \times 0.02 \times 0.5}}{2 \times 0.02}$	
	m = 3.09, -8.09 therefore 3.09	A1 (3)
(e)	mean < median (< mode) negatively skewed	B1ft B1 dep ft
		(2) Toal 15
(a)	Notes 1^{st} M1 Attempting to integrate with correct limits or for an attempt to find area $0.5(a + Attempting to integrate and using F(5) = 1 1^{st} A1 Correct integration or correct area 2^{nd} M1 for using =1. This is dependent on the first M1 being awarded. 2^{nd} A1 cso condone missing dx$	<i>b)h</i> or
(b)	M1 using or writing (limits not needed) $\int_0^5 ax + bx^2 dx = \frac{35}{12}$	
	1 st A1 correct integration	
	2^{nd} A1 may be awarded for an unsimplified version $\frac{25a}{2} + \frac{125b}{3} = \frac{35}{12}$	

(c)	M1 attempting to solve "their equations" simultaneously – either using rearranging and substitution or making one of the coefficients the 'same' (ignore sign) and either adding or subtracting. May
	be implied by correct values for a and b
	1 st A1 for 0.1
	2 nd A1 for 0.04
(d)	M1 writing or using \int_0^m "their a"+"their b" x dx = 0.5: limits not needed
	1 st A1 correct integration for their "a" and "b"
	NB the correct equation simplifies to $m^2 + m - 25 = 0$
	A1 3.09 only. If they have both roots then they must select 3.09
(e)	1 st B1ft. They must compare their values for mean and median correctly. They only need to
	compare 2 of mean, median and mode. If they compare either the median or mean with the
	mode only then the value of the mode must be stated. They may draw a sketch that matches
	their values of 'a' and 'b' for $0 \le x \le 5$. It must not go below the x-axis This may be seen in part
	(a).
	2 nd B1 dependent f.t. on the previous B being awarded.

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481

Email <u>publication.orders@edexcel.com</u>
Order Code UA034852 January 2013

For more information on Edexcel qualifications, please visit our website $\underline{www.edexcel.com}$

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

Mark Scheme (Results)

Summer 2013

GCE Statistics 2 (6684/01R)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2013
Publications Code UA037002
All the material in this publication is copyright
© Pearson Education Ltd 2012

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.
- 8. In some instances, the mark distributions (e.g. M1, B1 and A1) printed on the candidate's response may differ from the final mark scheme

 (b) B1 for both values of r M1 d dependent on previous B1. For an attempt to evaluate one of the probabilities for 	Question Number	Scheme Marks	
$P(R = 0) = \frac{9}{27} \text{ or } \frac{1}{3} \qquad P(R = 4) = \frac{18}{27} \text{ or } \frac{2}{3}$		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
 (a) 1st B1 for any two of the triples 2nd B1 for all 8 cases. No incorrect extras – condone repeats. Allow (1, 5, 5) (x 3) and (5) (x 3) instead of writing all three cases down (b) B1 for both values of r M1 d dependent on previous B1. For an attempt to evaluate one of the probabilities for 	(b)	$r \cdot 0$ and 4	
 (a) 1st B1 for any two of the triples 2nd B1 for all 8 cases. No incorrect extras – condone repeats. Allow (1, 5, 5) (x 3) and (5) (x 3) instead of writing all three cases down (b) B1 for both values of r M1 d dependent on previous B1. For an attempt to evaluate one of the probabilities for 		(3) [5]	
2 nd B1 for all 8 cases. No incorrect extras – condone repeats. Allow (1, 5, 5) (x 3) and (5) (x 3) instead of writing all three cases down (b) B1 for both values of r M1 d dependent on previous B1. For an attempt to evaluate one of the probabilities for		Notes	
M1 d dependent on previous B1. For an attempt to evaluate one of the probabilities for	(a)	2^{nd} B1 for all 8 cases. No incorrect extras – condone repeats. Allow $(1, 5, 5)$ $(x 3)$ and $(1, 1, 1)$	
must be shown.	(b)	M1 d dependent on previous B1. For an attempt to evaluate one of the probabilities for r correctly e.g. for $r = 0$; $\left(\frac{2}{3}\right)^3 + \left(\frac{1}{3}\right)^3$ and for $r = 4$; $3 \times \left(\frac{1}{3}\right)^2 \times \left(\frac{2}{3}\right) + 3 \times \left(\frac{1}{3}\right) \times \left(\frac{2}{3}\right)^2$ Working must be shown. A1 for both values of r and their correct corresponding probabilities. Allow awrt 0.333	

Question Number	Scheme	Marks
2.		
(a)	$F(2) = 1$ gives: $\frac{1}{4}(2^3 - 4 \times 2^2 + 2k) = 1$	M1
	$\underline{k} = \underline{6}$	A1 (2)
(b)	$f(y) = \frac{d}{dy} (F(y)) = \frac{1}{4} (3y^2 - 8y + "6")$	M1A1ft
	$f(y) = \begin{cases} \frac{1}{4} (3y^2 - 8y + 6) & 0 \le y \le 2\\ 0 & \text{otherwise} \end{cases}$	A1
		(3)
(c)	$P(Y > 1) = 1 - F(1) = 1 - \frac{1}{4} (1^3 - 4 \times 1^2 + k)$	M1
	$=\frac{1}{4}$ (o.e.)	A1
		(2) [7]
	Notes	
(a)	M1 for an attempt to use $F(2) = 1$. Clear attempt to form a linear equation	n for k
(b)	M1 for some correct differentiation $y^n \to y^{n-1}$	
	1^{st} A1ft for $3y^2 - 8y + \text{"}6\text{"}$, follow through their value of k or even k as a 2^{nd} A1 for a fully correct solution including the 0 otherwise.	letter
(c)	M1 for clear use of $1 - F(y)$ or attempt at integrating $f(y)$; at least one correct coefficient, and using limit of 1 and 2	correct term with
	A1 for $\frac{1}{4}$ or any exact equivalent	

Question Number	Scheme	Marks
3. (a)	$\frac{1}{2}(a+b) = 23 \text{ and } \frac{1}{12}(b-a)^2 = 75$ $a+b=46 \text{ and } b-a=\sqrt{12\times75} (=30)$ Adding gives $2b=76$ $b=38 \text{ and } a=8$ $\frac{alternative}{2}$ $\frac{1}{2}(a+b) = 23 \text{ and } \frac{1}{12}(b-a)^2 = 75$ $a+b=46 \text{ and hence } (46-2a)^2 = 900 \text{ oe}$ $a^2-46a+304=0$ $(a-8)(a-38)=0$	B1B1 M1 M1 A1 A1 (6) B1B1 M1
(b)	$(a-8)(a-38) = 0$ $\underline{b} = 38$ and $\underline{a} = 8$ P(23 < X < c) = 0.5 - 0.32 or $c = 28.4$ and prob = $\frac{5.4}{30}$ = $\underline{0.18}$	M1 A1 A1 (6) M1 A1 (2) [8]
	Notes	[0]
(a) (b)	2 nd B1 for any 2 correct equations for a and b using both 23 and 75 1 st M1 for rearranging to get two linear equations in a and b or rearranging and substituting linear equation into quadratic. 2 nd M1 for solving i.e. eliminating one variable leading to a linear equation in one variable or solving their quadratic correctly by any method. 1 st A1 for b = 38 2 nd A1 for a = 8 SC If they get b = 8 and a = 38 or they give two sets of values and do not eliminate one then they can get B1B1M1M1A1A0 M1 for a correct method, e.g., a correct expression, or seeing calculation for a and	

Question Number	Scheme	Marks
4.		
(a)	$\int f(x) dx = k \left[3x + x^2 - \frac{x^3}{3} \right]$	M1
	$\int_{0}^{3} f(x) dx = 1 \text{ gives } k \left[\left(9 + 9 - \frac{27}{3} \right) - (0) \right] = 1$	M1
	So $k = \frac{1}{9}$ (*)	Alcso
		(3)
(b)		M1
	f'(x) = 0 implies $x = 1$ so mode = 1	A1
	3	(2)
(c)	$E(X) = \int_{0}^{3} \frac{1}{9} (3x + 2x^{2} - x^{3}) dx$	M1
	$= \frac{1}{9} \left[\frac{3x^2}{2} + \frac{2x^3}{3} - \frac{x^4}{4} \right]_0^3$	M1dA1
	$= \left\{ \frac{1}{9} \left[\left(\frac{3}{2} \times 9 + \frac{2}{3} \times 27 - \frac{81}{4} \right) - 0 \right] \right\} = \frac{5}{4}$	A1
		(4)
(d)	Mean > mode	M1
	So <u>positive skew</u>	A1 (2)
		[11]
	Notes	
(a)	NB This is a 'Show that so working must be seen'	
	1 st M1 for some correct integration $x^n \to x^{n+1}$ for at least one term 2 nd M1 for some correct use of the limit 3 and at least implied use of limit 0 and 1 A1cso for correct solution with no incorrect working seen.	out =1
(b)	M1 for attempt to differentiate and putting = 0. At least one correctly differentiate or for an alternative method for finding the maximum such as completing to selecting the corresponding <i>x</i> value or using a sketch and symmetry.	
	A1 for mode = 1	
(c)	1^{st} M1 for clear attempt to use $xf(x)$ with an intention of integrating (Integral signal of the state of the sta	gn enough)
	Ignore limits. Must substitute in $f(x)$ 2^{nd} M1d dependent on 1st M being awarded. For some correct integrationat least term with the correct coefficient.	one correct
	1 st A1 for fully correct (possibly un-simplified) integration. Ignore limits 2 nd A1 for answer of 5/4 or 1.25 or some other exact equivalent	
(d)	M1 for a comparison of mean and mode (ft their values of mode and mean). Do not allow median.	
0	A1 for positive skew only (provided this is compatible with their values and co	omparison)
Question Number	Scheme	Marks
5.	[$X =$ number of customers joining the queue in the next 10 mins \sim Po(3)]	

Question Number	Scheme	Marks
(a)	$P(X = 4) = P(X \le 4) - P(X \le 3)$ or $\frac{e^{-3}3^4}{4!}$	M1
	0.8153 - 0.6472 = 0.1681 or 0.1680313 (awrt <u>0.168</u>)	A1
(b)	Y [= number of customers joining the queue in the next 20 mins] \sim Po(6)	(2)
(0)	$P(Y > 10) = 1 - P(Y \le 10)$	M1
	= 1 - 0.9574 = 0.0426(209) (awrt 0.0426)	A1
		(3)
(c)	$P(T > 3.5) = \underline{0.3}$	B1
(d)	$C \sim B(5, 0.3)$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
(u)	$P(C \ge 3) = 1 - P(C \le 2)$	M1
	= 1 - 0.8369 = 0.1631 (or 0.16308) (awrt 0.163)	Al
		(3)
(e)	P(Bethan is served in ≤ 4 minutes) = 0.8 (o.e.)	B1
	$J =$ number joining the queue in 4 mins has $J \sim Po(1.2)$	M1
	$P(J=0) = e^{-1.2} = 0.30119$	A1
	P(Bethan is served and $J = 0$) = $0.8 \times e^{-1.2} = 0.240955$ (awrt <u>0.241</u>)	A1 (4)
		[13]
	Notes	
(a)	M1 for a correct method. May use incorrect λ A1 for awrt 0.168	
(b)	B1 for writing or using Po(6)	
(6)	M1 for writing or using $1 - P(Y \le 10)$	
	A1 for awrt 0.0426	
(d)	1^{st} M1 for identifying that $C \sim B(5, 0.3)$. Follow through their 0.3. May be in	mplied
. ,	2^{nd} M1 for writing or using $1 - P(C \le 2)$	•
	A1 for awrt 0.163	2.5
	SC if they use normal distribution they may get M0 M1 A0 if they find $P(C \ge C)$	(2.5)
(-)	B1 for 0.8 for P(Bethan is served in the next 4 minutes)	
(e)		
(e)	M1 for identifying Po(1.2)	
(e)	M1 for identifying Po(1.2) A1 for e ^{-1.2} or awrt 0.301 A1 for awrt 0.241	

Question Number	Scheme	Marks
6. (a)	[$X =$ the number of raisins in a mini-muffin] $X \sim \text{Po}(8)$ e.g. $P(X \le 3) = 0.0424$, $P(X \le 13) = 0.9658$ so $P(X \ge 14) = 0.0342$ So Critical Region is $X \le 3$ or $X \ge 14$	B1 M1 A1 A1
(b)	$0.0424 + 0.0342 = \underline{0.0766} \text{ (or better)}$	M1 A1 (2)
(c)	H _o : $\lambda = 8$ (or $\mu = 80$) H ₁ : $\lambda > 8$ (or $\mu > 80$) [$R = \text{no. of raisins in 10 muffins. } R \sim \text{Po}(80)$.] Use $Y \sim \text{N}(80, 80)$ P($R \ge 95$) $\simeq \text{P}(Y \ge 94.5)$ = P($Z > \frac{94.5 - 80}{\sqrt{80}}$) = P($Z > 1.62$) = 1 - 0.9474 = awrt <u>0.053</u>	B1 M1A1 M1 M1 A1
	Probability is greater than 0.05 so not significant (accept H ₀) Insufficient evidence to support the <u>bakery's claim</u> Or insufficient evidence of an increase in the (mean) number of <u>raisins</u> per <u>muffin</u>	M1 A1cso (8)
	Notes	[14]
(a)	B1 for Po(8) seen or implied by use M1 for clear evidence of use of Po(8), may be implied by a correct CR (allow written as a probability statement) or a probability seen in part(b). If they give 3 and 14 1^{st} A1 for $X \le 3$ or $0 \le X \le 3$ or $0,1,2,3$ or $[0,3]$ Allow any letter 2^{nd} A1 for $X \ge 14$ or $[14,\infty)$ condone $[14,\infty]$ Allow any letter These A marks must be for statements with X only – not in prob statements	
(b)	M1 for showing they are adding together the two probabilities that corresporallow M1 A1for correct answer	oond to their CR
(c)		
Question Number	Scheme	Marks
7.		

Question Number	Scheme	Marks
(a)	$X \sim B(20, 0.2)$	M1 A1
(b)	S = 4X - 1(20 - X) $S = 5X - 20$	M1 A1cso
(c)	E(X) = 4, $Var(X) = 3.2E(S) = 5 \times 4 - 20 = 0, Var(S) = 5^2 Var(X) = 80$	B1, B1 M1 A1
(d)	$S \ge 20$ implies $5X - 20 \ge 20$ [So $5X \ge 40$] $X \ge 8$ $P(S \ge 20) = P(X \ge 8) = 1 - P(X \le 7)$ = 1 - 0.9679 = 0.0321	(4) M1 A1 M1 A1
(e)	[Let $C = \text{no. Cameron gets correct. } C \sim B(100, 0.4)$] $Y \sim N(40, \sqrt{24}^2)$ $P(C > 50) \simeq P(Y > 50.5)$	M1A1 (4)
	$= P\left(Z > \frac{50.5 - 40}{\sqrt{24}}\right)$	M1 M1
	$= P(Z > 2.14) = 1 - 0.9838 = 0.0162 \text{ or } 0.016044 \text{ (awrt } \underline{\textbf{0.016}})$ N.B. exact Bin (0.01676) Poisson approx (0.0526)	A1 (5) [17]
	Notes	1 1
(a)	M1 for "binomial" or B(A1 for $n = 20$ and $p = 0.2$	
(b)	NB this is a 'show that' so working must be shown M1 for attempt at any correct expression for S that uses 4 and – 1 (1 may not be A1cso for correct expression derived. No incorrect working seen and M1 scored.	seen)
(c)	1^{st} B1 for E(X) = 4 seen. Condone E(S) = 4. May be implied by correct E(S) or be scalculation for E(S) 2^{nd} B1 for Var(X) = 3.2 seen. Condone Var(S) = 3.2. May be implied by correct V the calculation for Var(S) M1 for a correct formula for E(S) or Var(S) – follow through their E(X) and Var(by either answer being correct A1 for 0 and 80 correctly assigned.	ar(S) or be seen in
(d)	1^{st} M1 for an attempt to solve the inequality for X 2^{nd} M1 for $1 - P(X \le 7)$	
(e)	1^{st} M1 for use of normal approx. and mean = 40 1^{st} A1 for Var = 24 or st. dev = $\sqrt{24}$ May be implied by later work 2^{nd} M1 49.5 or 50.5 3^{rd} M1 Standardising using their mean and their sd, If they have not written down at these need to be correct here to award the mark. They must also use 50.5, 49.5 or 50 at area ie using 1 - P(Z \leq "their 2.14"), 2^{nd} A1 for awrt 0.016	

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467
Fax 01623 450481
Email <u>publication.orders@edexcel.com</u>
Order Code UA037002 Summer 2013

For more information on Edexcel qualifications, please visit our website $\underline{www.edexcel.com}$

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

Mark Scheme (Results)

Summer 2013

GCE Statistics S2 (6684/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2013
Publications Code UA036999
All the material in this publication is copyright
© Pearson Education Ltd 2013

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

•

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.
- 8. In some instances, the mark distributions (e.g. M1, B1 and A1) printed on the candidate's response may differ from the final mark scheme

Question Number	Scheme	Marks
1(a)	(5,5,5) or (1,5,5) or (2,5,5)	B1
	(5,5,5) (5,5,1) (5,1,5) (1,5,5) (5,5,2) (5,2,5) (2,5,5) or (5,5,5) and (5,5,1) (×3) and (5,5,2) (×3)	B1 (2)
1(b)	$\left(5,5,5\right) \qquad \left(\frac{3}{10}\right)^3 = \frac{27}{1000} = 0.027$	B1
	$(5,5,1) 3 \times \frac{1}{2} \times \left(\frac{3}{10}\right)^2 = \frac{135}{1000} or \frac{27}{200} = 0.135$	M1
	$(5,5,2) 3 \times \frac{1}{5} \times \left(\frac{3}{10}\right)^2 = \frac{54}{1000} = \frac{27}{500} = 0.054$	
	$P(M=5) = \left(\frac{3}{10}\right)^3 + 3 \times \frac{1}{2} \times \left(\frac{3}{10}\right)^2 + 3 \times \frac{1}{5} \times \left(\frac{3}{10}\right)^2 = \frac{27}{125} = 0.216 \text{ o}$	A1A1 (4)
1(c)	$P(M=1) = (0.5)^3 + 3(0.5)^2(0.2) + 3(0.5)^2(0.3)$	M1
	= 0.5	A1
	$P(M=2) = \left(\frac{1}{5}\right)^3 + 3 \times \left(\frac{1}{5}\right)^2 \times \frac{1}{2} + 3 \times \left(\frac{1}{5}\right)^2 \times \frac{3}{10} + 6 \times \frac{1}{2} \times \frac{1}{5} \times \frac{3}{10}$	M1
	$= 0.284 \text{ or } \frac{71}{250} \text{ oe}$	A1
	m 1 2 5	A1
	$P(M = m) \qquad 0.5 \qquad 0.284 \qquad 0.216$	(5) Total 11 marks
	Notes	III
1(a)	1 st B1 for two of the given triples, any order 2 nd B1 for all 7 cases. no incorrect extras	
1(b)	B1 $\left(\frac{3}{10}\right)^3$ or 0.027 oe. This can be a single term in a summation	n
	M1 either "3" $\times \frac{1}{2} \times \left(\frac{3}{10}\right)^2$ or "3" $\times \frac{1}{5} \times \left(\frac{3}{10}\right)^2$ oe. May omit the	$e 3 \times or have$
	another positive integer in place of the 3. These may be seer term in a summation	n as a single
	A1 $\left(\frac{3}{10}\right)^3 + 3 \times \frac{1}{2} \times \left(\frac{3}{10}\right)^2 + 3 \times \frac{1}{5} \times \left(\frac{3}{10}\right)^2$ oe	
	A1 0.216 oe	
1(c)	1^{st} M1 correct calculation for $P(M = 1)$ or $P(M = 2)$, working must be and not implied by a correct answer.	e shown
	$1^{\text{st}} A1$ either $P(M=1)$ or $P(M=2)$ correct	
	2^{nd} M1 correct calculation for both $P(M = 1)$ and $P(M = 2)$, or their adding up to 1, but do not allow probabilities of 0.5, 0.2 and 0.3	probabilities
	2^{nd} A1 both $P(M=1)$ and $P(M=2)$ correct	*.4 .4 *
	3 rd A1dep on both M marks awarded. All three values written down correct probabilities. They must be in part (c) but they do not need to	
	table. NB A fully correct table with no working will get M0 A0 M1 A1 A0.	
Question Number	Scheme	Marks

2(a)	$P(X = 1) = 0.25e^{-0.25} = 0.1947$	awrt 0.195	M1A1	
2(a)	1(X-1) - 0.23c - 0.1947	awit 0.133	WITAT	(2)
2(b)	V Do(1.5)		B1	(2)
2(b)	$X \sim \text{Po}(1.5)$			
	$P(X > 2) = 1 - P(X \le 2)$		M1	
	= 1 - 0.8088	. 0.101	A 1	
	= 0.1912	awrt 0.191	A1	(2)
				(3)
2 (c)	$[\lambda = 300 \times 0.25 = 75]$			
	$X \sim N(75,75)$		B1 B1	
	$P(X < 90) = P(X \le \frac{89.5 - 75}{\sqrt{75}})$		M1M1	
	V, 5			
	$= P(Z \le 1.6743)$			
	= awrt 0.953 or 0.952		A1	
				(5)
			Total 10 r	nark
	Notes			
2 (a)	M1 0.25e ^{-0.25} o.e			
2(b)	B1 stating or using Po(1.5)			
	M1 stating or using 1 - $P(X \le 2)$			
2 (c)	1 st B1 for normal approximation and cor			
	$2^{\text{nd}} \text{ B1 Var } (X) = 75 \text{ or sd} = \sqrt{75} \text{ or awrt}$	8.66 (may be given if corre	ect in standardis	ation
	formula)	8.66 (may be given if corr	ect in standardis	ation
	formula) 1 st M1 using either 89.5 or 88.5			
	formula) 1 st M1 using either 89.5 or 88.5 2 nd M1 Standardising using their mean			
	formula) 1 st M1 using either 89.5 or 88.5 2 nd M1 Standardising using their mean finding correct area	and their sd, using [89.5, 8	8.5 or 89] and fo	
	formula) 1 st M1 using either 89.5 or 88.5 2 nd M1 Standardising using their mean	and their sd, using [89.5, 8	8.5 or 89] and fo	
	formula) 1 st M1 using either 89.5 or 88.5 2 nd M1 Standardising using their mean finding correct area	and their sd, using [89.5, 8	8.5 or 89] and fo	
	formula) 1 st M1 using either 89.5 or 88.5 2 nd M1 Standardising using their mean finding correct area	and their sd, using [89.5, 8	8.5 or 89] and fo	
	formula) 1 st M1 using either 89.5 or 88.5 2 nd M1 Standardising using their mean finding correct area	and their sd, using [89.5, 8	8.5 or 89] and fo	
	formula) 1 st M1 using either 89.5 or 88.5 2 nd M1 Standardising using their mean finding correct area	and their sd, using [89.5, 8	8.5 or 89] and fo	
	formula) 1 st M1 using either 89.5 or 88.5 2 nd M1 Standardising using their mean finding correct area	and their sd, using [89.5, 8	8.5 or 89] and fo	

Question Number	Scheme	
3(a)	$X \sim \text{Po}(7)$ $P(X > 10) = 1 - P(X \le 10)$ = 1 - 0.9015 = 0.0985 awrt 0.0985	B1 M1
3(b)	$P(X > d) < 0.05$ Or $P(X \ge d) < 0.05$ $P(X \le d) > 0.95$ $P(X < d) > 0.95$ $P(X \le 11) = 0.9467$ $P(X < 12) = 0.9467$ $P(X \le 12) = 0.9730$ $P(X < 13) = 0.9730$ Least number of games = 12 Least number of games 13	(3) M1 A1 A1 (3)
3(c)	H ₀ : $\lambda = 1$, $(\mu = 28)$ H ₁ : $\lambda > 1(\mu > 28)$ $Y \sim Po(28)$ approximated by N(28,28) $P(Y \ge 36) = P(Z \ge \frac{35.5 - 28}{\sqrt{28}})$ $1.6449 = \frac{x - 0.5 - 1}{\sqrt{28}}$ $= P(Z \ge 1.42)$ $= 0.0778$ or $1.42 < 1.6449$ CR $X \ge 37.2$ $0.0778 > 0.05$ so do not reject H ₀ /not significant. Not in CR There is no evidence that the average rate of sales per day has increased .	B1 B1
	Notes	3333333
3(a) 3(b)	B1 stating or using Po(7) M1 stating or using $1 - P(X \le 10)$ M1 using or writing $P(X > d) < 0.05$ or $P(X < d) > 0.95$ (condone \ge instead of $>$ and \le instead of $<$) May be implied by correct answer. Different letters may be used. 1st A1 $P(X \le 12) / P(X < 13) = \text{awrt } 0.973$ or $P(X \le 11) / P(X < 12) = \text{awrt } 0.947$ May be implied by a correct answer 2nd A1 12 or 13 NB An answer of $12/13$ on its own with no working gains M1A1A1	
3(c)	 1st B1 both hypotheses correct using λ or μ, and 1 or 28 2nd B1 for writing or using a normal approximation with correct mean and Var (may be given if sd correct in standardisation formula) 1st M1 for use of a continuity correction 35.5 or 36.5 or x ± 0.5 2nd M1 Standardising using their mean and their sd. If they have not written down a mean and sd then these need to be correct here to award the mark. They must use [35.5, 36.5, 36. x or x ± 0.5] For CR must have = awrt 1.64 or 1.65 1st A1 awrt 0.0778 or 0.9222 or the statement 1.42 < awrt 1.65/1.64 or CR X ≥ 37.2/X > 37.2 3rd M1 a correct conclusion for their probability. May be implied by a correct contextual conclusion. NB Non contextual contradicting statements gets M0 2nd A1 a correct contextual conclusion for their hypotheses and a fully correct solution with no errors seen. Need the words "rate/average number", "sales" and "increased" oe 	
Question Number	NB If found $P(X = 36)$ they can get B1B10M0A0M0A0 Scheme	Marks

4(a)	E(V) = 5b	B1 (1)
, ,	$E(X) = \frac{5b}{2}$ $Var(X) = E(X^{2}) - (E(X))^{2}$	B1 (1)
4(b)	$Var(X) = E(X^2) - (E(X))^2$	
	$=\int_{b}^{4b} \frac{x^2}{3b} dx - (\frac{5b}{2})^2$	M1
	- 5D 2	M1d
	$= \left[\frac{x^3}{9b}\right]_b^{4b} - \frac{25b^2}{4}$	
	$63b^3$ $25b^2$	
	$= \frac{63b^3}{9b} - \frac{25b^2}{4}$	
	$=\frac{3b^2}{4}$	Alcso
4(c)	Var(3 - 2X) = 4Var(X)	(3) M1
4(0)	$=3h^2$	A1
	- 3 <i>b</i>	(2)
4(d)		
		B1B1
	$F(x) = \begin{cases} 0 & x < 1 \\ \frac{x-1}{3} & 1 \le x \le 4 \\ 1 & x > 4 \end{cases}$	(2)
	$\begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 $	
	1 x > 4	
	4	
4 (e)	$\frac{x-1}{3} = 0.5 \text{ so } x = 2.5$	B1 (1)
		Total 9 marks
Alt 4(b)	$Var(X) = \int_{a}^{b} \frac{(x-\bar{x})^2}{b-a} dx$	
	$\int_{a} \int_{b-a} dx$ $\int_{a} \int_{b-a} dx$ $\int_{a} \int_{b-a} dx$	M1
	$=\int_{b}^{a}\frac{dx}{12b}dx$	
	$ \begin{aligned} &= \int_{a}^{4b} \frac{4x^{2} - 20bx + 25b^{2}}{12b} dx \\ &= \left[\frac{4x^{3} - 10bx^{2} + 25b^{2}x}{12b} \right]_{a}^{4b} \end{aligned} $	M1
	$-\left[\begin{array}{c} \\ \end{array}\right]_{h}$	
	$=\frac{9b^3}{12b}$	
	$12b$ $3b^2$	A1cso(3)
	$=\frac{3b}{4}$	AICSO(3)
	Notes	
4(b)	NB remember the answer is given (AG) so they must show their w	_
	1 st M1 for using $\int \frac{x^2}{3b} dx$ - (their (a)) ² limits not needed and condone to	missing dx. NB
	need	_
	not use the letter x but if they use b instead do not award if they cancel down to $\frac{b}{3}$	
	NB Check they have subtracted (their(a)) ²	
	2 nd M1 dependent on previous M being awarded. For some correct int	regration $x^n \to x^{n+1}$
	and correct limits substituted at some point. condone 4b ³ instead for correct solution with no incorrect working seen.	ead of (4b)
4(c)	M1 for writing or using 4Var(X)	
4(d)	1st B1 top and bottom line. Allow use of \leq instead of \leq and \geq instead of $>$	
	2^{nd} B1 middle row. Allow use of < instead of \leq	
Duestion		

Question Number	Scheme	Marks
5(a)	$F(1) = 0, \frac{4}{10} + a + b = 0$	M1
		A1

	2 1	1	
	$a = -\frac{3}{5} \text{ or } b = \frac{1}{5}$ $F(2) = 1, 2 + 2a + b = 1$ Solving gives $a = -\frac{3}{5}, b = \frac{1}{5}$	M1 A1	
	Alt F(2) - F(1) = 1, 2 + 2a + b - $\frac{4}{10}$ - a - b = 1 $a = -\frac{3}{5}$	M1 A1	(4)
	F(2) =1 or F(1) = 0 $2 - \frac{6}{5} + b = 1$ or $\frac{4}{10} - \frac{3}{5} + b = 0$	M1	
	$b=\frac{1}{5}$	A1	(4)
5(b)	Differentiating cdf gives $f(x) = \frac{3}{10}x^2 + \frac{6}{10}x + a$, $1 \le x \le 2$ $= \frac{3}{10}(x^2 + 2x - 2)$	B1 cso	(1)
5(c)	$E(X) = \int_{1}^{2} \frac{3}{10} (x^{3} + 2x^{2} - 2x) dx$	M1	(1)
	$= \frac{3}{10} \left[\frac{1}{4} x^4 + \frac{2}{3} x^3 - x^2 \right]_1^2$ $= \frac{13}{8}$	M1d A1	
- (-)	0		(4)
5(d)	F(1.425) = 0.24355, F(1.435) = 0.25227	M1A1	
	0.25 lies between F(1.425)and F(1.435) hence result.	A1	(3)
	Notes	Total 12	marks
5(a)	1st M1 using F(1) = 0. Clear attempt to form a linear equation for a and b 1st A1 either $a = -0.6$ or $b = 0.2$ Previous M must be awarded 2nd M1 using F(2) = 1. Clear attempt to form a second linear equation for a 2nd A1 if 1st A1 awarded then both a and b must be correct otherwise award either $a = -0.6$ or $b = 0.2$ alt 1st M1 F(2) - F(1) = 1. Leading to a value for a : 1st A1 $a = -0.6$ 2nd M1 using F(2) = 1 or F(1) = 0. Leading to a value for b : 2nd A1 b NB correct values for a and b with no working scores no marks.	if	
5(b) 5(c)	B1 They must differentiate and then factorise. cso 1^{st} M1 for clear attempt to use $xf(x)$ with an intention of integrating (Integral	sian	
5(c)	enough) Ignore limits. Must substitute in $f(x)$ or "their $f(x)$ ". 2^{nd} M1d dependent on previous M being awarded for some correct integration one correct term with the correct coefficient. 1^{st} A1 for fully correct (possibly unsimplified) integration. Ignore limits 2^{nd} A1 Accept 1.63 and 1.625 or some other exact equivalent	on at lea	
5(d)	2 nd A1 Accept 1.63 and 1.625 or some other exact equivalent M1 expression showing substitution of 1.425 or 1.435 into F(x) [or into F(x) – 0.25] [or putting their F(x) = 0.25 and attempting to solve leading to x =] May be implied by either pair of the correct answers as given below for the 1 st A1 1 st A1 awrt 0.244 and awrt 0.252 [or awrt -0.00645 and awrt 0.00227] [or x = awrt 1.432] 2 nd A1 0.25 lies between F(1.425)and F(1.435) [or change in sign therefore root between] [or "1.432" lies between 1.425 and 1.435 therefore root between]. Statement must be true for their method		

Question Number	Scheme	Marks
6(a)	<i>X</i> ∼B(20,0.25)	M1
	$P(X \ge 10) = 1 - 0.9861 = 0.0139$	A1
	$P(X \le 1) = 0.0243$	A1

$(0 \le) X \le 1 \cup 10 \le X (\le 20)$ A1A1	(5)
	(5)
6(b) $H_0: p = 0.25$	
$ H_1: p < 0.25 $ B1	
<i>X</i> ∼B(20,0.25)	
$P(X \le 3) = 0.2252$ or CR $X \le 1$ M1A1	
Insufficient evidence to reject H ₀ , Accept H ₀ , Not significant. M1d	
3 does not lie in the Critical region.	
No evidence that the changes to the process have reduced the Alcso	
percentage of defective articles (oe)	
	(5)
Total 10 i	marks
Notes	
6(a) M1 using B(20,0.25) may be implied by a correct CR (allow written as a	
probability statement)	
1 st A1 awrt 0.0139	
2 nd A1 awrt 0.0243	
3^{rd} A1 $X \le 1$ or $0 \le X \le 1$ or $[0,1]$ or 0,1 or equivalent statements	
4^{th} A1 $X \ge 10$ or $10 \le X \le 20$ or $10,11,12,13,14,15,16,17,18,19,20$ or [10]	.201
or equivalent statements	, ,
NB These two A marks must be for statements with X (any letter) only – not in	
probability statements and SC for CR written as $1 \ge X \ge 10$ gets A1 A0	
6(b) B1 both hypotheses with p	
1 st M1 using B(20, 0.25) and finding P($X \le 3$) or P($X \ge 4$) may be implied b	y a
correct CR	•
1^{st} A1 0.2252 (allow 0.7748) if not using CR or CR $X \le 1$ or $X < 2$	
2 nd M1dependent on previous M being awarded. A correct statement (do not	
allow if there are contradicting non contextual statements)	
Alcso Conclusion must contain the words changes/new process oe, reduce	d oe
number/percentage oe, and defective articles/defectives. There must be no	
incorrect working seen.	

Question	Scheme	Marks
Number		
7 (a)	Distribution $X \sim B(n, 0.1)$	B1
		(1)
7(b)	$Y \sim B(10,0.1)$	B1
	$P(Y \ge 4) = 1 - P(Y \le 3)$	M1
	= 1 - 0.9872	
	=0.0128	A1
		(3)
7(c)		
	$0.9^n < 0.05 \text{ or } 1 - (0.9)^n > 0.95$	M1
	n > 28.4	A1
	n = 29	A1
	alternative	
	B(28,0.1): $P(0) = 0.0523$	M1
	B(29,0.1): $P(0) = 0.0471$	A1
	n=29	A1cao
		(3)
7(d)	$C \sim Po(5)$	B1
	$P(C > 10) = 1 - P(C \le 10)$	M1
	= 1 - 0.9863	
	= 0.0137	A1
	0.0137	(3)
		Total marks 10
	Notes	
7(a)	B1 for "binomial" or B(
7(b)	B1 writing or using B(10,0.1)	
` ,	M1 writing or using $1 - P(Y \le 3)$	
	A1 awrt 0.0128	
7 (c)	M1 $(0.9)^n < 0.05$, oe, or $(0.9)^n = 0.05$, oe, or $(0.9)^n > 0.05$, oe, or s	seeing 0.0523 or
	seeing 0.0471	C
	$1^{\text{st}} \text{ A1} [P(0)] = 0.0471$ or getting awrt 28.4 May be implied by	correct answer.
	2^{nd} A1 cao $n = 29$ should not come from incorrect working.	
	NB An answer of 29 on its own with no working gains M1A1A	.1
7(d)	B1 writing or using Po(5)	
	M1 writing or using $1 - P(C \le 10)$	
	A1 awrt 0.0137	

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u>

Order Code UA036999 Summer 2013

For more information on Edexcel qualifications, please visit our website $\underline{www.edexcel.com}$

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

Mark Scheme (Results)

January 2014

Pearson Edexcel International Advanced Level

Statistics 2 (WST02/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2014
Publications Code IA037876
All the material in this publication is copyright
© Pearson Education I td 2014

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

Question Number	Scheme	Marks
1(a)	Let $X =$ the number of leaf cuttings successfully taking root	
	$X \sim B(10,0.05)$	B1
(i)	$P(X = 1) = P(X \le 1) - P(X = 0)$ or ${}^{10}C_1 \times 0.05 \times 0.95^9$ = 0.9139 - 0.5987	M1
	= 0.3152 awrt 0.315	A1
(ii)	$P(X > 2) = 1 - P(X \le 2)$ = 1 - 0.9885	M1
	= 0.0115 awrt 0.0115	A1
		(5)
1(b)	$Y \sim Po(8)$	B1
	$P(Y \geqslant 10) = 1 - P(Y \leqslant 9)$	M1
	= 1 - 0.7166	
	= 0.2834 awrt 0.283	A1
		(3)
		Total (8)
	Notes	
(a)	B1 use of B(10,0.05). May appear in (i) or (ii) or may be implied	
(i)	M1 writing or using $P(X \le 1) - P(X = 0)$ or ${}^{n}C_{1} \times p \times (1-p)^{n-1}$ $(0$	
(ii)	M1 writing or using $1-P(X \leq 2)$	
(b)	B1 writing or using Po(8) or writing or using N(8,7.6)	
	M1 writing or using $1 - P(Y \le 9)$ or for M1 for $P(Z > \frac{9.5 - 8}{\sqrt{7.6}})$	
	A1 for awrt 0.283 from poisson or an answer in the range (0.293,0.295) from normal	
	NB using binomial, $P(X \ge 10) = 0.280125$ scores B0M0A0	
	Answer only 0.28 or awrt 0.280 scores B0M0A0	
	Answer only awrt 0.283 scores B1M1A1 Answer only in the range (0.293,0.295) B1M1A1	

Question Number	Scheme	Mar	ks
2(a)	<u>List</u> of all the <u>customers</u> (who eat in the restaurant)	B1	(1)
(b)	<u>Customer(s)</u> (who ate in the restaurant)	B1	(1)
(c)	Advantage: more/total accuracy, unbiased	B1	
(d)	Disadvantage: time consuming to obtain data and analyse it, expensive, difficult to ensure entire population is included Let <i>X</i> = the number of customers who would like more choice on the menu.	B1	(2)
	H_0 : $p = 0.3$ H_1 : $p > 0.3$	B1	
	<i>X</i> ~B(50,0.3)	M1	
	$P(X \ge 20) = 1 - P(X \le 19)$ or $CR P(X \le 20) = 0.9522$	M1	
	$= 1 - 0.9152 P(X \ge 21) = 0.0478$		
	$=0.0848 X \geqslant 21$	A1	
	Do not reject H ₀ / not significant/20 is not in critical region	M1	
	The percentage of <u>customers</u> who would like more <u>choice</u> on the menu is not more than Bill believes.		
	There is no evidence to reject <u>Bill's belief</u> .	Alcso	
		Total ((6)
	Notes	Total	10)
(a)	B1 Need the idea of list/register/database and 'customer(s)' Do not allow customer's opinions. 'All' may be implied. Do not allow a partial list e.g. 'A list of 50 customers'		
(b)	B1 customer(s)		
(c)	If not labelled, assume the response refers to a census. 1 st B1 is for the advantage and 2 nd B1 is for the disadvantage.		
(d)	B1 need both hypotheses with p M1 using B(50,0.3)		
	M1 for $1-P(X \le 19)$ or $P(X \le 20) = 0.0522$ or $P(X \le 21) = 0.0478$ leading to a spitiarly region $X > 1$	or V > l.	
	$P(X \le 20) = 0.9522 \text{ or } P(X \ge 21) = 0.0478 \text{ leading to a critical region } X > k$ A1 awrt 0.0848 or critical region $X \ge 21$ or $X \ge 20$	or $X \geq K$	
	M1 a correct conclusion for their probability. May be implied by a correct contextual A1 a correct contextual conclusion for their hypotheses and a fully correct solution wis seen. Must mention 'customers' and 'choice' or 'Bill' and 'belief'.		
	NB P(X=20) can score B1M1M0A0M0A0 NB normal approximation gives 0.082(457) and loses all A marks		

Question Number	Scheme	Marks
3(a)	$\frac{1}{6}a(a+1) = 0.6$	M1
	$a^2 + a - 3.6 = 0$	
	$a = \frac{-1 \pm \sqrt{1 + 4 \times 3.6}}{2}$	M1
	=1.462 $a = 1.46 only$	A1
		(3)
3(b)	$f(x) = \frac{d}{dx} F(x) = \frac{1}{3} x + \frac{1}{6}$	M1A1
(i)	$E(X) = \int_{0}^{2} x \left(\frac{1}{3}x + \frac{1}{6}\right) dx$	M1
	$=\left[\frac{x^3}{9} + \frac{x^2}{12}\right]_0^2$	A1
	$\begin{bmatrix} 9 & 12 \end{bmatrix}_0$	
	$=\frac{11}{9}$ awrt 1 .22	A1
(ii)	$Var(X) = \int_0^2 x^2 \left(\frac{1}{3}x + \frac{1}{6}\right) dx - \left(\frac{11}{9}\right)^2$	M1
	$= \left[\frac{x^4}{12} + \frac{x^3}{18}\right]_0^2 - \left(\frac{11}{9}\right)^2$	A1ft
	$=\frac{23}{81}$ awrt 0.284	A1
		(8)
		Total (11)
	Notes	
(a)	M1 putting $F(x) = 0.6$ or $1 - 0.4$ M1 attempting either completing the square or quadratic formula (one slip allowed) (coinstead of \pm) Must set $f(a) = 0.6$ or $f(a) = 0.4$ to score this mark. May be implied by implied by awrt 1.46 or awrt -2.46 A1 for 1.46 only (must reject other root if stated) (condone awrt 1.46)	ondone +
(b)	1 st M1 attempting to differentiate $F(x)$ at least one $x^n \to x^{n-1}$	
(i)	2^{nd} M1 for intention to use $\int_0^2 x f(x) dx$ using their $f(x)$ which must be a changed function	n from $F(x)$.
	No need for limits 2 nd A1 correct integration (may be unsimplified)	
(ii)	$\int 3^{rd} M1$ for intention to use $\int x^2 f(x) dx - \mu^2$ using their $f(x)$ which must be a changed further	nction from
	$F(x)$. No need for limits. This may be seen on separate lines. Must substitute their value 4^{th} A1ft correct integration. Ft their $E(X)$.	

Question Number	Scheme	Mar	·ks
4(a)	$(H_1:) \lambda > 1.5$	B1	(1)
4(b)	<i>C</i> ∼Po(6)	B1	
	$P(C > 10) = 1 - P(X \le 10)$	M1	
	= 1 - 0.9574		
	= 0.0426 awrt 0.0426	A1	
			(3)
4(c)	$P(X \le 10 \mu = 7) = 0.9015$	M1	
	$P(X \le 10 \mid \mu = 7.5) = 0.8622$		
	Parameter $\mu = 7$	A1	
	$\lambda = \frac{7}{4}$, 1.75	A1	
			(3)
		Total ((7)
	Notes		
(a)	B1 Must use λ		
(b)	B1 writing or using Po(6)		
	M1 writing or using $1-P(X \le 10)$ A1 do not isw. e.g. If the response goes on to state the level of significance is 5%, withhold the A mark.		
	NB $P(X \le 9) = 0.9161 \ P(X \le 11) = 0.9799 \ \text{can imply B1}$		
(c)	M1 either $P(X \le 10 \mid \mu = 7) = 0.9015$ or $P(X \le 10 \mid \mu = 7.5) = 0.8622$ award for sight of 0.9015 (or 0.0985) or 0.8622 (or 0.1378)		
	NB $\lambda = 7$ scores M1A1A0 allow awrt 1.76 from calculator to score M1A1A1		

Question Number	Scheme	Marl	ΚS
5(a)	Let $X =$ the number of break downs per month		
	$X \sim \text{Po}\left(\frac{15}{12}\right)$	B1	
	$P(X=3) = \frac{e^{-1.25}1.25^3}{3!}$	M1	
	= 0.0933 awrt 0.0933	A1	(3)
(b)	$P(X \ge 2) = 1 - P(X = 0) - P(X = 1)$		(-)
	$= 1 - e^{-1.25} (1 + 1.25)$ = 0.35536	M1	
	= 0.355 **AG	Alcso	
			(2)
(c)	$(0.355)^4 = 0.0159$ awrt 0.016	M1A1	(2)
(4)	V number of months the photocopier does break deven at least twice		(2)
(d)	$Y \sim$ number of months the photocopier does break down at least twice.	M1A1	
	$Y \sim B(12, 0.355)$	dM1	
	$P(Y \ge 2) = 1 - P(Y = 0) - P(Y = 1)$	A1	
	$= 1 - (1 - 0.355)^{12} - 12(1 - 0.355)^{11}(0.355)$ $= 0.961$	A1	
	- 0.901	AI	(5)
		Total (1	(5)
	Notes	Total (14)
(a)	Notes B1 writing or using Po(1.25)		
	M1 $\frac{e^{-\lambda}\lambda^3}{3!}$		
(b)	NB remember the answer is given (AG) so they must show their working M1 $1-P(X=0)-P(X=1)$ or $1-P(X\leqslant 1)$ and a correct expression using their λ Condone 0.3554 or better		
(c)	M1 Their [(b)] ⁴		
(d)	M1 for identifying Binomial		
	1 st A1 B(12, their (b))		
	dM1 $1-P(Y=0)-P(Y=1)$ or $1-P(X \le 1)$ dependent on 1^{st} M1		
	2 nd A1 for a correct expression 3 rd A1 for awrt 0.961		

Question Number	Scheme	Mark	S
6(a)	4k	B1 B1	
(b)	$\int_{-1}^{1} k(x+1)^2 dx + \int_{1}^{3} k(6-2x) dx = 1$	M1	(2)
	$\int_{-1}^{1} k(x^2 + 2x + 1) dx + \int_{1}^{3} k(6 - 2x) dx = 1$ $k \left[\frac{x^3}{3} + x^2 + x \right]_{-1}^{1} + k \left[6x - x^2 \right]_{1}^{3} = 1$	M1A1	
	$k\left[2\frac{1}{3} + \frac{1}{3}\right] + k\left[9 - 5\right] = 1$	dM1	
	$6\frac{2}{3}k = 1$ $k = \frac{3}{20} **AG$	A1cso	(5)
(c)	$\int_{-1}^{x} k(x^2 + 2x + 1) dx = k \left[\frac{x^3}{3} + x^2 + x \right]_{-1}^{x} \text{ or } \left[\frac{k}{3} (x + 1)^3 \right]_{-1}^{x}$	M1	
	$= \frac{3}{20} \left(\frac{x^3}{3} + x^2 + x + \frac{1}{3} \right) \text{or } \frac{1}{20} (x+1)^3$ $\int_{1}^{x} k(6-2x)dx + \int_{-1}^{1} k(x^2 + 2x + 1)dx = k \left[6x - x^2 \right]_{1}^{x} + \frac{2}{5}$ $= \frac{3}{20} (6x - x^2 - 5) + \frac{2}{5}$ $= \frac{9}{10} x - \frac{3}{20} x^2 - \frac{7}{20}$	M1	
	$F(x) = \begin{cases} 0 & x < -1 \\ \frac{3}{20} \left(\frac{x^3}{3} + x^2 + x + \frac{1}{3} \right) & -1 \le x \le 1 \\ \left(\frac{9}{10} x - \frac{3}{20} x^2 - \frac{7}{20} \right) & 1 < x \le 3 \end{cases}$	B1 A1	
	$\begin{cases} \left(\frac{9}{10}x - \frac{3}{20}x^2 - \frac{7}{20}\right) & 1 < x \le 3\\ 1 & x > 3 \end{cases}$		
			(5)

Question Number	Scheme	Marks
6. cont. (d)	$\frac{9}{10}x - \frac{3}{20}x^2 - \frac{7}{20} = 0.5$	M1
	$3x^2 - 18x + 17 = 0$	
	$x = \frac{18 \pm \sqrt{18^2 - 4 \times 3 \times 17}}{6}$	dM1
	x = 1.17 only	A1
		(3
		Total (15
	Notes	
(a)	B1 correct shape with correct curvature and straight line with negative gradient. Must st on the <i>x</i> -axis.	art and end
	B1 -1 , 1, 3 and $4k$ (or 0.6) labelled in the correct place	
(b)	M1 adding two areas and putting equal to 1 eg $\int_{-1}^{1} k(x+1)^2 dx + 4k = 1$	
	M1 attempting to integrate (at least one $x^n \to x^{n+1}$) or finding area of triangle	
	A1 correct integration $k\left(\frac{x^3}{3} + x^2 + x\right)$ and $k(6x - x^2)$ or $k\left(\frac{x^3}{3} + x^2 + x\right)$ and $4k$	
	$\underline{\text{or}} \ k \left(\frac{(x+1)^3}{3} \right) \text{ and } k \left(\frac{(6-2x)^2}{-4} \right)$	
	M1 dependent on previous two M marks. For using correct limits A1 correct solution with no incorrect working seen	
(c)	For both M marks, attempt to integrate at least one $x^n \to x^{n+1}$	
	M1 for attempt to integrate line 1 of $f(x)$ with correct limits or with + c and substituting in -1 and setting = 0	
	M1 for attempt to integrate line 2 of $f(x)$ with correct limits and adding $\frac{2}{5}$ oe or their $F(1)$	1)
	$\underline{\text{or}}$ with + c and substituting in 3 and setting = 1	
	B1 top and bottom row correct 1^{st} A1 for 2^{nd} line of $F(x)$ with correct range 2^{nd} A1 for 3^{rd} line of $F(x)$ with correct range	
	Do not penalise the use of \leq instead of \leq and \geq instead of $>$	
(d)	M1 for setting their 2^{nd} line or 3^{rd} line of $F(x) = 0.5$ dM1 for solving a 3 term quadratic dependent on first M1 (must be using their 3^{rd} line of A1 for 1.17 only (condone awrt 1.17) must reject other solution (4.825)	f F(<i>x</i>))

Question Number	Scheme	Marks
7	$\frac{64.5 - \mu}{\sigma} = 0.75$	B1 M1 M1 A1
	$\frac{52.5 - \mu}{\sigma} = -1.25$	A1
	$64.5 - \mu = 0.75\sigma$	dM1
	$52.5 - \mu = -1.25\sigma$	
	$\sigma = 6$	A1
	$\mu = 60$	A1
	np = 60	M1
	np(1-p) = 36	M1
	1 - p = 0.6	
	p = 0.4	A1
	n = 150	A1
		(12)
		Total (12)
	Notes	
	B1 ± 0.75 and ± 1.25 (or better) seen	
	1^{st} M1 64 ± 0.5 or 52 ± 0.5	
	$2^{\rm nd}$ M1 standardising either using 64, 65 or 64 ± 0.5 or $52,53$ or 52 ± 0.5 with μ and σ or np and $\sqrt{np(1-p)}$ (need not be set equal to a z-value)	
	1 st A1 for $\frac{64.5 - \mu}{\sigma} = 0.75$ (with compatible signs)	
	$2^{\text{nd}} \text{ A1 for } \frac{52.5 - \mu}{\sigma} = -1.25 \text{ (with compatible signs)}$	
	3^{rd} M1 solving simultaneous equations dependent on 2^{nd} M1. Must attempt to eliminate μ or σ or np or $\sqrt{np(1-p)}$	
	3^{rd} A1 $\sigma = 6$ 4^{th} A1 $\mu = 60$ 4^{th} M1 using $\mu = np$ (may be awarded at any stage in the working)	
	5 th M1 using $\sigma = \sqrt{np(1-p)}$ (may be awarded at any stage in the working)	

PMT PMT

Mark Scheme (Results)

Summer 2014

Pearson Edexcel GCE in Statistics 2 (6684/01)

PMT PMT

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2014
Publications Code UA040123
All the material in this publication is copyright
© Pearson Education Ltd 2014

General Marking Guidance

All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.

PMT

- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PMT PMT

PEARSON EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method
 (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- or d... The second mark is dependent on gaining the first mark

- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.

- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

Question Number	Scheme	Marks
1. (a)	Po(9)	B1
(i)	$P(X \le 7) - P(X \le 6) = 0.3239 - 0.2068$ $\frac{e^{-9}9^7}{7!}$	M1
	= 0.1171	A1
(ii)	$P(X \ge 10) = 1 - P(X \le 9)$ = 1 - 0.5874	M1
	= 0.4126	A1 (5)
(b)	Po(1.5) P(next patient before 11:45) = 1- P(0) = 1 - $e^{-1.5}$	B1 M1
	= 0.7769	A1 (3) [8]
	Notes	
(a) (i)	B1 Po(9) written or used in either (i) or (ii) M1 writing $P(X \le 7) - P(X \le 6)$ or $\frac{e^{-\lambda} \lambda^7}{7!}$ This may be implied by $0.3239 - 0.2068$ A1 awrt 0.117	
(ii)	M1 writing $1 - P(X \le 9)$ This may be implied by $1 - 0.5874$.	
	A1 awrt 0.413	
(b)	B1 Po(1.5) written or used	
	M1 writing or using $1 - P(0)$ or $1 - e^{-\lambda}$. This may be implied by $1 - 0.2231$	
	A1 awrt 0.777	

Scheme	Marks
69 (
	M1
	A1
	M1d
$486c = 1$ $c = \frac{1}{486}$	A1cso (4)
$F(t) = \frac{1}{486} \int_0^t 81 - x^2 dx$	M1
$= \frac{1}{486} \left[81t - \frac{x^3}{3} \right]_0^t$	
$=\frac{t}{6} - \frac{t^3}{1458}$	
$F(t) = \begin{cases} \frac{t}{6} - \frac{t^3}{1458} & 0 \le t \le 9 \\ \frac{1}{1458} & 0 \le t \le 9 \end{cases}$	A1cso
[1	(2)
$P(T>3) = 1 - \left(\frac{3}{6} - \frac{3^3}{1458}\right)$	M1
$=\frac{14}{27}$ or awrt 0.519	A1
27	(2)
$P(T > 7 T > 3) = \frac{0.068587}{0.5185}$	M1A1ft
$=\frac{25}{189}$ or awrt 0.132	A1
$\frac{^{3}C(0.5185)^{2}(1-0.5185)}{^{3}C(0.5185)^{2}(1-0.5185)} = \frac{2548}{2548}$ or awart 0.388/0.387	M1 A 1 ft A 1
$\frac{C_2(0.5165)(1-0.5165) - \frac{1}{6561}}{6561}$	M1A1ftA1
	(3) [14]
	$\int_{0}^{9} c \left(81 - t^{2}\right) dt = 1$ $c \left[81t - \frac{t^{3}}{3}\right]_{0}^{9} = 1$ $c \left[81 \times 9 - \frac{9^{3}}{3}\right] = 1$ $486c = 1$ $c = \frac{1}{486}$ $F(t) = \frac{1}{486} \int_{0}^{t} 81 - x^{2} dx$ $= \frac{1}{486} \left[81t - \frac{x^{3}}{3}\right]_{0}^{t}$ $= \frac{t}{6} - \frac{t^{3}}{1458}$ $0 \le t \le 9$ $t > 9$ $P(T > 3) = 1 - \left(\frac{3}{6} - \frac{3^{3}}{1458}\right)$ $= \frac{14}{27} \text{ or awrt } 0.519$ $P(T > 7 T > 3) = \frac{0.068587}{0.5185}$

	Notes
(a)	1 st M1 Attempting to integrate, For attempt $x^n \rightarrow x^{n+1}$ and c must remain as c or
(a)	1/486. Ignore limits
	1 st A1 Correct integration. Ignore limits.
	2 nd M1 dependent on previous M being awarded.
	Putting = 1 and substitution of 9 as a limit seen. Need at least one intermediate step
	before getting 486
	or substitution of 1/486 and 9 seen and leading to an answer of 1
	A1 $c = \frac{1}{486}$ cso or if verifying, the statement $c = \frac{1}{486}$
	480
	ŗ
(b)	M1 Attempting to integrate with correct limits or $\int f(t)dt + C$ and $F(0) = 0$ or $F(9) = 1$.
(0)	Subst in c at some point
	A1 F(t) must be stated and cso. Condone use of \leq instead of \leq etc.
	1 69
(c)	M1 using or writing 1 – F(3) or $\frac{1}{486} \int_{3}^{9} 81 - x^{2} dx$ or $1 - P(X \le 3)$
	400
	A1 awrt 0.519
	1. 120.
(d)	M1 $\frac{a \ probability}{their}$
(u)	their (c)
	where $0 \le a$ probability $\le their(c) \le 1$. If a probability $\ge their(c)$, give M0.
	50
	$\frac{3}{720}$ awrt 0.0686
	A1ft $\frac{729}{their (c)}$ or $\frac{awrt0.0686}{their (c)}$
	A1 25 or awart 0.132
	A1 $\frac{25}{189}$ or awrt 0.132
(e)	M1 Allow $(their '0.5185')^2 (1-their '0.5185')$
(-)	
	A1ft Allow ${}^{3}C_{2}$ (their '0.5185') ${}^{2}(1 - their '0.5185')$
	A1 awrt 0.388 or 0.387

Question Number	Scheme	Marks
3.		
(a)	Any two of Emails are independent/easuret random	
	Emails are independent/occur at randomEmails occur singly	
	Emails occur at a constant rate	B1B1d
a >	W. D. (1)	(2)
(b)	$X \sim \text{Po}(4)$ P(X = 0) = 0.0183	
	$P(X \ge 9) = 0.0214$	
	$CR X = 0; X \ge 9$	B1B1
		(2)
(c)	0.0183 + 0.0214 = 0.0397 or $3.97%$	M1A1 (2)
(d)	8 is not in the critical region or $P(X \ge 8) = 0.0511$	M1
(u)	therefore there is evidence that the company's <u>claim</u> is true	A1ft (2)
(e)	$H_0: \lambda = 6 (\text{or } \lambda = 2) H_1: \lambda < 6 (\text{or } \lambda = 2)$ allow $\lambda \text{ or } \mu$	B1
	Po(6)	M1
	$P(X \le 2) = 0.0620$ CR $X \le 2$	A1
	0.0020 < 0.10	
	0.0620 < 0.10 Reject H ₀ or Significant.	M1 dep.
	There is evidence at the 10% level of significance that the mean	A1 cso
	rate/number/amount of emails received is lower/ has decreased/is less.	
	Or <u>fewer emails</u> are received	(5)
		[13]
	Notes	
(a)	B1 any correct statement with context of emails in B1d Dependent on previous B1. Any correct statement, need not have context	
	SC for 2 correct statements without context B1 B0	
(b)	B1 $X = 0$ or $X \le 0$ Allow any letter.	
	B1 $X \ge 9$ or $X > 8$ Allow any letter.	
	SC if write correct CR's as probability statements award B1 B0	
(c)	For these 2 marks ignore any union sign (\cup) or intersection sign (\cap) M1 adding their probabilities of 'their' critical regions if sum gives a probabilit	v less than 1
	or award if a correct answer given	,
	A1 awrt 0.0397	
(d)	M1 correct reason ft their CR. Do not allow non-contextual contradictions. A1 correct conclusion for their CR. Allow conclusion in context of emails are	
	received at a rate of 2 every 5 mins	
(e)	B1 both hypotheses correct, must have λ or μ and either 2 or 6.	
	M1 using Po(6) may be implied by correct answer. A1 0.062 or $X \le 2$	
	M1 dependent on previous method being awarded. Do not allow conflicting not	n-contextual
	statements. Follow through their hypotheses.	

Question Number	Scheme	Marks
4. (a)	X is the random variable the Number of successes, $X \sim B(10, 0.75)$	B1
(i)	$P(X=6) = (0.75)^6 (0.25)^{4} {}^{10}C_6$ or $P(X \le 6) - P(X \le 5)$	M1
(**)	= 0.145998 awrt 0.146	A1
(ii)	Using $X \sim B(10, 0.75)$ $P(X \ge 8) = P(X = 8) + P(X = 9) + P(X = 10)$	M1
	$= (0.75)^{8} (0.25)^{2} {}^{10}C_{8} + (0.75)^{9} (0.25)^{1} {}^{10}C_{9} + (0.75)^{10}$	
	= 0.52559 awrt 0.526	A1
	Or Using $Y \sim B(10, 0.25)$ and $P(Y \le 2) = 0.5256$	(5)
(b)	1 - P(0) = 0.8 or $P(0) = 0.2$	M1
	$(1-p)^{20} = 0.2$	1111
	(1-p) = 0.2 1-p = 0.9227	
	p = 0.0773	A1
		Ai
	$\frac{3}{200}(90-x)=0.0773$	M1
	x = 84.84	
	x = 85	A1cao (4)
(c)	X – successes ~B(100, 0.975)	B1
	Y – not successes ~B(100, 0.025)	361.4.1
	$Y \sim Po(2.5)$ $P(Y \le 5) = 0.958$	M1A1 (5)
	Notes	M1A1 (5)
(a)	B1 writing or using $p = 0.75$ or $p = 0.25$ anywhere in (a)(i) or (a)(ii)	[17]
(i)	M1 writing or using $(p)^6 (1-p)^{4/10} C_6$ or writing for $p = 0.75$, $P(X \le 6) - (X \le 6)$	r ≤ 5)
	or for $p = 0.25$, $P(X \le 4) - P(X \le 3)$ or correct answer.	,
(ii)	M1 writing B(10, 0.75) and writing or using $P(X = 8) + P(X = 9) + P(X = 1)$	0) oe
	or writing B(10, 0.25) and writing or using $P(Y \le 2)$.	
	Using correct Binomial must be shown by $(0.75)^n (0.25)^{10-n}$ or a correct ans	wer.
(b)	M1 for writing or using $1 - P(0) = 0.8$ or $P(0) = 0.2$ or $(1-p)^{20} = 0.2$. Allow any	
	sign.	1 2
	A1 awrt 0.0773 or awrt 0.923.	
	M1 subst in $\frac{3}{200}(90-x)$ for p NB this may be substituted in earlier for p .	
	Allow for $\frac{3}{200}(90-x) = k$ where $0 < k < 1$ $k \ne 0.8$ or 0.2 Allow any inequal	ity sign
	A1 condone $x \ge 85$. Do not allow $x \le 85$.	
(c)	B1 writing or using 0.975 or 0.025, may be implied by Po(2.5)	
	M1 using Po approximation	
	A1 Po(2.5)	
	M1 writing or using $P(Y \le 5)$	
	A1 awrt 0.958	
	SC use of normal approximation can get B1 M0A0M1A0 B1 writing or using 0.975 or 0.025 implied by normal with mean 97.5 or answ	ver of 0.973
	M1 for awrt 0.973	-1 01 0.7/3
	1V11 101 awit 0.7/3	

Question	Scheme	Marks
Number	u is large and u close to 0.5	D1D1 (2)
5.(a) (b)	n is large and p close to 0.5 There would be no pea seeds left	B1B1 (2) B1 (1)
(c)	H_0 : $p = 0.55$ H_1 : $p \neq 0.55$	B1 (1)
(d)	X~N(121, 54.45)	B1
(3)	$P(X \ge 134.5) = P\left(Z \ge \frac{134.5 - 121}{\sqrt{54.45}}\right) \text{or } \pm \frac{x - 0.5 - 121}{\sqrt{54.45}} = 1.96$ $= P(Z \ge 1.8295)$	M1M1A1
	= 1 - 0.9664 $= 0.0336/0.0337$ $x = 135.96$	A1
	Accept H ₀ not in CR, not significant The <u>company's claim</u> is justified or <u>55</u> % of its pea <u>seeds germinate</u>	M1 A1cso (7)
	Alternative X~N(99, 54.45)	B1
	$P(X \le 85) = P\left(Z \le \frac{85.5 - 99}{\sqrt{54.45}}\right) \text{ or } \pm \frac{x + 0.5 - 99}{\sqrt{54.45}} = 1.96$	M1 M1 A1
	$= P(Z \ge 1.8295)$ $= 1 - 0.9664$	
	= 0.0336/0.0337 x = 107.5	
	Accept H ₀ not in CR, not significant The <u>company's claim</u> is justified or <u>55</u> % of its pea <u>seeds germinate</u>	M1 A1cso [11]
	Notes	
(a) (b)	B1 accept $n > 50$ (or any number bigger than 50) B1 p close to 0.5 NB Do not accept $np > 5$, $nq > 5$. Must have the idea of no peas left. They must mention either pea or seeds .	
(c)	B1 both hypotheses correct. Must use p or π and 0.55 oe. Accept the hypothese	
(d)	B1 correct mean and Var, may be seen in the standardiation formula as 121 and $\sqrt{54.45}$ 7.38 to 2dp or implied by a correct answer M1 for attempting a continuity correction (Method 1:135/85 \pm 0.5 / Method 2: $x \pm$ 0.5) M1 for standardising using their mean and their standard deviation and using either Method 1 [134.5, 135, 135.5, 85, 85.5 or 84.5 accept $\pm z$.] Method 2 [($x \pm$ 0.5) and equal to a $\pm z$ value]	
	A1 correct z value awrt ± 1.83 or $\pm \frac{134.5 - 121}{\sqrt{54.45}} \left(\frac{85.5 - 99}{\sqrt{54.45}} \right)$ or $\pm \frac{x - 0.5 - 121}{\sqrt{54.45}} = 1.96$	
	$\left(\pm \frac{x + 0.5 - 99}{\sqrt{54.45}} = 1.96\right)$ or (allow 1.6449 if 1 tail test in (c))	
	A1 awrt 0.0336/0.0337 or awrt 136 (allow 126 if one tail test in (c)) or a compawrt 1.83 with 1.96 (1.6449)	arison of
	M1 A correct statement. Accept H ₀ , oe if a 2-tailed test in (c), reject H ₀ , oe if a 1-tailed test in (c). Allow for a correct contextual statement. Do not allow contradictions of non-	
	contextual statements. A1 A correct contextual statement to include words in bold/underlined for a 2-tailed test. This is not a follow through mark. NB if finding P(X =135) they can get B1 M1 M1 A0 A0 M0 A0	

Question Number	Scheme	Marks
6.		
(a)	$E(X) = \int_0^1 \frac{2x^2}{9} dx + \int_1^4 \frac{2x}{9} dx + \int_4^6 \frac{2x}{3} - \frac{x^2}{9} dx$	M1
	$= \left[\frac{2x^3}{27}\right]_0^1 + \left[\frac{2x^2}{18}\right]_1^4 + \left[\frac{x^2}{3} - \frac{x^3}{27}\right]_4^6$	A1
	$= \left[\frac{2}{27}\right] + \left[\frac{32}{18} - \frac{2}{18}\right] + \left[4 - \frac{80}{27}\right]$	M1d
	$=2\frac{7}{9}$ or awrt 2.78	A1 (4)
	$\int 0 x < 0$	(4)
	$\frac{1}{2}$	
	$\frac{x^2}{2}$ $0 \le x \le 1$	B1
	2r 1	M1A1
(b)	$F(x) = \begin{cases} \frac{2x}{9} - \frac{1}{9} & 1 < x < 4 \end{cases}$	
	$2r r^2$	M1 A1
	$F(x) = \begin{cases} \frac{x^2}{9} & 0 \le x \le 1 \\ \frac{2x}{9} - \frac{1}{9} & 1 < x < 4 \\ \frac{2x}{3} - \frac{x^2}{18} - 1 & 4 \le x \le 6 \end{cases}$	B1
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
	1 st M1 For $1 < x < 4$, $F(x) = \int_{1}^{x} \frac{2}{9} dx + \frac{1}{9}$	
	2 nd M1 For $4 \le x \le 6$, $F(x) = \int_4^x \frac{2}{3} - \frac{x}{9} dx + \frac{7}{9}$ or use +C and $F(6) = 1$	
		(6)
(c)	F(x) = 0.5	M1
	$\frac{2m}{9} - \frac{1}{9} = 0.5$	A1ft
	m = 2.75	A1
		(3)
(d)	Median < mean therefore positive skew	M1A1cao
	Or Mean ≈ median therefore no skewness	(2)
		[15]
I	I	1

	Notes
(a)	M1 using $\int x f(x) dx$ ignore limits. Must have at least one $x^n \to x^{n+1}$
	They must add the 3 parts together. Do not allow division by 3. A1 all integration correct; ignore limits M1 dependent on previous M being awarded. Subst in correct limits – no need to see zero substituted.
	A1 $2\frac{7}{9}$ oe or awrt 2.78
(b)	B1 for 2^{nd} line- allow use of \leq instead of \leq
	M1 For $1 < x < 4$, $F(x) = \int_{1}^{x} \frac{2}{9} dx + \frac{1}{9}$. Limits are needed.
	or use $F(x) = \int_1^x \frac{2}{9} dx + \text{their } F(1) \text{ need limits}$
	or use "their $F(1)$ " = $\int \frac{2}{9} dx + C$ and subst $x = 1$ into RHS
	or use "their $F(4)$ " = $\int \frac{2}{9} dx + C$ and subst $x = 4$ into RHS
	A1 for 3^{rd} line allow use of \leq instead of \leq
	M1 For $4 \le x \le 6$, $F(x) = \int_4^x \frac{2}{3} - \frac{x}{9} dx + \frac{7}{9}$. Limits are needed.
	or use $F(x) = \int_4^x \frac{2}{3} - \frac{x}{9} dx + \text{their } F(4)$. Limits are needed.
	or use "their $F(4)$ " = $\int \frac{2}{3} - \frac{x}{9} dx + C$ and subst $x = 4$ into RHS
	or use $1 = \int \frac{2}{3} - \frac{x}{9} dx + C$ and subst $x = 6$ into RHS
	A1 for 4^{th} line allow use of < instead of \le B1 for first and last line - allow use of \le instead of $<$ and \ge instead of $>$ and
	"otherwise" for one of $x < 0$ and $x > 6$
(c)	M1 putting any one of their lines = 0.5 A1their 3 rd line = 0.5
	At their 3 time = 0.3 A1 2.75
(d)	M1 reason must match their values / a correctly shaped and labelled sketch.
	Must compare the median and mean, ignore references to mode A1 no ft Correct answer only from correct values of the mean and median or a
	correct and fully labelled sketch.

Mark Scheme (Results)

Summer 2014

Pearson Edexcel GCE in Statistics S2R (6684/01R)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2014
Publications Code UA040126
All the material in this publication is copyright
© Pearson Education Ltd 2014

General Marking Guidance

• All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.

- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL GCE MATHEMATICS

PMT

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- L or d... The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

Question	Scheme	Marks
1.	$H_0: p = 0.2$ $H_1: p < 0.2$	B1
	$[X \sim B(40, 0.2)]$ $P(X \le 3) = 0.0285$ or CR of $X \le 3$	M1A1
	[0.0285 < 0.05] significant, reject H ₀	M1dep
	There is evidence to support the supplier's claim	A1cso
	or The probability of a ball failing the bounce test is less than 0.2	
		(5)
	Notes	
	$1^{\text{st}} B1$ for both H_0 and H_1 must use p or π	
	1 st M1 for writing or using B(40, 0.2), may be implied by correct answer	
	$1^{\text{st}} \text{A}1$ awrt 0.0285 or CR of $X \le 3$ as their final answer	
	2 nd M1 dependent on the previous method mark being awarded. A correct statement (this	
	may be contextual) comparing "their probability" and 0.05 (or comparing 3 with	n their
	critical region). Do not allow conflicting statements.	
	2 nd A1cso This is cso so can only be awarded for a fully correct solution. A corr	rect
	contextualised conclusion (to include the words underlined in bold)	

Question	Scheme	Marks
2. (a)	(i) $S \underline{is}$ a statistic, (ii) $D \underline{is}$ not a statistic, (iii) $F \underline{is}$ a statistic	B1, B1, B1
(b)	$T \sim B(10, 0.4)$	(3) M1A1
(b)	$I \sim B(10, 0.4)$	(2)
		(2)
(c)	$P(2' \ 2' \ 2)$ or $P(5 \ 5 \ 2, 5 > 5 \ 2, >5 > 5 \ 2)$	M1
	$=0.6^2 \times 0.4$	
	$(0.25)^2(0.4) + 2 \times (0.25)(0.35)(0.4) + (0.35)^2(0.4)$	
	= 0.144	A1
		(2)
		(7)
	Notes	
(a)	B1 for each variable. Accept "yes, no, yes" o.e.	
(b)	M1 for binomial	
	A1 for $n = 10$ and $p = 0.4$	
	NB If they give 2 options then unless they select the correct one they gain M0A0	0
(c)	M1 for identifying the correct possibilities 2' 2' 2 or 5 5 2 and 5 > 5 2 and > 5	5.5.2 and >5
	>5 2 or a correct probability statement. The possibilities must be in the correct of	
	Condone	ruor.
	$2 \times (5 > 5 \ 2)$ or $2 \times (> 5 \ 5 \ 2)$. Implied a correct answer.	
	A1 for 0.144 or exact equivalent e.g. $\frac{18}{125}$	
	$\frac{1}{125}$	

Question	Scheme	Mar	ks
3. (a)	$X \sim \text{Po}(9)$	M1A1	
(b)	$P(X > 7) = 1 - P(X \le 7)$ $= [1 - 0.3239] = 0.6761$	M1 A1	(2)
(c)	[$Y = \text{no. of accidents in a month}$] $Y \sim \text{Po}(1.5)$ $P(Y \ge 1) = 1 - P(Y = 0)$ = [1 - 0.2231] = 0.7769 (= 0.777 (3dp))*	B1 M1 A1cso	(2)
	$- [1-0.2231] = 0.7709 (-0.777 (3dp))^{4}$	111050	(3)
(d)	[$A = \text{no. of months with at least one accident}$] $A \sim B(6, 0.777)$	M1	
	$P(A=4) = \binom{6}{4} (0.777)^4 (0.223)^2$	M1	
	= 0.2719 awrt 0.272	A1	
			(3) (10)
	Notes		(10)
(a)	M1 for Poisson (accept Po). Condone P(9) A1 for mean of 9		
(b)	M1 for writing $1-P(X \le 7)$. This may be implied by $1-0.3239$ or a correct A1 for awrt 0.676	answer	
(c)	B1 Po(1.5) written or used M1 writing or using $1 - P(Y = 0)$ or $1 - P(Y \le 0)$ or $1 - e^{-\lambda}$ [may not be Y] A1 for at least $(1 - 0.223)$ or better. No need for final comment.* answer given so 0.777 does not imply all three marks		
(d)	1 st M1 for identifying binomial with $n = 6$ and $p = 0.777$ or better. Condone us 0.223. May be implied by $(p)^4(1-p)^2$ $p = \text{awrt } 0.777$ or awrt 0.223 2 nd M1 Must have ${}^6\text{C}_4$ $(0.777)^4(1-0.777)^2$ A1 for awrt 0.272	se of $p =$	

Quest	tion	Scheme	Marks	
4.	(a)	3k	B1B1B1	
	(b)	Mode = 2 $0 1 4 x$	B1 (3)	
	(c)	Mean < mode, so negative skew	B1, dB1	
	(d)	$3k \times 1 + \int_{1}^{4} \left(4kx - kx^2\right) dx = 1$	(2) M1, B1	
		$3k \times 1 + \int_{1}^{4} (4kx - kx^{2}) dx = 1$ $3k + \left[2kx^{2} - \frac{kx^{3}}{3}\right]_{1}^{4} \{=1\}$	M1	
		$3k + \left(32k - \frac{64k}{3}\right) - \left(2k - \frac{k}{3}\right) = 1$	M1d	
		$12k = 1 \qquad \text{so } k = \frac{1}{12}$	A1	
	(e)	Lower Quartile = 1	B1 (5)	
	(f)	P(1 < X < 2) = P(2 < X < 3) by symmetry	M1	
		So $P(X > 3) = 1 - 3k - \frac{22}{36} = \frac{5}{36}$	A1 (2)	
			(14)	
		Notes		
	(a)	1 st B1 for horizontal line $y = 3k$ and $3k$ marked on y -axis 2^{nd} B1 for correct shape for $1 < x < 4$, meeting x -axis at $(4, 0)$ and not extending axis. Must be a curve 3^{rd} B1 for $x = 1$ marked and graphs meeting at the point $(1, 3k)$	ng below <i>x</i> -	
	(b)	B1 for 2		
	(c)	 1st B1 for a suitable reason which matches their mode. The mode must be a muse mean. 2nd dB1 not ft, dependent on 1st B1. Correct answer from correct value of Mode. 	umber. Must	
	(d)	1 st M1 for attempting the sum of both areas = 1, ignore limits B1 for $3k$ seen added to integral 2 nd M1 For some correct integration, at least one $kx^n \rightarrow kx^{n+1}$ 3 rd M1d Dependent on 1 st M1 being awarded. For use of correct limits. A1 for $k = \frac{1}{12}$		
	(e)	B1 for 1		
	(f)	M1 for identifying the symmetry. May be implied by $P(1 < x < 2) = \frac{11}{36}$ found		
		method		
		or writing down a correct equation (ft their k). e.g		
		$0.75 - 2 \times \frac{11}{36} \text{or } \int_{3}^{4} kx (4 - x) dx \text{ or } 1 - 3k - \frac{11}{36} - \int_{1}^{2} 4kx - kx^{2} \text{ with the}$	eir k subst in	
		A1 for $\frac{5}{36}$ or exact equivalent		

Question	Scheme	Marks
5. (a)	$H_0: \lambda = \frac{1}{8} \text{ (or } \lambda = 5 \text{)} \qquad H_1: \lambda \neq \frac{1}{8} \text{ (or } \lambda \neq 5 \text{)} \qquad \text{allow } \lambda \text{ or } \mu$	B1
	$X \sim \text{Po}(5)$, $P(X \le 1) = 0.0404$ or $P(X \ge 10) = 0.0318$ or $P(X \ge 9) = 0.0681$ Critical Regions: $X \le 1$ or $X \ge 10$	M1 A1, A1 (4)
(b)	0.0404 + 0.0318 = 0.0722 (or 7.22% significance level)	M1A1 (2)
(c)	$H_0: \lambda = \frac{1}{8} \text{ (or } \lambda = 25 \text{)} \qquad H_1: \lambda < \frac{1}{8} \text{ (or } \lambda < 25 \text{)} \qquad \text{allow } \lambda \text{ or } \mu$	B1
	[Y= no. of defects in 200m of wallpaper] $Y \sim Po(25)$ $Y \approx N(25, \sqrt{25}^2)$	M1A1
	$P(Y \le 19) \approx P\left(Z < \frac{19.5 - 25}{\sqrt{25}}\right)$ or $\pm \frac{x - 0.5 - 25}{5} = 1.96$	M1M1
	= [P(Z < -1.1)] = 0.1357 (or 0.13566 from calc) $x = 35.3$	A1
	[> 0.05] not significant, there is insufficient evidence to support Thomas'	Alcso
	or The <u>number/rate/amount</u> of <u>defects</u> is not <u>decreased/less/reduced</u>	(7) (13)
	Notes	(13)
(a)	B1 for suitable hypotheses	
(b)	M1 for correct use of Po(5). Award if one relevant probability is seen or a case Allow if a correct CR written as a Probability statement 1^{st} A1 for $X \le 1$ or $X < 2$ or $0 < X < 2$ or $0 \le X < 2$ or $0 \le X \le 1$ oe. Allow any $1 \ge 1$ or $1 \le 1$	etter
	A1 for awrt 0.0722 (o.e)	
(c)	B1 for suitable hypotheses 1 st M1 for normal approximation	
	1 st A1 for mean =25 and variance = 25 or sd = 5 may be seen in the standardial or implied by a correct answer 2 nd M1 for attempting a continuity correction (Method 1:19 ± 0.5 / Method 2: <i>x</i> 3 rd M1 for standardising using their mean and their standard deviation and using Method 1 [19.5, 19, 18.5 accept ± <i>z</i> .] Method 2 [(<i>x</i> ± 0.5) and equal to a ± 2 nd A1 for awrt 0.136 or 35.3 or -1.1 > -1.96 3 rd A1 for a correct contextualised conclusion. cao for a one tailed test, must correct working. Condone incorrect hypotheses. NB if finding P(<i>X</i> =19) ie P(<i>X</i> ≤19.5) - P(<i>X</i> ≤18.5)they can get B1 M1 A1M1	± 0.5) g either z value] come from

Question	Scheme Marks	
6. (a)	$\frac{d^2}{2} - \frac{d^4}{16} = \frac{1}{2}$	M1
	2 16 2	1411
	$\left[d^4 - 8d^2 + 8 = 0 \Rightarrow\right] 8 = \left(d^2 - 4\right)^2 \text{ or } d^2 = \frac{8 \pm \sqrt{64 - 32}}{2}$	M1
	$d^2 = 4 - \sqrt{8}$	M1d
	$d = \sqrt{4 - \sqrt{8}} = 1.08239$ awrt 1.08	A1 (4)
(b)	$f(d) = d - \frac{d^3}{4}$ $\left[f'(d) = 0 \Rightarrow\right] 1 - \frac{3d^2}{4} = 0$	M1
	$\left[f'(d) = 0 \Rightarrow \right] 1 - \frac{3d^2}{4} = 0$	M1A1
	$\left[d^2 = \frac{4}{3} \text{ so}\right] d = 1.154$	A1
	$f''(d) = -\frac{6d}{4} < 0 \text{ so max}$	B1 (5)
(c)	$P(D < 1) = \left[\frac{1}{2} - \frac{1}{16}\right] = \frac{7}{16}$	B1
	Number of children = $80 \times \frac{7}{16}$, = 35	M1, A1
	16	(3)
		(12)
	Notes	, ,
(a)	1^{st} M1 for forming this equation based on $F(d) = 0.5$ oe 2^{nd} M1 for attempting to solve (complete the square or use formula) –must be of	4 C
	2 nd M1 for attempting to solve (complete the square or use formula) –must be of their equation	correct for
	$d3^{rd}$ M1 for square rooting to get $d = \dots$ Do not award for $d = awrt1.17$ Depe	endent on
	previous M being awarded.	
	A1 for awrt 1.08 Must reject any negative answers	
(b)		1
	2^{nd} M1 for attempting f'(d) and setting it =0 Some correct differentiation x^n to x^n	$\mathbf{X}^{\mathbf{n}+1}$
	1^{st} A1 for a correct equation for d	
	2^{nd} A1 for awrt 1.15 or 1.155 or $\sqrt{\frac{4}{3}}$ or $\frac{2\sqrt{3}}{3}$ or $\frac{2}{\sqrt{3}}$ oe	
	B1 for a method confirming that their value gives a max not a min	
(c)	M1 for $80 \times p$, 0	
(6)	A1 for 35 only	

Question	Scheme	Marks
7. (a)	$X \sim U[0, 9]$	B1
(b)	$[P(X > 6) =] \frac{1}{3}$ oe allow awrt 0.333	B1 (1)
(c)	$R = X(9-X), = 9X - X^2$	M1, A1
(d)	E(X) = 4.5	B1 (2)
(3)	Var(X) = $\frac{81}{12} = \frac{27}{4}$ or $E(X^2) = \int_0^9 \frac{x^2}{9} dx$	B1
	$E(X^2) = Var(X) + [E(X)]^2$ or $= \left[\frac{x^3}{27}\right]_0^9$	M1
	$E(X^2) = 27$	A1
	So $E(R) = 9 \times 4.5 - 27 = 13.5$	dM1A1
	Alternative method	(6)
	$\int_0^9 \frac{(9x - x^2)}{9} dx = \left[\frac{9x^2}{18} - \frac{x^3}{27} \right]_0^9$	B1 B1 M1A1
	$=\frac{81}{2} - \frac{81}{3}$	dM1
	$ \begin{array}{r} 2 & 3 \\ = 13.5 \end{array} $	A1
(e)	$R > 2X^2$ or $9X - X^2 > 2X^2$	M1
	$9X > 3X^2$	A1
	So $P(X < 3)$	M1
	$=\frac{1}{3}$	A1
		(4) (14)

for X~U[0, 9] or "continuous uniform"/"rectangular" distribution with correct range B1 (a)

Or allow the pdf f(x) =
$$\begin{cases} \frac{1}{9} & 0 \le x \le 9 \\ 0 & \text{otherwise} \end{cases}$$

- for X(9-X) or $9X-X^2$ may be implied by a correct answer **(c)** for $9X - X^2$ or a = -1 and b = 9
- 1st B1 for 4.5 or may be implied

$$2^{\text{nd}} \, \text{B1 for } \frac{81}{12} or \frac{27}{4} \, \text{or } \int_0^9 \frac{x^2}{9} \, \text{ignore limits}$$

1st M1 for full method for $E(X^2)$ using their Var (X) and E(X) or attempt to integrate $x^n \rightarrow$ x^{n+1} leading to a value for E(X^2). Need to be using $\int_0^9 \frac{x^2}{Q}$ ignore limits.

 1^{st} A1 for $E(X^2)=27$, may be implied.

 $d2^{nd}$ M1 for using $9E(X) - E(X^2)$. With their E(X) and $E(X^2)$. This may be implied by a correct answer. Dep on first M

Alternative

B1 $\int_0^9 \frac{(9x-x^2)}{x^2} dx$ ignore limits, ft their (c) which must be of the form $aX^2 + b$

B1
$$\int_0^9 \frac{(9x-x^2)}{9} dx$$
 with correct limits, ft their (c)

M1 attempt to integrate at least one $x^n \to x^{n+1}$. Need to be using their $\int_0^9 \frac{(9x-x^2)}{x^n} dx$

condone limits missing

A1 Correct Integration

dM1 subst in limits, need to see 9 substituted. Condone missing 0

Allow \leq instead of \leq and \geq instead of \geq in this part

for forming a suitable inequality in R and X or just X. May be implied by a correct probability in X.

for simplifying to $9X > 3X^2$ or 3 > X. May be implied by a correct probability in 1st A1

 2^{nd} M1 for forming a correct probability in X

 2^{nd} A1 for $\frac{1}{2}$ or exact equivalent

Mark Scheme (Results)

Summer 2014

Pearson Edexcel International A Level in Statistics 2 (WST02/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2014
Publications Code IA040144
All the material in this publication is copyright
© Pearson Education Ltd 2014

General Marking Guidance

All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.

PMT

- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL IAL MATHEMATICS

PMT

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. Ignore wrong working or incorrect statements following a correct answer.

Question Number	Scheme	Marks
1. (a)	n- large (allow $n > 50$ or any number greater than 50) ["too" large is OK] p – small (allow $p < 0.2$ or a probability less than 0.2)	B1
(b) (c)	$ \begin{array}{lll} \text{H}_0: p = 0.009 & \text{H}_1: p > 0.009 \\ \hline \text{Po}(4.5) & & & \text{Critical Region (CR)} \\ \text{P}(X \geq 9) & = 1 - \text{P}(X \leq 8) & & \text{P}(X \leq 7) & = 0.9134 \\ & = 1 - 0.9597 & & \text{P}(X \leq 8) & = 0.9597 \\ & = 0.0403 & & \text{CR } X \geq 9 \\ \hline \end{array} $	(1) B1 (1) B1 M1 A1
	Reject H_0 or Significant or 9 is in the Critical region. There is evidence that the <u>farmer</u> 's <u>claim</u> is true. Or There is evidence that the proportion of <u>eggs</u> with a <u>double yolk</u> is > 0.009	M1d A1cso (5)
	Notes	[7]
(b)	B1 both hypotheses correct. Must mention p (or π). Words only is B0	
(c)	B1 writing or using Po(4.5)(Check their probs using tables if Po(4.5) is not 1^{st} M1 writing $1-P(X \le 8)$ May be implied by sight of $1-0.9597$ or for CR method: $P(X \le 7) = 0.9134$ or $P(X \le 8) = 0.9597$ (NB may see $P(X \le 9) = 0.9829$ Allow this if trying a two-tail test and CR at They can score M1 for writing $1-P(X \le 8)$ even if they later go on to distribution such as B(500, 0.009). Exact binomial gives 0.039526 but scores 1^{st} A1 for probability awrt 0.0403 or CR of $X > 8$ or $X \ge 9$ Allow awrt 0.9597 if accompanied by a correct comparison with 0.2^{nd} dM1 correct statement that must agree with hypotheses. Dependent on B1 Contradictory non-contextual statements such as "not significant" so "reject" 2^{nd} A1cso correct contextual statement. Depends on all other marks in (c) bein Must mention "farmer" and "claim" or "eggs" and "double yolk"	oproach) use another A0 95 H ₀ " score M0
	NB A correct calculation followed only by a correct contextual comment s final M1(implied) and A1	scores the
2-tail	If 2-tail hypotheses in (b) Score B0 in (b) Could score B1 M1A1and M1 for a correct non contextual comment but A0 sin should not be rejecting H ₀ in this case (or they have scored A0 earlier so not cso	•

Question Number	Scheme	Marks
2. (a)	$\int_0^2 k \left(4 - y^2\right) dy = 1$ or attempt $F(y)$	M1
	$k\left[4y - \frac{y^3}{3}\right]_0^2 \left[=1\right]$ $F(y) = k\left[4y - \frac{y^3}{3}\right]$	A1
	$k \left[4 \times 2 - \frac{2^3}{3} \right] = 1$ or must use $F(2) = 1$	M1d
	$k = \frac{3}{16} \qquad (*)$	A1cso (4)
(b)	$E(Y) = \frac{3}{16} \int_0^2 (4y - y^3) dy$	M1
	$= \frac{3}{16} \left[2y^2 - \frac{y^4}{4} \right]_0^2 , = \frac{12}{16} \text{or} 0.75$ $= 750 \text{ (kg)}$	A1, A1 A1cao (4)
(c)	$E(Y^2) = \frac{3}{16} \int_0^2 4y^2 - y^4 dy$	M1
	$= \frac{3}{16} \left[\frac{4y^3}{3} - \frac{y^5}{5} \right]_0^2 \qquad (= 0.8)$	A1
	$Var(Y) = 0.8 - 0.75^2$ = 0.2375	M1 A1
	Standard deviation = 0.48734 or 487 (kg)	A1 (5) B1
(d)	$P(Y>1.5) = \frac{3}{16} \int_{1.5}^{2} (4 - y^2) dy \text{ or } 1 - \frac{3}{16} \left[4y - \frac{y^3}{3} \right]_{0}^{1.5}$	M1
	$= \frac{3}{16} \left[4y - \frac{y^3}{3} \right]_{1.5}^2 \text{or} 1 - \frac{3}{16} \left[4y - \frac{y^3}{3} \right]_0^{1.5} = 0.0859 \text{ or } \frac{11}{128}$	A1 (3)
	Notes	[16]
(a)	1 st M1 attempting to integrate $f(y)$, (at least one term $y^n o y^{n+1}$). Ignore limits. 1 st A1 fully correct integration. Ignore limits and accept any letters. 2 nd dM1 dep on 1 st M1. Subst in correct limits – condone not seeing 0 substituted. 2 nd A1 cso – no incorrect working seen. "Verifying" requires statement "so $k = \dots$ " here	
	NB An "= 1" must appear somewhere before the line $\frac{16k}{3} = 1$	
	1 st M1 Attempting to integrate $yf(y)$, (at least one term $y^n \to y^{n+1}$). Ignore limit 1 st A1 correct integration which must be shown. No integration loses all 4 m 2 nd A1 0.75 or any exact equivalent. May be implied by a correct ans. of 750 (13 rd A1cao 750 only. Condone missing "kg"	arks kg)
(c)	1 st M1 Attempting to integrate $y^2 f(y)$ (at least one term $y^n \to y^{n+1}$). Ignore limits. Co 1 st A1 correct integration. Condone inside $\sqrt{}$. May be implied by sight of 0.8 2 nd M1 using $E(Y^2) - [E(Y)]^2$ follow through their $E(Y^2)$ and $E(Y)^2$ Must see value.	
(d)	2^{nd} A1 0.2375 may be implied by correct sd. Allow $\frac{19}{80}$ or exact equivalent 3^{rd} A1 awrt 0.487 or awrt 487. (no fractions)	on.

Question Number		Scheme	Marks
3. (a	$\int E(T) =$	$\frac{\alpha+\beta}{2}=2$, $\Rightarrow \alpha+\beta=4$, B1
	$\left[\operatorname{Var}(T) \right]$	$0 = \frac{(\beta - \alpha)^2}{12} = \frac{16}{3}, \Rightarrow (\beta - \alpha)^2 = 64$, B1
	$\alpha = -2,$	$\beta = 6$	M1 A1 A1
			(5)
(b	P(T < 3.	$4) = \frac{1}{8} \times (5.4)$	M1
		= 0.675	A1
			(2)
			[7]
		Notes	
(a	1 st B1	$\alpha + \beta = 4$ oe	
	2 nd B1	$(\beta - \alpha)^2 = 64$ oe allow $(\beta - \alpha) = +8$ or $(\beta - \alpha) = -8$ or $3(\beta - \alpha)^2$	= 192
		May be implied by a correct equation in one variable	
	M1	Correct processes to obtain a correct equation in one variable. Allow	one slip.
	e.g.	$(\beta - [4 - \beta])^2 = 64$ or $2\beta = 12$ or $4\alpha^2 - 16\alpha - 48 = 0$ or $(2 - \alpha)^2$	=16
	1 st A1	$\alpha = -2$, $\beta = 6$	
	2 nd A1	$\beta = 6$	
		If both correct answers only appear then this implies all 5 marks.	
(b) M1	$\frac{1}{\pm \text{ their "}(\beta - \alpha)\text{"}} \times (3.4 - \text{'their } \alpha\text{'}) \text{ If their nexpression is -ve or } > 1 \text{ their } \alpha$	then M0
	A1	0.675 or exact equivalent e.g. $\frac{27}{40}$	

Question Number	Scheme	Marks
4. (a)	$P(L > 100) = P\left(Z > \frac{100 - \mu}{0.5}\right) = 0.3$	
	$\Rightarrow \frac{100 - \mu}{0.5} = 0.5244$	M1 B1
	$\mu = 99.7378$ cm awrt 99.7	A1
(b)	X represents number more than 100cm. $X \sim B(12, 0.3)$	(3) B1
	$P(X \le 2) = 0.2528$ awrt 0.253	M1A1
(c)	Normal approximation $\mu = 400 \times 0.3 = 120$, $\sigma^2 = 84$	(3) M1, A1
	$P(X > 127) \approx 1 - P(Z < \frac{127.5 - 120}{\sqrt{84}})$ ±0.5, standardise	M1, M1, A1
	$\approx 1 - P(Z < 0.818)$	
	=1-0.7939	
	= 0.206 or 0.207	A1 (6)
		[12]
	Notes	
(a)	M1 standardising (\pm) with 100, μ and 0.5 and setting equal to a z value. 0.5	< z < 0.7
	NB Use of $z = 0.7$ scores M0B0A0	ı: c
	B1 $z = \pm 0.5244$ or better (Calc. Gives 0.5244005). Must be used in an ed	quation for μ .
	A1 awrt 99.7. Answer only is $0/3$ NB M1 + answer only of awrt 99.7 scores M1B0A1 but allow B1 for $99.7376 \le \mu$	<i>u</i> ≤ 99.7379
(b)	B1 writing B(12, 0.3)	
(6)	M1 writing $P(X \le 2)$ May be implied by sight of 0.252 or 0.253.	
	NB $P(X < 3)$ alone is M0 unless they show that $P(X < 3) = P(X = 0) + P(X = 1)$) + P(X=2)
	A1 awrt 0.253. Answer only scores 3/3	
(c)	1^{st} M1 attempting to use a Normal approx. State N(μ , σ^2) with μ or σ correct 1^{st} A1 correct mean and var/sd 2^{nd} M1 continuity correction used: either 127.5 or 126.5 seen 3^{rd} M1 standardising with their μ and σ and finding correct area. Must lead to P($Z > 2^{\text{nd}}$ A1 $\frac{127.5 - 120}{\sqrt{84}}$ or awrt 0.82 3^{rd} A1 for awrt 0.206 or 0.207	

Question Number	Scheme	Marks
5. (a)(i)	$H_0: p = 0.35$ $H_1: p \neq 0.35$	B1
(ii)	B(15,0.35)	M1
	CR $X \le 1 \cup X \ge 10$ (Allow any letter)	A1A1
		(4)
(b)	8 is not in CR	M1
	There is evidence that the Company's <u>claim</u> is true	A1ft
		(2)
(c)	0.0142 + 0.0124 = 0.0266	B1
		(1)
		[7]
	Notes	
(a) (i)	B1 both hypotheses correct. Must mention p (or π). Words only is B0	
(ii)	M1 Writing B(15,0.35) May be implied by e.g. $P(X \le 1) = 0.0142$ or $P(X \le 9)$) = 0.9876
	$1^{\text{st}} A1$ $X \le 1$ (accept $X < 2$) Allow $0 \le X \le 1$ but $P(X \le 1)$ is $A0$	
	$2^{\text{nd}} \text{ A1} X \ge 10 \text{ (accept } X > 9) \text{ Allow } 10 \le X \le 15 \text{ but } P(X \ge 10) \text{ is A0}$	
	Either correct answer will imply M1	
(b)	M1 for a reason that matches their CR. "Interpret" their CR of $P(X \ge 10)$ as $X \ge 10$ etc	
	Allow calculation of $P(X \ge 8) = 1 - 0.8868 = 0.1132$ and "not sig" comm	nent
	Do not allow contradictory remarks e.g. 8 is not in CR so significant (thi	s gets M0)
	A1ft for a conclusion correct for their CR in context	
	Must mention "claim" or "peas" and "germinating"	
	NB A correct contextual claim on its own scores M1A1	
(c)	B1 for 0.0266 or awrt 0.0266 (calc gives 0.02662196)	

Question Number	Scheme	Marks
6. (a)	F(1.23) = awrt 0.495 F(1.24) = awrt 0.501 0.5 lies between therefore median value lies between 1.23 and 1.24	M1 A1 A1 (3)
(b)	$[f(x)] = \begin{cases} \frac{9x}{10} - \frac{3x^2}{10} & 0 \le x \le 2\\ 0 & \text{otherwise} \end{cases}$	M1A1 B1 (3)
(c)	$\frac{18}{20} - \frac{12x}{20} = 0 \text{or completeing square so: } \frac{3}{10} \left[\frac{9}{4} - \left(x - \frac{3}{2} \right)^2 \right]$	M1
(d)	x = 1.5 Median < mode, negative skew	A1 (2) M1,A1 (2)
		[10]
	Notes 2	
(a)	M1 attempt at both F(1.23) and F(1.24) and at least one correct $\frac{x^2}{20}$ (9-23) $\frac{x^2}{20}$ both awrt 0.495 and awrt 0.501 or 1.238 $\frac{x^2}{20}$ correct comment about the value of the median (not just 0.495 < F(m))	
(b)	M1 attempting to differentiate. Multiply out and at least one term $x^n \to x^{n-1}$ A1 correct differentiation. Allow $\frac{18x}{20} - \frac{6x^2}{20}$ or $\frac{3}{10}x(3-x)$ or any exact equivalent. B1 correct pdf, including 0 otherwise and $0 \le x \le 2$	
(c)	M1 for an attempt to differentiate pdf and put = 0 or complete the square or a sketch Sketch should have the correct shape and show some positive values on x – axis. An attempt at completing the square should get to $p \pm q(x-1.5)^2$ Answer only scores M1A1	
(d)	M1 reason must match their values/ sketch (NB mean = 1.2). Their values must be in [0, 2] No mode or median will score M0 unless their reason is based on their sketch A1 no ft correct answer only e.g. If their mode = 1 and they say "mode < median" score M1 for a correct reason but A0 even if they say "positive skew" since there is no ft and "negative skew" would follow incorrect working.	

Question Number	Scheme	Marks
7. (a)	F represents number of flaws per 50 m \Rightarrow F \sim Po(2)	
	$P(F = 5) = 0.9834 - 0.9473$ or $\frac{e^{-2}2^{5}}{5!}$	M1
	= 0.0361	A1 (2)
(b)	G represents number of flaws per 200 m \Rightarrow G ~ Po(8)	B1
	$P(G < 7) = P(G \le 6) = 0.3134$	B1
	[$R =$ number of 200 m rolls containing fewer than 7 flaws.] $R \sim B(4, 0.3134)$	M1A1ft
	$P(R=1) = C_1^4 \times 0.3134 \times (1 - 0.3134)^3 = 0.40576$ awrt 0.406	M1 A1 (6)
(c)	N represents number of flaws in a x m roll $\Rightarrow N \sim Po(\lambda)$	
	$P(N < 26) = P(\frac{25.5 - \lambda}{\sqrt{\lambda}})$ ±0.5, standardise	M1, M1 A1
	$\frac{25.5 - \lambda}{\sqrt{\lambda}} = 0.1 \qquad \text{gives} \lambda + 0.1\sqrt{\lambda} - 25.5 = 0$	B1
	$\sqrt{\lambda}$ $\sqrt{\lambda} = \frac{-0.1 \pm \sqrt{0.1^2 + 4 \times 25.5}}{2}$	dM1
	$\left[\sqrt{\lambda} = 5 \right]$ so $\lambda = 25$	A1
	$x = \frac{25}{2} \times 50$, so $x = 625$ m	dM1
	2	A1 (8)
	X Y .	[16]
	Notes	
(a)	M1 Writing $P(X \le 5) - P(X \le 4)$ or $\frac{e^{-\lambda} \lambda^5}{5!}$ (any value of λ) A1 a	wrt 0.0361
(b)	1 st B1 Writing or using Po(8) 2 nd B1 awrt 0.313 (calc gives 0.313374	2)
	1 st M1 Recognize Binomial 1 st A1ft writing B(4, 'their 0.313') May be=	⇒ by next line
	2^{nd} dM1 (dep. on 1^{st} M1) $C_1^4 \times \text{'their } 0.3134 \times (1-\text{'their } 0.3134')^3$ 2^{nd} A1 a	wrt 0.406
(c)	1 st M1 continuity correction used. Either 25.5 or 26.5	
	2^{nd} M1 standardising using their λ and $\sqrt{\lambda}$ for mean and sd. Any letter may be use	d or $\frac{x}{25}$ etc
	1 st A1 $\frac{25.5 - \lambda}{\sqrt{\lambda}} = z$ where $0 < z < 0.5$ May be implied by their correct quadrates	ric (25.5 req'd)
	B1 0.1 (calc 0.09992) used as their z value in an equation. Allow e.g. $\frac{26-\mu}{\sigma}$ =	0.1
	3^{rd} dM1 (dep on 2^{nd} M1) some attempt at solving their 3TQ $\frac{-b\pm\sqrt{+\nu e}}{2a}$ 2^{nd}	A1 25 (o.e.)
	24	

PMT

Mark Scheme (Results)

January 2015

Pearson Edexcel International A Level in Statistics 2 (WST02/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2015
Publications Code IA040682
All the material in this publication is copyright
© Pearson Education Ltd 2015

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. Ignore wrong working or incorrect statements following a correct answer.

January 2015 WST02 Statistics S2 Mark Scheme

	Mark Scheme	T	
Question Number	Scheme	Mark	S
1(a)	X~Po(3.2)	B1	
	$P(X=3) = \frac{e^{-3.2}3.2^3}{3!}$	M1	
]		(2)
(b)	$= 0.2226$ awrt 0.223 $Y \sim Po(1.6)$	A1 B1	(3)
(b)	$P(Y \ge 1) = 1 - P(Y = 0)$	M1	
	$= 1 - e^{-1.6}$	1111	
	= 0.7981 awrt 0.798	A1	(3)
(c)	X~Po(0.8)		
	$\frac{P(X=1) \times P(X=3)}{P(Y=4)} = \frac{\left(e^{-0.8} \times 0.8\right) \times \left(\frac{e^{-0.8} \cdot 0.8^{3}}{3!}\right)}{\frac{e^{-1.6} \cdot 1.6^{4}}{1!}}$	M1 M1 M1 A1	
	4!		
	$=\frac{0.3594\times0.0383}{0.05513}$		
	= 0.05513 $= 0.25$	A1	(5)
(d)	$A \sim Po(72)$ approximated by N(72,72)	B1	(5)
,		M1	
	$\frac{5000}{60} = 83.33$	M1	
	$P(A \ge 84) = P\left(Z \ge \frac{83.5 - 72}{\sqrt{72}}\right)$	M1 M1	
	$= P(Z \ge 1.355)$		
	= 0.0869 awrt 0.087/0.088	A1	(5)
(a)	Notes B1 for writing or using Po(3.2)		
(a)	M1 $\frac{e^{-\lambda}\lambda^3}{3!}$		
(b)	B1 for writing or using Po(1.6)		
	M1 1 – P($Y = 0$) or 1 – $e^{-\lambda}$		
(c)	1^{st} M1 using Po(0.8) with X=1 or X=3 (may be implied by 0.359 or 0.0383)		
	$2^{\text{nd}} \text{ M1 } \left(e^{-\lambda} \times \lambda\right) \times \left(\frac{e^{-\lambda} \lambda^3}{3!}\right) \text{ (consistent lambda) awrt 0.0138 implies } 1^{\text{st}} 2 \text{ M}$		
	marks		
	3^{rd} M1 correct use of conditional probability with denominator = $\frac{e^{-1.6}1.6^4}{4!}$		
	1 st A1 fully correct expression		
	2 nd A1 0.25 (allow awrt 0.250)		
(d)	B1 Writing or using N(72,72)		
	1 st M1 for exact fraction or awrt 83.3 (may be implied by 84) (Note: Use of N(4320,4320) can score B1 and 1 st M1) 2 nd M1 Using 84 +/- 0.5		
	3 rd M1 standardising using 82.5, 83, 83.3 (awrt 83.3), 83.5, 83.8, 84 or 84.5, 'their mean' and 'their sd'		

Question Number	Scheme	Marks
2(a)	P(X > 4) = 1 - F(4)	M1
	$=1-\frac{3}{5}$	
	$=\frac{2}{5}$ oe	A1 (2)
(b)	1	B1 (1)
(c)	$f(x) = \frac{dF(x)}{dx} = \frac{1}{5}$	M1
	$f(x) = \begin{cases} \frac{1}{5} & 1 \le x \le 6 \\ 0 & \text{otherwise} \end{cases}$	A1
		(2)
(d)	E(X) = 3.5	B1 (1)
(e)	Variance = $\frac{(6-1)^2}{12}$ or $\int_1^6 \frac{1}{5} x^2 dx - (3.5)^2$	M1
	$= \frac{25}{12}$ awrt 2.08	A1
(0)		(2)
(f)	$E(X^{2}) = Var(X) + [E(X)]^{2}$ $= \frac{25}{12} + 3.5^{2} \text{or} \int_{1}^{6} \frac{1}{5} x^{2} dx \qquad \text{or } \int_{1}^{6} \frac{1}{5} (3x^{2} + 1) dx$ $= \frac{43}{3}$	M1
	$E(3X^{2}+1) = 3 E(X^{2}) + 1 = \left[\frac{3x^{3}}{15} + \frac{x}{5}\right]_{1}^{6}$	dM1
	= 44 $= 44$	A1cao (3)
	Notes	,
(a) (c)	M1 writing or using 1 – F(4) oe M1 for differentiating to get 1/5 A1 both lines correct with ranges	
(e)	M1 $\frac{(6-1)^2}{12}$ or $\int_1^6 \frac{1}{5} x^2 dx$ - 'their 3.5' ²	
(f)	1st M1 "their Var(X)" + ["their E(X)"] $_{Y^{n+1}}^2$ (which must follow from the 1st meth	nod in (e))
	$\boxed{\mathbf{or} \int_{1}^{6} \frac{1}{5} x^{2} dx \text{ and integrating } x^{n} \to \frac{x^{n+1}}{n+1} \text{ (may be seen in (e))} \underline{\mathbf{or}} \text{ writing } \int_{1}^{6} \frac{1}{5} x^{2} dx = \frac{1}{$	
	(May be implied by $\frac{43}{3}$ seen)	
	2^{nd} M1 (dependent on previous M1) using $3 \times$ 'their $E(X^2)$ ' + 1	
	or $\int_1^6 \frac{1}{5} (3x^2 + 1) dx$ and integrating $x^n \to \frac{x}{n+1}$	

Question Number			Scheme			Mark	S
3(a)	(A random variable) that is a function of a (random) sample involving no unknown quantities/parameters or				B1		
	A quantity calcu	lated solely from	a random sample				(1)
(b)	If all possible samples are chosen from a population; then the values of a statistic and the associated probabilities is a sampling distribution or a probability distribution of a statistic				B1		
	_						(1)
(c)	$Mean = 100 \times \frac{4}{7}$ $= \frac{1000}{7}$	7 + 200× - 7		aw	rt 143	B1	
	Variance = 100	$^{2} \times \frac{4}{7} + 200^{2} \times \frac{3}{7}$	$-\left(\frac{1000}{7}\right)^2$			M1	
	$=\frac{120}{3}$	0000 49		awr	t 2450 (to 3sf)	A1	(3)
(d)				or 3 x (100,100,2 or 3 x (100,200,2		B2	(2
(e)	(100,100,100)	$\left(\frac{4}{7}\right)^3 =$	64 343	awrt 0.187			(2
	(200,200,200)	$\left(\frac{3}{7}\right)^3 =$	27 343	awrt 0.0787		B1 both	
	(100,100,200)	$3 \times \left(\frac{4}{7}\right)^2$	$\times \left(\frac{3}{7}\right) = \frac{144}{343}$	awrt 0.42	20 (allow 0.42)	M1	
	(100,200,200)	$3 \times \left(\frac{4}{7}\right)$	$\left(\frac{3}{7}\right)^2 = \frac{108}{343}$	awrt (0.315	A1	
	m	100	400/3	500/3	200		
	P(M=m)	$\frac{64}{343}$ or awrt 0.187	awrt 133 $ \frac{144}{343} \text{ or} $ awrt 0.420 (allow 0.42)	awrt 167 $\frac{108}{343} \text{ or}$ awrt 0.315	$\frac{27}{343}$ or awrt 0.0787	A1	
			·				(4

Question Number	Scheme	Marks		
(a)	Notes B1 for a definition which includes each of the following 3 aspects A function¹ of a (random) sample² involving no unknown quantities/parameters³ 1. function/quantity/calculation/value/random variable 2. sample/observations/data 3. no unknown parameters/no unknown values/solely (from a sample)			
(b)	B1 requires all underlined words: <u>All values</u> of a <u>statistic</u> with their associated <u>probabilities</u> or <u>probability distribution</u> of a <u>statistic</u>			
(c)	M1 $100^2 \times \frac{4}{7} + 200^2 \times \frac{3}{7} - (\text{their mean})^2$			
(d)	B1 any 2 of $(100,100,100)$, $(100,100,200)$ any order, $(100,200,200)$ any order B1 all correct, allow 3 × $(100,100,200)$ and 3 × $(100,200,200)$ and $(100,100,200)$		00)	
(e)	(200,200,200) Note: Allow other notation for 100 and 200 e.g. Small and Large B1 Both probabilities for (100,100,100) and (200,200,200) correct			
	M1 $3 \times p^2 \times (1-p)$ A1 either correct			
	A1 all means correct and all probabilities correct (table not required but means must be associated with correct probabilities)			

Question Number	Scheme	Marks
4(a)	$X \sim \text{Po}(6)$ $P(5 \le X < 7) = P(X \le 6) - P(X \le 4) \text{ or } \frac{e^{-6}6^{5}}{5!} + \frac{e^{-6}6^{6}}{6!}$	M1 M1
	= 0.6063 - 0.2851 $= 0.3212$ awrt 0.321	A1 (3)
(b)	H_0 : $\lambda = 9$ H_1 : $\lambda < 9$	B1
	X~Po(9) therefore	
	$P(X \le 4) = 0.05496 \text{ or } CR \ X \le 3$	B1
	Insufficient evidence to reject H_0 or Not Significant or 4 does not lie in the critical region.	dM1
	There is no evidence that the mean number of <u>accidents</u> at the crossroads has <u>reduced/decreased</u> .	A1cso (4)
(a)	Notes M1 writing or using Po(6)	(.)
	M1 either $P(X \le 6) - P(X \le 4)$ or $\frac{e^{-\lambda} \lambda^5}{5!} + \frac{e^{-\lambda} \lambda^6}{6!}$	
(b)	1^{st} B1 both hypotheses correct (λ or μ) allow 0.5 instead of 9 2^{nd} B1 either awrt 0.055 or critical region $X \le 3$	
	dM1 for a correct comment (dependent on previous B1) Contradictory non-contextual statements such as "not significant" so "reject H ₀ "	
	score M0 (May be implied by a correct contextual statement) A1 cso requires correct contextual conclusion with underlined words and all previous marks in (b) to be scored.	

Question Number	Scheme	Marks
5(a)	$\int_{-1}^{2} k(x^2 + a) dx + \int_{2}^{3} 3k \ dx = 1$	M1
	$\left[k\left(\frac{x^{3}}{3} + ax\right)\right]_{-1}^{2} + \left[3kx\right]_{2}^{3} = 1$	dM1
	$k\left(\frac{8}{3} + 2a + \frac{1}{3} + a\right) + 9k - 6k = 1$ $6k + 3ak = 1$	A1
	$\int_{-1}^{2} k(x^{3} + ax) dx + \int_{2}^{3} 3kx dx \left[= \frac{17}{12} \right]$	M1
	$\left[k\left(\frac{x^4}{4} + \frac{ax^2}{2}\right)\right]_{-1}^2 + \left[\frac{3kx^2}{2}\right]_{2}^3 = \frac{17}{12}$	dM1
	$k\left(4+2a-\frac{1}{4}-\frac{a}{2}\right)+\frac{27k}{2}-6k=\frac{17}{12}$	A1
	$\frac{45k}{4} + \frac{3ak}{2} = \frac{17}{12}$ $135k + 18ak = 17$	
	99k = 11	ddM1
	$a=1, k=\frac{1}{9}$	A1 (8)
(b)	2	B1 (1)
(a)	Notes $1^{\text{st}} \text{ M1 writing or using } \int_{-1}^{2} k(x^{2} + a) dx + \int_{2}^{3} 3k \ dx = 1 \text{ ignore limits}$ $2^{\text{nd}} \text{ dM1 attempting to integrate at least one } x^{n} \rightarrow \frac{x^{n+1}}{n+1} \text{ and sight of correct}$ $\lim_{n \to \infty} (\text{dependent on previous M1})$	(1)
	1^{st} A1 a correct equation – need not be simplified	
	$3^{\text{rd}} \text{ M1} \int_{-1}^{2} k(x^3 + ax) dx + \int_{2}^{3} 3kx \ dx \text{ ignore limits}$ $4^{\text{th}} \text{ dM1 setting} = \frac{17}{12} \text{ and attempting to integrate at least one} x^n \to \frac{x^{n+1}}{n+1}$	
	and sight of correct limits (dependent on previous M1)	
	2 nd A1 a correct equation – need not be simplified	
	5^{th} ddM1 attempting to solve two simultaneous equations in a and k by eliminating 1 variable (dependent on 1^{st} and 3^{rd} M1s)	
	3^{rd} A1 both a and k correct	

Question Number	Scheme	Marks	}
6. (a)	$P(X = 5) = {}^{20}C_5(0.3)^5(0.7)^{15}$ or $0.4164 - 0.2375$ = 0.17886 awrt 0.179	M1 A1	(2)
(b)	Mean = 6 $sd = \sqrt{20 \times 0.7 \times 0.3}$ = 2.049 awrt 2.05	B1 M1 A1	(3)
(c)	$H_0: p = 0.3$ $H_1: p > 0.3$	B1	(3)
	$X \sim B(20,0.3)$ $P(X \ge 8) = 0.2277$ or $P(X \ge 10) = 0.0480$, so $CR X \ge 10$	M1 A1	
	Insufficient evidence to reject H_0 or Not Significant or 8 does not lie in the critical region.	dM1	
	There is no evidence to support the <u>Director (of Studies')</u> <u>belief</u> /There is no evidence that the <u>proportion</u> of <u>parents</u> that <u>do not support</u> the <u>new curriculum</u> is greater than 30%	Alcso	(5)
(d)	$X \sim B(2n, 0.25)$ $X \sim B(8, 0.25)$ $P(X \ge 4) = 0.1138$ $X \sim B(10, 0.25)$ $P(X \ge 5) = 0.0781$	M1	(5)
	2n = 10 $n = 5$	A1 A1	(3)
(a) (b)	Notes M1 $^{20}C_5(p)^5(1-p)^{15}$ or using $P(X \le 5) - P(X \le 4)$ M1 use of $20 \times 0.7 \times 0.3$ (with or without the square root)		
(c)	B1 both hypotheses correct $(p \text{ or } \pi)$ M1 using $X \sim B(20,0.3)$ (may be implied by 0.7723, 0.2277, 0.8867 or 0.1133) A1 awrt 0.228 or CR $X \ge 10$		
	dM1 a correct comment (dependent on previous M1) A1 cso requires correct contextual conclusion with underlined words and all previous marks in (c) to be scored.		
(d)	M1 for 0.1138 or 0.0781 or 0.8862 or 0.9219 seen 1^{st} A1 B(10, 0.25) selected (may be implied by $n = 10$ or $2n = 10$ or $n = 5$) An answer of 5 with no incorrect working seen scores 3 out of 3		
	Special Case: Use of a normal approximation, M1 for $\frac{(n-0.5)-\frac{n}{2}}{\sqrt{\frac{3}{8}n}} = z$ with $1.28 \le z \le 1.29$, 1^{st} A1 for $n=4.2/4.3$, 2^{nd} A1 for $n=5$		

Question Number	Scheme	Marks
7.	$Y \sim N\left(\frac{n}{5}, \frac{4n}{25}\right)$	B1
	$\mathbf{Y} \sim \mathbf{N}\left(\frac{n}{5}, \frac{4n}{25}\right)$ $\mathbf{P}(Y \ge 30) = \mathbf{P}\left(Z > \frac{29.5 - \frac{n}{5}}{\frac{2}{5}\sqrt{n}}\right)$	M1 M1A1
	$\frac{29.5 - \frac{n}{5}}{\frac{2}{5}\sqrt{n}} = 2$	B1
	$n + 4\sqrt{n} - 147.5 = 0 \qquad \text{or} 0.04n^2 - 12.44n + 870.25 = 0$	dM1
	$n + 4\sqrt{n} - 147.5 = 0$ or $0.04n^2 - 12.44n + 870.25 = 0$ $\sqrt{n} = 10.3$ $n = 106.26$ or $n = 204.73$	A1
	n = 106	A1 cao (8)
	Notes $1^{st} \text{ B1 writing or using N} \left(\frac{n}{5}, \frac{4n}{25}\right)$ $1^{st} \text{ M1 writing or using } 30 +/-0.5$ $2^{nd} \text{ M1 standardising using } 29, 29.5, 30 \text{ or } 30.5 \text{ and their mean and their sd}$ $1^{st} \text{ A1 fully correct standardisation (allow +/-)}$ $2^{nd} \text{ B1 for } z = +/-2 \text{ or awrt } 2.00 \text{ must be compatible with their standardisation}$ $3^{rd} \text{ dM1 (dependent on } 2^{nd} \text{ M1) getting quadratic equation } \text{ and solving leading to a value of } \sqrt{n} \text{ or } n$ $2^{nd} \text{ A1 awrt } 10.3 \text{ or awrt } (106 \text{ or } 107 \text{ or } 204 \text{ or } 205)$ $3^{rd} \text{ A1 for } 106 \text{ only (must reject other solutions if stated)}$ $\text{Note: } \frac{29.5 - \frac{n}{5}}{\frac{2}{5}\sqrt{n}} = -2 \text{ leading to an answer of } 106 \text{ may score}$ B1M1M1A1B0M1A1A1	

PMT

January 2015 (IAL)

PhysicsAndMathsTutor.com

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

Mark Scheme (Results)

June 2015

Pearson Edexcel International A Level in Statistics 2 (WST02/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2015
Publications Code IA042723
All the material in this publication is copyright
© Pearson Education Ltd 2015

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- or d... The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

June 2015 WMST02/01 Statistics 2 Mark Scheme

Question Number	Scheme	Marks
1. (a)	${P(X > 4) =} 1 - F(4)$ 1 - F(4) seen or used	M1
	$\left\{ = 1 - \frac{3}{5} \right\} = \frac{2}{5}$ \frac{2}{5} \text{ or 0.4}	A1
(b)	P(3 < X < a) = 0.642	[2]
	F(a) - F(3) = 0.642 $F(a) - F(3) = 0.642$	M1 o.e.
	$F(a) - \frac{1}{20}(3^2 - 4) = 0.642 $ { $\Rightarrow F(a) = 0.892$ } Correct equation	A1 o.e.
	$\frac{1}{5}(2a-5) - \frac{1}{20}(3^2-4) = 0.642 \Rightarrow a = \dots$ Solving this equation o.e., leading to $a = \dots$ (or $x = \dots$). Follow through their F(3)	dM1
	$\left\{ \frac{1}{5}(2a-5) = 0.892 \implies \right\} \ a = 4.73 $ $a = 4.73$ (or $x = 4.73$)	A1 cao
(b)	Alternative Method for Part (b)	[4]
(6)	Correct expression for finding the probability between $x = 3$ and $x = 4$	M1
	$\left\{ = \left[\frac{x^2}{20} \right]_3^4 \right\} = \frac{4^2}{20} - \frac{3^2}{20} \left\{ = \frac{7}{20} \right\}$ Correct $\frac{4^2}{20} - \frac{3^2}{20}$, simplified or un-simplified.	A1
	$\int_{3}^{4} \left(\frac{1}{10}x\right) \left\{ dx \right\} + \int_{4}^{a} \left(\frac{2}{5}\right) \left\{ dx \right\} = 0.642 \Rightarrow a = \dots$ Writes a correct equation and attempts to solve leading to $a = \dots$ (or $x = \dots$)	dM1
	$\left\{ \frac{7}{20} + \frac{2}{5}a - \frac{8}{5} = 0.642 \implies \right\} a = 4.73 \qquad a = 4.73 \text{ (or } x = 4.73 \text{)}$	A1 cao
(-)		[4]
(c)	$f(x) = \frac{d}{dx} \left(\frac{1}{20} (x^2 - 4) \right) = \frac{1}{10} x$ Attempt at differentiation. See notes.	M1
	At least one of $-x$ or $-x$	A1
	$f(x) = \frac{d}{dx} \left(\frac{1}{5} (2x - 5) \right) = \frac{2}{5}$ Both $\frac{1}{10} x$ and $\frac{2}{5}$	A1
	$f(x) = \begin{cases} \frac{1}{10}x, & 2 \le x \le 4 \\ \frac{2}{5}, & 4 < x \le 5 \end{cases}$ This mark is dependent on M1 All three lines with limits correctly followed through from their F'(x) $0, \text{ otherwise}$	dB1ft
		[4] 10

		Question 1 Notes
1. (a)	M1	1-F(4) seen or used.
	Note	Can be implied by either $1 - \frac{3}{5}$ or $1 - \frac{1}{5}(2(4) - 5)$ or $1 - \frac{1}{20}(4^2 - 4)$
		The probability statements $1 - P(X \le 4)$ or $1 - P(X < 4)$ are not sufficient for M1
	A1	$\frac{2}{5}$ or 0.4
	Note	Give M1A1 for the correct answer from no working.
(b)	NOTE	In part (b), candidates are allowed to write • $F(a)$ as either $P(X < a)$ or $P(X \le a)$. Also condone $F(a)$ written as $F(x)$ • $F(3)$ as either $P(X < 3)$ or $P(X \le 3)$
	M1	For writing $F(a) - F(3) = 0.642$ or equivalent (see NOTE above)
	A1	For an un-simplified $F(a) - \frac{1}{20}(3^2 - 4) = 0.642$ or equivalent (see NOTE above)
	Note	Give 1 st M1 1 st A1 for $F(a) = 0.892$ or $P(X \ge a) = 0.108$
	SC	Allow SC 1 st M1 1 st A1 for $\frac{1}{20}(a^2-4) - \frac{1}{20}(3^2-4) = 0.642$
	Note	Give 1 st M0 for $F(a-1)-F(3) = 0.642$ o.e. without a correct acceptable statement
	dM1	dependent on the FIRST method mark being awarded.
		Attempts to solve $\frac{1}{5}(2a-5)$ – "their F(3)" = 0.642 leading to $a =$ (or $x =$)
	Note	dM1 can be given for either $\frac{1}{5}(2a-5) = 0.892$ or $1 - \frac{1}{5}(2a-5) = 0.108$ leading to
	A 1	a =(or x =)
	A1	a = 4.73 (or $x = 4.73$) cao
	Note	Give M0A0M0A0 for $F(a) - (1 - F(3)) = 0.642 $ $\{ \Rightarrow F(a) = 1.392 \}$
	Note	Give M0A0M0A0 for $\int_{3}^{a} \left(\frac{1}{10}x\right) dx = 0.642$ (this solves to give awrt 4.67)
(c)	M1	At least one of either
		$\frac{1}{20}(x^2 - 4) \to \pm \alpha x \pm \beta, \ \alpha \neq 0, \beta \text{ can be } 0$ $\frac{1}{5}(2x - 5) \to \pm \delta, \ \delta \neq 0$
	1 st A1	At least one of $\frac{1}{10}x$ or $\frac{2}{5}$. Can be simplified or un-simplified.
	2 nd A1	Both $\frac{1}{10}x$ and $\frac{2}{5}$. Can be simplified or un-simplified.
	dB1ft	dependent on the FIRST method mark being awarded. All three lines with limits correctly followed through from their $F'(x)$
	Note	Condone the use of $<$ rather than \le or vice versa.
	Note Note	0, otherwise is equivalent to 0, $x < 2$ and 0, $x > 5$ In part (c), accept f being expressed consistently in another variable eg. u

Question Number	Scheme			
2. (a)	$X \sim \text{Po}(8)$			
	$\left\{ P(X \neq 8) \right\} = 1 - P(X = 8)$ 1 - P(X = 8), can be implied	M1		
	= 0.860413 or 0.8605	A1		
(b)	$X \sim \text{Po}(8)$	[2]		
	$\{P(X \ge 8)\} = 1 - 0.453$ $1 - 0.453$ or awrt 0.547	B1		
	$\left\{ \left[P(X \geqslant 8) \right]^4 \right\} = (1 - 0.453)^4 \left\{ = (0.547)^4 \right\}$ Applying $\left[\text{their } P(X \geqslant 8) \right]^4$	M1		
	= 0.089526 0.09 or awrt 0.090	A1		
(c)	Y = number of chocolate chips in the 9 biscuits	[3]		
(0)	Normal or N	M1		
	${Y \sim \text{Po}(72) \approx} Y \sim N(72, 72)$	A1		
	$\{P(Y > 75)\} \approx P(Y > 75.5)$ For either 74.5 or 75.5	M1		
	($75.5-72$) Standardising (±) with their mean,			
	$= P\left(Z > \frac{75.5 - 72}{\sqrt{72}}\right)$ their standard deviation and either 75.5 or 75 or 74.5	M1		
	= P(Z > 0.41) = 1 - 0.6591			
	= 0.3409 (from calculator 0.339994) awrt 0.341 or awrt 0.340	A1 [5]		
(d)	$H_0: \lambda = 1.5, H_1: \lambda > 1.5 \text{ or } H_0: \lambda = 6, H_1: \lambda > 6$ Both hypotheses are stated correctly			
	{Under H_0 , for 4 hours} $X \sim Po(6)$			
	Probability Method $P(X \ge 11) = 1 - P(X \le 10)$ Critical Region Method $P(X \le 9) = 0.9161$ or $P(X \ge 10) = 0.0839$			
	$= 1 - 0.9574$ $P(X \le 10) = 0.9574$ or $P(X \ge 11) = 0.0426$	M1		
	Note: Award 1 st M1 for the use of $X \sim Po(6)$			
	$P(X \ge 11) = 0.0426$ $CR : X \ge 11$ $Either P(X \ge 11) = 0.0426 \text{ or } CR : X \ge 11 \text{ or } CR : X > 10$	A1		
	Reject H_0 or significant or 11 lies in the CR dependent on previous M See notes	dM1		
	Conclude either • The <u>rate of sales</u> of packets of biscuits has <u>increased</u> . • The <u>mean</u> number of packets of biscuits <u>sold</u> has in context.	A1 cso		
		[5] 15		

		Question 2 Notes
2. (a)	M1	$1 - P(X = 8)$ or $P(X < 8) + P(X > 8)$ or $P(X \le 7) + P(X \ge 9)$
,	Note	Can be implied by either $1 - \frac{e^{-8}8^8}{8!}$ or $1 - \left(P(X \le 8) - P(X \le 7)\right)$
		or $1-(0.5925-0.4530)$ or $1-0.1395$ or $P(X \le 7) + 1 - P(X \le 8)$
	A1	0.86 or awrt 0.860 or awrt 0.861
(b)	B1	1-0.453 or awrt 0.547 (Note: calculator gives 0.5470391905)
	M1	Applying $\left[\text{their P}(X \geqslant 8)\right]^4$
	A1	0.09 or awrt 0.090 (Note: calculator gives 0.08955168526)
(c)	1st M1	For writing N or for using a normal approximation.
	1st A1	For a correct mean of 72 and a correct variance of 72
	Note	1 st M1 and/or 1 st A1 may be implied in applying the standardisation formula
	2 nd M1	For either 74.5 or 75.5 (i.e. an attempt at a continuity correction)
	3 rd M1	Standardising (\pm) with their mean, their standard deviation and either 75.5 or 75 or 74.5
	Note	Award 2 nd M1 3 rd M0 for $\frac{75.5-72}{72}$ from a correct $Y \sim N(72, 72)$
	Note	You can recover the 1 st A1 in part (c) for $N(72, \sqrt{72}) \Rightarrow z = \frac{75.5 - 72}{\sqrt{72}}$
	2 nd A1	awrt 0.341 or awrt 0.340. (Note: calculator gives 0.339994)
(d)	B1	$H_0: \lambda = 1.5, H_1: \lambda > 1.5$ correctly labelled or $H_0: \lambda = 6, H_1: \lambda > 6$.
	Note	Allow μ used instead of λ
	Note	B0 for either $H_0 = 6$, $H_1 > 6$ or $H_0 : x = 6$, $H_1 : x > 6$ or $H_0 : p = 6$, $H_1 : p > 6$
	1st M1	For use of $X \sim Po(6)$ (may be implied by 0.9161, 0.9574, 0.9799, 0.0839, 0.0426 or
		0.0201). Condone by $\frac{e^{-6}(6)^{11}}{11!}$. Allow any value off the Po(6) tables.
	1st A1	For either $P(X \ge 11) = 0.0426$ or $CR: X \ge 11$ or $CR: X > 10$ Condone $CR \ge 11$
	Note	Award 1 st M1 1 st A1 for writing down CR: $X \ge 11$ or CR: $X > 10$ from no working.
	Note	Give A0 stating CR : $P(X \ge 11)$
	2 nd dM1	dependent on the FIRST method mark being awarded.
		For a correct follow through comparison based on their probability or CR and their
		significance level compatible with their <i>stated</i> alternative hypothesis.
		Do not allow non-contextual conflicting statements. Eg. "significant" and "accept H_0 ".
	Note	M1 can be implied by a correct contextual statement.
	Note	Give final M0A0 for $P(X = 11) = 0.9799 - 0.9574 = 0.0225 \Rightarrow \text{Reject H}_0$, etc.
	Note	Give final M0A0 for $P(X \le 11) = 0.9799 \Rightarrow Accept H_0$, etc
	2 nd A1	Award for a correct solution only with all previous marks in part (d) being scored.
		Correct conclusion which is in context, using either the words
		rate of sales and increased or mean sold and increased

Question Number	Scheme	Marks
3. (a)	$\{f(x)\}$ A horizontal line drawn above the x -axis in the first quadrant	B1
	$\frac{1}{c}$ C	dB1
(b)	$E(X) = \frac{3c}{2}$ $E(X) = \frac{3c}{2}$, simplified or un-simplified.	B1
	$\left\{ E(X^2) = \right\} \int_{c}^{2c} \left(\frac{1}{2c - c} x^2 \right) \left\{ dx \right\} $ equivalent to $\frac{1}{c}$. (Limits are required)	M1
	$= \left[\frac{1}{c} \left(\frac{x^3}{3}\right)\right]_{\{c\}}^{\{2c\}} $ $\pm Ag(c)x^2 \rightarrow \pm Bg(c)x^3, \ A \neq 0, \ B \neq 0$ (Ignore limits for this mark)	M1
	$= \left(\frac{(2c)^3}{3c} - \frac{c^3}{3c}\right) \left\{ = \frac{7c^2}{3} \right\}$ dependent on first M mark. Applies limits of 2c and c to an integrated function in x and subtracts the correct way round.	dM1
	$Var(X) = E(X^2) - (E(X))^2$	
	$= \frac{7c^2}{3} - \left(\frac{3c}{2}\right)^2$ dependent on first M mark. Applying the variance formula correctly with their E(X)	dM1
	$= \frac{c^2}{12} * $ Correct proof	A1
		[6]
(c)	Correct un-simplified (or simplified) inequality statement. Can be implied by $X > \frac{4c}{3}$	M1
	$\Rightarrow X > 4c - 2X \Rightarrow 3X > 4c$	
	denendent on the first M mark	
	$\Rightarrow X > \frac{4c}{3}$ Rearranges $X > 2(2c - X)$ to give $X >$ or $X <$ See notes	dM1
	$\left\{ P(X > 2(2c - X)) = P\left(X > \frac{4c}{3}\right) \right\} = \frac{2}{3}$	A1
		[3] 11
	Note: In (c), give M2 for either $X > \frac{4c}{3}$ or $P\left(X > \frac{4c}{3}\right)$ or $1 - P\left(X < \frac{4c}{3}\right)$	

		Question 3 Notes				
3. (a)	1st B1	A horizontal line drawn above the x-axis in the first quadrant				
	2 nd dB1	dependent on the FIRST B mark being awarded.				
		Labels of c , $2c$ and $\frac{1}{c}$, marked on the graph.				
	Note	Allow the label $\frac{1}{2c-c}$ as an alternative to $\frac{1}{c}$				
	Note	Ignore $\{O\}$, $\{x\}$ and $\{f(x)\}$				
(b)	B 1	$E(X) = \frac{3c}{2}$, simplified or un-simplified. This mark can be implied.				
	Note	B1 can be given for an un-simplified $\left(\frac{(2c)^2}{c}\right) - \left(\frac{c^2}{c}\right)$ or $\frac{3c^2}{2c}$ or $2c - \frac{c}{2}$ etc.				
	Note	$\int_{c}^{2c} \frac{1}{c} x dx \text{ or } \left[\frac{x^{2}}{2c}\right]_{c}^{2c} \text{ are not sufficient for B1.}$				
	1 st M1	Correct E(X ²) expression of $\int_{c}^{2c} x^{2} f(x) \{dx\}$ where $f(x)$ is equivalent to $\frac{1}{c}$.				
	Note	Must have limits of $2c$ and c . Note the dx is not required for this mark.				
	2nd M1	$\pm Ag(c)x^2 \rightarrow \pm Bg(c)x^3, \ A \neq 0, B \neq 0$, where $g(c)$ is a function of c				
	Note	Limits are not required for the second 2 nd M1 mark.				
	3 rd dM1	dependent on the FIRST method mark being awarded. Applies limits of $2c$ and c to an integrated function in x and subtracts the correct way round.				
	4 th M1	dependent on the FIRST method mark being awarded. Applying the variance formula correctly with their follow through $\mathrm{E}(X)$.				
	Note	Allow 4 th M1 for $\left\{ \operatorname{Var}(X) = \right\} \int_{c}^{2c} \left(\frac{1}{2c - c} x^2 \right) \left\{ dx \right\} - \left(\int_{c}^{2c} \left(\frac{1}{2c - c} x \right) \left\{ dx \right\} \right)^2$				
	A1	Correctly proves that $Var(X) = \frac{c^2}{12}$. Note: Answer is given				
(c)	1 st M1	For writing down a correctly un-simplified (or simplified) inequality statement. Eg: $X > 2(2c - X)$ or $P(X > 2(2c - X))$ (Note: "P" is not required for this mark)				
	2 nd dM1	dependent on the FIRST method mark being awarded. Rearranges to give $P(X > \pm \alpha c)$ or $P(X < \pm \alpha c)$ or $X > \pm \alpha c$ or $X < \pm \alpha c$, $\alpha \neq 0$				
	Note Note	"P" is not required for these cases above Also allow, with P, the statements $1 - P(X < \pm \alpha c)$ or $1 - P(X > \pm \alpha c)$, $\alpha \neq 0$				
	NOTE	Give M2 for either $X > \frac{4c}{3}$ or $P\left(X > \frac{4c}{3}\right)$ or $1 - P\left(X < \frac{4c}{3}\right)$				
	A1	$\frac{2}{3}$ or $\frac{4}{6}$ or $0.\dot{6}$				
	Note	Give M1M1A1 for a final answer of $\frac{2}{3}$ from any working.				

Question Number	Scheme	Marks			
3.	Alternative Method 1 for Part (b)				
(b)	$\left\{ \operatorname{Var}(X) = \right\}$				
	Implied $E(X) = \frac{3c}{2}$	B1			
	$\int_{c}^{2c} x^{2} f(x) \{dx\} \text{ where } f(x) \text{ is equivalent to } \frac{1}{c}.$ (Limits are required)	1 st M1			
	$\int_{c}^{2c} \left(\frac{1}{2c - c} \left(x - \frac{3}{2}c \right)^{2} \right) \left\{ dx \right\} $ (Limits are required) $Applies \int_{c}^{2c} f(x) \left(x - \frac{3c}{2} \right)^{2} \left\{ dx \right\} \text{ where } f(x) \text{ is a}$	4 th dM1			
	is equivalent to $\frac{1}{c}$. (Limits are required)				
	$= \frac{1}{c} \left[\frac{1}{3} \left(x - \frac{3c}{2} \right)^3 \right]_{\{c\}}^{\{2c\}} $ $\pm Ag(c)(x - \delta)^2 \to \pm Bg(c)(x - \delta)^3,$ $A, B, \delta \neq 0 \text{ (Ignore limits for this mark)}$	2 nd M1			
	$= \frac{1}{3c} \left(\left(\frac{c}{2} \right)^3 - \left(-\frac{c}{2} \right)^3 \right)$ dependent on first M mark. Applies limits of 2c and c to an integrated function in x and subtracts the correct way round.	3 rd dM1			
	$= \frac{1}{3c} \left(\frac{c^3}{4} \right) = \frac{c^2}{12} *$ Correct proof	A1			
		[6			
(b)	Alternative Method 2 for Part (b) $\{Var(X) = \}$				
(-)	$\int_{c}^{2c} \left(\frac{1}{2c - c} \left(x - \frac{3}{2}c \right)^{2} \right) \left\{ dx \right\}$ Award as in Alt. Method 1	B1 1 st M1 4 th M1			
	$= \frac{1}{c} \int_{-\infty}^{2c} \left(x^2 - 3cx + \frac{9}{4}c^2 \right) \left\{ dx \right\}$				
	$= \frac{1}{c} \left[\frac{1}{3} x^3 - \frac{3}{2} c x^2 + \frac{9}{4} c^2 x \right]_{\{c\}}^{\{2c\}}$ $\pm Ag(c)(x - \delta)^2 \rightarrow \pm Bg(c)(\pm \alpha x^3 \pm \beta x^2 \pm \delta x)^3,$ $A, B, \alpha, \beta, \delta \neq 0 \text{ (Ignore limits for this mark)}$	2 nd M1			
	$= \frac{1}{c} \left(\left(\frac{1}{3} (2c)^3 - \frac{3}{2} c (2c)^2 + \frac{9}{4} c^2 (2c) \right) - \left(\frac{1}{3} (c)^3 - \frac{3}{2} c (c)^2 + \frac{9}{4} c^2 (c) \right) \right) $ As earlier	3 rd dM1			
	$= \frac{1}{c} \left(\left(\frac{8}{3}c^3 - 6c^3 + \frac{9}{2}c^3 \right) - \left(\frac{1}{3}c^3 - \frac{3}{2}c^3 + \frac{9}{4}c^3 \right) \right)$				
	$=\frac{1}{c}\left(\left(\frac{7}{6}c^3\right) - \left(\frac{13}{12}c^3\right)\right) = \frac{1}{c}\left(\frac{c^3}{12}\right)$	-			
	$=\frac{c^2}{12}$ * Correct proof	A1			
		[6			

Question Number		Scheme		Marks		
4. (a)	P(X = P(X = X))	$0 k = 3) = 0.0498$ $0 k = 4) = 0.0183$ $0 k = 5) = 0.0067$ $0.025 \Rightarrow k > 3.688$	At least one of these 9 probabilites or awrt 3.7 seen in their working.	B1		
	$P(X \leq$	$8 \mid k = 3$) = 0.9962, $P(X \ge 9 \mid k = 3) = 0.0038$ $8 \mid k = 4$) = 0.9786, $P(X \ge 9 \mid k = 4) = 0.0214$ $8 \mid k = 5$) = 0.9319, $P(X \ge 9 \mid k = 5) = 0.0681$	Both $P(X = 0) = 0.0183$ or awrt 3.7 and either $P(X \ge 9) = 0.0214$ or $P(X \le 8) = 0.9786$	В1		
	Both tai	ils less than 2.5% when $\underline{k} = 4$	Final answer given as $k = 4$	B1		
(b)	Actual	sig. level = $0.0214 + 0.0183$	See notes	[3] M1		
		Actual sig. level = $0.0214 + 0.0183$ See notes = 0.0397 0.0397				
				[2] 5		
		Question 4 No	otes			
4. (a)	1 st B1	For any of 0.0498, 0.0183, 0.0067, 0.9962, 0.9 or awrt 3.7 seen in their working.	9786, 0.9319, 0.0038, 0.0214,	, 0.0681		
	2 nd B1 Note	For both $P(X = 0) = 0.0183$ or awrt 3.7 and either $P(X \ge 9) = 0.0214$ or P				
	3 rd B1	Final answer given as $k = 4$. Also allow $\lambda =$				
	Note	Do not recover working for part (a) in part		<u>-</u>		
(b)	M1	For the addition of two probabilities for two ta				
	A1	0.0397 cao		·		

Question Number		Scheme				Marks	
5.	$Y = \frac{2X_1 + X_2}{3} $ w	here	$\begin{array}{c c} x \\ P(X=x) \end{array}$	6 0.35	9 0.65		
) and (b) to	gether for	this question.	
(a)	$\frac{2(6)+6}{3} = 6$	$\frac{2(9)}{3}$	$\frac{+9}{} = 9$		At least thre	of either 6, 7, 8 or 9	B1
	$\frac{2(6)+9}{3} = 7$	<u>2(9)</u> 3	$\frac{+6}{} = 8$	Correc	t values for	y of 6, 7 8 and 9 only	B1
							[2]
(b)	$\begin{cases} (6,6) \Rightarrow P(Y = \\ (6,9) \Rightarrow P(Y = \\ \end{cases}$,		(0.0		one of either $(0.35)^2$, .35)(0.65) or $(0.65)^2$	M1
	$\begin{cases} (9,6) \Rightarrow P(Y = \\ (9,9) \Rightarrow P(Y = \\ \end{cases}$,		(0.6		two of either $(0.35)^2$, .35)(0.65) or $(0.65)^2$	M1
	sample	(6, 6)	(6, 9)	(9, 6)	(9, 9)	See notes	A1
	P(Y=y)	0.1225	0.2275	0.2275	0.4225	At least 3 correct	A1
	or $P(Y = y)$	$\frac{49}{400}$	$\frac{91}{400}$	$\frac{91}{400}$	$\frac{169}{400}$	See notes	B1ft
							[5]
(c)	$\left\{ \mathbf{E}(Y) \right\} = 6(0.12)$	25) + 7(0	.2275) + 8(0	.2275) + 9(0.4225) = 7	$\frac{1.95}{20}$ or $\frac{159}{20}$	M1;A1 cao
							[2] 9
(c)	Alternative Met	hod for I	Part (c)				
	$\left\{ \mathrm{E}(Y) = \frac{2}{3} \mathrm{E}(X_1) \right\}$	$+\frac{1}{3}E(X$	$_{2})=\frac{2}{3}\mathrm{E}(X)$	$)+\frac{1}{3}\mathrm{E}(X)$	$= \mathrm{E}(X)$		
	= 6(0.35)) + 9(0.65); = 7.95 or	159 20			M1; A1 cao
							[2]

		Question 5 Notes
5. (a)	Note	You can mark parts (a) and (b) together for this question.
	1 st B1 2 nd B1	At least three correct values for y of either 6, 7, 8 or 9 Correct values for y of 6, 7 8 and 9 only. Note: Any extra value(s) given is 2 nd B0.
(b)	1st M1	At least one of either $(0.35)^2$, $(0.65)(0.35)$, $(0.35)(0.65)$ or $(0.65)^2$. Can be implied.
	2 nd M1	At least two of either $(0.35)^2$, $(0.65)(0.35)$, $(0.35)(0.65)$ or $(0.65)^2$. Can be implied.
	1 st A1	At least two correct probabilities given which either must be linked to a correct sample (x_1, x_2) or their followed through y-value.
	2 nd A1 B1ft	At least 3 correct probabilities corresponding to the correct value of y. Either • all 4 correct probabilities corresponding to the correct value of y • 6, 7, 8 and 9 with two correct probabilities, two other probabilities and $\sum p(y) = 1$
	Note Note Note	B1ft is dependent on 1 st M1 2 nd M1 1 st A1. A table is not required but y-values must be linked with their probabilities for 2 nd A1 B1 Eg: (6, 6) by itself does not count as an acceptable value of y
(c)	M1 Note	A correct follow through expression for $E(Y)$ using their distribution Also allow M1 for a correct expression for $E(X)$
	A1	7.95 cao Allow $\frac{159}{20}$

Question Number		Scheme		Marks		
6. (a)	$X \sim B(30, 0.4)$		$X \sim B(30, 0.4)$	B1		
(b)	•	y of buying <u>insurance</u>	Any one of these two assumptions in context which	[1] B1		
	• Customers buy <u>ins</u>	urance independently of each	refers to insurance.			
(c)	P(X < r) < 0.05			[1]		
()	$ {P(X \le 8) = P(X < 9)} = 0 $ $ {P(X \le 7) = P(X < 8)} = 0 $	1 of at	least one of either 0.094(0) or 0.0435 seen in part (c)	M1		
	So $r = 8$		r = 8	A1		
(1)	(V D(100 0 4) -) V N((40, 24)	Normal or N	[2] M1		
(d)	$\left\{ Y \sim B(100, 0.4) \approx \right\} Y \sim N($		(40, 24)	A1		
	$\left\{ P(Y \geqslant t) \right\} \approx P(Y > t - 0.$	5)	For either $t - 0.5$ or $t + 0.5$	M1		
	$\left\{ = P\left(Z > \frac{(t-0.5)-40}{\sqrt{24}}\right) = \frac{1}{\sqrt{24}}\right\}$	= 0.938				
	Standardising (\pm) with their mean and their					
	$\frac{(t-0.5)-40}{\sqrt{24}}=-1.54$	t	standard deviation and either -0.5 or t or $t+0.5$ or $t-1.5$	M1		
	√24	-1.54 or 1.5	4 or awrt –1.54 or awrt 1.54	B1		
	So, $\{So, t = 32.955571\} \Rightarrow \underline{t = 33}$ $\underline{t = 33}$					
				[6]		
(e)	$H_0: p = 0.4, H_1: p < 0.4$		ypotheses are stated correctly	B1		
	$\{ \text{Under H}_0, X \sim B(25, 0.4) \}$, [/]	*			
	Probability Method	Critical Region Method $P(X \le 6) = 0.0736$	$P(X \leq 6)$	M1		
	$P(X \le 6) = 0.0736$	$\{P(X \leqslant 7) = 0.1536\}$	Either 0.0736 or $CR: X \leq 6$ or $CR: X < 7$	A1		
	See notes So <u>percentage</u> (or <u>proportion</u>) who buy <u>insurance</u> has <u>decreased</u> .					
				A1 cso [5]		

Question		Scheme	Marks
Number	A 14 a 4*		
6. (e)		ve Method: Normal approximation to the Binomial Distribution formal Approximation gives 0.0764 (or 0.07652) and loses all A marks	
		$H_1: p < 0.4$ Both hypotheses are stated correctly	B1
	<u>×</u>	· -	
		$(5, 0.4) \approx Y \sim N(10, 6)$	
		$\approx P(X < 6.5) \qquad P(X \le 6) \text{ or } P(X < 6.5)$	M1
		$= P\left(Z < \frac{6.5 - 10}{\sqrt{6}}\right)$	
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
		= P(Z < -1.4288)	
		$\{=1-0.9236\} = 0.0764$ Award A0 here	A0
	{(0.0764 < 0.10	
	Reject	$t H_0$ or significant As in the main scheme	M1
	So perce i	ntage (or proportion) who buy insurance has decreased. Award A0 here	A0
	_	Question 6 Notes	1
6. (a)	B 1	$X \sim B(30, 0.4)$ or $X \sim Bin(30, 0.4)$. Condone $X \sim b(30, 0.4)$	
	Note	$X \sim B(30, 0.4)$ o.e. must be seen in part (a) only.	
(b)	B1	For any one of the two acceptable assumptions listed anywhere in part	
(-)	Note	A contextual statement, which refers to insurance, is required for this m	nark.
(c)	Note 1st M1	Award M1 A1 for $r = 8$ seen from no incorrect working. For writing N or for using a normal approximation.	
(d)	1 W11 1st A1	For a correct mean of 40 and a correct variance of 24	
	Note	1 st M1 and/or 1 st A1 may be implied in applying the standardisation formula	
	2 nd M1	For either $t - 0.5$ or $t + 0.5$ (i.e. an attempt at a continuity correction)	
	3 rd M1	As described on the mark scheme.	
	B1	-1.54 or 1.54 or awrt -1.54 or awrt 1.54. Note: Calculator gives -1.5382	
	2 nd A1	t = 33 cao (The integer value is required).	
(e)	B1	$H_0: p = 0.4$, $H_1: p < 0.4$ corectly labelled. Also allow $H_0: \pi = 0.4$, $H_1: \pi$	< 0.4
		Also allow $H_0: \pi = 0.4$, $H_1: \pi < 0.4$ or $H_0: p(x) = 0.4$, $H_1: p(x) < 0.4$	
	Note	B0 for $H_0 = 0.4$, $H_1 < 0.4$	
	1 st M1	Probability Method & CR Method: Stating $P(X \le 6)$	
	1 st A1	Either 0.0736 or CR : $X \le 6$ or CR : $X < 7$ Note: Condone CR ≤ 6	
	Note	Award 1 st M1 1 st A1 for writing down CR: $X \le 6$ or CR: $X < 7$ from no wo	rking.
	Note	Give A0 for stating $CR : P(X \le 6)$	
	2 nd dM1	dependent on the FIRST method mark being awarded.	
			their
			ccept H ₀ ".
		{	 1
	2 nd A1		
			ruon),
	Note	Give A0 for stating CR : $P(X \le 6)$	their ccept H

Question Number	Scheme	Marks
7. (a)	$\int_{0}^{k} \left(\frac{2x}{15}\right) \left\{ dx \right\} + \int_{5}^{k} \frac{1}{5} (5-x) \left\{ dx \right\} = 1$ Complete method of writing a correct equation for the area <i>with correct limits</i> and setting the result equal to 1	M1
		M1
	$\left[\frac{x^2}{15}\right]_{\{0\}}^{\{k\}} + \left[x - \frac{x^2}{10}\right]_{\{k\}}^{\{5\}} = 1$ $\mathbf{Both} \ \frac{2x}{15} \to \frac{x^2}{15} \ \mathbf{and} \ \frac{1}{5}(5-x) \to x - \frac{x^2}{10}$	A1 o.e.
	$\left(\frac{k^2}{15}\right) + \left(5 - \frac{5^2}{10} - \left(k - \frac{k^2}{10}\right)\right) = 1$	
	$2k^2 + 150 - 75 - 30k + 3k^2 = 30$	
	$k^2 - 6k + 9 = 0$ or $\frac{k^2}{6} - k + \frac{3}{2} = 0$	
	Dependent on the 1st M mark	
	$(k-3)(k-3) = 0 \Rightarrow k =$ Attempt to solve a 3 term quadratic equation leading to $k =$	dM1
	k = 3 k = 3	A1
(b)	$\{\text{mode} = \}$ 3 or states their k value from part (a)	[5] B1 ft
(0)	\[\frac{1}{3} \text{ States then \(\text{value from part \(a \)} \]	[1]
	$\left[\left(\begin{array}{c} P(X \subset k) \\ Y \subset k \end{array} \right) \right]$	
(c)	$\left\{ P\left(X \leqslant \frac{k}{2} \middle X \leqslant k\right) = \frac{P\left(X \leqslant \frac{k}{2} \cap X \leqslant k\right)}{P\left(X \leqslant k\right)} \right\}$	
	$= \frac{P\left(X \leqslant \frac{k}{2}\right)}{P\left(X \leqslant k\right)}$ Either $\frac{P\left(X \leqslant \frac{k}{2}\right)}{P\left(X \leqslant k\right)}$ or $\frac{F\left(\frac{k}{2}\right)}{F\left(k\right)}$ seen or implied.	M1
	$= \frac{\int_0^{\frac{k}{2}} \left(\frac{2x}{15}\right) \left\{ dx \right\}}{\int_0^{k} \left(\frac{2x}{15}\right) \left\{ dx \right\}}$ see notes	dM1
	$= \frac{\frac{1}{15} \left(\frac{k}{2}\right)^2}{\frac{k^2}{15}}$ Correct substitution of their limits or their k into conditional probability formula.	A1ft
		A1 cao
		[4]
		10

	Question 7 Notes				
7. (a)	1 st M1	$\int_0^k \left(\frac{2x}{15}\right) \left\{ dx \right\} + \int_5^k \frac{1}{5} (5-x) \left\{ dx \right\} = 1. $ (with correct limits and =1) $\left\{ dx \right\}$ not needed.			
	2 nd M1	Evidence of $x^n \to x^{n+1}$			
	1 st A1	Both $\frac{2x}{15} \to \frac{x^2}{15}$ and $\frac{1}{5}(5-x) \to x - \frac{x^2}{10}$			
	3rd dM1	dependent on the FIRST method mark being awarded.			
		Attempt to solve a three term quadratic equation. Please see table on page 20			
	2 nd A1	k = 3 from correct working.			
	Note	WARNING: $\frac{2x}{15} = \frac{1}{5}(5-x)$ to get $k = 3$ is M0M0A0M0A0.			
	Note	It is possible to give M0M1A1M0A0 in part (a).			
(b)	B1 ft	Mode = 3 or candidate states their k value from part (a), where $0 < \text{their } k < 5$			
(c)	1 st M1	Either $\frac{P\left(X \leqslant \frac{k}{2}\right)}{P\left(X \leqslant k\right)}$ or $\frac{F\left(\frac{k}{2}\right)}{F\left(k\right)}$, seen or implied by their later working.			
	Note	Without reference to a correct conditional probability statement give 1 st M0 for either			
		$\frac{f\left(\frac{k}{2}\right)}{f(k)} \text{ or } \frac{F(k) - F\left(\frac{k}{2}\right)}{F(k)} \text{ or } \frac{P\left(X \leqslant \frac{k}{2}\right) \times P\left(X \leqslant k\right)}{P\left(X \leqslant k\right)}$			
	2 nd dM1	dependent on the FIRST method mark being awarded.			
		Applies the conditional probability statement by writing down			
		Applies the conditional probability statement by writing down $ \frac{\int_{0}^{\frac{k}{2}} \left(\frac{2x}{15}\right) \left\{ dx \right\}}{\int_{0}^{k} \left(\frac{2x}{15}\right) \left\{ dx \right\}} \text{ with limits.} $ • $ \frac{F\left(\frac{k}{2}\right)}{F(k)} \text{ where } F(x) \text{ is defined as } F(x) = \frac{x^{2}}{15} $ These statements can be implied by later working.			
	Note	Finding $P(X \le 1.5) = 0.15$ and $P(X \le 3) = 0.6$ without applying $\frac{0.15}{0.6}$ is 2^{nd} M0			
	1 st A1ft	Correct substitution of their limits or their <i>k</i> into conditional probability formula.			
	Note	Candidates can work in terms of k for this 1 st A1 mark.			
	2 nd A1	$\frac{1}{4}$ or 0.25 cao			
	Note	Condone giving 2 nd A1 for achieving a correct answer of 0.25 where at least one of their			
	stated $P\left(X \leq \frac{k}{2}\right)$ or $P\left(X \leq k\right)$ is greater than 1				
	Note	Alternative method using similar triangles. Area up to $\frac{k}{2}$ is $\frac{1}{4}$ of the area up to k .			
		This can score 4 marks.			

7. (a)	Alternative Method 1 for Part (a) Using the CDF	
7• (a)	, – ¬v	
	$0 \leqslant x \leqslant k, \ F(x) = \int_0^k \frac{2t}{15} \left\{ dt \right\} = \left[\frac{2t^2}{\underline{30}} \right]_0^k = \frac{x^2}{\underline{15}}$ Evidence of $x^n \to x^{n+1}$	2 nd M1
	$k < x \le 5, \ F(x) = F(k) + \int_{k}^{x} \frac{1}{5} (5 - t) \{dt\}$ $\mathbf{Both} \ \frac{2x}{15} \to \underline{\frac{x^{2}}{15}} \mathbf{and}$	1 st A1 o.e.
	$= \frac{k^2}{15} + \left[\frac{1}{5}\left(5t - \frac{t^2}{2}\right)\right]_k^x \qquad \frac{1}{5}(5-x) \to \underline{x - \frac{x^2}{10}}$	0.0.
	$= \frac{k^2}{15} + \frac{1}{5} \left(\underbrace{\frac{5x - x^2}{2}} \right) - \frac{1}{5} \left(5k - \frac{k^2}{2} \right)$	
	$= x - \frac{x^2}{10} - k + \frac{k^2}{6}$,
	$\left\{ F(5) = 1 \Longrightarrow \right\} 5 - \frac{5^2}{10} - k + \frac{k^2}{6} = 1$ Complete method of writing a correct equation for the area <i>with correct limits</i> and setting $F(5) = 1$	1st M1
	then apply the main scheme	
7. (a)	Alternative Method 2 for Part (a) Use of Area	
	$\begin{array}{ccc} 1 & (2k) & 1(5-k) & \text{Complete area expression put} = 1 \end{array}$	M1
	$\frac{1}{2}k\left(\frac{2k}{15}\right) + \frac{1}{2}\left(\frac{5-k}{5}\right)(5-k) = 1$ Complete area expression put = 1 At least one term correct on LHS Correct LHS	M1 A1 o.e.
	then apply the main scheme	
General	Note The c.d.f is defined as	l
	$F(x) = \begin{cases} 0, & x < 0 \\ \frac{x^2}{15}, & 0 \le x \le 3 \\ x - \frac{x^2}{10} - \frac{3}{2}, & 3 < x \le 5 \\ 1, & x > 5 \end{cases}$	
7. (a)	Method mark for solving a 3 term quadratic of the form $x^2 + bx + c = 0$	
	Factorising/Solving a quadratic equation is tested in Question 7(a).	
	1. Factorisation $(x^2 + bx + c) = (x + p)(x + q)$, where $ pq = c $, leading to $x =$	
	$ (ax^2 + bx + c) = (mx \pm p)(nx \pm q)$, where $ pq = c $ and $ mn = a $, leading to $x =$	
	2. Formula Attempt to use correct formula (with values for a, b and c)	
	3. Completing the square	
	Solving $x^2 + bx + c = 0$: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x =$	

PhysicsAndMathsTutor.com

Mark Scheme (Results)

Summer 2015

Pearson Edexcel GCE in Statistics 2 (6684/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2015
Publications Code UA042711
All the material in this publication is copyright
© Pearson Education Ltd 2015

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method
 (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- or d... The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks

- affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

Question Number	Scheme		Marks
		notes	
1. (a)	$\mathbf{D}(\mathbf{M} > 10) = 1 \mathbf{D}(\mathbf{M} < 0)$	M1: using or writing $1 - P(N \le 9)$ or	3.54 . 4
	$P(N \ge 10) = 1 - P(N \le 9)$	1 - P(N < 10)	M1 A1
	= 0.4126	A1: awrt 0.413	

(b)	Y represents number of owls per 200 km ² \Rightarrow Y ~ Po(1.8)	B1: using or writing Po(1.8)	B1
	$P(Y=2) = \frac{e^{-1.8}1.8^2}{2!}$	M1: for a single term of the form $\frac{e^{-\lambda}\lambda^2}{2!}$ with any value for λ or $P(X \le 2) - P(X \le 1)$	M1 A1
	= 0.2678	A1: awrt 0.268	

(c)	Normal approximation	M1: Using or writing, normal approximation with mean = 450	M1
	$\mu = 50 \times 9 = 450 \ \sigma^2 = 450$	M1: Using or writing the mean = variance. Does not need to be 450. May be seen in the standardisation calculation.	M1
		M1: $\pm \left(\frac{(470 \text{ or } 469.5 \text{ or } 470.5) - their \text{ mean}}{their \text{ sd}}\right)$ May be implied by a correct answer or $z = \text{awrt } 0.92$	M1
	$P(X \ge 470) \approx 1 - P\left(Z < \frac{469.5 - 450}{\sqrt{450}}\right)$	M1: dep on previous method mark being awarded. Using a continuity correction 470 ± 0.5 May be implied by a correct answer or $z = \text{awrt } 0.92$ A1: correct standardisation no need to subtract from 1. Award for $\frac{469.5 - 450}{\sqrt{450}}$ or awrt 0.92 or a correct answer	dM1 A1
	= 0.1788	A1: awrt 0.179	A1
			(6)

Question Number	Scheme		Marks
2(a)		notes	
	$X \sim B(30, 0.25)$	B1: using B(30, 0.25)	B1
	$P(X \le 10) - P(X \le 4) = 0.8943 - 0.0979$	M1: using $P(X \le 10) - P(X \le 4)$ or $P(X \ge 5) - P(X \ge 11)$ oe	M1 A1
	= 0.7964	A1: awrt 0.796	
	NB a correct answer gains full marks		

(b)	$H_0: p = 0.25$ $H_1: p < 0.25$	B1: Both hypotheses correct, labelled H_0 or NH or H_n and H_1 or AH or H_a , must use p or $p(x)$ or π	B1
	B(15, 0.25)	M1: for using B(15, 0.25)	
	$P(X \le 1) = 0.0802$	A1: awrt 0.0802 or CR $X \le 1$ (allow $P(X \ge 2) = 0.9198$)	M1 A1
	NB: Allow M1 A1 for a correct CR with no	incorrect working	
	Reject H ₀ or Significant or 1 lies in the critical region	M1: A correct statement – do not allow contradictory non contextual statements. Follow through their Probability/CR (for 1 or 2 tail test). If no H ₁ given then M0. Ignore their comparison. For a probability < 0.5, statement must be correct compared to 0.1 for 1 tail test and 0.05 for 2 tailed test or if the probability > 0.5, statement must be correct compared to 0.9 for 1 tail test and 0.95 for 2 tailed test.	dM1 A1cso
	There is evidence that the radio company's claim is true. Or The new transmitter will reduce the	A1: cso (all previous marks awarded) and a correct statement containing the word company if writing about the claim	
	proportion of houses unable to receive <u>radio</u>	or radio if full context.	

Question Number	Scheme		Marks
		Notes	
2()	$\int_{0}^{2} kx^{2} dx + \int_{2}^{6} k \left(1 - \frac{x}{6} \right) dx = 1$	M1: for adding the two integrals, and attempting to integrate, at least one integral $x^n \rightarrow x^{n+1}$, ignore limits and	
3(a)		does not need to be put equal to 1. Do not award if they add before integrating	M1 A1
	$k \left[\frac{x^3}{3} \right]_0^2 + k \left[x - \frac{x^2}{12} \right]_2^6 = 1$	A1: correct integration, ignore limits and does not need to be put equal to 1	
	$k\left[\frac{8}{3}\right] + k\left[3 - \frac{5}{3}\right] = 1$	M1: dependent on first M being awarded, correct use of limits and putting equal to 1.	
		This may be seen as $F(2) = \frac{8}{3}k$ and using $F(6) = 1$	dM1 A1cso
]	4k = 1	A1: cso answer given so need $4k = 1$	
	$k = \frac{1}{4} *$	leading to $k = \frac{1}{4}$	

NB Validation – if they substitute in $k=\frac{1}{4}$ you may award the 1st three marks as per scheme. For the Final A mark they must say "therefore $k=\frac{1}{4}$ "

(b)	2	B1: cao	B1
(c)	$\int_0^x kt^2 dt = \frac{kx^3}{3}$	M1: attempting to find $\int_0^x kt^2 dt$ $t^2 \rightarrow t^3$, ignore limits, may leave in terms of k	M1
	$\int k \left(1 - \frac{t}{6} \right) dt = k \left[t - \frac{t^2}{12} \right] + C$ $= kt - k \frac{t^2}{12} + C$	M1: attempting to find $\int k(1-\frac{t}{6})dt$ at least one integral $t^n \to t^{n+1}$ and either have $+ C(C \neq 0)$ and use $F(6) = 1$ or	M1
	F(6) = 1	have limits 2 and x and + "their $\int_0^2 kt^2 dt$ " and attempt to integrate $t^n \to t^{n+1}$ NIR: may use any letter, need not be t	
	$6k - 3k + C = 1 \therefore C = \frac{1}{4}$	NB: may use any letter, need not be t , condone use of x	
	$F(x) \begin{cases} 0 & x < 0 \\ \frac{x^3}{12} & 0 \le x \le 2 \\ \frac{x}{4} - \frac{x^2}{48} + \frac{1}{4} & 2 < x \le 6 \end{cases}$	A1: second line correct A1: third line correct B1: first and fourth line correct they may use "otherwise" instead of $x < 0$	A1 A1 B1
	$\begin{array}{ c c } \hline & 1 & x > 6 \\ \hline \textbf{NB: Condone use of < rather than } \leq \text{ and vice} \\ \end{array}$	or $x > 6$ but not instead of both versa	

PhysicsAndMathsTutor.com

Question Number	Scheme		Marks
(d)	$\frac{x}{4} - \frac{x^2}{48} + \frac{1}{4} = 0.75$	M1: putting their line 2 or their line 3 = 0.75	M1 A1
	$x^2 - 12x + 24 = 0$ oe	A1: The correct quadratic equation – like terms must be collected together	
	$x = \frac{12 \pm \sqrt{144 - 4 \times 24}}{2}$	M1d: dep on previous M1 being awarded. A correct method for solving a 3 term quadratic equation = 0 leading to $x =$ Use either the quadratic formula or completing the square - If they quote a correct formula and attempt to use it, award the method mark if there are small errors. Where the formula is not quoted, the method mark can be implied from correct working with values but is lost if there is a mistake. If they attempt to factorise award M1 if they have $ (x^2 + bx + c) = (x + p)(x + q), $ where $ pq = c $ leading to $x =$ May be implied by a correct value for x	dM1 A1
	$= 2.54 \text{ or } 6 - 2\sqrt{3}$	A1: awrt 2.54 or $6-2\sqrt{3}$ or $6-\sqrt{12}$. If 2 values for x are given they must eliminate the incorrect one.	

Question Number	Scheme			Marks
			Notes	
4 (a)	0.8		B1: cao	B1
(1)	1005		D1	D1
(b)	0.25		B1: cao	B1
(c)	$\frac{(0.5-0)^2}{12} = \frac{1}{48} \text{ or awrt } 0.0208$		M1: for $\frac{(0.5\pm0)^2}{12}$ or for $\int_0^{0.5} 2x^2 dx - (\text{their } (b))^2 \text{ with some integration } x^n \to x^{n+1}$ A1: $\frac{1}{48}$ or awrt 0.0208 or awrt 2.08 ×10 ⁻²	M1A1
	_	_	_	T
(d)	P(L > 0.4) = 0.2	P(L < 0.4) = 0.8	An awrt 0.123 award B1 M1 A1	
	<i>Y</i> ∼ B(30, 0.2)	<i>Y</i> ∼ B(30, 0.8)	B1: using or writing B(30, their $P(L < 0.4)$ or B(30, their $P(L > 0.4)$. If they have not written these probabilities in this part use answer from part (a) ie $P(L < 0.4) = (a)$ or $P(L > 0.4) = 1 - (a)$	B1
	$P(Y \le 3) = 0.1227$	$P(Y \ge 4) = 0.1227$	M1: dependent on previous B mark being awarded. Using B(30,P($L>0.4$) with P($Y \le 3$) written or used Or B(30 P($L<0.4$)) with P($Y \ge 4$) written or used A1: awrt 0.123	dM1A1
(e)	$1 - \left[4 \times 0.4 - 4 \times 0.4^{2}\right] = \frac{1}{25} \text{ or } 0.04$		M1: Using 1- F(0.4) or F(0.5) – F(0.4) or P($X \le 0.5$) – P($X \le 0.4$). Must see some substitution of 0.4 A1: $\frac{1}{25}$ or 0.04 only	M1A1
(f)	Po(4)		B1ft: using or writing Po(4) NB for ft they must either write $100 \times$ "their 0.04" and use Poison or write Po("their λ ") Allow P instead of Po	B1ft
	$P(X \ge 8) = 1 - P(X \le 7)$ = 1 - 0.9489		M1 using or writing 1- P($X \le 7$) If using normal approximation, they must either write this or $\frac{7.5-4}{2}$ or $\frac{7.5-4}{\sqrt{3.84}}$ or $\frac{7.5-4}{\text{awrt } 1.96}$ or $\frac{7.5-20}{\sqrt{16}}$	M1
	= 0.0511		A1 awrt 0.0511	A1

Question Number	Scheme		Marks
		Notes	
5(a)	$X \sim \text{Po}(4)$ $P(X = 0) = 0.0183$ $P(X \ge 8) = 0.0511$ $P(X \le 1) = 0.0916$ $P(X \ge 9) = 0.0214$	M1: using Po(4), need to see a probability from Po(4), need not be one of the 4 given here. May be implied by a single correct CR	M1 A1 A1
	$CR X = 0$ $X \ge 9$	A1: $X = 0$ or $X \le 0$ or $X \le 1$ A1: $X \ge 9$ or $X > 8$ Any letter(s) may be used instead of X eg CR or Y or in words SC candidates who write $P(X = 0)$ and $P(X \ge 9)$ award M1A1 A0 NB Candidates who write $8 < x \le 0$ oe	
		get M1A0A0	
(b)	$H_0: \lambda = 4$ $H_1: \lambda \neq 4$	B1: both hypotheses correct, labelled H_0 or NH or H_n and H_1 or AH or H_a may use λ or μ . These must be seen in part (b)	B1
	There is evidence that <i>Liftsforall's</i> claim is true	B1: ft their CR only, Do not ft hypotheses. Needs to include the word <i>Liftsforall</i> . If no Critical region stated in part (a) award B0	B1ft
	or There is insufficient evidence to doubt Liftforall's claim	or $P(X \le 3) = \text{awrt } 0.434 \text{ and a}$ correct conclusion.	
(c)	0.0183 + 0.0214 = 0.0397	D1. Assert 0.0207	D.1
		LDL AWILUU39/	IBI
	0.0377	B1: Awrt 0.0397	B1
(d)	$P(B \le 3 B \sim Po(6)) = 0.1512$	M1: using Po(6) and writing or using $P(B \le 3)$ oe. A1: awrt 0.151	M1 A1
		M1: using Po(6) and writing or using	
	$P(B \le 3 B \sim Po(6)) = 0.1512$	M1: using Po(6) and writing or using $P(B \le 3)$ oe. A1: awrt 0.151 B1ft: dep on M1 being awarded. Using or writing B(4,"their 0.151") for use they need $(1-p)^4$ or $p(1-p)^3$	M1 A1
	$P(B \le 3 B \sim Po(6)) = 0.1512$ $X \sim B(4, 0.1512)$	M1: using Po(6) and writing or using $P(B \le 3)$ oe. A1: awrt 0.151 B1ft: dep on M1 being awarded. Using or writing B(4,"their 0.151") for use they need $(1-p)^4$ or $p(1-p)^3$	M1 A1
	$P(B \le 3 B \sim Po(6)) = 0.1512$ $X \sim B(4, 0.1512)$ Alternative method for first 3 marks	M1: using Po(6) and writing or using $P(B \le 3)$ oe. A1: awrt 0.151 B1ft: dep on M1 being awarded. Using or writing B(4,"their 0.151") for use they need $(1-p)^4$ or $p(1-p)^3$ or $p^2(1-p)^2$ M1: using Po(6) and writing or using	M1 A1
	$P(B \le 3 B \sim Po(6)) = 0.1512$ $X \sim B(4, 0.1512)$ Alternative method for first 3 marks $P(B \ge 4 B \sim Po(6)) = 0.8488$	M1: using Po(6) and writing or using $P(B \le 3)$ oe. A1: awrt 0.151 B1ft: dep on M1 being awarded. Using or writing B(4,"their 0.151") for use they need $(1-p)^4$ or $p(1-p)^3$ or $p^2(1-p)^2$ M1: using Po(6) and writing or using $P(B \ge 4)$ oe A1: awrt 0.849 B1ft: dep on M1 being awarded. Using or writing B(4,"their 0.849") for use they need $(p)^4$ or $p^3(1-p)$ or	M1 A1 dB1ft M1 A1
	$P(B \le 3 B \sim Po(6)) = 0.1512$ $X \sim B(4, 0.1512)$ Alternative method for first 3 marks $P(B \ge 4 B \sim Po(6)) = 0.8488$ $Y \sim B(4, 0.849)$	M1: using Po(6) and writing or using $P(B \le 3)$ oe. A1: awrt 0.151 B1ft: dep on M1 being awarded. Using or writing B(4,"their 0.151") for use they need $(1-p)^4$ or $p(1-p)^3$ or $p^2(1-p)^2$ M1: using Po(6) and writing or using $P(B \ge 4)$ oe A1: awrt 0.849 B1ft: dep on M1 being awarded. Using or writing B(4,"their 0.849") for use they need $(p)^4$ or $p^3(1-p)$ or	M1 A1 dB1ft M1 A1
	$P(B \le 3 B \sim Po(6)) = 0.1512$ $X \sim B(4, 0.1512)$ Alternative method for first 3 marks $P(B \ge 4 B \sim Po(6)) = 0.8488$ $Y \sim B(4, 0.849)$ If 0	M1: using Po(6) and writing or using $P(B \le 3)$ oe. A1: awrt 0.151 B1ft: dep on M1 being awarded. Using or writing B(4,"their 0.151") for use they need $(1-p)^4$ or $p(1-p)^3$ or $p^2(1-p)^2$ M1: using Po(6) and writing or using $P(B \ge 4)$ oe A1: awrt 0.849 B1ft: dep on M1 being awarded. Using or writing B(4,"their 0.849") for use they need $(p)^4$ or $p^3(1-p)$ or $p^2(1-p)^2$ M1: using or writing	M1 A1 dB1ft M1 A1 dB1ft
	$P(B \le 3 B \sim Po(6)) = 0.1512$ $X \sim B(4, 0.1512)$ Alternative method for first 3 marks $P(B \ge 4 B \sim Po(6)) = 0.8488$ $Y \sim B(4, 0.849)$ If $0 P(X \le 1) = P(X = 0) + P(X = 1) (1 - 0.1512)^4 + 4 \times (1 - 0.1512)^3 \times 0.1512 = 0.889$	M1: using Po(6) and writing or using $P(B \le 3)$ oe. A1: awrt 0.151 B1ft: dep on M1 being awarded. Using or writing B(4,"their 0.151") for use they need $(1-p)^4$ or $p(1-p)^3$ or $p^2(1-p)^2$ M1: using Po(6) and writing or using $P(B \ge 4)$ oe A1: awrt 0.849 B1ft: dep on M1 being awarded. Using or writing B(4,"their 0.849") for use they need $(p)^4$ or $p^3(1-p)$ or $p^2(1-p)^2$ M1: using or writing $P(X=0) + P(X=1)$ oe	M1 A1 dB1ft M1 A1 dB1ft M1
	$P(B \le 3 B \sim Po(6)) = 0.1512$ $X \sim B(4, 0.1512)$ Alternative method for first 3 marks $P(B \ge 4 B \sim Po(6)) = 0.8488$ $Y \sim B(4, 0.849)$ If $0 P(X \le 1) = P(X = 0) + P(X = 1) (1 - 0.1512)^4 + 4 \times (1 - 0.1512)^3 \times 0.1512$	M1: using Po(6) and writing or using $P(B \le 3)$ oe. A1: awrt 0.151 B1ft: dep on M1 being awarded. Using or writing B(4,"their 0.151") for use they need $(1-p)^4$ or $p(1-p)^3$ or $p^2(1-p)^2$ M1: using Po(6) and writing or using $P(B \ge 4)$ oe A1: awrt 0.849 B1ft: dep on M1 being awarded. Using or writing B(4,"their 0.849") for use they need $(p)^4$ or $p^3(1-p)$ or $p^2(1-p)^2$ M1: using or writing $P(X=0) + P(X=1)$ oe M1: $(1-p)^4 + 4 \times (1-p)^3 \times p$ oe A1: awrt 0.889	M1 A1 dB1ft M1 A1 dB1ft M1 dM1
	$P(B \le 3 B \sim Po(6)) = 0.1512$ $X \sim B(4, 0.1512)$ Alternative method for first 3 marks $P(B \ge 4 B \sim Po(6)) = 0.8488$ $Y \sim B(4, 0.849)$ If $0 P(X \le 1) = P(X = 0) + P(X = 1) (1 - 0.1512)^4 + 4 \times (1 - 0.1512)^3 \times 0.1512 = 0.889 If 0.5$	M1: using Po(6) and writing or using $P(B \le 3)$ oe. A1: awrt 0.151 B1ft: dep on M1 being awarded. Using or writing B(4,"their 0.151") for use they need $(1-p)^4$ or $p(1-p)^3$ or $p^2(1-p)^2$ M1: using Po(6) and writing or using $P(B \ge 4)$ oe A1: awrt 0.849 B1ft: dep on M1 being awarded. Using or writing B(4,"their 0.849") for use they need $(p)^4$ or $p^3(1-p)$ or $p^2(1-p)^2$ M1: using or writing $P(X=0) + P(X=1)$ oe M1: $(1-p)^4 + 4 \times (1-p)^3 \times p$ oe A1: awrt 0.889	M1 A1 dB1ft M1 A1 dB1ft M1 A1 dM1 dM1
(d)	$P(B \le 3 B \sim Po(6)) = 0.1512$ $X \sim B(4, 0.1512)$ Alternative method for first 3 marks $P(B \ge 4 B \sim Po(6)) = 0.8488$ $Y \sim B(4, 0.849)$ If $0 P(X \le 1) = P(X = 0) + P(X = 1) (1 - 0.1512)^4 + 4 \times (1 - 0.1512)^3 \times 0.1512 = 0.889 If 0.5 P(Y \ge 3) = P(Y = 3) + P(Y = 4)$	M1: using Po(6) and writing or using $P(B \le 3)$ oe. A1: awrt 0.151 B1ft: dep on M1 being awarded. Using or writing B(4,"their 0.151") for use they need $(1-p)^4$ or $p(1-p)^3$ or $p^2(1-p)^2$ M1: using Po(6) and writing or using $P(B \ge 4)$ oe A1: awrt 0.849 B1ft: dep on M1 being awarded. Using or writing B(4,"their 0.849") for use they need $(p)^4$ or $p^3(1-p)$ or $p^2(1-p)^2$ M1: using or writing $P(X=0) + P(X=1)$ oe M1: $(1-p)^4 + 4 \times (1-p)^3 \times p$ oe A1: awrt 0.889 M1: using or writing $P(X=3) + P(X=4)$ oe M1: $(p)^4 + 4 \times (p)^3 \times (1-p)$ oe A1: awrt 0.889	M1 A1 dB1ft M1 A1 dB1ft M1 dM1 A1 dM1 A1

Question Number	Sch	neme	Marks
	NB: All powers of 1 must be simplified fo	or the Accuracy(A) marks	
	The state of the s	notes	
6(a)	$\left[\frac{kx^{n+1}}{n+1}\right]_0^1 = 1$	M1: attempting to integrate $x^n \rightarrow x^{n+1}$ and putting equal to 1,	M1A1
	$\lfloor n+1 \rfloor_0$	ignore limits A1: correct integration	
	k = n + 1	A1: $k = n + 1$ Do not accept $\frac{n+1}{1^{n+1}}$	A1
(b)	T		
(D)		M1: Writing or using $\int_0^1 kx^{n+1} dx$,	
	$\int_{0}^{1} kx^{n+1} dx = \left[\frac{kx^{n+2}}{n+2} \right]_{0}^{1}$	ignore limits. Allow $\int_0^1 kx(x)^n dx$	M1A1
	$\begin{bmatrix} J_0 & \dots & & \\ & & 1 \end{bmatrix}_0$	Allow substitution of their k	
		A1: correct integration $\frac{kx^{n+2}}{n+2}$	
	$=\frac{n+1}{n+2}$	A1: correct answer only- must be in terms or <i>n</i>	Alcao
(c)		M1: Attempting to integrate	
	$\int_0^1 kx^{n+2} dx = \left[\frac{kx^{n+3}}{n+3} \right]$	$\int_0^1 kx^{n+2} dx, \ x^{n+2} \to x^{n+3}, \text{ ignore}$	
	$\int_0^{\infty} \frac{dx}{x} = \left[\frac{1}{n+3}\right]$	limits. Do not allow substitution of k	
		if it has <i>x</i> in it. This must be on its own with no extra bits added on.	M1
		A1: correct answer only	Alcao
	$=\frac{n+1}{2}$	SC if they have $\frac{k}{n+2}$ as answer to	
	n+3	part(b) award A1 for $\frac{k}{n+3}$	
(4)	Var $(X) = \frac{3}{5} - \left(\frac{3}{4}\right)^2 = \frac{3}{80}$	M1: using "their(c)" – ["their(b)"] ² with $n = 2$ or correct Var(X)	M1
(d)		Using $\int_0^1 kx^4 dx - \left[\int_0^1 kx^3 dx\right]^2$ for	171 1
		Var(X)	
	Var (3X) = 9 Var (X)	M1: for writing or using 9 Var (X) or 3^2 Var(X)	M1
	$=\frac{27}{80}$ oe or 0.3375 or 0.338	A1: cso	Alcso

Question Number	Scheme	Marks
--------------------	--------	-------

				Notes	
			award full n		I = .
P(10) = 0.2	P(20) = 0	.4 and P(50	0) = 0.4	B1: using $P(10) = 0.2 (p) P(20) =$	B1
				0.4(q) and $P(50) = 0.4(r)$ may be seen	
				in calculations or implied by	
Median 10, 20, 50				a correct probability. B1: three correct medians and no	D1
				extras.	B1
P(Median	10) =			M1: allow if $(p+q+r)=1$ and use	
$0.2^3 + 3 \times 0$	$0.2^2 \times 0.4 + 1$	$3\times0.2^2\times0$.4	$p^3+3\times p^2\times q+3\times p^2\times r$	
or				$\begin{array}{c} p + 3 \times p \times q + 3 \times p \times r \\ \mathbf{or} \end{array}$	
$0.2^3 + 3 \times 0$	$0.2^2 \times 0.8$			*-	
				$p^3 + 3 \times p^2 \times (q+r)$	
				look for $\frac{1}{125} + \frac{6}{125} + \frac{6}{125}$	
P(Median 50) =				M1: allow if $(p+q+r)=1$ and use	See below
$0.4^3 + 3 \times 0.4^2 \times 0.2 + 3 \times 0.4^2 \times 0.4$				$r^3 + 3 \times r^2 \times p + 3 \times r^2 \times q$	
or				or	
$0.4^3 + 3 \times 0.4^2 \times 0.6$				$r^3+3\times r^2\times (p+q)$	for ho
					to awa
				Look for $\frac{8}{125} + \frac{12}{125} + \frac{24}{125}$	
				125 125 125	
P(Median 20) =				M1: allow if $(p+q+r)=1$ and use	
$3 \times 0.2 \times 0.4^2 + 6 \times 0.2 \times 0.4 \times 0.4 + 0.4^3 +$				$3 \times p \times q^2 + 6 \times p \times q \times r + q^3 +$	
$3 \times 0.4^2 \times 0.4$					
				$3 \times q^2 \times r$	
				$\frac{12}{12} + \frac{24}{12} + \frac{8}{12} + \frac{24}{12}$	
				125 125 125 125	
		<u>marks </u> – A	Allow the use	e of 1, 2 and 5 for the medians for the	
method m		ation (impli	ied by correc	et answer) for $P(m = 10)$ or	
	or $P(m = 50)$		ica by correc	tt allswei) 101 1 (III – 10) 01	
, ,	,	*	nnlied by 2 c	orrect answers) $P(m = 10)$ or	
•	or $P(m = 50)$,	1	· ····· · · · · · · · · · · · · · · ·	
			nplied by 3 c	orrect answers) for $P(m = 10)$ and $P(m =$	
	d P(m = 50)				
_		_	_	it is 1 – their 2 other calculated	
probab	oilities. Do r	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 	$\frac{2}{2}$		
		2	, 5 5		
		e a correct a	answer their	working must be clear including the	
additio	on signs.				
median	10	20	50	A1: awrt any 1 correct	A2
mouran	0.104	0.544	0.352	A2: awrt all 3 correct	
	13	68	44	These do not need to be in a table as	
	Or $\frac{13}{125}$	()r ——	()r —	long as the correct probablity is with	
	125	125	125	the correct median(10, 20 & 50)	
				NB: Do Not allow the use of 1,2 and	
				5 for the medians for the A marks	

PhysicsAndMathsTutor.com