S2 S10	
1. Explain what you understand by	2. Bhim and Joe play each other at badminton and for each game, independently of all others,
(a) a population, (1)	the probability that Bhim loses is 0.2
(b) a statistic.	Find the probability that, in 9 games, Bhim loses
(1)	(a) exactly 3 of the games,
A researcher took a sample of 100 voters from a certain town and asked them who they would vote for in an election. The proportion who said they would vote for Dr Smith was 35%.	(b) fewer than half of the games. (2)
(c) State the population and the statistic in this case. (2)	Bhim attends coaching sessions for 2 months. After completing the coaching, the probability that he loses each game, independently of all others, is 0.05
(d) Explain what you understand by the sampling distribution of this statistic.	Bhim and Joe agree to play a further 60 games.
a) Population - all possible items from which	(c) Calculate the mean and variance for the number of these 60 games that Bhim loses. (2)
Statistic - A function from a random sample containing no unknown parameters	(d) Using a suitable approximation calculate the probability that Bhim loses more than 4 games. (3)
b) Population - All the people in the town who	a) x= Bhim loses xnB(9,0.2)
Can vote	$P(x=3) = {9 \choose 3} 0.2^{3} 0.8^{6} = 0.1762$
Statistic - The percentuge voting for Dr Smith	1) P(x < 4) = 0.9804
d) Sampling distribution. The probability distribution of those voting for Dr.Smith from all	0) x~B(60,0.05) M=np=60x0.0S=3 02=np(1-p)=3x0.9S=2.8S
possible samples of 100.	σ=2νρ(1-p) = 3×0·35=2-85
	~ 2c~Po(3) P(OC>4) =1-P(x <4) =0-1847
	3. A rectangle has a perimeter of 20 cm. The length, X cm, of one side of this rectangle is uniformly distributed between 1 cm and 7 cm.
	Find the probability that the length of the longer side of the rectangle is more than 6 cm long.
	x~4[1,7]
	riskerin in seek a seek Time in
	P(x>6) u P(x<4) = 6+3=3

4. The lifetime,
$$X$$
, in tens of hours, of a battery has a cumulative distribution function $F(x)$ given by

$$F(x) = \begin{cases} 0 & x < 1 \\ \frac{4}{9}(x^2 + 2x - 3) & 1 \le x \le 1.5 \\ 1 & x > 1.5 \end{cases}$$
(a) Find the median of X , giving your answer to 3 significant figures.

(3)

(b) Find, in full, the probability density function of the random variable X .

(3)

(c) Find $P(X \ge 1.2)$

A camping lantern runs on 4 batteries, all of which must be working. Four new batteries are put into the lantern.

(d) Find the probability that the lantern will still be working after 12 hours.

(2)

F(\mathbb{Q}_2) = $\mathbb{Q} \cdot \mathbb{S} \Rightarrow \frac{4}{9}(x^2 + 2x - 3) = \frac{1}{2}$

(2)

F(\mathbb{Q}_2) = $\mathbb{Q} \cdot \mathbb{S} \Rightarrow \frac{4}{9}(x^2 + 2x - 3) = \frac{1}{2}$

(2)

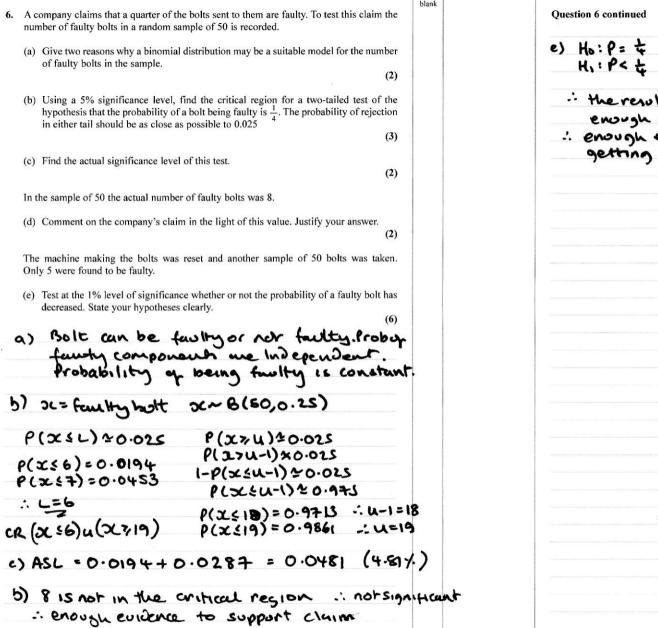
F(\mathbb{Q}_2) = $\mathbb{Q} \cdot \mathbb{S} \Rightarrow \mathbb{Q} = \mathbb{Q} \cdot \mathbb{S} = \mathbb{Q} = \mathbb{Q}$

a) 0.6267 4 = 0.1542

increased.

Leave

blank


(a) Explain why the Poisson distribution may be a suitable model in this case. Find the probability that, in a randomly chosen 2 hour period, (b) (i) all users connect at their first attempt, (ii) at least 4 users fail to connect at their first attempt. The company suffered from a virus infecting its computer system. During this infection it was found that the number of users failing to connect at their first attempt, over a 12 hour period, was 60. (c) Using a suitable approximation, test whether or not the mean number of users per hour who failed to connect at their first attempt had increased. Use a 5% level of significance and state your hypotheses clearly. a) (unneations are independent and occur at a constant rate b) a = failed connection xnPo(8) 1) P(x=0) = e-8 = 0.000335 ii) P(x74) =>+P(x83) = 0.9576 P(x73) c) x~ Po(48) & N(48,48) Ho: λ=48 ρ(x>60) ⇒cc ρ(x>59.5) H1: λ>48 ρ(x>59) = P(z > 59.5-48) = P(z > 1.66) = P(1.66) = 0.0485 (<0.05) .. There is enough evidence to rect hull hypothesis as result is significant in enough evidence to suggest fulled connections

A company has a large number of regular users logging onto its website. On average

(1)

(5)

4 users every hour fail to connect to the company's website at their first attempt,

.. the result is significant, so there is enough evidence to reject will hypotheris . enough evidence to suggest probability of getting a faulty bolt is reduced.

H .: P < t

P(x (s) = 0.007 ((0.01)

where
$$k$$
 and a are positive constants.

(a) (i) Explain why $a \ge 3$

(ii) Show that $k = \frac{2}{9(a-2)}$

(6)

Given that $E(Y) = 1.75$

Ouestion 7 continued

blank

(ii) Show that
$$k = \frac{2}{9(a-2)}$$

(6)

Given that $E(Y) = 1.75$

(b) show that $a = 4$ and write down the value of k .

(6)

For these values of a and k ,

(c) sketch the probability density function,

(d) write down the mode of Y .

(1)

(1)

(2)

(3)

(4) Write down the mode of Y .

(5)

(6)

(7)

(8)

(9)

(1)

(1)

(1)

(1)

(1)

(2)

(3)

(4)

(5)

(7)

(9)

(9)

(1)

(1)

(1)

(1)

(1)

(2)

(3)

(4)

(5)

(6)

(6)

For these values of
$$a$$
 and k ,

(c) sketch the probability density function,

(d) write down the mode of Y .

(1)

(a) i) a must be 73 , otherwise probability would be regarding then $y=3$ which is impossible.

(ii) If $(y)dy=1 \Rightarrow k \int ay-y^2dy=1$

$$\Rightarrow k \left(\frac{1}{2}a-1\right)=1$$

7. The random variable Y has probability density function f(y) given by

 $f(y) = \begin{cases} ky(a-y) \\ 0 \end{cases}$