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1.

A disease occurs in 3% of a population.

(a) State any assumptions that are required to model the number of people with the
disease in a random sample of size » as a binomial distribution.

@

(b) Using this model, find the probability of exactly 2 people having the disease in a
random sample of 10 people.

3)

(c) Find the mean and variance of the number of people with the disease in a random

sample of 100 people.
2)

A doctor tests a random sample of 100 patients for the disease. He decides to offer all
patients a vaccination to protect them from the disease if more than 5 of the sample have
the disease.

(d) Using a suitable approximation, find the probability that the doctor will offer all
patients a vaccination.
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4. A student takes a multiple choice test. The test is made up of 10 questions each with
5 possible answers. The student gets 4 questions correct. Her tether claims she was
guessing the answers, Using a one tailed test, at the 5% level of significance, test whether
or not there is evidence to reject the teacher’s claim.
State your hypotheses clearly.
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’ 3. The continuous random variable X is uniformly distributed over the interval [~1 A
Find
(a) E(X)
O]
‘ (b) Var(X)
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(d) P(X < 14)
1)
A total of 40 observations of X are made.
(e) Find the probability that at least 10 of these observations are negative.
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Richard regularly travels to work on a ferry. Over a long period of time, Richard has found
that the ferry is late on average 2 times every week. The company buys a new ferry to
improve the service. In the 4-week period after the new ferry is launched, Richard finds
the ferry is late 3 times and claims the scrvice has improved. Assuming that the number
of times the ferry is late has a Poisson distribution, test Richard’s claim at the 5% level of
significance. Statc your hypotheses clearly. @ |
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4". A continuous random variable X has the probability density function f(x) shown ir f{x)a
- Figure 1. 4
how that f(x) = 4 — &x for 0<x< 0.5and specify f(x) for all real values of x @ “
(a) Show =4 - |
(b) Find the cumulative distribution function F(x). |
\
(c) Find the median of X. & -
(d) Write down the mode of X. -
(e) State, with a reason, the skewness of X. B
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6. Cars arrive at a motorway toll booth at an average rate of 150 per hour.

(a) Suggest a suitable distribution to model the number of cars arriving at the toll booth, !
X, per minute.

@
(b) State clearly any assumptions you have made by suggesting this model.
2)
Using your model,
(c) find the probability that in any given minute }
(i) no cars arrive, J
(i1) more than 3 cars arrive,
3) J
(d) Tnany given 4 minutc period, find m such that PX > m) = 0.0487

&) '

(e) Using a suitable approximation find the probability that fewer than 15 cars arrive in |
any given 10 minute period. |
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7. The queuing time in minutes, X, of a customer at a post office is modelled by the Question 7 continued
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Using integration, find - P ( A7 5) = O °*q‘ ?
(b) the mean queuing time of a customer,
@) a)
(c) the probability that a customer will queue for more than 5 minutes. & I TK‘/(W\ {'L\ . rﬁ’klgi]l. 'H’\A.+ ot le,kﬂ' ,)\ (t veve

Three independent customers shop at the post office.
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(d) Find the probability that at least 2 of the customers queue for more than 5 minutes.
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