Edexcel Maths S2

Mark Scheme Pack

2005-2015

PhysicsAndMathsTutor.com

Stewart House 32 Russell Square London WC1B 5DN

June 2001

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject STATISTICS 6684

Question	Scheme	Marks
number		
1. (a)	(i) small village souse <u>census</u>	B1
	e.g. use electoral register or some other suitable list	B1.
	(i) conta ana	6 i
	eg. list of times and days when no. of vehicles travelling through combe counted. (some suitable list of time periods)*	ß((4)
(6)	eq. X = no. of vehicles passing through in a 10min period	BI
	X could have a <u>Poisson</u> distribution	βı (2)
	* time period must be specified e.g. 10 mins, Thour, 7an-7pm but < Iday	
2. (a)	X= no. of accidents in the next month X-Po(0.9)	B1 c.s.a.
	$P(X=0) = e^{-0.9} = 0.4065 = 0.401 @$	(1)
(6)	Y = no. of accidents in next 6 months. Y~Po(5.4)	BI
Ċ.	$P(Y = 2) = \frac{e^{-5 \cdot 4} (5 \cdot u)^2}{2} = 0.06585 \dots 0.066$	NI, AI (3)
	6r 0.065814	
(c)	M= no. of months with no accidents Identify	$9_1(J \text{ their}(a))$
	$M \sim B(4, 0.407)$ AWRT	\mathbf{N} HI. AL (3)
	$\int f(H=2) = \begin{pmatrix} 4\\ 2 \end{pmatrix} \begin{pmatrix} 0.407 \end{pmatrix} \begin{pmatrix} 0.593 \end{pmatrix} = 0.3495 \begin{pmatrix} 0.3496 \\$	
		(Ŧ)
· ·		

Stewart House 32 Russell Square London WC1B 5DN

June 2001

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject STATISTICS 6684

Question number	Scheme	Marks
3.	$H_0: \rho = \frac{1}{2} \qquad ; H_1: \rho \neq \frac{1}{2}$	B1 ; B1
- •	X = no. of gold leads in sample of 20. Under Ho Xn B(20, 2)	
\bigcirc	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MI
	C.R. $X \le I$ or $X > 9$ $P(X > 8) = 1 - 0.8982.$ = 2×0.0913 = 0.1018 = 0.1826	<u>A</u> 1 each value. <u>A</u> 1
	Not significant (either x=2 notin C.R. or prob > 1070)	MI
	Insufficient evidence of a change in proportion of goid venas	(T
4.	$X = no.$ of letters marked 1 st class $X \sim B(10, 0.20)$	
(a)	$P(x, y_3) = 1 - P(x \le 2), = 1 - 0.6778 = 0.3222 $ (0.372)	MI, AI (2)
િ (હ)	$P(X < 2) = P(X \le 1)$, = 0.3758 0.0.376	M1, A1 (2)
୍ଦ	$F = n0.0F States stamps in batch of 70 F \sim B(70, 0.20)$ $F \approx N(14, \sqrt{11.2})$	MI (Normal aprox AI Ju
	$P(F \leq 12) \approx P(Z \leq \frac{12 \cdot 5 - 14}{\sqrt{11 \cdot 2}}) \qquad \qquad \pm \frac{1}{2}$ Standardizing	
	$\frac{1}{11} \frac{1}{12} \frac{1}{13} = f(2 \le -0.4482) A WRT - 0.45$	AI
·	= 1 - 0.6736	AL (7)
	= 0.3264 (Awkt 0.826.0324)	
()	The TO letters form a random sample or are representative	B1 (1)
	or reners are independent	

Stewart House 32 Russell Square London WC1B 5DN

June 2001

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject STATISTICS 6684

Question	Scheme	Ma	ırks
number		<u></u>	
5.	X= no. of requests for bulbs in a week. X~Po(2)	• .	
· (a)	$P(X=4) = e^{-2} 2^{4} \text{ar} \left[P(X \le 4) - P(X \le 3) \right]$	HI A	(2)
	= 0-0902 or 0.090 or 0.09		(2)
ા	$f(x>5) = 1 - f(x \le 5), = 1 - 0.9834 = 0.0166$	Ηι, Αι	(2)
(c)	Y= no. of requests in Succks. Y~Po(6)	151	
Ç -	$P(Y \leq 5), = 0-4457$	M1, A1	(3)
(d)	$H_0: \lambda = 2 (or \mu = 8) ; H_1: \lambda < 2 (or \mu < 8)$	B1;B1	
	R= no. of requests in true ks. R~Po(8)	MI, AI	
	$P(R \leq 3) = 0.0424$ [C.L. $\leq 3 \approx profer(s)/0$]		(5)
	there is evidence that the rate of requests may decreased	DIV	
6 (a)	$f(x) = \frac{d}{dx} F(x) = \frac{1}{27} \left(-3x^2 + 12x \right) \qquad $	MI A2/110	-1 6.6.0.0.
(J) (L)	$\frac{d}{f(x)} = 0 \implies -6x + 12 = 0, \implies 2x = 2 \text{ is mode}$	MI, A1	(3)
in the	f(x) A	B 1	
(c)	(14) x, f(x) axes maked	BI	
	(2) and at least 1.4	81	(3)
(d)	$\mu = \int_{1}^{4} \left(\frac{4z^{2}}{q} - \frac{z^{3}}{q} \right) dx \qquad \text{Attempt } \int z f(x),$	Ax Mi a	e inlêgation Herpted
	$= \frac{1}{9} \left[\frac{4x^3}{3} - \frac{x^4}{4} \right]_{1}^{4} = \left(\frac{256}{27} - \frac{156}{36} \right) - \left(\frac{4}{27} - \frac{1}{36} \right) \qquad $	of MI	
	$= \frac{1 \cdot 25}{\sigma} \frac{\sigma}{\eta_{4}}$	AL	(3
(e)	$F(2.25) = \frac{1}{27} \left(-2.25^{3} + 6x 2.25^{2} - 5 \right) = 0.517 (AwA7 0.52)$	01	()
(7)	F(m) >0.5 => m> median	015	(from(e))
	$F(2) = \frac{1}{27} (-8 + 24 - 5) = \frac{1}{27} = 0.407 = 0.407$ mode < median	<u>G</u> I	(4) (2

Stewart House 32 Russell Square London WC1B 5DN

June 2001

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject STATISTICS 6684

<u> </u>
^{B1} (1)
BL (1)
Jt ² HI-7 F T AL dep
-HI - 14
1/12 AI (4)
Identify MI ([p from (a))
HI, AI (3)
B1 (2)
empt j'4t dt NI
TWEEN 0, 0,2
Al cs.o. (2)
a h
νο Μι λ=6 Αι
M
A1 (4
(7)
MI)
A1 } 19. 7/4 only

Stewart House 32 Russell Square London WC1B 5DN

Jan 2002

Advanced Subsidiary /Advanced Level

General Certificate of Education

Subject STATISTICS 6684

number	Scheme	Marks
1. (a	Collection / group / set of individuals or items	B1
(b	A r.v. that is a function of known observations from a population	B1B1
(c	College students. Mean approval rating of 75%	B1.B1
(d	(Probability) distribution of all possible mean approval ratings of sample size 50 Dependent	B1 B1
		7
2.	$H_0: \lambda = 2.5; H_1: \lambda > 2.5 $ (Accept $H_0: \lambda = 10; H_1: \lambda > 10$)	B1,B1
	1 week $X \sim Po(2.5)$, 4 weeks $X \sim Po(10)$ $Po(10)$	B1
}	$P(X \ge 14) = 1 - 0.8645 = 0.1355$	M1A1
	Insufficient evidence to reject H_0 Sales have not increased after	M1
	appointment of new salesman. Context [Note: $P(X < 14) = 0.9165$, $P(X < 15) = 0.9153$ for M1A11	Alft
		(7)
3. (s) X is no of passengers who do not turn up for this flight. K = Biv(200, 0.03)	MI
	both	A1
A	$X \sim Po(6)$	B1
	P(X < 4) = 0.1512 Strict inequality, 0.1512	M1A1
6	P(X > 4) = 1 - 0.2851 = 0.7149	M1A1
	[Notes: (b)Use of N(6,5.82) B1 P(X<3.5)M1A0 (c) P(X>4.5)M1A0 (b) Use of N(6.6) B0	
	(b) Exact Bin no credit.]	(7

Stewart House 32 Russell Square London WC1B 5DN

Jun 2002

Advanced Subsidiary /Advanced Level

General Certificate of Education

Subject STATISTICS 6684

Question Scheme Marks number 4. Continuous Uniform (Rectangular), X - U[0, 14]**(a) B1,B1** $E(X) = \frac{(14+0)}{2} = 7$ Form & sub, 7 **(b) M1A1** Mean arrival time is 8.02am 8.02am **A1** $P(X \le x) = \int_0^x \frac{1}{14} dt = \frac{x}{14}$ Integral, $\frac{x}{14}$ **(c)** M1,A1 0 x<0 $\frac{x}{14}$ $0 \le x \le 14$ F(x) =Centre B1ft 1 *x*>14 Ends B1 P(X > 10) = 1 - F(10)(d) Require '1 minus'or valid integral $=1-\frac{10}{14}=\frac{2}{7}$ $\frac{2}{7}$ **M1 A1** 11

Paper No. 52

Stewart House 32 Russell Square London WC1B 5DN

Jon 2002

Advanced Subsidiary /Advanced Level

General Certificate of Education

Subject STATISTICS 6684

Question number	Scheme	:	Marks
5.(a)	Failed connections occur singly, independent	lently and at a	R1 R1
	constant fate of 5 per notil, fandonny	Ашу тімо	ы,ы
(b) (i)	X is no of failed connections every hour.	P(X=0) = 0.0498	M1A1
(i i)	P(X > 4) = 1 - 0.8153 = 0.1847	Require '1 minus', 0.1847	M1A1
(c)	X ~ Po(24)		B1 (2
		• •	(1
(d)	Y is no of users that fail to connect at the $Y \sim N(24, 24)$	ir first attempt Normal, both	B1,B1
	$P(Y \ge 12) = 1 - P(Z < \frac{11.5 - 24}{\sqrt{24}})$	From above, all correct	M1,A1
	= P(Z < -2.55)	-2.55	A 1
	= 0.9946		A1 13 (
6. (a)	$X \sim Bin(20, 0.4)$	Bin, 20 & 0.4	B1,B1
(b)	$P(5 < X < 15) = 0.9984 - 0.1256 \leq 1$ =0.8728	4&≤5, Subtract, both correct	(M1,M1(dep) A1A1
	$F(X) = 20 \times 0.4 = 8$	8	B1
	$d = \sqrt{20 \times 0.4 \times 0.6} = 2.19$	Sub in \sqrt{nna} 2.19	M1 A1
	$Su = \sqrt{20 \times 0.4 \times 0.0} = 2.17$		(
(d)	$H_0: p = 0.4$		
	$H_1: p > 0.4$	Both	B1
	$P(X \ge 8 n = 10, p = 0.4) = 1 - 0.9877$	Require '1 minus'	M1
	0.0123		AI
	Reject H ₀ Proportion of diners who prefer to eat or is higher than trade magazine's claim	ganic foods Context	M1 A1ft
	[Note; P(X < 6)=0.9452, P(X < 7)=0.9877]	M1A1]	14
	·		

Stewart House 32 Russell Square London WC1B 5DN

Jen 2002

Advanced Subsidiary /Advanced Level

General Certificate of Education

Subject STATISTICS 6684

Que Nui	estion mber	Scheme	N	Aarks	}
1.	<i>(a)</i>	Survey is less time consuming.	B1		
	<i>(b)</i>	It is easier/quicker to analyse the results	B1		(2)
	(<i>c</i>)	List of members	B1		(1)
	(d)	The members	B1		(1)
				(4 ma	rks)
2.	(<i>a</i>)	<i>Y</i> is the random variable consisting of any function of the X_i that involves no other quantities.	B1 B	1	(2)
	(b)	$Y = \overline{X} = \frac{\sum X}{n}$	B1		(1)
	(c)	When all possible samples are taken and the values of <i>Y</i> found then the values form a probability distribution (known as the sampling distribution	B1 B	1	(2)
				(5 ma	rks)
3.	(<i>a</i>)	$E(R) = \frac{\alpha + \beta}{2} = 3, \Longrightarrow \alpha + \beta = 6$	M1 A	A 1	
	(b)	$\operatorname{Var}(R) = \frac{(\beta - \alpha)^2}{12} = \frac{25}{3}, \Longrightarrow (\beta - \alpha)^2 = 100$	M1 A	A1	
		$\alpha = -2, \beta = 8$	M1 A	A1 A1	(7)
		$P(R < 6.6) = \frac{1}{10} \times 8.6 = 0.86$	M1 A	A 1	(2)
				(9 ma	rks)
4.	<i>(a)</i>	$H_0: \rho = 0.20, H_1: \rho < 0.20$	B1 B	1	
		$X =$ number buying single packets, $X \sim B(25, 0.20)$			
		$P(X \le 2) = 0.0982$	M1 A	A 1	
		0.0982 > 5%, so not significant (comparison)	M1		
		No reason to suspect the percentage who bought crisps in single packets that day was lower than usual (context)	A1 ft	-	(2)
		$H_0: \rho = 0.03, H_1: \rho \neq 0.03$	B1 B	1	
		<i>Y</i> = number buying bumper packs, <i>Y</i> ~ B(300, 0.03) \Rightarrow <i>Y</i> ~ Po(9)	M1		
		$P(Y \le 3) = 0.0212$ and $P(Y \le 15) = 0.9780 \implies P(Y \ge 16) = 0.0220$	M1 A	A1	
		Critical region $Y \le 3$ and $Y \ge 16$	A1		(6)
		Significance level = $0.0212 + 0.0220 = 0.0432$	B1 ft		(1)
			(1	l <mark>3 ma</mark> i	rks)

Ques Num	stion 1ber	Scheme	Mark	KS .
5.	(<i>a</i>)	$L \sim N(\mu, 0.3^2), P(L < 150) = 0.05 \Longrightarrow P\left(Z < \frac{150 - \mu}{0.3}\right) = 0.05$		
		$\Rightarrow \frac{150 - \mu}{0.3} =, -1.6449$	M1 A1, B	81
		$\mu = 150.49347 = 150.5$	A1	(4)
	(h)	X represents number less than 150cm $X \sim B(10, 0.05)$	B1	
	(0)	P(X < 2) = 0.9885	M1 A1	(3)
	(c)	Normal approximation $\mu = 500 \times 0.05 = 25$ $\sigma^2 = 23.75 \text{ or } 25$	B1 B1	(0)
	(0)	P(X < 35) \approx P(Z < $\frac{34.5 - 25}{\sqrt{23.75 \text{ or } 25}}$) ±0.5, standardise	M1, M1	
		$\approx P(Z < 1.95 \text{ or } 1.9)$	A1	
		≈ 0.9744 or 0.9713	A1	(6)
			(13 m	arks)
6.	(<i>a</i>)	<i>X</i> represents number of faults per 25 m \Rightarrow <i>X</i> ~ Po(1.5)	B1	
		P(X = 4) = 0.0471	B1	(2)
	<i>(b)</i>	<i>Y</i> represents number of faults per 100 m \Rightarrow <i>Y</i> ~ Po(6.0)	B1	
		$P(Y < 6) = P(Y \le 5) = 0.4457$	B1	
		R represents number of 100 m balls containing fewer than 6 faults		
		$R \sim B(3, 0.4457)$	M1 A1	
		$P(R=1) = C_1^3 \times 0.4457 \times (1 - 0.4457)^2 = 0.41082$ accept 0.411	M1 A1	(6)
	(<i>c</i>)	<i>S</i> represents number of faults in a 500 m ball \Rightarrow <i>S</i> ~ Po(30)	B1	
		P(23 ≤ S ≤ 33) ≈ P($\frac{22.5-30}{\sqrt{30}}$ ≤ Z ≤ $\frac{33.5-30}{\sqrt{30}}$) ±0.5, standardise	M1, M1 A	A 1
		$\approx P(-1.37 \le Z \le 0.64)$	A1	
		≈ 0.6536	A1	(6)
			(14 m	arks)

Que Nun	stion nber	Scheme	Marks	}
1.	(<i>a</i>)	Continuous uniform (Rectangular) U(-0.5, 0.5)	B1 B1	(2)
	<i>(b)</i>	P(error within 0. 2 cm) = $2 \times 0.2 = 0.4$	M1 A1	(2)
	(<i>c</i>)	P(both within 2 cm) = $0.4^2 = 0.16$	M1 A1	(2)
			(6 ma	arks)
2.	<i>(a)</i>	$X \sim Po(7)$	B1	
		$P(X \le 2) = 0.0296$	B1	
		$P(X \ge 13) = 1 - 0.9370 = 0.0270$	M1 A1	
		Critical region is $(X \le 2) \cup (X \ge 13)$	A1	(5)
	<i>(b)</i>	Significance level = 0.0296 + 0.0270 = 0.0566	B1	(1)
	(<i>c</i>)	$x = 5$ is not the critical region \Rightarrow insufficient evidence to reject H ₀	M1 A1	(2)
			(8 m	arks)
3.	(<i>a</i>)	Weeds grow independently, singly, randomly and at a constant rate (weeds/m ²) any 2	B1 B1	(2)
	<i>(b)</i>	Let <i>X</i> represent the number of weeds/ m^2		
		$X \sim \text{Po}(0.7)$, so in 4 m ² , $\lambda = 4 \times 0.7 = 2.8$	B1	
		P(Y < 3) = P(Y = 0) + P(Y = 1) + P(Y = 2)	M1	
		$= e^{-2.8} \left(1 + 2.8 + \frac{2.8^2}{2} \right)$	A1	
		= 0.46945	A1	(4)
	(<i>c</i>)	Let <i>X</i> represent the number of weeds per 100 m^2		
		$X \sim \text{Po}(100 \times 0.7 = 70)$	B1	
		$P(X > 66) \approx P(Y > 66.5)$ where $Y \sim N(70, 70)$	M1 M1 A1	
		$\approx \mathbb{P}\left(Z > \frac{66.5 - 70}{\sqrt{70}}\right)$	M1	
		$\approx P(Z > -0.41833) = 0.6628$	A1	(6)
			(12 ma	arks)

Ques Nun	stion nber	Scheme	Marks	5
4.	<i>(a)</i>	P(X > 0.7) = 1 - F(0.7) = 0.4267	M1 A1	(2)
	(<i>b</i>)	$f(x) = \frac{d}{dx}F(x) = \frac{4}{3} \times 2x - \frac{4x^2}{3}$	M1	
		$=\frac{4x}{3}(2-x^2) \text{ for } 0 \le x \le 1$	A1	(2)
	(<i>c</i>)	$E(X) = \int_0^1 \frac{4}{3} (2x^2 - x^4) dx = \left[\frac{4}{3} \left(\frac{2x^3}{3} - \frac{x^5}{5}\right)\right]_0^1$	M1 A1	
		$=\frac{28}{45}=0.622$	A1	
		Var (X) = $\int_0^1 \frac{4}{3} (2x^3 - x^5) dx - \left(\frac{28}{45}\right)^2$	M1	
		$= \left[\frac{4}{3}\left(\frac{2x^4}{4} - \frac{x^6}{6}\right)\right]_0^1 - \left(\frac{28}{45}\right)^2$	A1	
		$=\frac{116}{2025}=0.05728$	A1	(6)
	(<i>d</i>)	$f(x) = \frac{4}{3}(2 - 3x^2) = 0$	M1	
		\Rightarrow mode = $\sqrt{\frac{2}{3}} = 0.816496$	A1	
		skewness = $\frac{\frac{28}{45} - \sqrt{\frac{2}{3}}}{\sqrt{\frac{116}{2025}}} = -0.81170$	M1 A1	(4)
			(14 ma	arks)

Question Scheme		Marks	5
5 . (<i>a</i>)	Let X represent the number of double yolks in a box of eggs	B1	
	$\therefore X \sim B(12, 0.05)$	B1	
	$P(X = 1) = P(X \le 1) - P(X \le 0) = 0.8816 - 0.5404 = 0.3412$	M1 A1	(3)
(b)	$P(X > 3) = 1 - P(X \le 3) = 1 - 0.9978 = 0.0022$	M1 A1	(2)
(c)	$P(\text{only } 2) = C_2^3 (0.3412)^2 (0.6588)^2$	M1 A1	
	= 0.230087	A1	(3)
(<i>d</i>)	Let X represent the number of double yolks in 10 dozen eggs		
	$\therefore X \sim B(120, 0.05) \Longrightarrow X = Po(6)$	B1	
	$P(X \ge 9) = 1 - P(X \le 8) = 1 - 0.8472$	M1 A1	
	= 0.1528	A1	
(<i>e</i>)	Let X represent the weight of an egg $\therefore W \sim N(65, 2.4^2)$	M1	
	$P(X > 68) = P\left(Z > \frac{68 - 65}{2.4}\right)$	A1	
	= P(Z > 1.25)	A1	
	= 0.1056	A1	(3)
		(15 marks)	

Question Number	Scheme	Mark	S
6 . (<i>a</i>)	All subscribers to the magazine	B1	(1)
(b)	A list of all members that had paid their subscriptions	B1	(1)
(c)	Members who have paid	B1	(1)
(<i>d</i>)	Advantage: total accuracy	B1	
	Disadvantage: time consyming to obtain data and analyse it	B1	(2)
(<i>e</i>)	Let X represent the number agreeing to change the name		
	$\therefore X \sim B(25, 0.4)$	B1	
	$P(X = 10) = P(X \le 10) - P(X \le 9) = 0.1612$	M1 A1	(3)
(f)	$H_0: p = 0.40, H_1: p < 0.40$	B1, B1	
	$P(X \le 6) = 0.0736 > 0.05 \Rightarrow$ not significant	M1 A1	
	No reason to reject H_0 and conclude % is less than the editor believes	A1	(5)
(g)	Let <i>X</i> represent the number agreeing to change the name $\therefore X \sim B(200, 0.4)$		
	$P(71 \le X \le 83) \approx P(70.5 \le Y \le 82.5)$ where $Y \sim N(80, 48)$	B1 B1	
	$\approx \mathbf{P}\left(\frac{70.5 - 80}{\sqrt{48}} \le X < \frac{82.5 - 80}{\sqrt{48}}\right)$	M1 M1	
	$\approx P(-1.37 \le X < 0.36)$	A1 A1	
	= 0.5533	A1	(7)
		(20 m	arks)

PROVISIONAL MARK SCHEME

Question number		Mark scheme	M	arks
1.	<i>(a)</i>	A random variable; that is, a function involving no unknown quantities	B1; B	1 (2)
	(<i>b</i>)	If all possible samples are taken; then their values will form a probability distribution called the sampling distribution	B1; B	31 (2)
			(4	marks)
2.	(<i>a</i>)	λ is large or $\lambda > 10$	B1	(1)
	(<i>b</i>)	$Y \sim N(30, 30)$ may be implied	B1	
		$P(Y > 28) = 1 - P(Y \le 28.5)$	M1 A	.1
		$= 1 - P\left(Z \le \frac{28.5 - 30}{\sqrt{30}}\right)$	M1 A	.1
		$= 1 - P(Z \le -0.273)$		
		= 0.607	A1	(6)
			(7	marks)

PROVISIONAL MARK SCHEME

Que nu	estion mber	Mark scheme		Mark	S
4.	<i>(a)</i>	Fixed number of independent trials		B1 B1	
		2 outcomes		B1	
		Probability of success constant		B1	(4)
	<i>(b)</i>	P(X = 5) = $\frac{2}{7}$; P(X ≠ 5) = $\frac{5}{7}$	may be implied	B1; B1 ft	
		P(5 on sixth throw) = $\left(\frac{5}{7}\right)^2 \times \left(\frac{2}{7}\right)$	$p^n(1-p)$	M1 A1 ft	
		= 0.0531		A1	(5)
	(c)	P(exactly 3 fives in first eight throws) = $\binom{8}{3} \left(\frac{2}{7}\right)^3 \left(\frac{5}{7}\right)^3$	use of ${}^{n}C_{r}$ needed	M1 A1 ft	
		= 0.243		Al	(3)
				(12 ma	rks)
5.	(a)	$f(x) = \begin{cases} 0.05 & 180 \le x \le 200\\ 0 & \text{otherwise} \end{cases}$		B1 B1	
		$f(x) \uparrow$			
		0.05	labels	B1	
			3 parts	B1	(4)
		180 200 x			
	(<i>b</i>)(i)	$P(X \le 183) = 3 \times 0.05$		M1	
		= 0.15		A1	
	(ii)	P(X = 183) = 0		B1	(3)
	(<i>c</i>)	IQR = 10		B1	(1)
	(d)	$0.05(200 - x); = 0.05(x - 180) \times 2$		M1; A1	
		200 - x = 2x - 360			
		$x = 186 \frac{2}{3}$		A1	(3)
	(<i>e</i>)	$\frac{1}{3}$ of all cups of lemonade dispensed contains $186\frac{2}{3}$ ml or less		B1 B1 ft	(2)
		(or $\frac{2}{3}$ of all cups of lemonade dispensed contains $186\frac{2}{3}$ ml or more)			
				(13 ma	rks)

PROVISIONAL MARK SCHEME

Question number		Mark scheme	Marl	KS
6. ((<i>a</i>)	Po(1)	B1 B1	
		Each patient seen singly <i>or</i> patients with disease seen randomly <i>or</i> seen constant rate of once per week <i>or</i> each patient assumed independent of the next	B1	(3)
	(<i>b</i>)	$X \sim Po(4)$ may be implied	B1	
		$P(X > 3) = 1 - P(X \le 3)$	M1	
		= 1 - 0.4335	A1	
		= 0.5665	A1	(4)
	(<i>c</i>)	$H_0: \lambda = 6$	B1	
		H ₁ : $\lambda < 6$	B1	
		$P(X \le 2) = 0.0620$ $\alpha = 0.05 \implies \text{critical region } X \le 1$	M1 A1	
		0.0620 > 0.05 2 not in critical region	M1	
		The number of patients with the disease seen by the doctor has not been reduced	A1	(6)
	(<i>d</i>)	This does not support the model as the disease will occur in outbreaks; the patients seen by the doctor are unlikely to be independent of each other/don't occur singly	B1; B1	(2)
			(15 ma	arks)

PROVISIONAL MARK SCHEME

Quest	tion ber	Mark scheme		Mark	KS
7.	(a)	$\int_{-1}^{0} k(x^2 + 2x + 1) dx = 1$	limits needed and =1	M1	
		$\left[k\left(\frac{x^{3}}{3} + x^{2} + x\right)\right]_{-1}^{0} = 1$	attempt at integration	M1 A1	
		k = 3 (*)		A1	(4)
	(<i>b</i>)	$E(X) = \int_{-1}^{0} x f(x) dx$		M1	
		$= \int_{-1}^{0} (3x^3 + 6x^2 + 3x) dx$	limits needed	A1	
		$= \left[\frac{3x^4}{4} + 2x^3 + \frac{3x^2}{2}\right]_{-1}^{0}$	integration and substituting limits	M1	
		$=-\frac{1}{4}$		A1	(4)
	(c)	$\int_{-1}^{x_0} (3x^3 + 6x^2 + 3x) dx = \left[x^3 + 3x^2 + 3x \right]_{-1}^{x_0}$		M1	
		$= x_0 + 3x_0^2 + 3x_0 + 1$		A1	
		$F(x) = \begin{cases} 0 & x < -1 \\ x^3 + 3x^2 + 3x + 1 & -1 \le x \le 0 \\ 1 & x > 0 \end{cases}$		B1 B1	(4)
	(<i>d</i>)	P(-0.3 < X < 0.3) = F(0.3) - F(-0.3)		M1	
		= 1 - 0.343		A1	
		= 0.657		Al (15 m	(3)
				(15 116	ai 115 <i>)</i>

Stewart House 32 Russell Square London WC1B 5DN

January 2004

Advanced Subsidiary/Advanced Level

General Certificate of Education

Subject STATISTICS 6684

Ouestion number Scheme Marks 1. List of patients registered with the practice. Require 'list' or 'register' or database or similar **B1** (a) (1) **(b)** The patient(s) **B1** (1) (c) Adv: Quicker, cheaper, easier, used when testing results in destruction of item, quality of info about each sampling unit is often better. **B1** Any one Disady: Uncertainty due to natural variation, uncertainty due to bias, possible bias as sampling frame incomplete, bias due to subjective choice of sample, bias due to non-response . Any one **B1** (2) (**d**) Non-response due to patients registered with the practice but who have left the area **B1** (1) (Total 5 Marks) 2(a) $P(R \ge 4) = 1 - P(R \le 3) = 0.6533$ Require 1 minus and correct inequality **M1A1** (2)**(b)** $P(S \le 1) = P(S = 0) + P(S = 1) = e^{-2.71} + 2.71e^{-2.71} = 0.2469$ awrt 0.247 M1,A1,A1 (3) $P(T \le 18) = P(Z \le \frac{18 - 25}{5}) = P(Z \le -1.4) = 0.0808$ (c) 4 dp, cc no marks M1,A1 (2)(Total 7 Marks) $p = \frac{1}{2}$ 3(a) **B1** (1) **B1** Binomial distribution is symmetrical **(b)** (1) Since *n* is large and $p \approx 0.5$ then use normal approximation, Can be implied below (c) **M1** np = 96 and npq = 49.92A1A1 $P(90 \le X < 105) \approx P(89.5 \le Y \le 104.5)$ where $Y \square N(96,49.92)$ ± 0.5 cc on both M1, $\approx P\left(\frac{89.5 - 96}{\sqrt{49.92}} \le Z \le \frac{104.5 - 96}{\sqrt{49.92}}\right)$ Standardisation of both M1 $\approx P(-0.92 \le Z \le 1.20)$ awrt -0.92 & 1.20 A1 ≈ 0.7055-0.7070 4dp in range A1 (7) (Total 9 Marks)

Stewart House 32 Russell Square London WC1B 5DN

January 2004

Advanced Subsidiary /Advanced Level

General Certificate of Education

Subject STATISTICS 6684

Ouestion number Scheme Marks 4 (a) n large, p small **B1,B1** (2) **(b)** Let *X* represent the number of people catching the virus, $X \square B\left(12, \frac{1}{150}\right)$ Implied **B1** $P(X = 2) = C_2^{12} \left(\frac{1}{150}\right)^2 \left(\frac{149}{150}\right)^{10}$, = 0.0027 Use of Bin including C_2^{12} , 0.0027(4) only M1A1,A1 (4) (c) $X \square \operatorname{Po}(np) = \operatorname{Po}(8)$ Poisson, 8 B1,B1 $P(X < 7) = P(X \le 6) = 0.3134$ $X \le 6$ for method, 0.3134 **M1A1** (4) (Total 10 Marks) 5(a) Vehicles pass at random / one at a time / independently / at a constant rate Any 2&context B1B1dep (2) **(b)** X is the number of vehicles passing in a 10 minute interval, $X \square \operatorname{Po}\left(\frac{51}{60} \times 10\right) = \operatorname{Po}(8.5)$ Implied Po(8.5) B1 $P(X=6) = \frac{8.5^6 e^{-8.5}}{6!}$, = 0.1066 (or 0.2562-0.1496=0.1066) Clear attempt using 6, 4dp M1A1 (3) (c) $P(X \ge 9) = 1 - P(X \le 8) = 0.4769$ Require 1 minus and correct inequality **M1A1** (2) (**d**) $H_0: \lambda = 8.5, H_1: \lambda < 8.5$ One tailed test only for alt hyp B1∫,B1∫ $P(X \le 4 | \lambda = 8.5) = 0.0744, > 0.05$ $X \leq 4$ for method, 0.0744 M1,A1 (Or P($X \le 3 | \lambda = 8.5$) = 0.0301, < 0.05 so CR $X \le 3$ correct CR M1,A1) Insufficient evidence to reject H_0 , 'Accept' M1 so no evidence to suggest number of vehicles has decreased. A1∫ Context (6) (Total 13 Marks)

Stewart House 32 Russell Square London WC1B 5DN

January 2004

Advanced Subsidiary /Advanced Level

General Certificate of Education

Subject STATISTICS 6684

Question number	Scheme	Marks	
6 (a)	Let <i>X</i> represent the number of plant pots with defects, $X \square B(25,0.20)$ Implied $P(X \le 1) = 0.0274, P(X \ge 10) = 0.0173$ Clear attempt at both tails required, 4dp Critical region is $X \le 1, X \ge 10$	B1 M1A1A1 A1	(5)
(b)	Significance level = 0.0274+0.0173=0.0447 Accept % 4dp	B1 cao	(1)
(c)	$H_0: \lambda = 10, H_1: \lambda > 10 \text{ (or } H_0: \lambda = 60, H_1: \lambda > 60)$	B1B1	(1)
	Let Y represent the number sold in 6 weeks, under H_0 , $Y \square$ Po(60)		
	$P(Y \ge /4) \approx P(W > /3.5)$ where $W \sqcup N(60,60) \pm 0.5$ for cc ,/3.5	MIAI	
	≈ P(Z ≥ $\frac{1}{\sqrt{60}}$) = P(Z > 1.74) =, 0.0407 - 0.0409 < 0.05 Standardise using 60 $\sqrt{60}$	M1,A1	
	Evidence that rate of sales per week has increased. A1		(7)
	[]	Total 13 Mai	rks)

Stewart House 32 Russell Square London WC1B 5DN

January 2004

Advanced Subsidiary /Advanced Level

General Certificate of Education

Subject STATISTICS 6684

Ouestion number Scheme Marks 7 (a) $\int_{0}^{4} kx(5-x) \mathrm{d}x = 1$ Limits required **M1** $k\left[\frac{5x^2}{2} - \frac{x^3}{3}\right]_{0}^{4} = 1$ $\left|\frac{5x^2}{2} - \frac{x^3}{3}\right|$ A1 Sub in limits and solve to give **** $k = \frac{3}{56}$ **** Correct solution A1 (3) **(b)** $F(x) = \int_0^{x_0} f(x) dx = \int_0^{x_0} \frac{3}{56} x (5-x) dx = \frac{3}{56} \left[\frac{5x^2}{2} - \frac{x^3}{3} \right]^{x_0}$ Variable upper limit required **M1** $=\frac{x_0^2}{112}(15-2x_0)$ A1 0 x < 0 $0 \le x \le 4$ $F(x) = \frac{x^2}{112}(15 - 2x)$ Ends, middle. B1.B1.∫ (4) (c) $E(x) = \int_{0}^{4} \frac{3}{56} x^{2} (5-x) dx = \frac{3}{56} \left[\frac{5x^{3}}{3} - \frac{x^{4}}{4} \right]_{0}^{4} = 2.29 \int xf(x) dx, \left[\frac{5x^{3}}{3} - \frac{x^{4}}{4} \right], 3sf(2\frac{2}{7}) M1A1A1$ (3) (**d**) $f'(x) = \frac{3}{56}(5-2x) = 0 \implies Mode=2.5$ Attempt f'(x), (5-2x) = 0, 2.5 M1A1A1 (Or Sketch M1, x=0&5 A1, Mode=2.5 A1) (3) **(e)** F(2.3)=0.491, F(2.5)=0.558 Their F, awrt 0.491 & 0.558 or 0.984 & -6.5 M1.A1 $F(m)=0.5 \implies m$ lies between 2.3 and 2.5 cso A1 (3) (**f**) Mean (2.29)<Median (2.3-2.5)<Mode (2.5) **B1** Negative skew B1 dep (2)(Total 18 Marks)

PROVISIONAL MARK SCHEME

Qn no.	Scheme Ma	rks	
1(a)	A <u>list of</u> (all) the members of the <u>population</u>	B1	
(b)	A random variable that is a function of a random sample	R 1	(1)
(0)	that contains no unknown parameters	B1 B1	
			(2)
2(a)	('	Fotal 3 ma	rks)
2(a)	$P(X < 2.7) = \frac{5.7}{5} = 0.74 \tag{0.74}$	B1	
	5		(1)
(b)	$F(\mathbf{x}) = 4 - 1$		(-)
	$E(x) = \frac{1.5}{2}$ Require minus or complete attempt at integration, 1.5	MIAI	
			(2)
(c)	$Var(X) = \frac{1}{12}(4+1)^2 = \frac{25}{12} = 2.08\dot{3}$ Require plus, $\frac{25}{12}or2\frac{1}{12}or2.08\dot{3}or2.08$	M1A1	
(0)			(2)
	("	Fotal 5 ma	(2) (rks)
3	$H_0: p = 0.25, H_1: p > 0.25$ 1 tailed	B1B1	,
	Under H_0 , $X \square$ Bin(25,0.25) Implied by probability	B1	
	$P(X \ge 10) = 1 - P(X \le 9) = 0.0713 > 0.05$ Correct inequality, 0.0713	M1A1	
	Do not reject H_0 , there is insufficient evidence to support Brad's claim. DNR, context	A1A1	
			(7)
	("	Fotal 7 ma	rks)
4(a)	Fixed no of trials/ independent trials/ success & failure/ Probab of success is constant any 2	B1B1	(2)
(b)	X is rv 'no of defective components $X \square Bin(20,0.1)$ Bin(20,0.1)	B1	(2)
			(1)
(c)	P(X=0)=0.1216 =0, 0.1216 M1A1		(2)
(d)	P(X > 6) = 1 - P(X < 6) = 1 - 0.9976 = 0.0024 Strict inequality & 1- with 6s 0.0024	M1A1	(2)
			(2)
(e)	E(X)=20x0.1=2 2	B1	
	Var(X) = 20x0.1x0.9 = 1.8 1.8	B1	(2)
(f)	$X \square$ Bin(100,0.1) Implied by approx used	B1	(2)
	$X \square P(10)$	B1	
	$P(X > 15) = 1 - P(X \le 15) = 1 - 0.9513 = 0.0487$ Strict inequality and 1- with 15, 0.0487	M1A1	
	(OR $X \square N(10,9)$, $P(X > 15.5) = 1 - P(Z < 1.83) = 0.0336 (0.0334)$ with 15.5	<i>B1M1A1</i>)	1
	(OR $X \square$ N(10,10), $P(X > 15.5) = 1 - P(Z < 1.74) = 0.0409 (0.0410)$ with 15.5	B1 M1A1)	
			(4)
	(T	otal 13 ma	rks)

PROVISIONAL MARK SCHEME

Qn no.	Scheme Ma	urks	
5 (a)	<u>A range of values of a test statistic such that if a value of the test statistic</u>		
	obtained from a particular sample lies in the critical region,		
	then the null hypothesis is rejected (or equivalent).		(2)
(b)	P(X < 2) = P(X = 0) + P(X = 1) both	M1	(2)
(-)			
	$-e^{-\frac{1}{7}} + \frac{e^{-7}}{2}$ both	A 1	
	$-\epsilon$ 7	AI	
	=0.990717599 =0.9907 to 4 sf awrt 0.991	A1	
			(3)
(c)	$X \sqcap P(14 \times \frac{1}{2}) = P(2)$	B1	
(-)	$1 = 1 (1 + 7)^{-1} (1)$		
	$P(X \le 4) = 0.9473$ Correct inequality, 0.9473	M1A1	
			(3)
(d)	$H_{\alpha}: \lambda = 4, H_{\alpha}: \lambda < 4$ Accept u & $H_{\alpha}: \lambda = \frac{1}{2}, H_{\alpha}: \lambda < \frac{1}{2}$	- B1B1	
	$X \square P(4)$ Implied	B1	
	$P(X \le 1) = 0.0916 > 0.05$, Inequality 0.0916	M1A1	
	So insufficient evidence to reject null hypothesis	A1	
	Number of breakdowns has not significantly decreased	A1	
	77	Fatal 15 ma	(7) wlva)
6 (a)	No of defects in carnet area a sam is distributed $P_0(0.05a)$ Poisson $0.05a$	R1R1	rks)
0 (u)	No of defects in carpet area u sq in is distributed $10(0.05u)$ Toisson, $0.05u$	R1	
	Any r	DI	(3)
(b)	$X \square P(30 \times 0.05) = P(1.5)$ P(1.5)	B1	(0)
	$a^{-1.5} \times 1.5^2$		
	$P(X = 2) = \frac{e^{-1.5}}{2} = 0.2510$ Tables or calc 0.251(0)	M1A1	
	2		(3)
(c)	P(X > 5) = 1 - P(X < 5) = 1 - 0.9955 = 0.0045 Strict inequality 1-0.9955 0.0045	M1M1A1	(3)
			(3)
(d)	$X \sqcap P(17.75)$ Implied	B1	(\mathbf{J})
	$X \square N(17.75, 17.75)$ Normal 17.75	R1	
	()1 5 17 75)	<i></i>	
	$P(X \ge 22) = P\left(Z > \frac{21.5 - 17.75}{200000000000000000000000000000000000$	M1M1	
	(17.75)		
	=P(Z > 0.89) awrt 0.89	A1	
	=0.1867 0.1867 ,	A1	
	77	[oto] 15	(6) nka)
	()	101ai 13 illa	1 85)

PROVISIONAL MARK SCHEME

Qn no.		Scheme		Ma	rks	
7(a)	$E(X) = \int_0^1 \frac{1}{3} x dx + \int_1^2 \frac{8x^4}{45} dx$		$\int x f(x)$	dx, 2 terms added	M1M1	
	$= \left[\frac{1}{6}x^{2}\right]_{0}^{1} + \left[\frac{8x^{5}}{225}\right]_{1}^{2}$			Expressions, limits	A1A1	
	$=1.26\dot{8}=1.27$ to 3 sf	or $\frac{571}{450}$ or $1\frac{121}{450}$		awrt1.27	A1	(5)
(b)	$F(x_0) = \int_0^{x_0} \frac{1}{3} dx = \frac{1}{3} x_0 \text{ for } 0 \le$	x < 1 variable	e upper limit o	on $\int f(x) dx$, $\frac{1}{3}x_0$	M1A1	(3)
	$F(x_0) = \frac{1}{3} + \int_1^{x_0} \frac{8x^3}{45} dx \text{ for } 1 \le$	$x \le 2$ their fraction	n + v.u.l on	$\int f(x) dx \& 2 \text{ terms}$	M1	
	$=\frac{1}{3}+\left[\frac{8x^4}{180}\right]_{1}^{x_0}$			$\frac{8x^4}{180}$	A1	
	$=\frac{1}{45}(2x_0^4+13)$				A1	
		0	<i>x</i> < 0			
	F(x) =	$\frac{1}{3}x$	$0 \le x < 1$	middle pair, ends	B1,B1	
		$\frac{1}{45}(2x^4+13)$	$1 \le x \le 2$	•		
		1	<i>x</i> > 2			(7)
(c)	$F(m) = 0.5$ $\frac{1}{45} (2x^4 + 13) = \frac{1}{2}$ $m^4 = 4.75$			Their function=0.5	M1A1ft	(7)
	m = 4.75 m = 1.48 to 3 sf			awrt1.48	A1	(3)
(d)	mean <median Negative Skew</median 			dep	B1 B1	(*)
				[]	Fotal 17 ma	(2) arks)

190 High Holborn London WC1V 7BH

January 2005

Advanced Subsidiary/Advanced Level

General Certificate of Education

FINAL К 05

Subject:

Statistics

Question Number	Scheme	Marks		/
1.	(a) $P(R=5) = P(R \in 5) - P(R \leq 4) = 0.7216 - 0.5755$ Can be implied = 0.2061 Awar 0.2061 (oR: ${}^{15}C_{5}(0.3)^{5}(0.7)^{10} = 0.206130)$ (b) $P(S=5) = 0.2414 - 0.1321 = 0.1093$ Accept (oR: $\frac{7.5^{5}-7.5}{5!} = 0.10937459)$ Accept (oR: $\frac{7.5^{5}-7.5}{5!} = 0.10937459)$ Can be implied (a) $P(T=5) = 0$ Can be implied (b) $P(T=5) = 0$	MI AI BI BI	(2) (1) (1)	
2.	(e) (i) A collection of individuals or items (i) A list of all scampling units in the population (b) Not always possible to keep this list up to date (c) (i) eq: Public in year 12 - small early listed to the Population known & easily accessed (i) Students in a University - Longe not early listed Population known but too time consuming expensive to interview all of them.	ві Ві Ві Ві Ві Ві	(1) (1)	
	(c) SR (i) Definition of centur by excaville B1 (ii) Vanifle B1			

190 High Holborn London WC1V 7BH

January 2005

Advanced Subsidiary/Advanced Level

General Certificate of Education

Subject:

Statistics

Question Number	Scheme	Marks	
3.	(a) Continuous uniform/Rectangular	Bı	
	$f(x) = \begin{cases} \frac{1}{2}, & 0 \le x \le l \\ 0 & \text{otherwise} \end{cases}$	81 81	(3)
	(1) $P(X < \frac{1}{2}L) = \frac{1}{L} \times \frac{L}{3} = \frac{1}{3}$ Thur $\frac{1}{2} \times \frac{1}{3}$	MIAI	(2)
	(c) $E(x) = \pm L$	BI	(1)
	(d) $P(B_0 th < \frac{1}{3}k) = (\frac{1}{3})^2 = \frac{1}{9}$ (b) ²	MI Al/	(2)
4.	(a) Probability of success/failure is constant Trials are independent	BI BI	(2)
	(b) Let p represent proportion of students who can distinguish determent brands Ho: p=0.1; Hi: p>0.1 (both)	BI	
	N= 0.01; CR: 2 > 2.3263 2.3263	Bı	
	np=25; npg=22.5 both Ca-be implied	81	
	$3 = \frac{39.5 - 25}{\sqrt{22.5}} = 3.0568$ Standurdisation 3.5 = 3.0568 3.5 = 3.0568	MI Ai	
	Rijeet Ho: claim canot be accepted Based on clear evidence from zort	Д∤	· (6)
	(c) sgi- np, nav both 75 - true to acceptable p close to 0.5 - not true, assumption not met success/failure not clear cut necessarily independence - one student influences another	Bi Bi	(د)
	(b) Aliter g= 3.06 * p=0.9989 > 0.99 } BI equir to 2.3263 or p=0.0011 × 0.01 } BI equir to 2.3263		

190 High Holborn London WC1V 7BH

January 2005

Advanced Subsidiary/Advanced Level

General Certificate of Education

Subject:

Statistics

Question Number	Scheme	Marks
5.	Let X représent the number y défective articl : X ~ B(10 0.032)	L)
	(a) $P(X=2) = \frac{10}{2} \frac{45}{(0.032)^2} (1-0.032)^6$ = $\frac{0.0355234}{1000000000000000000000000000000000000$	Use of Cripton Mi All connect Al AWRT010355 Al (3)
	 (b) harge n small p ⇒ Poisson approximation with h= 100×0.031 = 3.2 	Seen of Bl
	$P(X < 4) = P(X \leq 3) = P(0) + P(1) + P(2) + P(3)$	f (X < 3) statel M1 or implick
	$\left(\frac{1}{12} + \frac{1}{12} + \frac{1}{12}\right)^{3} = \frac{-3 \cdot 2}{2} \left(\frac{1}{1} + 3 \cdot 2 + \frac{3 \cdot 2}{1} + \frac{3 \cdot 2}{12}\right)^{3} + \frac{3 \cdot 2}{12} \right)$	All correct Al
	= 0.602519	AWET 0. 603 A1 (4)
	(c) np & nor both >5 => Mormal approximation with np = 32 and npy = 30.9726	happinx M1 bolh A1
	P(X > 42) = P(Y > 42.5) where Y-M(32, 30	.976) Students MI
	$= P(Z > \frac{42.5 - 32}{\sqrt{30.976}})$	their np, Valy All correct Al
	= ?(2 > 1.8845)	Awer 1.69 A1
	= 0.0294	0.0294-0.0297 A1 (6)

190 High Holborn London WC1V 7BH

January 2005

Advanced Subsidiary/Advanced Level

General Certificate of Education

Subject:

Statistics

Question Number	Scheme	Marks
6.	het X represent now ber of accidents/month :: X~Po(3)	BI
	(a) $P(X > 4) = 1 - P(X \le 4); = 1 - 0.8513 = 0.1647$	MI; AI (3)
	(b) Let Yripresent number of accidents in 3 worths .: Y~Po(3x3=9) Can be imp	slice Br
	P(Y>4)= 1-0.0550 = 0.9450	B1 (2)
	(c) Ho: $\lambda = 3$; Hi: $\lambda < 3$ R=RIMI(0:025)AP	81
-	$P(X \le 1 \lambda = 3) = 0.1991; > 0.05$	81; MI
	i lasufficient evidence to cupport the claim that the mean another & accidents here been reduced.	AI√ (4)
	(NB: CR: X =0; X=1 not in CR; same conclusion => B), MI,	AH)
	(d) Ho: λ= 24×3=72; H1: λ < 72 Can be implied λ=	72 81
	K= 0.05 => CR: Z <-1.644) -1.64	244 BI
	Using Normal approximation with M=J"= 72 Can be in	plied BI
	$g = \frac{55 \cdot 5 - 72}{\sqrt{72}} = -1 \cdot 94454 \qquad 5 \text{ ford}^{2} \cdot 1 = -1 \cdot 94454$	oute Al
	Since -1.944 is in the CR, Ho is rejected. There Contern	- 2 AV (7)
	is evidence that the restriction than reduced descering	dence
	the number of accidents.	
	Aliter (d) p=0.0262 <0.05 Awer 0.026 &1 equar +	0-1.6449

190 High Holborn London WC1V 7BH

January 2005

Advanced Subsidiary/Advanced Level

General Certificate of Education

Subject:

Statistics

Question Number	Scheme	Marks	
7.	(a) $k \int (-x^2 + 5x - 4) dx = 1$	Use of f(x) clx=1	MI
	$\therefore R \left[-\frac{x^{2}}{3} + \frac{5x^{2}}{2} - 4x^{2} \right]^{4} = 1$	All correct integ with limits	Aı
	$* \Rightarrow k = \frac{2}{9} *$	C.2.0	A1 (3)
	(b) $E(X) = \int_{-\frac{1}{2}}^{\frac{1}{2}} (-x^{3} + 5x^{3} - 4x) dx$	Use g Juff(x)dx	MI
	$= \frac{2}{9} \left[-\frac{\pi^{4}}{4} + \frac{5\pi^{2}}{3} - \frac{4\pi^{2}}{1} \right]_{1}^{4}$	Correct integ- with limits	₩1
	= 5/2	کم ک	AI (3)
	(c) $\frac{d}{dx}f(x) = \frac{2}{g}(-2x+5) = 0; \Rightarrow Mode$ (c) $\frac{d}{dx}f(x) = \frac{2}{g}(-2x+5) = 0; \Rightarrow Mode$ (Se: 5/2 only; no work	= 5/1 Diff- 4 f(w) -3 Bit	M1; A1 (2)
	(d) $F(x) = \int^{x} \frac{1}{49} (-x^{2} + 5x - 4) dx$	Un g /flads	Mt
	$= \left(\frac{2}{9}\left(-\frac{x^{3}}{3}+\frac{5x^{2}}{2}-4x\right)^{2}\right)^{2}$	Integ" with limit	AI
	$= \frac{2}{9} \left\{ -\frac{1}{3} + \frac{5t_0}{2} - \frac{4t_0}{4} + \frac{11}{4} \right\}$	auf	A,
	$F(x) = \begin{cases} \frac{2}{2} - \frac{x^{3}}{2} + \frac{5x^{4}}{2} - 4x + \frac{11}{4} \end{cases}$	x=1 x<1; x>4 1=x=4 x>4	$\begin{array}{c} \mathcal{B}_{1} \\ \mathcal{B}_{1} \end{array} \left(s \right) \end{array}$
	(e) $P(x=2.5) = F(2.5) = 0.5$	F (2.5) or integral etc	MI AI (2)
	(f) Median = 2.5; Dirtribution is equane	totel	B1;B1(2) cao cao

GCE Edexcel GCE Statistics S2 (6684)

Summer 2005

Mark Scheme (Results)

advancing learning, changing lives

edexcel

June 2005 6684 Statistics S2 Mark Scheme

Question Number	Scheme	Marks
1(a)	$X \sim B(n, 0.04)$ Implied	B1
	E(X) = np Use of $np = 5$	M1
	5 = 0.04n n = 125 125	A1 (3)
(b)	E(X) = 3 np = 3 np = 3	B1
	$sd = \sqrt{npq} = \sqrt{3(1-0.04)}$ Use of npq	M1
	$=\sqrt{2.88}$ $\sqrt{3(1-0.04)}$	Al
	= 1.70 awrt 1.70	A1
		(4) Total 7
2(a)	$f(x) = \frac{1}{4}$, $2 \le x \le 6$ $\frac{1}{4}$ and range	B1
	= 0 , otherwise 0 and range	B1
(b)		(2)
	E(X) = 4 by symmetry or formula 4	B1 (1)
(c)	$Var(X) = \frac{(6-2)^2}{12}$ Use of formula	M1
	$=\frac{4}{3}$ 1.3 or $1\frac{1}{3}$ or $\frac{4}{3}$ or 1.33	A1 (2)
(d)	$F(x) = \int_{2}^{x} \frac{1}{4} dt = \left[\frac{1}{4}t\right]_{2}^{x}$ Use of $\int f(x) dx$	M1
	$=\frac{1}{4}(x-2)$ $\frac{1}{4}(x-2)$ or equiv.	A1
	$F(x) = \frac{1}{4}(x-2), \ 2 \le x \le 6$ $\frac{1}{4}(x-2) \text{ and range}$	B1ft
	= 1 , x > 6 ends and ranges = 0 , x < 2	B1 (4)
(e)	P(2.3 < X < 3.4) = $\frac{1}{4}$ (3.4 - 2.3) Use of area or F(x)	M1
	= 0.275	A1
	$\frac{0.275}{40}$	(2) Total 11

Question Number	Scheme	Marks	
3(a)	Misprints are random / independent, occur singly Context, any 2 in space and at a constant rate	B1, B1 (2)	
(b)	$P(X = 0) = e^{-2.5} Po (2.5) = 0.08208 = 0.0821 0.0821$	M1 A1 (2)	
(c) (d)	$Y \sim Po(5)$ for 2 pagesImplied $P(Y > 7) = 1 - P(X \le 7)$ Use of 1 - and correct inequality $= 1 - 0.8666 = 0.1334$ 0.1334P _o (50)N(50, 50) energy	B1 M1 A1 (3) B1 B1	
	$P(Y < 40) = P(Y \le 39.5)$ $= P\left(Z \le \frac{39.5 - 50}{\sqrt{50}}\right)$ $= P\left(Z \le -1.4849\right)$ $= 1 - 0.93 = 0.07$ $cc \pm 0.5$ standardise above all correct $awrt - 1.48$ 0.07	M1 M1 A1 A1 A1 (7)	
4(a)	Individual member or element of the population or sampling frame		
(b) (c)	A <u>list</u> of <u>all</u> sampling units or <u>all</u> the population <u>All</u> possible <u>samples</u> are chosen from a population; the <u>values</u> of a <u>statistic</u> and the		
	associated <u>probabilities</u> is a sampling distribution	B1 (2)	
		Total 4	
Question Number	Scheme		Marks
--------------------	---	---	----------------------------
5(a)	$X \sim B(200, 0.02)$ <u>n large, P small</u> so $X \sim Po(np) = Po(4)$	Implied conditions, $P_0(4)$	B1 B1, B1
	$P(X = 5) = \frac{e^{-4}4^5}{5!} = 0.1563$	$P(X \le 5) - P(X \le 4)$ 0.1563	M1 A1 (5)
(b)	$P (X < 5) = P(X \le 4) = 0.6288$	P(X ≤ 4) 0.6288	M1 A1 (2) Total 7
6(a)	$\int_{0}^{2} k(4x - x^{3}) \mathrm{d}x = 1$	$\int f(x)dx = 1$, all correct	M1 A1
	$k \left[2x^2 - \frac{1}{4}x^4 \right]_0^2 = 1$	[*]	A1
	k(8-4) = 1 $k = -\frac{1}{2}$	cso	A1
	$\mathbf{k} = \frac{1}{4}$		(4)
(b)	$E(X) = \int_{0}^{2} x \cdot \frac{1}{4} (4x - x^{3}) dx$	$\int x f(x) dx$	M1
	$=\left[\frac{1}{3}x^{3}-\frac{1}{20}x^{5}\right]_{0}^{2}$	[*]	A1
	$=\frac{16}{15}$	1.07 or $1\frac{1}{15}$ or $\frac{16}{15}$ or $1.0\dot{6}$	A1 (3)
(c)	At mode, $f'(x) = 0$ $4 - 3x^2 = 0$	Implied Attempt to differentiate	M1 M1
	$x = \frac{2}{\sqrt{3}}$	$\sqrt{\frac{4}{3}}$ or 1.15 or $\frac{2}{\sqrt{3}}$ or $\frac{2\sqrt{3}}{3}$	A1 (3)
(d)	At median, $\int_{0}^{x} \frac{1}{4} (4t - t^{3}) dt = \frac{1}{2}$	$F(x) = \frac{1}{2} \operatorname{or} \int f(x) dx = \frac{1}{2}$	M1
	$\frac{1}{4} \left(2x^2 - \frac{1}{4}x^4 \right) = \frac{1}{2}$	Attempt to integrate	M1
	$x^{2} - 8x^{2} + 8 = 0$ $x^{2} = 4 \pm 2\sqrt{2}$ x = 1.08	Attempt to solve quadratic Awrt 1.08	M1 A1 (4)

6684 Statistics S2 Junw 2005 Advanced Subsidiary/ Advance level in GCE Mathematics

(e)	mean (1.07) < median (1.08) < mode (1.15) \Rightarrow negative skew	any pair cao	M1 A1 (2)
(f)	f(x)	lines $x < 0$ and $x > 2$, labels, 0 and 2	B1
		negative skew between 0 and 2	B1 (2)
	0 2	X	Total 18
7 (a)	X~B(10, p)	Binomial (10, 0.75)	B1, B1 (2)
(b)	P(X = 6) = 0.9219 - 0.7759 = 0.1460	$P(X \le 6) - P(X \le 5)$ 0.1460	M1 A1
(c)	H.: $p = 0.75$ (or $p = 0.25$)	Correct H.	(2) B1
	$H_{,p} \le 0.75 \text{ (or } p \ge 0.25)$	One tailed H.	B1
	Under H_0 , $X^{\sim} B(20, 0.75)$ (or $Y^{\sim} B(20, 0.25)$)	Implied	B1
	$P(X \le 13) = 1 - 0.7858 = 0.2142 \text{ (or } P(Y \ge 7))$ Insufficient evidence to reject H ₀ as $0.2412 > 0.05$	$P(X \le 13)$ and 1 - , 0.2142	M1, A1
	Doctor's belief is not supported by the sample	Context	A1
	$(OR \ CR \ P(X \le 12) = 1 - 0.8982 = 0.1018)$ $(or \ P(Y > 8))$		(6)
	$P(X \le 11) = 1 - 0.9591 = 0.0409$ (or $P(Y \ge 9)$) 13 outside critical region (or 7))	either	(M1 A1)
(d)	$P(X \le c) \le 0.01 \text{ for } p=0.75$ (or $P(Y \ge 20 - c) \le 0.01 \text{ for } p=0.25$) $P(X \le 9) = 1 - 0.9961 = 0.0039 \text{ (or } P(Y \ge 11))$ $P(X \le 10) = 1 - 0.9861 = 0.0139 \text{ (or } P(Y \ge 10))$ C. R. is [0,9], so greatest no. of patients is 9.	0.9961 or 0.9981 9	M1 A1 B1 B1 (4) Total 14

I

Question Number	Schem	ne	Marks
1.(a)	Let X be the random variable the number of he	eads.	
	$X \sim Bin (4, 0.5)$		
	$P(X=2) = C_2^4 0.5^2 0.5^2$	Use of Binomial including "Cr	M1
	=0.375	or equivalent	A1 (2)
(b)	P(X = 4) or P(X = 0)		B1
	$= 2 \times 0.5^4$	$(0.5)^4$	M1
	= 0.125	or equivalent	A1 (2)
(c)	$P(HUT) = 0.5^{3}$	no "Cr	(3)
	$\Gamma(1111) = 0.5$	10 07	M1
	= 0.125	or equivalent	A1 (2)
	or		(2)
	P(HHTT) + P(HHTH) 2×0.5^4		
	$= 2 \times 0.5$ = 0.125		
			Total 7 marks
	1a) 2.4.6 acceptable as use of binomial.		

Question Number	Scheme		Marks
2.(a)	Let X be the random variable the no. of accidents	per week	
	X ~Po(1.5)	λ need poisson and must be in part (a)	B1 (1)
(b)	$P(X=2) = \frac{e^{-1.5}1.5^2}{2}$	$\frac{e^{\mu}\mu^2}{2} \text{ or } P(X \le 2) - P(X \le 1)$	M1
	= 0.2510	awrt 0.251	A1 (2)
(c)	$P(X \ge 1) = 1 - P(X = 0) = 1 - e^{-1.5}$	correct exp awrt 0.777	B1
	= 0.7769		
	P(at least 1 accident per week for 3 weeks)		
	$= 0.7769^3$	$(p)^{3}$	M1
	= 0.4689	awrt 0.469	A1 (2)
(d)	$X \sim Po(3)$	may be implied	(3) B1
	$P(X > 4) = 1 - P(X \le 4)$		M1
	= 0.1847	awrt 0.1847	A1 (3)
			Total 9 marks
	c) The 0.7769 may be implied		

Question Number	Scheme	Marks
4.	$X = Po (150 \times 0.02) = Po (3)$ po,3	B1,B1(dep)
	$P(X > 7) = 1 - P(X \le 7)$	M1
	= 0.0119 awrt 0.0119	A1
	Use of normal approximation max awards B0 B0 M1 A0 in the use 1- $p(x < 7.5)$ $z = \frac{7.5 - 3}{\sqrt{2.94}} = 2.62$ p(x > 7) = 1 - p(x < 7.5) = 1 - 0.9953 0.0047	Total 4 marks
	- 0.0047	
5.(a)	$\int_{2}^{3} kx(x-2)dx = 1 \qquad \qquad \int f(x) = 1$	M1
	$\left[\frac{1}{2}kx^3 - kx^2\right]^3 = 1$ attempt \int need either x ³ or x ²	M1
		A1
	$(9k - 9k) - (\frac{8k}{3} - 4k) = 1$	
	$k = \frac{3}{4} = 0.75$ * cso	A1 (4)

Question Number	Scheme	Marks
(b)	$E(X) = \int_{2}^{3} \frac{3}{4} x^{2} (x-2) dx \qquad \text{attempt } \int x f(x)$	M1
	$= \left[\frac{3}{16}x^4 - \frac{1}{2}x^3\right]_2^3 \qquad \text{correct } \int$	A1
	$= 2.6875 = 2\frac{11}{16} = 2.69 \text{ (3sf)}$ awrt 2.69	A1 (3)
(c)	$F(x) = \int_{2}^{x} \frac{3}{4}(t^{2} - 2t)dt \qquad \int f(x) \text{ with variable limit or } +C$	M1
	$= \left[\frac{3}{4}\left(\frac{1}{3}t^3 - t^2\right)\right]^x$ correct integral	A1
	f(3) - f(3) = 0 or F(3) = 1	A1
	$=\frac{1}{4}(x^3-3x^2+4)$	A1
	$F(x) = \frac{1}{4}(x^3 - 3x^2 + 4) \qquad x \le 2$ middle, ends $1 \qquad x \ge 3$	B1√,B1 (6)
(d)	$F(x) = \frac{1}{2}$ $\frac{1}{4}(x^3 - 3x^2 + 4) = \frac{1}{2}$ their F(x) =1/2	M1
	$x^{3} - 3x^{2} + 2 = 0$ $x = 2.75, \ x^{3} - 3 \ x^{2} + 2 > 0$ $x = 2.70, \ x^{3} - 3 \ x^{2} + 2 < 0 \Longrightarrow \text{ root between } 2.70 \text{ and } 2.75$	M1 (2)
	(or F(2.7)=0.453, F(2.75)=0.527 \Rightarrow median between 2.70 and 2.75	Total 15 marks
		1 0tal 15 Marks

6(a)	V 1 2 5	
0.(a)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$\left \begin{array}{c} \overline{2} \\ \overline{2} \\ \overline{3} \\ \overline{6} \\$	
		M1A1
	Mean = $1 \times \frac{1}{2} + 2 \times \frac{1}{3} + 5 \times \frac{1}{6} = 2$ or 0.02 $\Sigma x.p(x)$ need $\frac{1}{2}$ and $\frac{1}{3}$	
	For M	M1A1
	Variance = $1^2 \times \frac{1}{2} + 2^2 \times \frac{1}{2} + 5^2 \times \frac{1}{6} - 2^2 = 2$ or 0.0002	MIAI
	2 5 0	(4)
(b)	$\Sigma x^2 \cdot p(x) - \lambda^2$	
	(1,1)	B2
	(1,2) and $(2,1)(1,5) and (5,1) LHS -1$	D1
	e.e.	(3)
	(2,2)	D1
	(2,3) and $(3,2)$ repeat of theirs on KHS $(5,5)$	BI
(c)	\overline{x} 1 1.5 2 3 3.5 5	
	$P(\overline{X} = \overline{x}) \frac{1}{-1} \times \frac{1}{-1} = \frac{1}{-1} \frac{1}{-1} \times \frac{1}{-1} = \frac{1}{-1} \frac{1}{-1} \frac{1}{-1} \times \frac{1}{-1} = \frac{1}{-1} \frac{1}{-1} \frac{1}{-1} = \frac{1}{-1} \frac{1}{-1} \frac{1}{-1} = \frac{1}{-1} \frac{1}{-1} = \frac{1}{-1} \frac{1}{-1} \frac{1}{-1} = \frac{1}{-1} \frac{1}{-1} \frac{1}{-1} \frac{1}{-1} = \frac{1}{-1} 1$	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	M1A1
	1.5+,-1ee	M1A2 (6)
		(0)
		T . (112)
		Total 13 marks
	Two tail	

7.(a)(i)	$H_0: p = 0.2, H_1: p \neq 0.2$ $p =$	B1B1
	$P(X \ge 9) = 1 - P(X \le 8)$ or attempt critical value/region	M1
	$= 1 - 0.9900 = 0.01$ CR $X \ge 9$	
	$0.01 < 0.025$ or $9 \ge 9$ or $0.99 > 0.975$ or $0.02 < 0.05$ or lies in interval with	A1
	correct interval stated. Evidence that the percentage of pupils that read Deano is not 20%	A1
(ii)	$X \sim Bin (20, 0.2)$ may be implied or seen in (i) or (ii)	B1
	So 0 or [9,20] make test significant. 0,9,between "their 9" and 20	B1B1B1
		(3)
(b)	$H_0: p = 0.2, H_1: p \neq 0.2$	B1
	$W \sim \text{Bin}(100, 0.2)$	
	$W \sim N(20, 16)$ normal; 20 and 16	B1; B1
	$P(X \le 18) = P(Z \le \frac{18.5 - 20}{4}) \text{or} \frac{x(+\frac{1}{2}) - 20}{4} = \pm 1.96 \pm \text{ cc, standardise}$ or use z value, standardise =P(Z \le -0.375)	M1M1A1
	$= 0.352 - 0.354$ CR X < 12.16 or 11.66 for $\frac{1}{2}$	A1
	$[0.352 > 0.025 \text{ or } 18 > 12.16 \text{ therefore insufficient evidence to reject } H_0]$	
	Combined numbers of Deano readers suggests 20% of pupils read Deano	A1 (8)
(c)	Conclusion that they are different.	B1
(0)	Either large sample size gives better result	
	Looks as though they are not all drawn from the same population.	B1 (2)
		Total 19 marks
7(a)(i)	One tail $H_0: p = 0.2, H_1: p > 0.2$	B1B0

	$P(X \ge 9) = 1 - P(X \le 8)$ or attempt critical value/region	M1
	$= 1 - 0.9900 = 0.01$ CR $X \ge 8$	A0
	$0.01 < 0.05$ or $9 \ge 8$ (therefore Reject H ₀ ,)evidence that the percentage of pupils that read Deano is not 20%	A1
(;;;)	$X \sim Bin (20, 0.2)$ may be implied or seen in (i) or (ii)	B1
(11)	So 0 or [8,20] make test significant. 0,9,between "their 8" and 20	B1B0B1
(b)	H ₀ : p = 0.2, H ₁ : p < 0.2 $W \sim \text{Bin} (100, 0.2)$	B1 √
	$W \sim N(20, 16)$ normal; 20 and 16	B1; B1
	$P(X \le 18) = P(Z \le \frac{18.5 - 20}{4})$ or $\frac{x - 20}{4} = -1.6449 \pm cc$, standardise or standardise, use z value = $P(Z \le -0.375)$	M1M1A1
	= 0.3520 CR X < 13.4 or 12.9 awrt 0.352	A1
	$[0.352 > 0.05 \text{ or } 18 > 13.4 \text{ therefore insufficient evidence to reject } H_0]$	
	Combined numbers of Deano readers suggests 20% of pupils read Deano	A1 (8)
(c)	Conclusion that they are different.	B1
	Either large sample size gives better result Or Looks as though they are not all drawn from the same population.	B1 (2)
		Total 19 marks

GCE Edexcel GCE Statistics S2 (6684)

June 2006

Mark Scheme (Results) advancing learning, changing lives

edexcel

J une 6684 Statistics S2 Mark Scheme

Question Number	Scheme	Mar	'ks
1.(a)	Saves time / cheaper / easierany oneor <u>A census/asking all members</u> takes a long time or is expensive or difficult to carry out	B1	(1)
(b)	<u>List, register or database</u> of <u>all</u> club <u>members/golfers</u> or <u>Full membership list</u>	B1	(1)
(c)	Club <u>member(s)</u>	B1	(1)
2.(a)	P(L < -2.6) = $1.4 \times \frac{1}{8} = \frac{7}{40}$ or 0.175 or equivalent	B1	(1)
(b)	P (L < -3.0 or L > 3.0) = $2 \times \left(1 \times \frac{1}{8}\right) = \frac{1}{4}$ M1 for 1/8 seen	M1;A1	(2)
(c)	P (within 3mm) = $1 - \frac{1}{4} = 0.75$ B(20,0.75) recognises binomial Using B(20,p) Let X represent number of rods within 3mm	B1 M1	
	$P(X \le 9/p = 0.25)$ or $1 - P(X \le 10/p = 0.75)$	M1	
	= 0.9861 awrt 0.9861	A1	(4)

Question Number	Scheme		Mar	rks
3.	Let <i>X</i> represent the number of properties sold in a week			
a)	$\therefore X \sim P_{o}(7)$	must be in part a	B1	
	Sales occur independently/randomly, singly, at a constant rate	context needed once	B1 B1	(2)
b)	P (X = 5) = P(X \le 5) - P(X \le 4) or $\frac{7^5 e^{-7}}{5!}$		M1	(3)
	= 0.3007 - 0.1730 = 0.1277	awrt 0.128	A1	(2)
c)	P (X > 181) ≈ P (Y ≥ 181.5) where Y ~N (168, 168)	N (168, 168)	B1	(2)
	$= P\left(z \ge \frac{181.5 - 168}{\sqrt{168}}\right)$	\pm 0.5 stand with μ and σ	M1 M1	
	Give A1 for 1.04 $= P(z \ge 1.04)$	or correct expression	A1	
	= 1 - 0.8508	attempt correct area $1-p$ where $p > 0.5$	M1	
	= 0.1492	awrt 0.149	A1	(6)
6684/01 S	tatistics S4			
June 200 /	Advanced Subsidiary/Advanced Level in GCE Mathematics			

Question Number	Scheme	Marks
4.	Let <i>X</i> represent the number of breakdowns in a week.	
a)	$X \sim P_{o}$ (1.25) implied	B1
	P ($X < 3$) = P (0) + P(1) + P(2) or P ($X \le 2$)	M1
	$= e^{-1.25} \left(1 + 1.25 + \frac{(1.25)^2}{2!} \right)$	A1
b)	= 0.86846/ awrt 0.868 or 0.8685	A1 (4)
0)	$H_0: \lambda = 1.25; H_1: \lambda \neq 1.25 (\text{ or } H_0: \lambda = 5; H_1: \lambda \neq 5) \lambda \text{ or } \mu$	BIBI
	Let Y represent the number of breakdowns in 4 weeks	D1
	$P(W \ge 11) = P(W \le 10)$ $P(W \ge 11) = 0.0127$	
	$P(Y \ge 11) = 1 - P(Y \le 10)$ or $P(X \ge 11) = 0.0137$ One needed for M	MI
	$P(X \ge 10) = 0.0318$	
	$= 0.0137$ CR $X \ge 11$	A1
	$0.0137 < 0.025, 0.0274 < 0.05, 0.9863 > 0.975, 0.9726 > 0.95 \text{ or } 11 \ge 11$ any .allow %	M1
	Evidence that the rate of breakdowns has changed /decreased context From their p	B1√ (7)

Question Number	Scheme			Marks
5. (a)	Binomial		B1	(1)
	Let <i>X</i> represent the number of green mugs in a sample			(1)
(b)	X~B (10, 0.06)	may be implied or seen in part a	B1	
	P (X = 3) = ${}^{10}C_3(0.06)^3(0.94)^7$	${}^{10}C_3(p)^3(1-p)^7$	M1	
	= 0.016808	awrt 0.0168	A1	(3)
(c)	Let <i>X</i> represent number of green mugs in a sample of size 125			(3)
(i)	$X \sim P_0(125 \times 0.06 = 7.5)$	may be implied	B1	
	$P(10 \le X \le 13) = P(X \le 13) - P(X \le 9)$		M1	
	= 0.9784 - 0.7764			
	= 0.2020	awrt 0.202	A1	
(ii)	$P(10 \le X \le 13) \approx P(9.5 \le Y \le 13.5)$ where $Y \sqcup N(7.5, 7.05)$	7.05	B1	(3)
		9.5, 13.5	B1 M1	
	$= P\left(\frac{9.5 - 7.5}{\sqrt{7.05}} \le z \le \frac{15.5 - 7.5}{\sqrt{7.05}}\right)$	± 0.5 stand.	M1	
	$= P(0.75 \le z \le 2.26)$ both values or both	correct expressions. awrt 0.75 and 2.26	A1	
	= 0.2147	awrt 0.214or 0.215	A1	(6)

Question Number	Scheme			ks
6a)	$\int_{1}^{4} \frac{l+x}{k} dx = 1$	$\int f(x) = 1$ Area = 1	M1	
	$\therefore \left[\frac{x}{k} + \frac{x^2}{2k}\right]_1^4 = 1$	correct integral/correct expression	A1	
	$k = \frac{21}{2} *$	cso	A1	(3)
(b)	$P(X \le x_0) = \int_1^{x_0} \frac{2}{21} (1+x)$	$\int f(x)$ variable limit or +C	M1	
	$= \left[\frac{2x}{21} + \frac{x^2}{21}\right]_1^{x_0}$	correct integral + limit of 1 May have <i>k</i> in	A1	
	$=\frac{2x_0+x_0^2-3}{21} \text{ or } \frac{(3+x)(x-1)}{21}$, ,	A1	
	$F(x) = \begin{cases} 0, & x < 1 \\ \frac{x^2 + 2x - 3}{21} & 1 \le x < 4 \\ 1 & x \ge 4 \end{cases}$	middle; ends	B1√; B1	(5)
(c)	$E(X) = \int_{1}^{4} \frac{2x}{21} (1+x) dx$	valid attempt $\int x f(x)$	M1	(0)
	$= \left[\frac{x^2}{21} + \frac{2x^3}{63}\right]_1^4$	x^2 and x^3 correct integration	A1	
	$=\frac{171}{63}=2\frac{5}{7}=\frac{19}{7}=2.7142$	awrt 2.71	A1	(3)

6684/01 Statistics S4 June 200 Advanced Subsidiary/Advanced Level in GCE Mathematics

Question Number	Scheme		Marks
(d)	$F(m) = 0.5 \implies \frac{x^2 + 2x - 3}{21} = \frac{1}{2}$ putting their $F(x) = 0.5$	M1	
	$\therefore 2x^{2} + 4x - 27 = 0 \text{or equiv}$ $\therefore x = \frac{-4 \pm \sqrt{16 - 4.2(-27)}}{4} \text{attempt their 3 term quadratic}$ $\therefore x = -1 \pm 3.8078$	M1	
	i.e. $x = 2.8078$ awrt 2.81	A1	(3)
e) f)	$Mode = 4$ $\frac{Mean < median < mode}{Or} (\Rightarrow negative skew) \qquad allow numbers in place of words$ $\frac{Mean < median}{Mean < median}$	B1 B1	(1) (1)
	w diagram but line must not cross y axis		

Question Number	Scheme		Marks	
7.a)	Let <i>X</i> represent the number of bowls with minor defects.			
	$\therefore X \sim B;(25,0.20)$ may be implied		B1; B1	
	P $(X \le 1) = 0.0274$ or P(X=0) = 0.0038	need to see at least one. prob for X≤no For M1	M1A1	
	P (X ≤ 9) = 0.9827; ⇒ P(X ≥ 10) = 0.0173	either	A1	
	$\therefore \operatorname{CR} \text{ is } \left\{ X \le 1 \cup X \ge 10 \right\}$		A1	
b)	Significance level = $0.0274 + 0.0173$			(6)
	= 0.0447 or 4.477%	awrt 0.0447	B1	(1)
c)	$H_0: p = 0.20; H_1: p < 0.20;$		B1 B1	(1)
	Let Y represent number of bowls with minor defects			
	Under H ₀ $Y \sim B$ (20, 0.20)	may be implied	B1	
	P ($Y \le 2$) or P($Y \le 2$) = 0.2061 P($Y \le 1$) = 0.0692	either	M1	
	$= 0.2061$ CR $Y \le 1$		A1	
	0.2061 > 0.10 or $0.7939 < 0.9$ or $2 > 1$	their p	M1	
	Insufficient evidence to suggest that the proportion of defe	ective bowls has decreased.	B1√	(7)

Mark Scheme (Results) January 2007

GCE

GCE Mathematics

Statistics S2 (6684)

January 2007 6684 Statistics S2 Mark Scheme

Question Number	Scheme	
1. (a)	A random variable; function of known observations (from a population). data OK	
(b) (i)	Yes	B1
(ii)	No	(1) B1
		(1) Total 4
		10tal 4
2.		
(a)	$P(J \ge 10) = 1 - P(J \le 9)$ or $= 1 - P(J \le 10)$	M1
	= 1 - 0.9919 implies method	
	= 0.0081 awrt 0.0081	A1 (2)
(b)	P ($K \le 1$) = P($K = 0$) + P($K = 1$) both, implied below even with '25' missing	M1
	$= (0.73)^{25} + 25(0.73)^{24}(0.27)$ clear attempt at '25' required	M1
	= 0.00392 awrt 0.0039 implies M	A1 (3) Total 5
		100015

Question Number	Scheme		
3. (a)	Let W represent the number of white plants. $W \sim B(12,0.45)$ use of $P(W = 5) = P(W \le 5) - P(W \le 4)$ $^{12}C_5 0.45^5 0.55^7$ or equivalent award B1M1 = 0.5269 - 0.3044 values from correct table implies B		B1 M1
	= 0.2225	awrt 0.222(5)	A1 (3)
(b)	$\mathbf{P}(W \ge 7) = 1 - \mathbf{P}(W \le 6)$	or =1-P(<i>W</i> <7)	M1
	= 1 - 0.7393	implies method	
	= 0.2607	awrt 0.261	A1 (2)
(c)	P(3 contain more white than coloured)	$=\frac{10!}{3!7!}(0.2607)^3(1-0.2607)^7$ use of B,n=10	M1A1∫
	= 0	.256654 awrt 0.257	A1 (3)
(d)	mean = np = 22.5 ; var = npq = 12.375	5	B1B1
	$P(W > 25) \approx P\left(Z > \frac{25.5 - 22.5}{\sqrt{12.375}}\right)$	\pm standardise with σ and $\mu;\pm0.5$ c.c.	M1;M1
	$\approx P(Z > 0.8528)$	awrt 0.85	A1
	≈1-0.8023	'one minus'	M1
	≈0.1977	awrt 0.197 or 0.198	A1
			(7)
			Total 15

Question Number	Scheme		Marks
4. (a)	$\lambda > 10$ or large	μ ok	B1 (1)
(b)	The Poisson is discrete and the norma	al is continuous.	B1 (1)
(c)	Let <i>Y</i> represent the number of yachts	hired in winter	
	$P(Y < 3) = P(Y \le 2)$	$P(Y \le 2) \& Po(5)$	M1
	= 0.1247	awrt 0.125	A1
(d)			(2)
	Let X represent the number of yachts hired in summer $X \sim Po(25)$.		
	N(25,25) all correct, ca	an be implied by standardisation below	B1
	$P(X > 30) \approx P\left(Z > \frac{50.5 - 25}{5}\right)$	\pm standardise with 25 & 5; \pm 0.5 c.c.	M1;M1
	$\approx P(Z > 1.1)$	1.1	A1
	≈ 1 – 0.8643	'one minus'	M1
	≈ 0.1357	awrt 0.136	A1 (6)
(e)	no. of weeks $= 0.1357 \times 16$	ANS (d)x16	M1
	= 2.17 or 2 or 3	ans>16 M0A0	A1∫ (2)
			Total 12

Question Number	Scheme	Marks
5. (a)	$f(x) = \begin{cases} \frac{1}{\beta - \alpha}, & \alpha < x < \beta, \\ 0, & \text{otherwise.} \end{cases}$ function including inequality, 0 otherwise	B1,B1 (2)
(b)	$\frac{\alpha+\beta}{2}=2$, $\frac{3-\alpha}{\beta-\alpha}=\frac{5}{8}$ or equivalent	B1,B1
	$\begin{array}{l} \alpha + \beta = 4 \\ 3\alpha + 5\beta = 24 \end{array}$	
	$3(4 - \beta) + 5\beta = 24$ $2\beta = 12$ $\beta = 6$ attempt to solve 2 eqns	M1
	$\alpha = -2$ both	A1 (4)
(c)	$E(X) = \frac{150 + 0}{2} = 75 \text{ cm}$ 75	B1 (1)
(d)	Standard deviation = $\sqrt{\frac{1}{12}(150-0)^2}$	M1
	= 43.30127cm $25\sqrt{3}$ or awrt 43.3	A1 (2)
(e)	$P(X < 30) + P(X > 120) = \frac{30}{150} + \frac{30}{150}$ 1st or at least one fraction, + or double	M1,M1
	$=\frac{60}{150}$ or $\frac{2}{5}$ or 0.4 or equivalent fraction	A1
		(3)
		Total 12
		1

Question Number	Scheme	
6. (a)	$H_0: p = 0.20, H_1: p < 0.20$	
	Let X represent the number of people buying family size bar. $X \sim B$ (30, 0.20)	
	P(X ≤ 2) = 0.0442 or P(X ≤ 2) = 0.0442 awrt 0.044 P(X ≤ 3) = 0.1227	M1A1
	$CR X \le 2$ 0.0442 < 5%, so significant. Significant	M1
	There is evidence that the no. of family size bars sold is lower than usual.	A1 (6)
(b)	$H_0: p = 0.02, H_1: p \neq 0.02$ $\lambda = 4$ etc ok both	B1
	Let Y represent the number of gigantic bars sold.	
	$Y \sim B (200, 0.02) \Rightarrow Y \sim Po (4)$ can be implied below	M1
	$P(Y = 0) = 0.0183$ and $P(Y \le 8) = 0.9786 \Rightarrow P(Y \ge 9) = 0.0214$ first, either	B1,B1
	Critical region $Y = 0 \bigcup Y \ge 9$ $Y \le 0$ ok	B1,B1
	N.B. Accept exact Bin: 0.0176 and 0.0202	
(c)	Significance level = 0.0183 + 0.0214 = 0.0397 awrt 0.04	B1 (1) Total 13

Question Number	Scheme	Marks
7. (a)	$1 - F(0.3) = 1 - (2 \times 0.3^2 - 0.3^3)$ 'one minus' required = 0.847	M1 A1 (2)
(b)	F(0.60) = 0.5040 F(0.59) = 0.4908 both required awrt 0.5, 0.49	M1A1
	0.5 lies between therefore median value lies between 0.59 and 0.60.	B1 (3)
(c)	$f(x) = \begin{cases} -3x^2 + 4x, & 0 \le x \le 1, \\ 0, & \text{otherwise.} \end{cases}$ attempt to differentiate, all correct	M1A1 (2)
(d)	$\int_0^1 x f(x) dx = \int_0^1 -3x^3 + 4x^2 dx$ attempt to integrate $x f(x)$	M1
	$= \left[\frac{-3x^4}{4} + \frac{4x^3}{3}\right]_0^1$ sub in limits	M1
	$=\frac{7}{12}$ or 0.583 or 0.583 or equivalent fraction	A1 (3)
(e)	$\frac{df(x)}{dx} = -6x + 4 = 0$ attempt to differentiate f(x) and equate to 0	M1
	$x = \frac{2}{3}$ or $0.\dot{6}$ or 0.667	A1
(f)	mean < median < mode, therefore negative skew. Any pair, cao	(2) B1,B1 (2)
		Total 14

Mark Scheme (Results) Summer 2007

GCE

GCE Mathematics

Statistics S2 (6684)

Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH

edexcel

June 2007 6684 Statistics S2 Mark Scheme

Question Number	Scheme	
1(a)	Continuous uniform distribution or rectangular distribution.	B1
	$f(x)$ $\frac{1}{5}$ 0 may be implied by start at y axis	B1
	$0 \qquad 5 \qquad x \qquad$	B1 (3)
(b)	E(X) = 2.5 ft from their a and b, must be a number	B1ft
	$Var(X) = \frac{1}{12}(5-0)^2 \qquad \text{or attempt to } use \int_0^5 f(x)x^2 dx - \mu^2 \qquad use \text{ their } f(x)$	M1
	$=\frac{25}{12}$ or 2.08 o.e awrt 2.08	A1 (3)
(c) (d)	$P(X > 3) = \frac{2}{5} = 0.4$ 2 times their 1/5 from diagram P(X = 3) = 0	B1ft (1) B1 (1)
		(Total 8)

Question Number	Scheme			Marks
2			may use λ or	B1 B1 M1
	$X \sim \text{Po} (2.5)$ P($X \ge 7$) = 1 - P($X \le 6$) = 1 - 0.9858	$[P(X \ge 5) = 1 - 0.8912 = 0.1088]$ $P(X \ge 6) = 1 - 0.9580 = 0.0420$	may be implied att $P(X \ge 7) P(X \ge 6)$	M1
	= 0.0142	$\operatorname{CR} X \ge 6$	awrt 0.0142	A1 M1
	0.0142 < 0.05 (Reject H ₀ .) There is signific	$7 \ge 6$ or 7 is in critical region or 7 is cant evidence at the 5% significance le	significant evel that the factory	B1
-	<u>or</u> The scientists claim is justifi	ied		(7) Total 7
	$\frac{\text{Method } 2}{\text{H}_{\text{o}}: \lambda = 5} (\lambda = 2.5)$ $\text{H}_{1}: \lambda > 5 (\lambda > 2.5)$		may use λ or μ	B1 B1
	<i>X</i> ~ Po (2.5)		may be implied	M1
	$\mathbf{P}(X < 7)$	[P(X < 5) = 0.8912] P(X < 6) = 0.9580	att P($X < 7$) P($X < 6$)	
	= 0.9858	$\operatorname{CR} X \ge 6$	wrt 0.986	M1 A1
	0.9858 > 0.95	$7 \ge 6$ or 7 is in critical region or 7 is	significant	MI B1
	(Reject H_0 .) There is signific is polluting the river with ba <u>or</u> The scientists claim is justified	cant evidence at the 5% significance le cteria <u>.</u> ied	evel that the factory	(7)

<u>Two tail test</u>			
Method 1			
		B1	
$H_{o}: \lambda = 5 \ (\lambda = 2.5)$	may use λ or μ	B0	
$H_1: \lambda \neq 5 \ (\lambda \neq 2.5)$			
<i>X</i> ~ Po (2.5)		M1	
		M1	
$P(X \ge 7) = 1 - P(X \le 6) = 1 - 0.9858$	$\begin{bmatrix} P(X \ge 6) = 1 - 0.9580 = 0.0420 \\ P(X \ge 7) = 1 - 0.9858 = 0.0142 \end{bmatrix} \text{ att } P(X \ge 7) = P(X \ge 7)$		
= 0.0142	$CR X \ge 7 \qquad awrt \ 0.0142$	A1	
0.0142 < 0.025	$7 \ge 7$ or 7 is in critical region or 7 is significant	M1	
(Deiest II.) There is signif.	isout evidence at the 50/ significance level that the factors	B1	
(Reject H_0 .) There is signification is polluting the river with b	acteria		
or			
The scientists claim is justi	fied		
Method 2		B1	
$\frac{HIGHIGG 2}{H_0}: \lambda = 5 \ (\lambda = 2.5)$	may use λ or μ	B0	
$H_1: \lambda \neq 5 \ (\lambda \neq 2.5)$			
$X \sim Po(2.5)$		M1	
$\mathbf{P}(X < 7)$	$\begin{bmatrix} P(X < 6) = 0.9580 \end{bmatrix} & \text{att } P(X < 7) \\ P(X < 7) = 0.9858 \end{bmatrix}$		
P(X < 7)	$\begin{bmatrix} P(X < 6) = 0.9580 \end{bmatrix} \text{ att } P(X < 7) \\ P(X < 7) = 0.9858 \end{bmatrix}$	M1A1	
P(X < 7) = 0.9858	$\begin{bmatrix} P(X < 6) = 0.9580 \end{bmatrix} & \text{att } P(X < 7) \\ P(X < 7) = 0.9858 \\ CR X \ge 7 & \text{awrt } 0.986 \end{bmatrix}$	M1A1	
P(X < 7) = 0.9858	$\begin{bmatrix} P(X < 6) = 0.9580 \end{bmatrix} & \text{att } P(X < 7) \\ P(X < 7) = 0.9858 \\ CR X \ge 7 & \text{awrt } 0.986 \\ 7 \ge 7 \text{ or } 7 \text{ is in critical ragion or } 7 \text{ is cignificant} \end{bmatrix}$	M1A1 M1	
P(X < 7) = 0.9858 0.9858 > 0.975	$\begin{bmatrix} P(X < 6) = 0.9580 \end{bmatrix} & \text{att } P(X < 7) \\ P(X < 7) = 0.9858 \\ CR X \ge 7 & \text{awrt } 0.986 \\ 7 \ge 7 \text{ or } 7 \text{ is in critical region or } 7 \text{ is significant} \end{bmatrix}$	M1A1 M1	
P(X < 7) = 0.9858 0.9858 > 0.975 (Reject H ₀ .) There is signifi	$\begin{bmatrix} P(X < 6) = 0.9580 \end{bmatrix} & \text{att } P(X < 7) \\ P(X < 7) = 0.9858 \\ CR X \ge 7 & \text{awrt } 0.986 \\ 7 \ge 7 \text{ or } 7 \text{ is in critical region or } 7 \text{ is significant} \\ \text{icant evidence at the 5\% significance level that the factory} \end{bmatrix}$	M1A1 M1 B1	
P(X < 7) $= 0.9858$ $0.9858 > 0.975$ (Reject H ₀ .) There is signification in the river with b	$\begin{bmatrix} P(X < 6) = 0.9580 \end{bmatrix} & \text{att } P(X < 7) \\ P(X < 7) = 0.9858 \\ CR X \ge 7 & \text{awrt } 0.986 \\ 7 \ge 7 \text{ or } 7 \text{ is in critical region or } 7 \text{ is significant} \\ \text{icant evidence at the } 5\% \text{ significance level that the factory acteria.} \end{bmatrix}$	M1A1 M1 B1	
P(X < 7) $= 0.9858$ $0.9858 > 0.975$ (Reject H ₀ .) There is significing the river with bound of the product of the second state of the second	$\begin{bmatrix} P(X < 6) = 0.9580 \end{bmatrix} & \text{att } P(X < 7) \\ P(X < 7) = 0.9858 \\ CR X \ge 7 & \text{awrt } 0.986 \\ 7 \ge 7 \text{ or } 7 \text{ is in critical region or } 7 \text{ is significant} \\ \text{icant evidence at the } 5\% \text{ significance level that the factory acteria.} \\ \end{bmatrix}$	M1A1 M1 B1	
P(X < 7) $= 0.9858$ $0.9858 > 0.975$ (Reject H ₀ .) There is significitly the river with bound of the scientists claim is justified by the scientists claim	$\begin{bmatrix} P(X < 6) = 0.9580 \end{bmatrix} & \text{att } P(X < 7) \\ P(X < 7) = 0.9858 \\ CR X \ge 7 & \text{awrt } 0.986 \\ 7 \ge 7 \text{ or } 7 \text{ is in critical region or } 7 \text{ is significant} \\ \text{icant evidence at the } 5\% \text{ significance level that the factory acteria.} \\ \text{fied} \\ \end{bmatrix}$	M1A1 M1 B1	
P(X < 7) $= 0.9858$ $0.9858 > 0.975$ (Reject H ₀ .) There is significing the river with bound on the scientists claim is justices)	$\begin{bmatrix} P(X < 6) = 0.9580 \end{bmatrix} & \text{att } P(X < 7) \\ P(X < 7) = 0.9858 \\ CR X \ge 7 & \text{awrt } 0.986 \\ 7 \ge 7 \text{ or } 7 \text{ is in critical region or } 7 \text{ is significant} \\ \text{icant evidence at the 5\% significance level that the factory acteria.} \\ \text{fied} \\ \end{bmatrix}$	M1A1 M1 B1	
P(X < 7) $= 0.9858$ $0.9858 > 0.975$ (Reject H ₀ .) There is significity to a signification of the scientist science of the	$\begin{bmatrix} P(X < 6) = 0.9580 \end{bmatrix} & \text{att } P(X < 7) \\ P(X < 7) = 0.9858 \\ CR X \ge 7 & \text{awrt } 0.986 \\ 7 \ge 7 \text{ or } 7 \text{ is in critical region or } 7 \text{ is significant} \\ \text{ficant evidence at the } 5\% \text{ significance level that the factory acteria.} \\ \end{bmatrix}$	M1A1 M1 B1	
P(X < 7) $= 0.9858$ $0.9858 > 0.975$ (Reject H ₀ .) There is significing the river with boost of the scientists claim is justiced by the scientists of the scientists claim is justiced by the scientists of th	$\begin{bmatrix} P(X < 6) = 0.9580 \end{bmatrix} & \text{att } P(X < 7) \\ P(X < 7) = 0.9858 \\ CR X \ge 7 & \text{awrt } 0.986 \\ 7 \ge 7 \text{ or } 7 \text{ is in critical region or } 7 \text{ is significant} \\ \text{icant evidence at the } 5\% \text{ significance level that the factory acteria.} \\ \text{fied} \\ \end{bmatrix}$	M1A1 M1 B1	
P(X < 7) $= 0.9858$ $0.9858 > 0.975$ (Reject H ₀ .) There is signifitive signal to the second structure of the second structure struc	$\begin{bmatrix} P(X < 6) = 0.9580 \end{bmatrix} & \text{att } P(X < 7) \\ P(X < 7) = 0.9858 \\ CR X \ge 7 & \text{awrt } 0.986 \\ 7 \ge 7 \text{ or } 7 \text{ is in critical region or } 7 \text{ is significant} \\ \text{icant evidence at the } 5\% \text{ significance level that the factory acteria.} \\ \text{fied} \\ \end{bmatrix}$	M1A1 M1 B1	
P(X < 7) $= 0.9858$ $0.9858 > 0.975$ (Reject H ₀ .) There is significing the river with bound of the scientists claim is justiced by the scientist of the scientists claim is justiced by the scientist of t	$\begin{bmatrix} P(X < 6) = 0.9580 \end{bmatrix} & \text{att } P(X < 7) \\ P(X < 7) = 0.9858 \\ CR X \ge 7 & \text{awrt } 0.986 \\ 7 \ge 7 \text{ or } 7 \text{ is in critical region or } 7 \text{ is significant} \\ \text{icant evidence at the } 5\% \text{ significance level that the factory acteria.} \\ \text{fied} \\ \end{bmatrix}$	M1A1 M1 B1	
P(X < 7) $= 0.9858$ $0.9858 > 0.975$ (Reject H ₀ .) There is signifitive polluting the river with bound of the scientists claim is justified by the scientists claim is justified by the scientists claim is justified by the scientist pollution of the scientist po	$\begin{bmatrix} P(X < 6) = 0.9580 \end{bmatrix} & \text{att } P(X < 7) \\ P(X < 7) = 0.9858 \\ CR X \ge 7 & \text{awrt } 0.986 \\ 7 \ge 7 \text{ or } 7 \text{ is in critical region or } 7 \text{ is significant} \\ \text{icant evidence at the } 5\% \text{ significance level that the factory acteria.} \\ \text{fied} \\ \end{bmatrix}$	M1A1 M1 B1	
P(X < 7) $= 0.9858$ $0.9858 > 0.975$ (Reject H ₀ .) There is significing the river with bound of the scientists claim is justiced by the scientists of the scientists claim is justiced by the scientists of the scientists of the science of the s	$\begin{bmatrix} P(X < 6) = 0.9580 \end{bmatrix} & \text{att } P(X < 7) \\ P(X < 7) = 0.9858 \\ CR X \ge 7 & \text{awrt } 0.986 \\ 7 \ge 7 \text{ or } 7 \text{ is in critical region or } 7 \text{ is significant} \\ \text{icant evidence at the } 5\% \text{ significance level that the factory acteria.} \\ \text{fied} \\ \end{bmatrix}$	M1A1 M1 B1	
P(X < 7) $= 0.9858$ $0.9858 > 0.975$ (Reject H ₀ .) There is signifitive polluting the river with bound of the scientists claim is justice)	$\begin{bmatrix} P(X < 6) = 0.9580 \end{bmatrix} & \text{att } P(X < 7) \\ P(X < 7) = 0.9858 \\ CR X \ge 7 & \text{awrt } 0.986 \\ 7 \ge 7 \text{ or } 7 \text{ is in critical region or } 7 \text{ is significant} \\ \text{icant evidence at the } 5\% \text{ significance level that the factory acteria.} \\ \text{fied} \\ \end{bmatrix}$	M1A1 M1 B1	
P(X < 7) $= 0.9858$ $0.9858 > 0.975$ (Reject H ₀ .) There is significing the river with bound of the scientists claim is justiced by the scientists of the scientists claim is justiced by the science of the science	$\begin{bmatrix} P(X < 6) = 0.9580 \end{bmatrix} & \text{att } P(X < 7) \\ P(X < 7) = 0.9858 \\ CR X \ge 7 & \text{awrt } 0.986 \\ 7 \ge 7 \text{ or } 7 \text{ is in critical region or } 7 \text{ is significant} \\ \text{icant evidence at the } 5\% \text{ significance level that the factory acteria}. \\ \text{fied} \\ \end{bmatrix}$	M1A1 M1 B1	

Question Number	Scheme			Marks
3(a)	$X \sim \text{Po} (1.5)$ need Po	and 1.5	B1	(1)
(b)	Faulty components occur at a constant rate.any twoFaulty components occur independently or randomly.only neeFaulty components occur singly.once	of the 3 d faulty	B1 B1	(2)
(c)	$P(X=2) = P(X \le 2) - P(X \le 1)$ or $\frac{e^{-1.5}(1.5)^2}{2}$	r	M1	
	= 0.8088 - 0.5578			
	= 0.251 a	wrt 0.251	A1	
				(2)
(d)	$X \sim Po(4.5)$ 4.5 may be	e implied	B1	
	$P(X \ge 1) = 1 - P(X = 0)$ = 1 - e^{-4.5}	r	M1	
	= 1 - 0.0111 = 0.9889 awrt 0).989 /	A1	(3)
				Total 8

Question Number	Scheme		
4	Attempt to write down combinationsat least one seen $(5,5,5)$ $(5,5,10)$ any order $(10,10,5)$ any order $(10,10,10)$	M1 A1	
	(5,10,5), (10,5,5), (10,5,10), (5,10,10), (5,10,5), (10,5,5), (10,5,10), (5,10,10), (5,10,10), (10,5,5), (10,5,10), (10,5,10), (10,10), (10,10,10), (10,10), (10,10), (10,10,10), (10,10), (10,10), (10,10,10), (10,10), (10,10), (10,10,10), (10,10), (10,10), (10,10,10), (10,10), (10,10), (10,10,10), (10,5,5), (10,5,10), (10,10), (10,10,10), (10,5,5), (10,5,10), (10,10), (10,10,10), (10,5,5), (10,5,10), (10,10), (10,10), (10,5,5), (10,5,10), (10,10), (1	A1	
	median 5 and 10	B1	
	Median = 5 $P(M = m) = \left(\frac{1}{4}\right)^3 + 3\left(\frac{1}{4}\right)^2 \left(\frac{3}{4}\right) = \frac{10}{64} = 0.15625$ add at least two prob using ¹ / ₄ and ³ / ₄ . identified by having same median of 5 or 10 Allow no 3 for M	M1 A1	
	Median = 10 P(M = m) = $\left(\frac{3}{4}\right)^3 + 3\left(\frac{3}{4}\right)^2 \left(\frac{1}{4}\right) = \frac{54}{64} = 0.84375$	A1 (7) Total 7	

Question Number	Scheme			Marks	
5(a)	If $X \sim B(n,p)$ and n is large, $n > 50p$ is small, $p < 0.2then X can be approximated by Po(np)$		B1 B1	(2)	
(b)	P(2 consecutive calls) = 0.01^2 = 0.0001		M1 A1	(2)	
(c)	<i>X</i> ~B(5, 0.01)	may be implied	B1		
	P(X>1) = 1 - P(X=1) - P(X=0) = 1 - 5(0.01)(0.99) ⁴ - (0.99) ⁵ = 1 - 0.0480298 - 0.95099		M1		
	= 0.00098	awrt 0.00098	A1	(3)	
(d)	$X \sim B(1000, 0.01)$ Mean = $np = 10$ Variance = $np(1 - p) = 9.9$	may be implied by correct mean and variance	B1 B1 B1	(3)	
(e)	$X \sim \text{Po}(10)$				
	$P(X > 6) = 1 - P (X \le 6)$ = 1 - 0.1301 = 0.8699	awrt 0.870	M1 A1		
				(2)	
				Total 12	

Question Number	Scheme			Marks
6	$\label{eq:constraint} \begin{array}{c} \underline{One \ tail \ test} \\ \underline{Method \ 1} \\ H_o: p = 0.2 \\ H_1: p > 0.2 \end{array}$			B1 B1
	$X \sim B(5, 0.2)$	may be	implied	M1
	$P(X \ge 3) = 1 - P(X \le 2) = 1 - 0.9421$	$[P(X \ge 3) = 1 - 0.9421 = 0.0579]$ P(X \ge 4) = 1 - 0.9933 = 0.0067	att P($X \ge 3$) P($X \ge 4$)	M1
	= 0.0579	$\operatorname{CR} X \ge 4$ aw	rt 0.0579	A1
	0.0579 > 0.05	$3 \le 4$ or 3 is not in critical region or 3 is	is not significant	M1
-	(Do not reject H ₀ .) There is insufficient evidence at the 5% significance level that there is an increase in the number of times the taxi/driver is late. Or Linda's claim is not justified			B1 (7) Total 7
	$\label{eq:method_2} \begin{split} \underline{Method\ 2} \\ H_o: p = 0.2 \\ H_1: p > 0.2 \end{split}$			B1 B1
	$X \sim B(5, 0.2)$	may be	implied	M1
	P(X < 3) =	[P(X < 3) = 0.9421] P(X < 4) = 0.9933	att $P(X < 3) P(X < 4)$	
	0.9421	$\operatorname{CR} X \ge 4$	awrt 0.942	M1A1
	0.9421 < 0.95	$3 \le 4$ or 3 is not in critical region or 3 is	s not significant	M1
	(Do not reject H ₀ .) There is in there is an increase in the nu Or Linda's claim is not justi	insufficient evidence at the 5% significa mber of times the <u>taxi/driver is late.</u> fied	nce level that	B1 (7)

$\frac{\text{Two tail test}}{\text{Method 1}}$ $H_{o}: p = 0.2$ $H_{1}: p \neq 0.2$			B1 B0	
$X \sim X \sim B(5, 0.2)$	ma	y be implied	MI	
$P(X \ge 3) = 1 - P(X \le 2) = 1 - 0.9421$	$[P(X \ge 3) = 1 - 0.9421 = 0.0579]$ P(X \ge 4) = 1 - 0.9933 = 0.0067	att P($X \ge 3$) P($X \ge 4$)	MI	
= 0.0579	$\operatorname{CR} X \ge 4$ aw	vrt 0.0579	Al	
0.0579 > 0.025	$3 \le 4$ or 3 is not in critical region or 3 is	s not significant	MI	
(Do not reject H_0 .) There is in there is an increase in the nu Or Linda's claim is not justi	insufficient evidence at the 5% significa mber of times the <u>taxi/driver is late.</u> fied	nce level that	BI	(7)
Method 2			B1 B0	
$H_o: p = 0.2$ $H_1: p \neq 0.2$			M1	
$X \sim X \sim B(5, 0.2)$	ma	y be implied		
P(X < 3) =	[P(X < 3) = 0.9421] P(X < 4) = 0.9933	att P($X < 3$) P($X < 4$)		
0.9421	$\operatorname{CR} X \ge 4$ a	awrt 0.942	M1A1	
0.9421 < 0.975	$3 \le 4$ or 3 is not in critical region or 3 i	is not significant	M1	
Do not reject H_0 . There is in there is an increase in the nu Or Linda's claim is not justi	sufficient evidence at the 5% significant mber of times the taxi/driver is late. fied	ce level that	B1	(7)
<u>Special Case</u> If they use a probability of A0 M1 B1. NB they must attempt to wo	$\frac{1}{7}$ throughout the question they may gai ork out the probabilities using $\frac{1}{7}$	in B1 B1 M0 M1		

Question Number	Scheme	
7(a) i ii	If $X \sim B(n,p)$ and n is large or $n > 10$ or $np > 5$ or $nq > 5p$ is close to 0.5 or $nq > 5$ and $np > 5then X can be approximated by N(np,np(1-p))mean = npvariance = np(1-p)must be in terms of p$	B1 B1 (2) B1 B1
		(2)
(b)	$X \sim N(60, 58.2)$ or $X \sim N(60, 7.63^2)$ 60, 58.2	B1, B1
	$P(X \ge 40) = P(X > 39.5)$ $= 1 - P\left(z < \pm \left(\frac{39.5 - 60}{\sqrt{58.2}}\right)\right)$ $= 1 - P(z < -2.68715)$ using 39.5 or 40.5 and their µ and σ	M1 M1
	= 0.9965 allow answers in range 0.996 – 0.997	A1dep on both M (5)
(c)	E(X) = 60 may be implied or ft from part (b)	B1ft
	Expected profit = $(2000 - 60) \times 11 - 2000 \times 0.70$ = £19 940.	M1 (3) Total 12

Mark Scheme (Results) January 2008

GCE

GCE Mathematics (6684/01)

January 2008 Statistics S2 Mark Scheme

Question Number	Scheme	Marks
1. (a)	A census is when every member of the population is investigated.	B1
(b)	There would be no cookers left to sell.	B1
(c)	A list of the unique identification numbers of the cookers.	B1
(d)	A cooker	B1
		(4)
Notes 1. (a)	B1 Need one word from each group (1) <u>Every member /all items / entire /oe</u> (2) <u>population/collection of individuals/sampling frame/oe</u>	
	enumerating the population on its own gets B0	
(b)	B1 Idea of Tests to destruction. Do not accept cheap or quick	
(c)	B1 Idea of list/ register/database of cookers/serial numbers	
(d)	B1 cooker(s) / serial number(s)	
	The sample of 5 cookers or every 400 th cooker gets B1	

2 (a)	Let <i>X</i> be the random variable the number of faulty bolts	M1
	$P(X \le 2) - P(X \le 1) = 0.0355 - 0.0076$ or $(0.3)^2 (0.7)^{18} \frac{20!}{18!2!}$	A1 (2)
	= 0.0279 = 0.0278	M1
(b)	$1 - P(X \le 3) = 1 - 0.1071$ = 0.8929	(2)
	or $1 - (0.3)^3 (0.7)^{17} \frac{20!}{17!3!} - (0.3)^2 (0.7)^{18} \frac{20!}{18!2!} - (0.3)(0.7.)^{19} \frac{20!}{19!1!} - (0.7)^{20}$	M1A1√A1
(c)	$\frac{10!}{4!6!}(0.8929)^6(0.1071)^4 = 0.0140.$	(3)
Notes:		
2. (a)	M1 Either attempting to use P ($X \le 2$) – P ($X \le 1$)	
	or attempt to use binomial and find $p(X = 2)$. Must have $(p)^2 (1-p)^{18} \frac{20!}{18!2!}$,	
	with a value of p	
	A1 awrt 0.0278 or 0.0279.	
(b)	M1 Attempting to find $1 - P(X \le 3)$	
	A1 awrt 0.893	
(c)		
	M1 for $k(p)^6(1-p)^4$. They may use any value for p and k can be any number or ${}^{n}C_6p^6(1-p)^{n-6}$	
	A1 $\sqrt{\frac{10!}{4!6!}}$ (their part b) ⁶ (1-their part b) ⁴ may write ¹⁰ C ₆ or ¹⁰ C ₄ A1 awrt 0.014	
		B1 B1 (2)

3. (a)	Eventsoccur at a constant rate.any two of the 3Eventsoccur independently or randomly.Eventsoccur singly	B1	
(b)	Let <i>X</i> be the random variable the number of cars passing the	M1 A1	
(i)	Po(6)	M1	
	$P(X \le 4) - P(X \le 3) = 0.2851 - 0.1512$ or $\frac{e^{-6}6^4}{4!}$	A1	
()	= 0.1339	B1	(5)
(11)	$1 - P(X \le 4) = 1 - 0.2851 \qquad \text{or } 1 - e^{-6} \left(\frac{3}{4!} + \frac{3}{3!} + \frac{3}{2!} + \frac{3}{1!} + 1 \right)$ $= 0.7149$	M1 A	1
(c)	P (0 car and 1 others) + P (1 cars and 0 other)	A1	(4)
	$= e^{-1} x 2e^{-2} + 1e^{-1} x e^{-2}$ = 0.3679 x 0.2707 + 0.3674 x 0.1353 = 0.0996 + 0.0498 = 0.149		
	$\frac{\text{alternative}}{P_o(1+2) = P_o(3)} B1$ $P(X=1) = 3e^{-3} M1 A1$ $= 0.149 A1$		
Notes 3(a)	 B1 B1 Need the word events at least once. Independently and randomly are the same reason. Award the first B1 if they only gain 1 mark Special case. If they have 2 of the 3 lines without the word events they get B0 B1 B1 Using Po(6) in (i) or (ii) 		
(b) (i)	M1 Attempting to find $P(X \le 4) - P(X \le 3)$ or $\frac{e^{-\lambda}\lambda^4}{4!}$		

	A1 awrt 0.134	
	M1 Attempting to find $1 - P(X \le 4)$	
	A1 awrt 0.715	
(ii)		
	B1 Attempting to find both possibilities. May be implied by doing $e^{-\lambda_1} \times \lambda_2 e^{-\lambda_2} +$	
(c)	$e^{-\lambda_2} \times \lambda_1 e^{-\lambda_1}$ any values of λ_1 and λ_2	
	M1 finding one pair of form $e^{-\lambda_1} \times \lambda_2 e^{-\lambda_2}$ any values of λ_1 and λ_2	
	A1 one pair correct	
	A1 awrt 0.149	
	Alternative.	
	B1 for Po(3) M1 for attempting to find $P(X=1)$ with Po(3)	
	A1 3e ⁻³	
	A1 awrt 0.149	

4. (a)	$K(2^{4} + 2^{2} - 2) = 1$ K = 1/18	M1 A1	(2)
(b)	$1 - F(1.5) = 1 - \frac{1}{18}(1.5^4 + 1.5^2 - 2)$	M1	
	$= 0.705$ or $\frac{203}{288}$	A1	(2)
(c)	$f(y) = \begin{cases} \frac{1}{9}(2y^3 + y) & 1 \le y \le 2 \end{cases}$	M1 A1	
	0 otherwise	B1	(3)
Notes			
4. (a)	M1 putting $F(2) = 1$ or $F(2) - F(1) = 1$ A1 cso. Must show substituting $y = 2$ and the 1/18		
(b)	M1 either attempting to find $1 - F(1.5)$ may write and use $F(2) - F(1.5)$ A1 awrt 0.705		
(c)	M1 attempting to differentiate. Must see either a $y^n \rightarrow y^{n-1}$ at least once		
	A1 for getting $\frac{1}{9}(2y^3 + y)$ o.e and $1 \le y \le 2$ allow $1 \le y \le 2$		
	B1 for the 0 <i>otherwise</i> . Allow 0 for $y < 1$ and 0 for $y > 2$		
	Allow them to use any letter		

5	$H_0: p = 0.3; H_1: p > 0.3$	B1 B1
	Let X represent the number of tomatoes greater than 4 cm : $X \sim B(40, 0.3)$	B1
	$P(X \ge 18) = 1 - P(X \le 17)$ $P(X \ge 18) 1 - P(X \le 17) = 0.0320$ $P(X \ge 17) = 1 - P(X \le 16) = 0.0633$ $CR X \ge 18$	M1 A1
	$0.0320 < 0.05$ $18 \ge 18$ or 18 in the critical region	
	no evidence to Reject H_0 or it is significant	M1
	New fertiliser has <u>increased</u> the probability of a <u>tomato</u> being greater than 4 cm Or Dhriti's claim is true	B1d cao (7)
5	B1 for correct H_0 must use p or pi	
	B1 for correct H_1 must use p and be one tail.	
	B1 using $B(40, 0.3)$. This may be implied by their calculation	
	M1 attempt to find $1 - P(X \le 17)$ or get a correct probability. For CR method must attempt to find $P(X \ge 18)$ or give the correct critical region	
	A1 awrt 0.032 or correct CR.	
	M1 correct statement based on their probability , H_1 and 0.05 or a correct contextualised statement that implies that.	
	B1 this is not a follow through .conclusion in context. Must use the words increased, tomato and some reference to size or diameter. This is dependent on them getting the previous M1	
	If they do a <u>two tail test</u> they may get B1 B0 B1 M1 A1 M1 B0 For the second M1 they must have accept Ho or it is not significant or a correct contextualised statement that implies that.	

6a (i)	Let X represent the number of sunflower plants more than 1.5m high	
	$X \sim Po(10)$ $\mu=10$	
	$P(8 \le X \le 13) = P(X \le 13) - P(X \le 7)$	
	= 0.8645 - 0.2202	B1
	= 0.6443 awrt 0.644	M1
ii)	<i>X</i> ~ N(10,7.5)	
	$P(7.5 \le X \le 13.5) = P\left(\frac{7.5 - 10}{5} \le X \le \frac{13.5 - 10}{5}\right)$	A1
	$\left(\sqrt{7.5} \sqrt{7.5}\right)$	B1
	$= P (-0.913 \le X \le 1.278)$	M1 M1
	= 0.8997 - (1 - 0.8186)	
	= 0.7183 awrt 0.718 or 0.719	A1 A1
b)	Normal approx /not Poisson since (n is large) and p close to half. $pr (np = 10 ppg = 7.5)$ mean \neq variance pr	M1 A1 (10)
	np (= 10) and nq (= 30) both >5.	D1
	or exact binomial = 0.7148	B1 B1dep
6a (i)	B1 mean = 10 May be implied in (i) or (ii)	
	M1 Attempting to find $P(X \le 13) - P(X \le 7)$	
	A1 awrt 0.644	
ii)	B1 $\sigma^2 = 7.5$ May be implied by being correct in standardised formula	
	M1 using 7.5 or 8.5 or 12.5 or 13.5.	
	M1 standardising using 7.5 or 8 or 8.5 or 12.5 or 13 or 13.5 and their mean and standard deviation.	

	A1 award for either $\frac{7.5-10}{\sqrt{7.5}}$ or awrt -0.91	
	A1 award for either $\frac{13.5-10}{\sqrt{7.5}}$ or awrt 1.28	
	$\sqrt{7.5}$ M1 Finding the correct area. Following on from their 7.5 and 13.5. Need to do a Prob >0.5 – prob <0.5 or prob <0.5 + prob< 0.5	
	A1 awrt 0.718 or 0.719 only. Dependent on them getting all three method marks.	
	No working but correct answer will gain all the marks	
	first B1 normal	
b)	second B1 p close to half, or mean \neq variance or np and nq both > 5.They may use a number bigger than 5 or they may work out the exact value 0.7148 using the binomial distribution.	
	Do not allow np> 5 and npq>5	

7 ai)	A hypothesis test is a mathematical procedure to <u>examine a value of</u> <u>a population parameter</u> proposed by <u>the null hypothesis compared</u>	B1	
	with an alternative hypothesis.		
ii)	The critical region is the range of values or a test statistic or region where the test is	B1g	
	significant that would lead to the rejection of H_{0} .	B1h	
(b)	Let X represent the number of incoming calls : $X \sim Po(9)$	B1	(3)
	From table	M1 A1	
	$P(X \ge 16) = 0.0220$	A1	
	$P(x \le 3) = 0.0212$	B1	
	Critical region ($x \le 3$ or $x \ge 16$)		(5)
(c)	Significance level = 0.0220 + 0.0212 = 0.0432 or 4.32%	B1	(1)
(d)		B1	
	$H_o: \lambda = 0.45; H_1: \lambda < 0.45$ (accept : $H_o: \lambda = 4.5; H_1: \lambda < 4.5$)	M1	
	Using $X \sim Po(4.5)$	Δ1	
	P (X ≤ 1) = 0.0611 CR X ≤ 0 awrt 0.0611	M1	
	$0.0611 > 0.05.$ $1 \ge 0$ or 1 not in the critical region	B1cao	
	There is evidence to Accept H_0 or it is not significant		(5)
	There is no evidence that there are less calls during school holidays.		
Notes 7 ai)	B1 Method for deciding between 2 hypothesis.		
ii)	B1 range of values. This may be implied by other words. Not region on its own B1 which lead you to reject H_0		

	Cive the first D1 if only one most availed	
	Give the first BT if only one mark awarded.	
(1-)	B1 using P _o (9)	
(b)	M1 attempting to find $P(X \ge 16)$ or $P(x \le 3)$	
	A1 0.0220 or $P(X \ge 16)$	
	A1 0.0212 or $P(x \le 3)$	
	These 3 marks may be gained by seeing the numbers in part c	
	B1 correct critical region	
	A completely correct critical region will get all 5 marks.	
	Half of the correct critical region eg x \leq 3 or x \geq 17 say would get B1 M1 A0 A1 B0 if the M1 A1 A1 not already awarded.	
	B1 cao awrt 0.0432	
(c)		
(d)	BI may use λ or μ . Needs both H ₀ and H ₁	
	M1 using $P_o(4.5)$	
	A1 correct probability or CR only	
	M1 correct statement based on their probability, H_1 and 0.05	
	or a correct contextualised statement that implies that.	
	B1 this is not a follow through .Conclusion in context. Must see the word calls in conclusion	
	If they get the correct CR with no evidence of using $P_0(4.5)$ they will get M0 A0	
	SC If they get the critical region $X \le 1$ they score M1 for rejecting H ₀ and B1 for concluding the rate of calls in the holiday is lower.	

8. a)	2.5 Max height of 2 labelled and goes through(2,0) 1.5 must be between 2 and 3 and no other lines drawn (accept patios drawn) 0.5 correct	B1 B1	
	$\begin{array}{ c c c c c c } 0 & \hline & & \hline & & & \hline & & & & \\ 0 & 1 & 2 & 3 & 4 & 5 \\ \hline & & & & \\ & & & & \\ & & & & \\ & & & &$	B1	
b)	$\int_{2}^{3} 2x(x-2) dx = \left[\frac{2x^{3}}{3} - 2x^{2} \right]_{2}^{3}$	B1	(3) (1)
c)	$=2\frac{2}{3}$	M1A1	
	$\int_{2}^{m} 2(x-2) dx = 0.5$ $\left[-\frac{2}{3} - 4x \right]^{m} = 0.5$	M1	(3)
d)	$\begin{bmatrix} x & -4x \end{bmatrix}_2 = 0.5$ $m^2 - 4m + 4 = 0.5$ $m^2 - 4m + 3.5 = 0$		
	$m = \frac{4 \pm \sqrt{2}}{2}$ $m = 2.71$	A1 M1	
	Negative skew. mean < median < mode .	A1 B1 B1dep	(4)

Notes 8.	B1 the graph must have a maximum of 2 which must be labelled
(a)	B1 the line must be between 2 and 3 with not other line drawn except patios. They can get this mark even if the patio cannot be seen.
	B1 the line must be straight and the right shape.
	B1 Only accept 3
(b)	M1 attempt to find $\int x f(x) dx$ for attempt we need to see $x^n \to x^{n+1}$. ignore limits
(c)	A1 correct integration ignore limits
	A1 accept $2\frac{2}{3}$ or awrt 2.67 or 2.6
	M1 using $\int f(x)dx = 0.5$ A1 $m^2 - 4m + 4 = 0.5$ oe
(d)	M1 attempting to solve quadratic.
	A1 awrt 2.71 or $\frac{4+\sqrt{2}}{2}$ or $2+\frac{\sqrt{2}}{2}$ oe
(e)	First B1 for negative Second B1 for mean < median< mode. Need all 3 or may explain using diagram.

Mark Scheme (Results) June 2008

GCE Mathematics (6684/01)

Edexcel Limited. Registered in England and Wales No. 4496750

June 2008 6684 Statistics S2 Mark Scheme

Question Number	Scheme	Ma	arks
1(a)	$\mathrm{E}(X)=5$	B1	
	Var(X) = $\frac{1}{12}(10-0)^2$ or attempt to use $\int \frac{x^2}{10} dx - \mu^2$	M1	
	$= \frac{100}{12} = \frac{25}{3} = 8\frac{1}{3} = 8.3$ awrt 8.33	A1	
(b)	$P(X \le 2) = (2-0) \times \frac{1}{10} = \frac{1}{5} \text{ or } \frac{2}{10} \text{ or } 0.2$	M1 A1	(3) (2)
(c)	$\left(\frac{1}{5}\right)^5 = 0.00032 \text{ or } \frac{1}{3125} \text{ or } 3.2 \times 10^{-4} \text{ o.e.}$	M1 A1	(2)
(d)	$P(X \ge 8) \text{ or } P(X > 8)$ $P(X \ge 8 \mid X \ge 5) = \frac{P(X \ge 8)}{P(X \ge 5)}$	M1 M1	
	$=rac{2/10}{5/10}$		
	$=\frac{2}{5}$	A1	(3)
	alternative remaining time ~ U[0,5] or U[5,10] $P(X \ge 3 \text{ or } 8) = \frac{2}{5}$	M1 M1 (Tot	A1 al 10)
	Notes (a) B1 cao M1 using the correct formula $\frac{(a-b)^2}{12}$ and subst in 10 or 0 or for an attempt at the integration they must increase the power of x by 1 and subtract their E(X) squared. A1 cao (b) M1 for P(X ≤ 2) or P(X < 2) A1 cao (c) M1 (their b) ⁵ If the answer is incorrect we must see this. No need to check with		
	 your calculator A1 cao (d) writing P(X ≥ 8) (may use > sign). If they do not write P(X ≥ 8) then it must be clear from their working that they are finding it. 0.2 on its own with no working gets M0 M1 For attempting to use a correct conditional probability. 		

```
A1 2/5
    Full marks for 2/5 on its own with no incorrect working
Alternative
M1 for P(X \ge 3) or P(X \ge 8) may use > sign M1 using either U[0,5] or U[5,10]
A1 2/5
```

Question Number	Scheme	Marks
2	$X \sim B(100, 0.58)$ $Y \sim N (58, 24.36)$	B1 B1 B1
	$[P(X > 50) = P(X \ge 51)]$ using 50.5 or 51.5 or 49.5 or 48.5	M1
	$= P\left(z \ge \pm \left(\frac{50.5 - 58}{\sqrt{24.36}}\right)\right) \qquad \text{standardising 50.5, 51, 51.5, 48.5, 49, 49.5 and their } \mu \text{ and } \sigma \text{ for M1}$	M1
	$= P(z \ge -1.52)$ = 0.9357	A1
	alternative	AI
	$\frac{\text{directuality}}{X \sim B(100, 0.42)}$ Y ~ N (42, 24.36)	(7) B1 B1 B1
	$[P(X < 50) = P(X \le 49)]$ using 50.5 or 51.5 or 49.5 or 48.5	M1
	$= P\left(z \le \pm \left(\frac{49.5 - 42}{\sqrt{24.36}}\right)\right) \qquad \text{standardising 50.5, 51, 51.5, 48.5, 49, 49.5 and their } \mu \text{ and } \sigma \text{ for M1}$ $= P(z \le 1.52)$	M1 A1
	= 0.9357	A1 (Total 7)
	<u>Notes</u> The first 3 marks may be given if the following figures are seen in the standardisation formula :- 58 or 42, 24.36 or $\sqrt{24.36}$ or $\sqrt{24.4}$ or awrt 4.94. Otherwise B1 normal B1 58 or 42 B1 24.36 M1 using 50.5 or 51.5 or 49.5 or 48.5. ignore the direction of the inequality. M1 standardising 50.5, 51, 51.5, 48.5, 49, 49.5 and their μ and σ . They may use $\sqrt{24}$ or $\sqrt{24.36}$ or $\sqrt{24.4}$ or awrt 4.94 for σ or the $\sqrt{6}$ ftheir variance. A1 \pm 1.52. may be awarded for $\pm \left(\frac{50.5 - 58}{\sqrt{24.36}}\right)$ or $\pm \left(\frac{49.5 - 42}{\sqrt{24.36}}\right)$ o.e. A1 awrt 0.936	

Question Number	Scheme							Mai	'ks				
3(a)	X~	~ Po (9)				may be	e implied	l by calc	culations	in part a	ı or b	M1	
	P(P(2	$\begin{array}{l} X \leq 3 \\ X \geq 16 \end{array}$	= 0.0212 = 0.0220										
	CF	$X X \leq 3;$	$\cup X \ge$	16								A1; A1	(3)
(b)	P(1	rejecting	Ho) = 0.	0212 + 0).0220							M1	
			= 0.	0432 or	0.0433							A1 cao	
													(2)
												Tc	otal 5
	Nc (a) Th the (b) reg up x Sp If Y 0.0	M1 for 0.04 one A1 for 2 A1 for 2 ey must eir workin if they u gions in p lues for t . The mo 2 0.006 2 A1 awr ecial cas you see 0 0432 awa	using Pc 415, $0.9'$ correct for $\zeta \le 3$ or $\zeta \ge 16$ c identify for ng. Do not use 0.021 part a. If for their critic st comm 3 0.021 2 t 0.0432 / (c) rd M1 A	9(9) - ot $780, 0.95$ $7egion.$ $X < 4 co or X > 15$ the critic ot accept 2 and 0.4 they have cal regio on table 4 0.055 0 or 0.0433 an 0.0433 an	her value 585, 0.98 ondone of al region $P(X \le 3)$ 0220 the not got ns.(both values for 5 0.115 7 3 ad then the formula of	es you m 89,0.011 c1 or CR as at the c o etc gets y can gai the corro smaller t or lambda 14 0.958 5	ight see 1,0.0062 instead end and n A0 in these n ect numb than 0.05 a = 9 are 15 0.978 0 nd do son	which in 2 or may of X not just h marks reg bers they 5) You m in this ta 0.988 9	ave then gardless must be ay need able 17 0.994 7	 (9) are 0. ned by a n as part of the cr adding t to look t 	0550, t least of itical hese		

Scheme	Marks
<i>X</i> ~ B(11000, 0.0005)	M1 A1 (2)
$E(X) = 11000 \times 0.0005 = 5.5$	B1
Var $(X) = 11000 \times 0.0005 \times (1 - 0.0005)$ = 5.49725	B1 (2)
X ~ Po (5.5)	M1 A1
$P(X \le 2) = 0.0884$	dM1 A1 (4)
	Total 8
Notes	
(a) M1 for Binomial,A1 fully correctThese cannot be awarded unless seen in part a	
(b)B1 cao B1 also allow 5.50, 5.497, 5.4973, do not allow 5.5	
 (c) M1 for Poisson A1 for using Po (5.5) M1 this is dependent on the previous M mark. It is for attempting to find P(X ≤ 2) A1 awrt 0.0884 	
Special case If they use normal approximation they could get M0 A0 M1 A0 if they use 2.5 in their standardisation.	
NB exact binomial is 0.0883	
	Scheme $X \sim B(11000, 0.0005)$ $E(X) = 11000 \times 0.0005 = 5.5$ $Var(X) = 11000 \times 0.0005 \times (1 - 0.0005)$ $= 5.49725$ $X \sim Po (5.5)$ $P(X \le 2) = 0.0884$ Notes(a) M1 for Binomial, A1 fully correct These cannot be awarded unless seen in part a(b)B1 cao B1 also allow 5.50, 5.497, 5.4973, do not allow 5.5(c) M1 for Poisson A1 for using Po (5.5)M1 this is dependent on the previous M mark. It is for attempting to find $P(X \le 2)$

Question Number		Scheme	Ma	irks
5(a)	$X \sim B(15, 0.5)$		B1 B1	(2)
(b)	P (X = 8) = P (X ≤ 8) – P($X \le 7$) or $\left(\frac{15!}{8!7!}(p)^8(1-p)^7\right)$	M1	(2)
	= 0.6964 - 0.5			
	= 0.1964	awrt 0.196	A1	(2)
(c)	$P(X \ge 4) = 1 - P(X \le 3)$		M1	
	= 1 - 0.0176			
	= 0.9824		A1	(2)
(d)	$H_o: p = 0.5$ $H_1: p > 0.5$		B1 B1	
	$X \sim B(15, 0.5)$			
	$P(X \ge 13) = 1 - P(X \le 12)$	$\begin{bmatrix} P(X \ge 12) = 1 - 0.9824 = 0.0176 \end{bmatrix} \text{ att } P(X \ge 13)$	M1	
	= 1 - 0.9963 = 0.0037	$P(X \ge 13) = 1 - 0.9963 = 0.0037$ CR X \ge 13 awrt 0.0037/ CR X \ge 13	A1	
	0.0037 < 0.01	$13 \ge 13$		
	Reject H_0 or it is significant	t or a correct statement in context from their values	M1	
	There is sufficient evidence <u>favour of heads</u>	at the 1% significance level that the coin is biased in	A1	(6)
	Or There is evidence that Sues	belief is correct		
	Notes			
	(a) B1 for Binomial B1 for 15 and 0.5 must b This need not be in the fo	e in part a orm written		
	(b) M1 attempt to find P (X A1 awrt 0.196 Answer only full marks	r = 8) any method. Any value of p		
	(c) M1 for 1 - P ($X \le 3$). A1 awrt 0.982			

B1 for correct H₁ must be one tail must use p or π

```
M1 attempt to find P(X \ge 13) correctly. E.g. 1 - P(X \le 12)
```

A1 correct probability or CR

To get the next 2 marks the null hypothesis must state or imply that (p) = 0.5

- M1 for correct statement based on their probability or critical region or a correct contextualised statement that implies that. not just 13 is in the critical region.
- A1 This depends on their M1 being awarded for rejecting H₀. Conclusion in context. Must use the words biased in favour of heads or biased against tails or sues belief is correct . NB this is a B mark on EPEN.

They may also attempt to find P(X < 13) = 0.9963 and compare with 0.99

Question	Scheme			Ν	larks	
Number						
6(a)	Calls occur singly Calls occur at a constant rate Calls occur independently or	e randomly.	any two only ne once	o of the 3 eed calls	B1 B1	(2)
(b) (i)	$X \sim Po(4.5)$ P (X = 5) = P (X ≤ 5) - P(X = 0.7029 - 0.53)	$X \leq 4$) 21	used or seen in (i) or (ii)	M1 M1	
	= 0.1708				A1	(3)
(ii)	$P(X > 8) = 1 - P(X \le 8) = 1 - 0.9597$				M1	
(c)	= 0.0403				AI	(2)
	$ H_{o}: \lambda = 9 \ (\lambda = 18) \\ H_{1}: \lambda > 9 \ (\lambda > 18) $		may use	e <u>λ</u> or μ	B1	
	<i>X</i> ~ Po (9)		may be	implied	B1	
	$P(X \ge 14) = 1 - P(X \le 13)$ = 1 - 0.9261 = 0.0739	$[P(X \ge 14) = 1 - 0.9261 = 0.$ P(X \ge 15) = 1 - 0.9585 = 0. CR X \ge 15	.0739] att $P(X \ge 14)$ 0415 awrt 0.0739	$\mathbf{P}(X \ge 15)$	M1 A1	
	0.0739 > 0.05	14 ≤ 15				
	Accept H ₀ . or it is not signifi	icant or a correct statement in	context from their	values	M1	
	There is insufficient evidence agent has <u>increased</u> .	e to say that the <u>number of ca</u>	<u>lls per hour</u> handled	d by the	A1	(6)
-	Notor					
	Notes (a) B1 B1 They must use ca same reason. Award the first B1 if they <u>Special case</u> if they don't pu award B0B1	lls at least once. Independentl y only gain 1 mark. It in the word calls but write t	ly and randomly are wo correct statemen	e the nts		
	(b) correct answers only scot (i) M1 Po (4.5) may be implied M1 for $P(X \le 5) - P(X)$	the full marks ied by them using it in their can $k \le 4$) or $\frac{e^{-\lambda}\lambda^5}{5!}$	alculations in (i) or	(ii)		
	A1 only awrt 0.171					

(ii) M1 for $1 - P(X \le 8)$ A1 only awrt 0.0403

(c) B1 both . Must be one tail test. They may use λ or μ and either 9 or 18 and match H_0 and H_1

M1 Po (9) may be implied by them using it in their calculations. M1 attempt to find $P(X \ge 14)$ eg $1 - P(X \le 13)$ or 1 - P(X < 14)A1 correct probability or CR

To get the next2 marks the null hypothesis must state or imply that (λ) = 9 or 18

M1 for a correct statement based on their probability or critical region or a correct contextualised statement that implies that.

A1. This depends on their M1 being awarded for accepting H_0 . Conclusion in context. Must have <u>calls per hour</u> has <u>not increased</u>. Or the <u>rate</u> of <u>calls</u> has <u>not increased</u>.

Any statement that has the word **calls** in and implies the **rate not increasing** e.g. no evidence that the rate of calls handled has increased

Saying the number of calls has not increased gains A0 as it does not imply rate NB this is an A mark on EPEN

They may also attempt to find P(X < 14) = 0.9261 and compare with 0.95

Question Number	Scheme		Marks	
7(a)	$\int_{0}^{1} \frac{1}{2} x \mathrm{d}x = \left[\frac{1}{4} x^{2}\right]_{0}^{1} = \frac{1}{4} \qquad \text{oe}$	attempt to integrate both parts	M1	
	$\int_{1}^{2} kx^{3} dx \left[\frac{1}{4}kx^{4}\right]_{1}^{2} = 4k - \frac{1}{4}k \text{oe}$	both answer correct	A1	
	$\frac{1}{4} + 4k - \frac{1}{4}k = 1$ $\frac{15k}{4} = \frac{3}{4}$	adding two answers and putting = 1	dM1dep on previous M	
	$4 4 \\ k = \frac{1}{5} $		A1 (4	.)
(b)	$\int_{0}^{1} \frac{1}{2} x^{2} dx = \left[\frac{1}{6} x^{3}\right]_{0}^{1} = \frac{1}{6}$	attempt to integrate $xf(x)$ for one part $1/6$	M1 A1	
	$\int_{1}^{2} \frac{1}{5} x^{4} dx = \left[\frac{1}{25} x^{5}\right]_{1}^{2} = \frac{32}{25} - \frac{1}{25}$ $= \frac{31}{25} \text{ or } 1.24$		A1	
	$E(X) = \frac{1}{6} + \frac{31}{25}$			
(c)	$=\frac{211}{150}=1\frac{61}{150}=1.40^{\circ}$		A1 (4	.)
	$F(x) = \int_0^x \frac{1}{2}t dt (\text{for } 0 \le x \le 1)$	ignore limits for M	M1	
	$=\frac{1}{4}x^2$	must use limit of 0	Al	
	$F(x) = \int_{1}^{x} \frac{1}{5} t^{3} dt; + \int_{0}^{1} \frac{1}{2} t dt \text{ (for } 1 < x \le 2)$	need limit of 1 and variable upper limit; need limit 0 and 1	M1; M1	
	$=\frac{1}{20}x^4+\frac{1}{5}$		A1	

	$F(x) \begin{cases} 0 & x < 0 \\ \frac{1}{4}x^2 & 0 \le x \le 1 \\ \frac{1}{20}x^4 + \frac{1}{5} & 1 < x \le 2 \\ 1 & x > 2 \end{cases}$ middle pair ends	B1 ft B1	(7)
(d)	F(m) = 0.5 $\frac{1}{20}m^4 + \frac{1}{5} = 0.5$ $m = \sqrt[4]{6}$ or 1.57 or awrt 1.57 either eq eq for their $1 \le x \le 2$	M1 A1ft A1	(3)
(e)	negative skew	B1	
	This depends on the previous B1 being awarded. One of the following statements which must be compatible with negative skew and their figures. If they use mode then they must have found a value for it Mean < Median Mean < mode Mean < median (< mode) Median < mode Sketch of the pdf.	dB1	(2)
	 Notes (a) M1 attempting to integrate both parts A1 both answers correct M1 dependent on the previous M being awarded adding the two answers together A1 cso (b) M1 attempting to use integral of x f(x) on one part A1 1/6 A1 31/25 A1 awrt 1.41 (c) M1 Att to integrate ¹/₂t (they need to increase the power by 1). Ignore limits for method mark A1 ¹/₄x² allow use of t. must have used/implied use of limit of 0. This must be on its own without anything else added 		

M1 $\int_0^1 \frac{1}{2}t \, dt +$ Att to integrate using limits 0 and 1. no need to see them put 0 in .

they must add this to their $\int_1^x \frac{1}{5} t^3 dt$. may be given if they add 1/4

(Alternative method for these last two M marks)

M1 for att to $\int \frac{1}{5}t^3$ dt and putting + C M1 use of F(2) = 1 to find C

A1 $\frac{1}{20}x^4 + \frac{1}{5}$ must be correct

B1 middle pair followed through from their answers. condone them using < or \leq incorrectly they do not need to match up

B1 end pairs. condone them using \leq or \leq . They do not need to match up

NB if they show no working and just write down the distribution. If it is correct they get full marks. If it is incorrect then they cannot get marks for any incorrect part. So if $0 \le x \le 1$ is correct they can get M1 A1 otherwise M0 A0. if $3 \le x \le 4$ is correct they can get M1 A1A1 otherwise M0 A0A0. you cannot award B1ft if they show no working unless the middle parts are correct.

(d) M1 either of their
$$\frac{1}{4}x^2$$
 or $\frac{1}{20}x^4 + \frac{1}{5} = 0.5$
A1 for their F(X) $1 < x < 2 = 0.5$
A1 cao

If they add both their parts together and put = 0.5 they get M0 I they work out both parts separately and do not make the answer clear they can get M1 A1 A0

(e) B1 negative skew only

B1 Dependent on getting the previous B1. their reason must follow through from their figures.

Mark Scheme (Results) January 2009

GCE

GCE Mathematics (6684/01)

Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH

January 2009 6684 Statistics S2 Mark Scheme

Question Number	Scheme	Mark	۲S
1	The random variable X is the number of daisies in a square. Poisson(3)	B1	
(a)	$1 - P(X \le 2) = 1 - 0.4232 \qquad 1 - e^{-3}(1 + 3 + \frac{3^2}{2!}) = 0.5768$	M1 A1	
(b)	P (X ≤ 6) – P (X ≤ 4) =0.9665 – 0.8153 $e^{-3}\left(\frac{3^5}{5!} + \frac{3^6}{6!}\right)$	M1	(3)
	= 0.1512	A1	(2)
(c)	$\mu = 3.69$	B1	(-)
	$\operatorname{Var}(X) = \frac{1386}{80} - \left(\frac{295}{80}\right)^2$	M1	
	= 3.73/3.72/3.71 accept s ² = 3.77	A1	(3)
(d)	For a Poisson model , Mean = Variance ; For these data $3.69 \approx 3.73$ \Rightarrow Poisson model	B1	. ,
(e)	$\frac{e^{-3.6875} 3.6875^4}{4!} = 0.193$ allow their mean or var	M1	(1)
	Awrt 0.193 or 0.194	A1 ft	(2)

(a)	$X \sim B(20, 0.3)$ P ($X \le 2$) = 0.0355 P($X \ge 11$) = 1 - 0.9829 = 0.0171	M1	
	P (X ≤ 2) = 0.0355 P(X ≥ 11) = 1 - 0.9829 = 0.0171		
	$P(X \ge 11) = 1 - 0.9829 = 0.0171$		
	Critical region is $(X \le 2) \cup (X \ge 11)$	A1 A1	(2)
(b)	Significance level = 0.0355 + 0.0171, = 0.0526 or 5.26%	M1 A1	(3)
(c)	Insufficient evidence to reject H_0 Or sufficient evidence to accept H_0 /not significant	B1 ft	
	x = 3 (or the value) is not in the critical region or 0.1071> 0.025	B1 ft	(2)
	Do not allow inconsistent comments		
	(b) (c)	(b) Significance level = $0.0355 + 0.0171$, = 0.0526 or 5.26% (c) Insufficient evidence to reject H ₀ Or sufficient evidence to accept H ₀ /not significant $x = 3$ (or the value) is not in the critical region or $0.1071 > 0.025$ Do not allow inconsistent comments	Critical region is $(X \le 2) \cup (X \ge 11)$ All All(b)Significance level = $0.0355 + 0.0171$, = 0.0526 or 5.26% M1 Al(c)Insufficient evidence to reject H ₀ Or sufficient evidence to accept H ₀ /not significant $x = 3$ (or the value) is not in the critical region or $0.1071 > 0.025$ B1 ft B1 ftDo not allow inconsistent commentsD1 ft

Question Number	Scheme	Marks
4 (a)	$\int_{0}^{10} kt dt = 1$ or Area of triangle = 1 $\left[\frac{kt^{2}}{2}\right]_{0}^{10} = 1$ or 10 x0.5 x 10k = 1 or linear equation in k	M1 M1
	$50k = 1$ $k = \frac{1}{50}$ cso	A1 (3)
(b)	$\int_{6}^{10} kt dt = \left[\frac{kt^2}{2}\right]_{6}^{10}$ $= \frac{16}{25}$	M1 A1
(c)	$E(T) = \int_0^{10} kt^2 dt = \left[\frac{kt^3}{3}\right]_0^{10}$ = 6.2	(2) M1 A1
	$\operatorname{Var}(\mathbf{T}) = \int_{0}^{10} kt^{3} dt - \left(6\frac{2}{3}\right)^{2} = \left[\frac{kt^{4}}{4}\right]_{0}^{10}; -\left(6\frac{2}{3}\right)^{2}$	M1;M1dep
	$= 50 - \left(6\frac{2}{3}\right)^2 \\= 5\frac{5}{9}$	A1 (5)
(d) (e)	10	B1 (1) B1
		(1)

Question Number	Scheme	Mark	S.
5 (a)	X represents the number of defective components.		
	P (X = 1) = $(0.99)^9 (0.01) \times 10 = 0.0914$	M1A1	
(b)	$P(X \ge 2) = 1 - P(X \le 1)$ = 1 - (p) ¹⁰ - (a) = 0.0043	M1 A1 <i>√</i> A1	(2)
(c)	$X \sim \text{Po}(2.5)$	B1B1	(3)
	$P(1 \le X \le 4) = P(X \le 4) - P(X = 0)$	M1	
	= 0.8912 - 0.0821 = 0.809	A1	
			(4)
	Normal distribution used. B1 for mean only		
	Special case for parts a and b If they use 0.1 do not treat as misread as it makes it easier. (a) M1 A0 if they have 0.3874 (b) M1 A1ft A0 they will get 0.2639 (c) Could get B1 B0 M1 A0 For any other values of <i>p</i> which are in the table do not use misread. Check using the tables. They could get (a) M1 A0 (b) M1 A1ft A0 (c) B1 B0 M1 A0		

Qu Nu	estion umber	Scheme	Marks
6	(a)(i)	$H_0: \lambda = 7 \qquad \qquad H_1: \lambda > 7$	B1
		$X =$ number of visits. $X \sim Po(7)$	B1
		P $(X \ge 10) = 1 - P(X \le 9)$ $1 - P(X \le 10) = 0.0985$ $= 0.1695$ $1 - P(X \le 9) = 0.1695$ CR $X \ge 11$	M1 A1
		0.1695 > 0.10, $CR X \ge 11$ Not significant or it is not in the critical region or do not reject H ₀ The rate of visits on a Saturday is not greater/ is unchanged	M1 A1 no ft
	(ii)	<i>X</i> = 11	B1 (7)
	(b)	(The visits occur) randomly/ independently or singly or constant rate	B1 (1)
	(c)	$[H_0: \lambda = 7 H_1: \lambda > 7 (or H_0: \lambda = 14 H_1: \lambda > 14)]$	
		<i>X</i> ~N;(14,14)	B1;B1
		P (X \ge 20) = P $\left(z \ge \frac{19.5 - 14}{\sqrt{14}}\right)$ +/- 0.5, stand = P (z \ge 1.47)	M1 M1
		= 0.0708 or $z = 1.2816$	A1dep both M
		0.0708 < 0.10 therefore significant. The rate of visits is greater on a Saturday	A1dep 2 nd M (6)

Question Number	Scheme	Mark	S
7 (a)	$F(x_0) = \int_1^x -\frac{2}{9}x + \frac{8}{9} dx = \left[-\frac{1}{9}x^2 + \frac{8}{9}x\right]_1^x$	M1A1	
	$= \left[-\frac{1}{9} x^{2} + \frac{8}{9} x \right] - \left[-\frac{1}{9} + \frac{8}{9} \right]$ $= -\frac{1}{9} x^{2} + \frac{8}{9} x - \frac{7}{9}$	A1	(3)
(b)	$F(x) = \begin{cases} 0 & x < 1\\ -\frac{1}{9}x^2 + \frac{8}{9}x - \frac{7}{9} & 1 \le x \le 4 \end{cases}$	B1B1√	
(c)	F(x) = 0.75; or F(2.5) = $-\frac{1}{9} \times 2.5^2 + \frac{8}{9} \times 2.5 - \frac{7}{9}$	M1;	(2)
	$-\frac{1}{9}x^2 + \frac{8}{9}x - \frac{7}{9} = 0.75$		
	$4x^2 - 32^x + 55 = 0$ -x ² + 8x - 13.75 = 0		
	x = 2.5 = 0.75 cso	A1	
	$-\frac{1}{9}x^{2} + \frac{8}{9}x - \frac{7}{9} = 0.25$ -x ² + 8x - 7 = 2.25	M1	
	$-x^{2} + 8x - 9.25 = 0$ quadratic 3 terms = 0 $x = \frac{-8 \pm \sqrt{8^{2} - 4 \times -1 \times -9.25}}{2}$	M1 dep M1 dep	
	x = 1.40	AI M1	(6)
	$Q_3 - Q_2 > Q_2 - Q_1$ Or mode = 1 and mode < median Or mean = 2 and median < mode Sketch of pdf here or be referred to if in a different part of the question		
	Positive skew	A1	(2)
			(2)

Mark Scheme (Results) Summer 2009

GCE

GCE Mathematics (6684/01)

edexcel

June 2009 6684 Statistics S2 Mark Scheme

Scheme	Mai	ks
$[X \sim B(30, 0.15)]$		
$P(X \le 6), = 0.8474$ awrt 0.847	M1, A1	(2)
$Y \sim B(60, 0.15) \approx Po(9)$ for using Po(9)	B1	
$P(Y \le 12), = 0.8758$ awrt 0.876	M1, A1	(3)
[N.B. normal approximation gives 0.897, exact binomial gives 0.894]		[5]
M1 for a correct probability statement $P(X \le 6)$ or $P(X < 7)$ or $P(X=0) + P(X=1) + P(X=2) + P(X=4) + P(X=5) + P(X=6)$. (may be implied by long calculation) Correct answer gets M1 A1. allow 84.74%		
B1 may be implied by using Po(9). Common incorrect answer which implies this is 0.9261 M1 for a correct probability statement $P(X \le 12)$ or $P(X < 13)$ or $P(X=0)+P(X=1)++P(X=12)$ (may be implied by long calculation) and attempt to evaluate this probability using their Poisson distribution. Condone P ($X \le 13$) = 0.8758 for B1 M1 A1 Correct answer gets B1 M1 A1 Use of normal or exact binomial get B0 M0 A0		
	Scheme $[X ~ B(30, 0.15)]$ $P(X \le 6)$, = 0.8474awrt 0.847 $Y ~ B(60, 0.15) \approx Po(9)$ for using Po(9) $P(Y \le 12)$, = 0.8758awrt 0.876 $[N.B.$ normal approximation gives 0.897, exact binomial gives 0.894]M1for a correct probability statement $P(X \le 6)$ or $P(X < 7)$ or $P(X=0) + P(X=1) + P(X=2) + P(X=4) + P(X=5) + P(X=6)$. (may be implied by long calculation)Correct answer gets M1 A1.B1may be implied by using Po(9). Common incorrect answer which implies this is 0.9261.M1for a correct probability statement $P(X \le 12)$ or $P(X < 13)$ or $P(X=0) + P(X=1) + \dots + P(X=12)$ (may be implied by long calculation) and attempt to evaluate this probability using their Poisson distribution.Condone P ($X \le 13$) = 0.8758 for B1 M1 A1Use of normal or exact binomial get B0 M0 A0	SchemeMar $[X ~ B(30, 0.15)]$ $P(X \le 6)$, = 0.8474awrt 0.847M1, A1 $Y ~ B(60, 0.15) \approx Po(9)$ for using Po(9)B1 $P(Y \le 12)$, = 0.8758awrt 0.876M1, A1 $[N.B.$ normal approximation gives 0.897, exact binomial gives 0.894]M1M1for a correct probability statement $P(X \le 6)$ or $P(X < 7)$ or $P(X = 0) + P(X = 1) + P(X = 2) + P(X = 4) + P(X = 5) + P(X = 6)$. (may be implied by long calculation)Correct answer gets M1 A1.allow 84.74%B1may be implied by using Po(9). Common incorrect answer which implies this is 0.9261M1for a correct probability statement $P(X \le 12)$ or $P(X < 13)$ or $P(X = 0) + P(X = 1) + \dots + P(X = 12)$ (may be implied by long calculation) and attempt to evaluate this probability using their Poisson distribution.Condone P (X \le 13) = 0.8758 for B1 M1 A1Use of normal or exact binomial get B0 M0 A0
Question Number	Scheme	Marks
--------------------	--	---------------
Q2	H ₀ : $\lambda = 2.5$ (or $\lambda = 5$) H1: $\lambda < 2.5$ (or $\lambda < 5$) λ or μ	B1B1
	$X \sim Po(5)$	M1
	$P(X \le 1) = 0.0404$ or $CR \ X \le 1$	A1
	[0.0404 < 0.05] this is significant or reject H ₀ or it is in the critical region	M1
	There is evidence of a <u>decrease</u> in the (mean) <u>number/rate</u> of <u>deformed blood cells</u>	A1 (6) [6]
	 1st B1 for H₀ must use lambda or mu; 5 or 2.5. 2nd B1 for H₁ must use lambda or mu; 5 or 2.5. 1st M1 for use of Po(5) may be implied by probability(must be used not just seen) eg. P (X = 1) = 0.0404 would score M1 A0 1st A1 for 0.0404 seen or correct CR 2nd M1 for a correct statement (this may be contextual) comparing their probability and 0.05 (or comparing 1 with their critical region). Do not allow conflicting statements. 2nd A1 is not a follow through. Need the word decrease, number or rate and deformed blood cells for contextual mark. If they have used ≠ in H₁ they could get B1 B0 M1 A1 M1A0 mark as above except they gain the 1st A1 for P(X ≤ 1) = 0.0404 or CR X ≤ 0 2nd M1 for a correct statement (this may be contextual) comparing their probability and 0.025 (or comparing 1 with their critical region) 	

Questic Numbe	on er	Scheme		Marl	KS
Q3 (a	a)	A statistic is a function of $X_1, X_2, \dots X_n$		B1	(0)
		that does not contain any unknown parameters		B1	(2)
(t	b)	The <u>probability</u> distribution of Y or the distribution of all possible values of Y (o.e.)	B1	(1)
((c)	Identify (ii) as not a statistic		B1	
		Since <u>it contains</u> unknown parameters μ and σ .		dB1	(2)
					[5]
(8	a)	Examples of other acceptable wording:			
		B1 e.g. is a function of the sample or the data / is a quantity calculated from the sample or the data / is a random variable calculated from the sample or the data			
		B1 e.g. does not contain any unknown parameters/quantities			
		contains only known parameters/quantities			
		only contains values of the sample			
		Y is a function of $X_1, X_2,, X_n$ that does not contain any unknown parameters B1E	31		
		is a function of the values of a sample with no unknowns B1E	31		
		is a function of the sample values B1E	30		
		Is a function of all the data values BIE	30		
		A random variable consisting of any function BI	30		
		A function of a value of the sample B1E	30		
		A function of the sample which contains no other values/ parameters B1E	30		
(1	b)				
		Examples of other acceptable wording			
		All possible values of the statistic together with their associated probabilities			
((c)				
		1 st B1 for selecting only (ii)			
		2^{na} B1 for a reason. This is dependent upon the first B1. Need to mention at least or	ne		
		of mu (mean) or sigma (standard deviation or variance) or unknown parameters.			
		since it contains mu B1			
		since it contains sigma B1			
		since it contains unknown parameters/quantities B1			
		since it contains unknowns B0			

Question Number	Scheme	Marl	KS
Q4 (a)	$X \sim B(20, 0.3)$ $P(X \le 2) = 0.0355$ $P(X \le 9) = 0.9520$ so $P(X \ge 10) = 0.0480$ Therefore the critical region is $\{X \le 2\} \cup \{X \ge 10\}$	M1 A1 A1 A1A1	(5)
(b)	0.0355 + 0.0480 = 0.0835 awrt (0.083 or 0.084)	B1	(1)
(c)	11 is in the critical region there is evidence of a <u>change/ increase</u> in the <u>proportion/number</u> of <u>customers buying</u> <u>single tins</u>	B1ft B1ft	(2) [9]
(a)	M1 for B(20,0.3) seen or used 1 st A1 for 0.0355 2 nd A1 for 0.048 3 rd A1 for $(X) \le 2$ or $(X) < 3$ or $[0,2]$ They get A0 if they write $P(X \le 2/X < 3)$ 4 th A1 $(X) \ge 10$ or $(X) > 9$ or $[10,20]$ They get A0 if they write $P(X \ge 10/X > 9)$ 10 $\le X \le 2$ etc is accepted To describe the critical regions they can use any letter or no letter at all. It does not have to be X.		[0]
(b) (c)	B1 correct answer only 1^{st} B1 for a correct statement about 11 and their critical region. 2^{nd} B1 for a correct comment in context consistent with their CR and the value 11 Alternative solution 1^{st} B0 $P(X \ge 11) = 1 - 0.9829 = 0.0171$ since no comment about the critical region 2^{nd} B1 a correct contextual statement.		

Question Number	Scheme	Marks	
Q5 (a)	$X =$ the number of errors in 2000 wordsso $X \sim Po(6)$ $P(X \ge 4) = 1 - P(X \le 3)$ = 1 - 0.1512= 0.8488awrt 0.849	B1 M1 A1	(3)
(b)	<i>Y</i> = the number of errors in 8000 words. <i>Y</i> ~ Po(24) so use a <u>Normal</u> approx $Y \approx N(24, \sqrt{24}^2)$	M1 A1	
	Require $P(Y \le 20) = P\left(Z < \frac{20.5 - 24}{\sqrt{24}}\right)$	M1 M1	
	= P(Z < -0.714)	A1	
	= 1 - 0.7611 = 0.2389 awrt (0.237~0.239)	A1	(7)
			[40]
	[N.B. Exact Po gives 0.242 and no \pm 0.5 gives 0.207]		[10]
(a)	B1 for seeing or using Po(6) M1 for 1 - P($X \le 3$) or 1 - [P($X = 0$) + P($X = 1$) + P($X = 2$) + P($X = 3$)] A1 awrt 0.849		
SC	If B(2000, 0.003) is used and leads to awrt 0.849 allow B0 M1 A1 If no distribution indicated awrt 0.8488 scores B1M1A1 but any other awrt 0.849 scores	s B0M	1A1
(b)	1 st M1 for identifying the normal approximation 1 st A1 for [mean = 24] and [sd = $\sqrt{24}$ or var = 24]		
	These first two marks may be given if the following are seen in the standardisation formula : 24		
	$\sqrt{24}$ or awrt 4.90		
	2^{nd} M1 for attempting a continuity correction (20/ 28 ± 0.5 is acceptable) 3^{rd} M1 for standardising using their mean and their standard deviation.		
	2 nd A1 correct z value awrt ± 0.71 or this may be awarded if see $\frac{20.5-24}{\sqrt{24}}$ or $\frac{27.5-24}{\sqrt{24}}$		
	4^{th} M1 for 1 - a probability from tables (must have an answer of < 0.5) 3^{rd} A1 answer awrt 3 sig fig in range $0.237 - 0.239$		

Ques ⁻ Num	tion ber	Scheme		Marl	۲S
Q6	(a)	$P(A > 3) = \frac{2}{5} = 0.4$		B1	(1)
	(b)	$(0.4)^3$,= 0.064 or $\frac{8}{125}$		M1, A1	(2)
	(c)				
		$f(y) = \frac{d}{dy}(F(y)) = \begin{cases} \frac{3y}{125}^2 & 0 \le y \le 5 \end{cases}$		M1A1	(2)
	(1)	0 otherwise			
	(d)			B1	
		Shape of curve and (0,0)	d start at	B1	(2)
		Point $(5, 0)$ labelle curve between 0 a $rdf \ge 0$	ed and nd 5 and		
		5 pur <u>~</u> 0			
	(e)	Mode = 5		B1	(1)
	(f)	$E(Y) = \int_{0}^{5} \left(\frac{3y^{3}}{125}\right) dy = \left[\frac{3y^{4}}{500}\right]_{0}^{5} = \frac{15}{4} \text{ or } 3.75$		M1M1A	1 (3)
	(g)	$P(Y > 3) = \begin{cases} \int_{3}^{5} \frac{3y^2}{125} dy\\ 3\\ \text{or } 1 - F(3) \end{cases} = 1 - \frac{27}{125} = \frac{98}{125} = 0.784$		M1A1	(2) [13]
	(a)	B1 correct answer only(cao). Do not ignore subsequent working			
	(0)	A1 cao			
	(c)	M1 for attempt to differentiate the cdf. They must decrease the power by A1 fully correct answer including 0 otherwise. Condone < signs	1		
	(d)	B1 for shape. Must curve the correct way and start at $(0,0)$. No need for y =	= 0 (patios)		
		lines B1 for point (5,0) labelled and pdf only existing between 0 and 5, may have (patios) for other values	e y=0		
	(e)	B1 cao			
	(f)	1 st M1 for attempt to integrate their $yf(y) y^n \rightarrow y^{n+1}$.			
		2 nd M1 for attempt to use correct limits			
	(q)				
		M1 for attempt to find $P(Y > 3)$.			
		e.g. writing $\int_3 their f(y)$ must have correct limits			
		or writing $1 - F(3)$			

Ques Num	stion nber	Scheme	Mark	(S
Q7	(a)	E(X) = 2 (by symmetry)	B1	(1)
	(b)	$0 \le x < 2$, gradient $= \frac{\frac{1}{2}}{2} = \frac{1}{4}$ and equation is $y = \frac{1}{4}x$ so $a = \frac{1}{4}$	B1	
		$b - \frac{1}{4}x$ passes through (4, 0) so $b = 1$	B1	(2)
	(c)	$E(X^{2}) = \int_{0}^{2} \left(\frac{1}{4}x^{3}\right) dx + \int_{2}^{4} \left(x^{2} - \frac{1}{4}x^{3}\right) dx$	M1M1	
		$=\left[\frac{x^4}{16}\right]_{2}^{2}+\left[\frac{x^3}{3}-\frac{x^4}{16}\right]_{2}^{4}$	A1	
		$= 1 + \frac{64 - 8}{2} - \frac{256 - 16}{16} = 4\frac{2}{3} \text{ or } \frac{14}{3}$	M1A1	
		3 16 5 5 5 5 5 5 5 5 5	M1 A1cso	(7)
	(d)	$P(X \le q) = \int_{0}^{q} \frac{1}{4} x dx = \frac{1}{4}, \qquad \qquad \frac{q^2}{2} = 1 \text{ so } q = \sqrt{2} = 1.414 \qquad \text{awrt } 1.41$	M1A1,A	1 (3)
	(e)	$2 - \sigma = 1.184$ so $2 - \sigma$, $2 + \sigma$ is wider than IOR. therefore greater than 0.5	M1,A1	(2)
	(a)	B1 cao		[15]
	(b)	B1 for value of <i>a</i> . B1 for value of <i>b</i>		
	(c)	1 st M1 for attempt at $\int ax^3$ using their <i>a</i> . For attempt they need x^4 . Ignore limits.		
		2^{nd} M1 for attempt at $\int bx^2 - ax^3$ use their <i>a</i> and <i>b</i> . For attempt need to have either x^3 of	or x^4 . Ign	ore
		limits		
		1 st A1 correct integration for both parts 3 rd M1 for use of the correct limits on each part		
		2^{nd} A1 for either getting 1 and $3\frac{2}{3}$ or awrt 3.67 somewhere or $4\frac{2}{3}$ or awrt 4.67		
		4 th M1 for use of $E(X^2) - [E(X)]^2$ must add both parts for $E(X^2)$ and only have subtraction	cted the	
		mean ² once. You must see this working		
	(d)	$3^{rd} A1 \sigma = \sqrt{\frac{2}{3}}$ or $\sqrt{0.66667}$ or better with no incorrect working seen.		
		M1 for attempting to find LQ, integral of either part of $f(x)$ with their 'a' and 'b' = 0.25		
		Or their $F(x) = 0.25$ i.e. $\frac{ax^2}{2} = 0.25$ or $bx - \frac{ax^2}{2} + 4a - 2b = 0.25$ with their <i>a</i> and <i>b</i>	,	
		If they add both parts of their $F(x)$, then they will get M0. 1 st A1 for a correct equation/expression using their 'a'		
	(e)	2^{nd} A1 for $\sqrt{2}$ or awrt 1.41		
	. ,	M1 for a reason based on their quartiles		
		• Possible reasons are P(2 - $\sigma < X < 2 + \sigma$)= 0.6498 allow awrt 0.65		
		• $1.184 < LQ(1.414)$		
		A1 for correct answer > 0.5		
		NB you must check the reason and award the method mark. A correct answer without a reason gets M0 Δ 0	correct	

Quest Numb	ion ber	Scheme	Marl	KS
Q8	(a)	$X \sim Po(2)$ $P(X = 4) = \frac{e^{-2} \times 2^4}{4!} = 0.0902$ awrt 0.09	M1 A1	(2)
	(b)	$Y \sim Po(8)$ P(Y>10) = 1- P(Y \le 10) = 1 - 0.8159 = 0.18411 awrt 0.184	B1 M1A1	(3)
	(c)	$F =$ no. of faults in a piece of cloth of length $x = F \sim Po(x \times \frac{2}{15})$		
		$e^{-\frac{2x}{15}} = 0.80$ $e^{-\frac{2}{15} \times 1.65} = 0.8025$ $e^{-\frac{2}{15} \times 1.75} = 0.791$	M1A1 M1	
		These values are either side of 0.80 therefore $x = 1.7$ to 2 sf	A1	(4)
	(d)	Expected number with no faults $= 1200 \times 0.8 = 960$ Expected number with some faults $= 1200 \times 0.2 = 240$	M1 A1 M1 A1	(4)
		So expected profit = $960 \times 0.60 - 240 \times 1.50$, = £216	WIT, 701	[12]
				[13]
	(a)	M1 for use of Po(2) may be implied A1 awrt 0.09		
	(b)	B1 for Po(8) seen or used M1 for 1 - P($Y \le 10$) oe A1 awrt 0.184		
	(c)	1 st M1 for forming a suitable Poisson distribution of the form $e^{-\lambda} = 0.8$		
		1^{st} A1 for use of lambda as $\frac{2x}{15}$ (this may appear after taking logs)		
		2^{nd} M1 for attempt to consider a range of values that will prove 1.7 is correct OR		
		for use of logs to show lambda = $2^{nd} A1$ correct solution only. Either get 1.7 from using logs or stating values either side		
	S.C	for $e^{-\frac{2}{15} \times 1.7} = 0.797 \approx 0.80$ $\therefore x = 1.7$ to 2 sf allow 2 nd M1A0		
	(d)	1^{st} M1 for one of the following 1200 p or 1200 (1 – p) where p = 0.8 or 2/15. 1^{st} A1 for both expected values being correct or two correct expressions. 2^{nd} M1 for an attempt to find expected profit, must consider with and without faults 2^{nd} A1 correct answer only.		

Mark Scheme (Results) January 2010

GCE

Statistics S2 (6684)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http://www.edexcel.com/Aboutus/contact-us/

January 2010 Publications Code UA023029 All the material in this publication is copyright © Edexcel Ltd 2010

January 2010 6684 Statistics S2 Mark Scheme

Ques Num	stion Iber	Scheme	Mark	S
Q1	(a) (b)	$X \sim B(20,0.05)$ P(X = 0) = 0.95 ²⁰ = 0.3584859 or 0.3585 using tables .	B1 B1 M1 A1	(2) (2)
	(c)	$P(X > 4) = 1 - P(X \le 4)$ = 1-0.9974 = 0.0026	M1 A1	(2)
	(d)	Mean = $20 \times 0.05 = 1$ Variance = $20 \times 0.05 \times 0.95 = 0.95$	B1 B1 Tota	(2) I [8]
Q1	(a) (b)	Notes 1^{st} B1 for binomial 2^{nd} B1 for 20 and 0.05 o.eThese must be in part (a)M1 for finding $(p)^{20}$ 0gain the M1A1 awrt 0.358 or 0.359.		
	(c)	M1 for writing 1 - P($X \le 4$) or 1 - [P($X = 0$) + P($X = 1$) + P($X = 2$) + P($X = 3$) + P($X = 4$)] or 1 - 0.9974 or 1 - 0.9568 A1 awrt 0.0026 or 2.6 × 10 ⁻³ , do not accept a fraction e.g. 26/10000		
	(d)	 1st B1 for 1 2nd B1 for 0.95 NB In parts b, c and d correct answers with no working gain full marks 		

Question Number	Scheme	Mark	(S
Q2 (a)	$\mathbf{P}(X < 0) \qquad = \mathbf{F}(0)$	M1	
(b)	$=\frac{2}{6}=\frac{1}{3}$	A1 M1	(2)
	$f(x) = \frac{df(x)}{dx}$		
	$f(x) = \begin{cases} \frac{1}{6} & -2 \le x \le 4\\ 0 & \text{otherwise} \end{cases}$	A1 B1	
			(3)
(c)	Continuous Uniform (Rectangular) distribution	B1	(1)
(d)	Mean $= 1$	B1	.,
	Variance is $\frac{(42)^2}{12} = 3$	M1 A1	(3)
(e)	P(X=1)=0	B1	(4)
		Total	(1) [10]
	Notes		
Q2 (a)	M1 for attempting to find F(0) by a correct method eg subst 0 into F(x) or $\int_{-2}^{0} \frac{1}{6} dx$		
	Do NOT award M1 for $\int_{-2}^{0} \frac{x+2}{6} dx$ or $\frac{1}{2} \times \frac{1}{3} \times 2$ both of which give the correct		
	answer by using $F(x)$ as the pdf		
	Correct answer only with no incorrect working gets M1 A1		
(b)	M1 for attempting to differentiate $F(x)$. (for attempt it must have no xs in) A1 for the first line. Condone < signs B1 for the second line – They must have $0, x < -2$ and $x > 4$ only		
	b for the second line. – They must have $0 x < -2$ and $x > 4$ only.		
(c)	B1 must have "continuous" and "uniform" or "Rectangular"		
(d)	B1 for mean = 1		
	M1 for attempt to use $\frac{[\pm (b-a)]^2}{12}$, they must subst in values and not just quote the		
	formula, or using $\int_{-2}^{4} x^2 (their f(x)) - (their mean)^2$, including limits. Must get x^3		
	when they integrate. A1 cao .		
(e)	B1 cao		

Question Number	Scheme	Marks
Q3 (a)	$Y \sim \text{Po}(0.25)$	B1
	$P(Y=0) = e^{-0.25} = 0.7788$	M1 A1
(b)	$X \sim \text{Po}(0.4)$	B1
	P(Robot will break down) $= 1 - P(X = 0)$	
	$= 1 - e^{-0.4}$	M1
	= 1 - 0.067032	
	= 0.3297	A1
(c)	$P(W_{1}, 2) = e^{-0.4} (0, 4)^{2}$	(3)
(0)	$P(X=2) = \frac{e^{-(0.4)}}{2}$	M1
	= 0.0536	A1
		(2)
(d)	0.3297 or answer to part (b)	B1ft
	as Poisson events are <u>independent</u>	B1 dep
		(2)
		Total [10]
	Notes	
Q3 (a)	B1 for seeing or using Po(0.25)	
	M1 for finding P(Y=0) either by e^{-a} , where <i>a</i> is positive (<i>a</i> needn't equal their λ) or	
	using tables if their value of λ is in them Bewere common Binomial error using $\mu = 0.05$ gives 0.7728 but scenes B0 M0 A0	
	Beware common Binomial error using, $p = 0.03$ gives 0.7738 but scores B0 M0 A0 A1 awrt 0.779	
(b)	B1 for stating or a clear use of $Po(0.4)$ in part (b) or (c)	
	MI for writing or finding $1 - P(X=0)$ A1 awrt 0.33	
(c)	M1 for finding P(X=2) e.g $\frac{e^{-\lambda}\lambda^2}{\lambda^2}$ with their value of λ in	
	2! or if their λ is in the table for writing $P(X \le 2) = P(X \le 1)$	
	A1 awrt 0.0536	
(h)	1^{st} B1 their answer to part(b) correct to 2 sf or awrt 0.33	
(4)	2^{nd} B1 need the word independent. This is dependent on them gaining the first B1	
	Use of Binomial. Mark parts a and b as scheme. They could get (a) R0 M0 A0 (b) R0 M1 A0	
	In part c allow M1 for ${}^{n}C_{2}(p)^{2}(1-p)^{n-2}$ with "their n" and "their p". They could get (c) N	A1,A0
	DO NOT GIVE for $p(x \le 2) - p(x \le 1)$	<i>.</i>
	In (d) they can get the first B1 only. They could get (d) B1B0	

Question Number	Scheme	Marks
Q4 (a)	$\int_{0}^{3} k(x^{2} - 2x + 2)dx + \int_{3}^{4} 3kdx = 1$	M1
	$k \left[\frac{1}{3}x^3 - x^2 + 2x\right]_0^3 + \left[3kx\right]_3^4 (=1) \text{or} k \left[\frac{1}{3}x^3 - x^2 + 2x\right]_0^3 + 3k (=1)$	A1 M1 dep
	$k = \frac{1}{9} **given** $ cso	A1 (4)
(b)	For $0 < x \le 3$, $F(x) = \int_0^x \frac{1}{9} (t^2 - 2t + 2) dt$	M1
	$=\frac{1}{9}\left(\frac{1}{3}x^{3}-x^{2}+2x\right)$	A1
	For $3 < x \le 4$, $F(x) = \int_{3}^{x} 3k dt + \frac{2}{3}$	M1
	$=\frac{x}{3}-\frac{1}{3}$	A1
	$ \begin{pmatrix} 0 & x \le 0 \\ 1 & x \le 0 \end{pmatrix} $	
	$\int \frac{1}{27} (x^3 - 3x^2 + 6x) \qquad 0 < x \le 3$	
	$F(x) = \begin{cases} \frac{x}{3} - \frac{1}{3} & 3 < x \le 4 \end{cases}$	B1 ft B1
	$\begin{bmatrix} 1 & x > 4 \end{bmatrix}$	(6)
(c)	$E(X) = \int_0^3 \frac{x}{9} (x^2 - 2x + 2) dt + \int_3^4 \frac{x}{3} dx$	M1
	$=\frac{1}{9}\left[\frac{1}{4}x^4 - \frac{2}{3}x^3 + x^2\right]_0^3 + \left[\frac{1}{6}x^2\right]_3^4$	A1
	$=\frac{29}{12}$ or 2.416 or awrt 2.42	A1 (2)
(d)	F(m) = 0.5	(3) M1
	$F(2.6) = \frac{1}{27}(2.6^3 - 3 \times 2.6^2 + 6 \times 2.6) = awrt \ 0.48$	M1
	$F(2.7) = \frac{1}{27}(2.7^3 - 3 \times 2.7^2 + 6 \times 2.7) = awrt \ 0.52$	A1
	Hence median lies between 2.6 and 2.7	A1 dA
		(4) Total [17]

 C4 (a) 1⁴ M1 attempting to integrate at least one part (at least one xⁿ → xⁿ⁺¹) (ignore limits) 1⁴ A1 Correct integration. Limits not needed. 2nd M1 dependent on the previous M being awarded. Adding the two answers together, putting equal to 1 and have the correct limits. 2nd A1 eso (b) 1st M1 Att to integrate ¹/₉(t² - 2t + 2) (at least one xⁿ → xⁿ⁺¹). Ignore limits for method mark 1st A1 = ¹/₉(^x/₃ - x² + 2x) allow use of t. Must have used/implied use of limit of 0. This must be on its own without anything else added 2nd M1 attempting to find ¹/₅ ³/₃ + (must get 3t_t or 3t_x) and they must use the correct limits and add ¹/₉ ¹/₉(t² - 2t + 2) or ²/₃ or use + C and use F(4) = 1 2nd A1 ^x/₃ - ¹/₃ must be correct 1st B1 inddle pair followed through from their answers. condone them using < or ≤ incorrectly they do not need to match up 2nd B1 end pairs. condone them using < or ≤. They do not need to match up 2nd M1 attempting to use integral of x f(x) on one part 1st A1 correct Integration of x f(x) on one part 1st A1 correct Integration for both parts added together. Ignore limits. 2nd M1 attempting to use integral of x f(x) on one part 1st A1 correct Integration for both parts added together. Ignore limits. 2nd M1 for using F(X) = 0.5. This may be implied by subst into F(X) and comparing answers with 0.5. 2nd M1 for coll and 0.22 if using "their F(X)" - 0.5 or "their F(X)" 1st A1 for conclusion but only awarded 3nd A1 for conclusion but only award of their f(X)" - 0.5 or "their F(X)" 1st A1 for conclusion but only award of their f(X)" 0.5. Other values possible. You may need to check their values for their correct equation M B1 their ant 2.66 provided equation is correct 			Notes	
 I^{at} AI Correct integration. Limits not needed. 2^m AI dependent on the previous M being awarded. Adding the two answers together, putting equal to 1 and have the correct limits. 2^m A1 eso I^{at} MI Att to integrate ¹/₉(t² - 2t + 2) (at least one xⁿ → xⁿ⁺¹). Ignore limits for method mark I^{at} AI ¹/₉(^{x³}/₃ - x² + 2x) allow use of t. Must have used/implied use of limit of 0. This must be on its own without anything else added 2^{md} AI attempting to find ∫^s 3k + (must get 3kt or 3kx) and they must use the correct limits and add ∫¹/₉ (t² - 2t + 2) or ²/₃ or use + C and use F(4) = 1 2^{md} AI ^x/₃ - ¹/₃ must be correct I^{at} BI indide pair followed through from their answers. condone them using < or ≤ incorrect ty they do not need to match up 2^{md} B1 end pairs. condone them using < or ≤ They do not need to match up NB if they show no working and just write down the distribution. If it is correct they get full marks. If it is incorrect then they cannot get marks for any incorrect they can get MI A1 otherwise M0 A0. Jou cannot award B1ft if they show no working unless the middle parts are correct. (c) I^{at} MI attempting to use integral of x f(x) on one part 1^{nt} AI correct Integration for both parts added together. Ignore limits. 2^{md} A1 cao or awrt 2.42 (d) I^{at} MI for using F(X) = 0.5. This may be implied by subst into F(X) and comparing answers with 0.5. 2^{md} MI for substituting both 2.6 and 2.7 into "their F(X)" 0.5 Other values possible. You may need to check their values for their correct equation NB these bast two marks are B1 B1 on CPEN but mark as MI A1 2^{md} A1 for conclusion but only award if it follows from their numbers. Dependent on previous A mark being awarded 	Q4	(a)	1st M1 attempting to integrate at least one part (at least one $x^n \rightarrow x^{n+1}$) (ignore limits)	
 2nd AI eso 1st MI Att to integrate ¹/₉(t² - 2t + 2) (at least one xⁿ → xⁿ⁺¹). Ignore limits for method mark 1st AI ¹/₉(^{x²}/₃ - x² + 2x) allow use of t. Must have used/implied use of limit of 0. This must be on its own without anything else added 2nd MI attempting to find ¹/₃ 3k + (must get 3kt or 3kx) and they must use the correct limits and add ¹/₉ ¹/₉(t² - 2t + 2) or ²/₃ or use + C and use F(4) = 1 2nd AI ^x/₃ - ¹/₃ must be correct 1nd BI middle pair followed through from their answers. condone them using < or ≤ incorrectly they do not need to match up 2nd BI end pairs. condone them using < or ≤. They do not need to match up 2nd BI if they show no working and just write down the distribution. If it is correct they get full marks. If it is incorrect then they cannot get marks for any incorrect part. So if 0⁵×x ≤ 3 is correct they can get MI AI otherwise M0 A0. If 3⁵×x ≤ 4 is correct they can get MI AI otherwise M0 A0. Using unless the middle parts are correct. (c) 1st MI attempting to use integral of x f(x) on one part 1st AI coor or wrt 2.42 (d) 1st MI for using F(X) = 0.5. This may be implied by subst into F(X) and comparing answers with 0.5. 2nd MI for using F(X) = 0.5. This may be implied by subst into F(X) and comparing answers with 0.5. 2nd AI awrt 0.48 and 0.52 if using "their F(X)" - 0.5 or "their F(X)" 1st AI awrt 0.48 and 0.52 if using "their F(X)" 5. Other values possible. You may need to check their values for their correct equation NB these last two marks are BI BI on ePEN but mark as MI A1 2nd AI for conclusion but only award if it follows from their numbers. Dependent on previous A mark being awarded SC using calculators MI for sign of a suitable equation MI for sign of a suitable equation 			 1st A1 Correct integration. Limits not needed. 2nd M1 dependent on the previous M being awarded. Adding the two answers together, putting equal to 1 and have the correct limits. 	
 (b) 1st MI Att to integrate 1/9(t² - 2t + 2) (at least one xⁿ → xⁿ⁺¹). Ignore limits for method mark 1st A1 1/9(x³/3 - x² + 2x) allow use of t. Must have used/implied use of limit of 0. This must be on its own without anything else added 2nd MI attempting to find ∫_x^s 3k + (must get 3kt or 3kx) and they must use the correct limits and add ∫₀^{1/9} (t² - 2t + 2) or 2/3 or use + C and use F(4) = 1 2nd A1 x/3 - 1/3 must be correct 1st B1 middle pair followed through from their answers. condone them using < or ≤ incorrectly they do not need to match up 2nd B1 end pairs, condone them using < or ≤. They do not need to match up 2nd B1 end pairs, condone them using < or ≤. They do not need to match up 8 is correct they can get M1 A1 otherwise M0 A0. If 3<×≤4 is correct they can get M1 A1 otherwise M0 A0. you cannot award B1ft if they show no working unless the middle parts are correct. (c) 1st MI attempting to use integral of x (x) on one part 1st A1 (correct Integration for both parts added together. Ignore limits. 2nd A1 aca or awrt 2.42 (d) 1st M1 for using F(X) = 0.5. This may be implied by subst into F(X) and comparing answers with 0.5. 2nd M1 for substituting both 2.6 and 2.7 into "their F(X)" - 0.5 or "their F(X)" and awrt -0.02 and 0.02 or if using "their F(X)" 0.5 Other values possible. You may need to check their values for their correct equation NB these last two marks are B1 B1 on ePEN but mark as M1 A1 2nd A1 for conclusion but only award if it follows from their numbers. Dependent on previous A mark being awarded 			2^{nd} A1 cso	
limits for method mark $1^{st} \mathbf{AI} = \frac{1}{9} \left(\frac{x^3}{3} - x^2 + 2x \right) \text{ allow use of } t. \text{ Must have used/implied use of limit of 0.} \\ \text{This must be on its own without anything else added} \\ 2^{rd} \mathbf{MI} \text{ attempting to find } \int_{3}^{t} 3k + \dots (\text{must get } 3kt \text{ or } 3kx) \\ \text{and they must use the correct limits and add } \int_{0}^{1} \frac{1}{9} (t^2 - 2t + 2) \text{ or } \frac{2}{3} \\ \text{or use } + \text{C and use } F(4) = 1 \\ 2^{rd} \mathbf{AI} \frac{x}{3} - \frac{1}{3} \text{must be correct} \\ 1^{st} \mathbf{BI} middle pair followed through from their answers. condone them using < or \leq incorrectly they do not need to match up 2^{rd} \mathbf{BI} end pairs. condone them using < or \leq incorrectly they do not need to match up 2^{rd} \mathbf{BI} end pairs. condone them using < or \leq. They do not need to match up 2^{rd} \mathbf{BI} is correct they can get MI A1 otherwise MO A0. If 3 < x \le 4 is correct they can get MI A1 otherwise MO A0. you cannot award B1ft if they show no working unless the middle parts are correct.(c) 1^{st} \mathbf{MI} attempting to use integral of x f(x) on one part 1^{st} \mathbf{AI} correct integration for both parts added together. Ignore limits. 2^{rd} \mathbf{AI} awrt 0.48 and 0.52 if using "their F(X)" - 0.5 or "their F(X)" \mathbf{AI} awrt 0.48 and 0.52 if using "their F(X)" 0. \mathbf{AI} awrt 0.48 and 0.52 if using "their F(X)" 0. \mathbf{AI} awrt 0.48 and 0.52 if using "their F(X)" 0. \mathbf{AI} awrt 0.48 and 0.52 if using "their F(X)" 0. \mathbf{AI} awrt 0.48 and 0.52 if using "their F(X)" 0. \mathbf{AI} awrt 0.48 and 0.52 if using "their F(X)" 0. \mathbf{AI} awrt 0.48 and 0.52 if using "their F(X)" 0. \mathbf{AI} awrt 0.48 and 0.52 if using "their F(X)" 0. \mathbf{AI} awrt 0.48 and 0.52 if using "their F(X)" 0. \mathbf{AI} awrt 0.48 and 0.52 if using "their F(X)" 0. \mathbf{AI} awrt 0.48 and 0.52 if using "their F(X)" 0. \mathbf{AI} awrt 0.48 and 0.52 if using "their F(X)" 0. \mathbf{AI} awrt 0.48 and 0.52 if using "their F(X)" 0. \mathbf{AI} awrt 0.48 and 0.52 if using "their$		(b)	1st M1 Att to integrate $\frac{1}{9}(t^2 - 2t + 2)$ (at least one $x^n \to x^{n+1}$). Ignore	
 1st A1 (1/9)(x/x) - x² + 2x) allow use of t. Must have used/implied use of limit of 0. This must be on its own without anything else added 2nd M1 attempting to find ∫₃^x 3k + (must get 3kt or 3kx) and they must use the correct limits and add ∫₀³ (1/9)(x² - 2t + 2)) or 2/3 or use + C and use F(4) = 1 2nd A1 (x/3) - 1/3 must be correct 1st B1 middle pair followed through from their answers. condone them using < or ≤ incorrectly they do not need to match up 2nd B1 end pairs. condone them using < or ≤. They do not need to match up 2nd B1 end pairs. Condone them using < or ≤. They do not need to match up NB if they show no working and just write down the distribution. If it is correct they get full marks. If it is incorrect then they cannot get marks for any incorrect part. So if 0<x 3="" 3<x="" 4="" a0.="" a1="" are="" award="" b1ft="" can="" cannot="" correct="" correct.<="" get="" if="" is="" li="" m0="" m1="" middle="" no="" otherwise="" parts="" show="" the="" they="" unless="" working="" you="" ≤=""> (c) 1st M1 attempting to use integral of x f(x) on one part 1st A1 correct hey fartisin for both parts added together. Ignore limits. 2nd A1 awr 0.48 and 0.52 if using "their F(X)" - 0.5 or "their F(X)" and awrt - 0.02 and 0.02 or if using "their F(X)" 0.5 Other values possible. You may need to check their values for their correct equation NB these last two marks are B1 B1 on ePEN but mark as M1 A1 2nd A1 art 0 conclusion but only award if it follows from their numbers. Dependent on previous A mark being awarded SC using calculators </x>			limits for method mark $1(x^3)$	
This must be on its own without anything else added 2^{nd} MI attempting to find $\int_{5}^{r} 3k + (must get 3kt or 3kx)and they must use the correct limits and add \int_{0}^{1} \frac{1}{9}(t^{2} - 2t + 2) or \frac{2}{3}or use + C and use F(4) = 12^{nd} A1 \frac{x}{3} - \frac{1}{3} must be correct1^{st} B1 middle pair followed through from their answers. condone them using < or \leqincorrectly they do not need to match up2^{nd} B1 end pairs. condone them using < or \leq. They do not need to match up2^{nd} B1 end pairs. condone them using < or \leq. They do not need to match upNB if they show no working and just write down the distribution. If it is correct theyget full marks. If it is incorrect then they cannot get marks for any incorrect part. So if0 <_{x} < 3 is correct they can get M1 A1 otherwise M0 A0. If 3 < x \le 4 is correct they canget M1 A1 otherwise M0 A0. you cannot award B1ft if they show no working unlessthe middle parts are correct.(c) 1^{st} M1 attempting to use integral of x f(x) on one part1^{st} A1 correct Integration for both parts added together. Ignore limits.2^{std} A1 eao or awrt 2.42(d) 1^{st} M1 for substituting both 2.6 and 2.7 into "their F(X)" - 0.5 or "their F(X)"1^{st} A1 awrt 0.48 and 0.52 if using "their F(X)" - 0.5 or "their F(X)"and awrt - 0.02 and 0.02 or if using "their F(X)" 0.5Other values possible. You may need to check their values for their correct equationNB these last two marks are B1 B1 on ePEN but mark as M1 A12^{st} A1 for conclusion but only award if it follows from their numbers. Dependent onprevious A mark being awardedSC using calculatorsM1 for sign of a suitable equationM1 A1 for oart 2.66 provided equation is correct$			1 st A1 $\frac{1}{9}\left(\frac{x}{3} - x^2 + 2x\right)$ allow use of <i>t</i> . Must have used/implied use of limit of 0.	
 2nd M1 attempting to find ∫₃⁻³k + (must get 3kt or 3kx) and they must use the correct limits and add ∫₀⁻¹ (t² - 2t + 2) or 2/3 or use + C and use F(4) = 1 2nd A1 x/3 - 1/3 must be correct 1st B1 middle pair followed through from their answers. condone them using < or ≤ incorrectly they do not need to match up 2nd B1 end pairs. condone them using < or ≤. They do not need to match up 2nd B1 end pairs. condone them using < or ≤. They do not need to match up NB if they show no working and just write down the distribution. If it is correct they get full marks. If it is incorrect then they cannot get marks for any incorrect part. So if 0 < x ≤ 3 is correct they can get M1 A1 otherwise M0 A0. If 3 < x ≤ 4 is correct they can get M1 A1 otherwise M0 A0. you cannot award B1ft if they show no working unless the middle parts are correct. (c) 1st M1 attempting to use integral of x f(x) on one part 1st A1 correct Integration for both parts added together. Ignore limits. 2nd A1 cao or awrt 2.42 (d) 1st M1 for using F(X) = 0.5. This may be implied by subst into F(X) and comparing answers with 0.5. 2nd M1 for substituting both 2.6 and 2.7 into "their F(X)" - 0.5 or "their F(X)" 1st A1 awrt 0.48 and 0.52 if using "their F(X)" 0.5 Other values possible. You may need to check their values for their correct equation NB these last two marks are B1 B1 on ePEN but mark as M1 A1 2nd A1 for conclusion but only award if it follows from their numbers. Dependent on previous A mark being awarded SC using calculators M1 for sign of a suitable equation M1 A1 for awrt 2.66 provided equation is correct 			This must be on its own without anything else added	
 and they must use the correct limits and add ∫₀¹ (t² - 2t + 2) or 2/3 or use + C and use F(4) = 1 2nd A1 (x/3) - 1/3 must be correct 1st B1 middle pair followed through from their answers. condone them using < or ≤ incorrectly they do not need to match up 2nd B1 end pairs. condone them using < or ≤. They do not need to match up NB if they show no working and just write down the distribution. If it is correct they get full marks. If it is incorrect then they cannot get marks for any incorrect part. So if 0<x 2<sup="" 3="" 3<x="" 4="" a0.="" a1="" added="" both="" can="" correct="" for="" get="" if="" ignore="" integration="" is="" limits.="" m0="" m1="" otherwise="" parts="" they="" together.="" ≤="">nd A1 cao or awrt 2.42</x> (d) 1st M1 attempting to use integral of x f(x) on one part 1st A1 correct Integration for both parts added together. Ignore limits. 2nd A1 cao or awrt 2.42 (d) 1st M1 for using F(X) = 0.5. This may be implied by subst into F(X) and comparing answers with 0.5. 2nd M1 for substituting both 2.6 and 2.7 into "their F(X)" - 0.5 or "their F(X)" and awrt -0.02 and 0.02 or if using "their F(X)" 0.5 Other values possible. You may need to check their values for their correct equation NB these last two marks are B1 B1 on ePEN but mark as M1 A1 2nd A1 for conclusion but only award if it follows from their numbers. Dependent on previous A mark being awarded SC using calculators M1 for sign of a suitable equation M1 A1 for conclusion but only award if it follows from their numbers. Dependent on previous A mark being awarded SC using calculators 			2nd M1 attempting to find $\int_3^x 3k + \dots$ (must get $3kt$ or $3kx$)	
 or use + C and use F(4) = 1 2nd A1 x/3 - 1/3 must be correct 1st B1 middle pair followed through from their answers. condone them using < or ≤ incorrectly they do not need to match up 2nd B1 end pairs. condone them using < or ≤. They do not need to match up NB if they show no working and just write down the distribution. If it is correct they get full marks. If it is incorrect then they cannot get marks for any incorrect part. So if 0<x≤3 3<x≤4="" a0.="" a1="" are="" award="" b1ft="" can="" cannot="" correct="" correct.<="" get="" if="" is="" jf="" li="" m0="" m1="" middle="" no="" otherwise="" parts="" show="" the="" they="" unless="" working="" you=""> (c) 1st M1 attempting to use integral of x f(x) on one part 1st A1 Correct Integration for both parts added together. Ignore limits. 2nd A1 cao or awrt 2.42 (d) 1st M1 for using F(X) = 0.5. This may be implied by subst into F(X) and comparing answers with 0.5. 2nd M1 for substituting both 2.6 and 2.7 into "their F(X)" - 0.5 or "their F(X)" 1st A1 awrt 0.48 and 0.52 if using "their F(X)" 0.5 Other values possible. You may need to check their values for their correct equation NB these last two marks are B1 B1 on ePEN but mark as M1 A1 2nd A1 for conclusion but only award if it follows from their numbers. Dependent on previous A mark being awarded SC using calculators M1 for sign of a suitable equation M1 A1 for awrt 2.66 provided equation is correct </x≤3>			and they must use the correct limits and add $\int_0^3 \frac{1}{9} (t^2 - 2t + 2)$ or $\frac{2}{3}$	
 2nd A1 x/3 - 1/3 must be correct 1st B1 middle pair followed through from their answers. condone them using < or ≤ incorrectly they do not need to match up 2nd B1 end pairs. condone them using < or ≤. They do not need to match up NB if they show no working and just write down the distribution. If it is correct they get full marks. If it is incorrect then they cannot get marks for any incorrect part. So if 0<x≤3 3<x≤4="" a0.="" a1="" are="" award="" b1ft="" can="" cannot="" correct="" correct.<="" get="" if="" is="" li="" m0="" m1="" middle="" no="" otherwise="" parts="" show="" the="" they="" unless="" working="" you=""> (c) 1st M1 attempting to use integral of x f(x) on one part 1st A1 cao or awrt 2.42 (d) 1st M1 for substituting both 2.6 and 2.7 into "their F(X)" - 0.5 or "their F(X)" and awrt -0.02 and 0.02 or if using "their F(X)" 0.5 Other values possible. You may need to check their values for their correct equation NB these last two marks are B1 B1 on ePEN but mark as M1 A1 2^m</x≤3>			or use $+ C$ and use $F(4) = 1$	
 1st B1 middle pair followed through from their answers. condone them using < or ≤ incorrectly they do not need to match up 2nd B1 end pairs. condone them using < or ≤. They do not need to match up NB if they show no working and just write down the distribution. If it is correct they get full marks. If it is incorrect then they cannot get marks for any incorrect part. So if 0<x 3="" 3<x="" 4="" a0.="" a1="" are="" award="" b1ft="" can="" cannot="" correct="" correct.<="" get="" if="" is="" li="" m0="" m1="" middle="" no="" otherwise="" parts="" show="" the="" they="" unless="" working="" you="" ≤=""> (c) 1st M1 attempting to use integral of x f(x) on one part 1st A1 Correct Integration for both parts added together. Ignore limits. 2nd A1 cao or awrt 2.42 (d) 1st M1 for using F(X) = 0.5. This may be implied by subst into F(X) and comparing answers with 0.5. 2nd M1 for substituting both 2.6 and 2.7 into "their F(X)" - 0.5 or "their F(X)" 1st A1 awrt 0.48 and 0.52 if using "their F(X)" 0.5 Other values possible. You may need to check their values for their correct equation NB these last two marks are B1 B1 on ePEN but mark as M1 A1 2nd A1 for conclusion but only award if it follows from their numbers. Dependent on previous A mark being awarded SC using calculators MI for sign of a suitable equation is correct </x>			$2^{nd} A1 \frac{x}{3} - \frac{1}{3}$ must be correct	
 NB if they show no working and just write down the distribution. If it is correct they get full marks. If it is incorrect then they cannot get marks for any incorrect part. So if 0<x≤3 3<x≤4="" a0.="" a1="" are="" award="" b1ft="" can="" cannot="" correct="" correct.<="" get="" if="" is="" li="" m0="" m1="" middle="" no="" otherwise="" parts="" show="" the="" they="" unless="" working="" you=""> (c) 1st M1 attempting to use integral of x f(x) on one part 1st A1 Correct Integration for both parts added together. Ignore limits. 2nd A1 cao or awrt 2.42 (d) 1st M1 for using F(X) = 0.5. This may be implied by subst into F(X) and comparing answers with 0.5. 2nd M1 for substituting both 2.6 and 2.7 into "their F(X)" - 0.5 or "their F(X)" 1st A1 awrt 0.48 and 0.52 if using "their F(X)" 0.5 Other values possible. You may need to check their values for their correct equation NB these last two marks are B1 B1 on ePEN but mark as M1 A1 2nd A1 for conclusion but only award if it follows from their numbers. Dependent on previous A mark being awarded SC using calculators M1 for sign of a suitable equation is correct </x≤3>			1 st B1 middle pair followed through from their answers. condone them using $< \text{ or } \le$ incorrectly they do not need to match up 2 nd B1 end pairs condone them using $< \text{ or } <$ They do not need to match up	
 NB if they show no working and just write down the distribution. If it is correct they get full marks. If it is incorrect then they cannot get marks for any incorrect part. So if 0<x≤3 3<x≤4="" a0.="" a1="" are="" award="" b1ft="" can="" cannot="" correct="" correct.<="" get="" if="" is="" jf="" li="" m0="" m1="" middle="" no="" otherwise="" parts="" show="" the="" they="" unless="" working="" you=""> (c) 1st M1 attempting to use integral of x f(x) on one part 1st A1 Correct Integration for both parts added together. Ignore limits. 2nd A1 cao or awrt 2.42 (d) 1st M1 for using F(X) = 0.5. This may be implied by subst into F(X) and comparing answers with 0.5. 2nd M1 for substituting both 2.6 and 2.7 into "their F(X)" - 0.5 or "their F(X)" 1st A1 awrt 0.48 and 0.52 if using "their F(X)" 0.5 Other values possible. You may need to check their values for their correct equation NB these last two marks are B1 B1 on ePEN but mark as M1 A1 2nd A1 for conclusion but only award if it follows from their numbers. Dependent on previous A mark being awarded SC using calculators M1 for sign of a suitable equation is correct </x≤3>			2 bi che pans. condone them using < or <u>-</u> . They do not need to match up	
 (c) 1st M1 attempting to use integral of x f(x) on one part 1st A1 Correct Integration for both parts added together. Ignore limits. 2nd A1 cao or awrt 2.42 (d) 1st M1 for using F(X) = 0.5. This may be implied by subst into F(X) and comparing answers with 0.5. 2nd M1 for substituting both 2.6 and 2.7 into "their F(X)" - 0.5 or "their F(X)" 1st A1 awrt 0.48 and 0.52 if using "their F(X)" - 0.5 or "their F(X)" and awrt -0.02 and 0.02 or if using "their F(X)" 0.5 Other values possible. You may need to check their values for their correct equation NB these last two marks are B1 B1 on ePEN but mark as M1 A1 2nd A1 for conclusion but only award if it follows from their numbers. Dependent on previous A mark being awarded SC using calculators M1 for sign of a suitable equation M1 A1 for awrt 2.66 provided equation is correct 			NB if they show no working and just write down the distribution. If it is correct they get full marks. If it is incorrect then they cannot get marks for any incorrect part. So if $0 < x \le 3$ is correct they can get M1 A1 otherwise M0 A0. If $3 < x \le 4$ is correct they can get M1 A1 otherwise M0 A0. If $3 < x \le 4$ is correct they can get M1 A1 otherwise M0 A0. Just a show no working unless the middle parts are correct.	
 (d) 1st A1 Correct Integration for both parts added together. Ignore limits. 2nd A1 cao or awrt 2.42 (d) 1st M1 for using F(X) = 0.5. This may be implied by subst into F(X) and comparing answers with 0.5. 2nd M1 for substituting both 2.6 and 2.7 into "their F(X)" - 0.5 or "their F(X)" 1st A1 awrt 0.48 and 0.52 if using "their F(X)" 0.5 or their correct equation NB these last two marks are B1 B1 on ePEN but mark as M1 A1 2nd A1 for conclusion but only award if it follows from their numbers. Dependent on previous A mark being awarded SC using calculators M1 for sign of a suitable equation M1 A1 for awrt 2.66 provided equation is correct 		(c)	1^{st} M1 attempting to use integral of x f(x) on one part	
(d) 1^{st} M1 for using $F(X) = 0.5$. This may be implied by subst into $F(X)$ and comparing answers with 0.5. 2^{nd} M1 for substituting both 2.6 and 2.7 into "their $F(X)$ " -0.5 or "their $F(X)$ " 1^{st} A1 awrt 0.48 and 0.52 if using "their $F(X)$ " 0.5 Other values possible. You may need to check their values for their correct equation NB these last two marks are B1 B1 on ePEN but mark as M1 A1 2^{nd} A1 for conclusion but only award if it follows from their numbers. Dependent on previous A mark being awarded SC using calculators M1 for sign of a suitable equation M1 A1 for awrt 2.66 provided equation is correct			 1st A1 Correct Integration for both parts added together. Ignore limits. 2nd A1 cao or awrt 2.42 	
Other values possible. You may need to check their values for their correct equation NB these last two marks are B1 B1 on ePEN but mark as M1 A1 2 nd A1 for conclusion but only award if it follows from their numbers. Dependent on previous A mark being awarded SC using calculators M1 for sign of a suitable equation M1 A1 for awrt 2.66 provided equation is correct		(d)	1 st M1 for using $F(X) = 0.5$. This may be implied by subst into $F(X)$ and comparing answers with 0.5. 2 nd M1 for substituting both 2.6 and 2.7 into "their $F(X)$ " – 0.5 or "their $F(X)$ " 1 st A1 awrt 0.48 and 0.52 if using "their $F(X)$ " . and awrt – 0.02 and 0.02 or if using "their $F(X)$ " 0.5	
NB these last two marks are B1 B1 on ePEN but mark as M1 A1 2^{nd} A1 for conclusion but only award if it follows from their numbers. Dependent on previous A mark being awardedSC using calculatorsM1 for sign of a suitable equationM1 A1 for awrt 2.66 provided equation is correct			Other values possible. You may need to check their values for their correct equation	
 All for conclusion out only award if it follows from their numbers. Dependent on previous A mark being awarded SC using calculators M1 for sign of a suitable equation M1 A1 for awrt 2.66 provided equation is correct 			NB these last two marks are B1 B1 on ePEN but mark as M1 A1 2 nd A1 for conclusion but only award if it follows from their numbers. Dependent on	
SC using calculators M1 for sign of a suitable equation M1 A1 for awrt 2.66 provided equation is correct			previous A mark being awarded	
MI for sign of a suitable equation M1 A1 for awrt 2.66 provided equation is correct			SC using calculators	
the for a with 2.00 provided equation is context			MI for sign of a suitable equation M1 A1 for awrt 2 66 provided equation is correct	
A1 correct comment			A1 correct comment	

Question Number	Scheme	Marks		
Q5 (a)	$X \sim Po(10)$ $P(X < 9) = P(X \le 8)$ = 0.3328	B1 M1 A1 (3)		
(b)	$Y \sim Po(40)$ Y is approximately N(40,40) P(Y > 50) = 1-P(Y \le 50) = 1-P(Z < \frac{50.5-40}{\sqrt{40}}) = 1-P(Z < 1.660) = 1-0.9515 = 0.0485 N.B. Calculator gives 0.048437. Poisson gives 0.0526 (but scores nothing)	M1 A1 M1 A1 A1 (6) Total [9]		
Q5 (a)	Notes B1 for using Po(10) M1 for attempting to find $P(X \le 8)$: useful values $P(X \le 9)$ is 0.4579(M0), usingPo(6) gives 0.8472, (M1). A1 awrt 0.333 but do not accept $\frac{1}{3}$			
(b)	A1 awrt 0.333 but do not accept $\frac{1}{3}$ 1 st M1 for identifying the normal approximation 1 st A1 for [mean = 40] and [sd = $\sqrt{40}$ or var = 40] NB These two marks are B1 M1 on ePEN These first two marks may be given if the following are seen in the standardisation formula : 40 and $\sqrt{40}$ or awrt 6.32 2 nd M1 for attempting a continuity correction (50 or 30 ± 0.5 is acceptable) 3 rd M1 for standardising using their mean and their standard deviation and using either 49.5, 50 or 50.5. (29.5, 30, 30.5) accept ± 2 nd A1 correct z value awrt ±1.66 or this may be awarded if see $\pm \frac{50.5 - 40}{\sqrt{40}}$ or $\pm \frac{29.5 - 40}{\sqrt{40}}$			

Question Number	Scheme			
Q6 (a) (b)	The set of values of the test statistic for which the null hypothesis is rejected in a hypothesis test. $X \sim B(30,0.3)$ $P(X \le 3) = 0.0093$ $P(X \le 2) = 0.0021$ $P(X \ge 16) = 1 - 0.9936 = 0.0064$ $P(X \ge 17) = 1 - 0.9979 = 0.0021$ Critical region is $(0 \le)x \le 2$ or $16 \le x (\le 30)$ Actual significance level $0.0021+0.0064=0.0085$ or 0.85%	B1 B1 (2) M1 A1 A1 A1 A1 A1 A1 A1 (5) B1 (1)		
(d)	15 (it) is not in the critical region not significant No significant evidence of a change in $p = 0.3$ accept H ₀ , (reject H ₁) $P(x \ge 15) = 0.0169$	(1) Bft 2, 1, 0 (2) Total [10]		
Q6 (a) (b) (c) (d)	Notes 1 st B1 for "values/ numbers" 2 nd B1 for "reject the null hypothesis" o.e or the test is significant M1 for using B(30,0.3) 1 st A1 $P(x \le 2) = 0.0021$ 2 nd A1 0.0064 3 rd A1 for $(X) \le 2$ or $(X) < 3$ They get A0 if they write $P(X \le 2/X < 3)$ 4 th A1 $(X) \ge 16$ or $(X) > 15$ They get A0 if they write $P(X \ge 16X > 15)$ NB these are B1 B1 but mark as A1 A1 16 $\le X \le 2$ etc is accepted To describe the critical regions they can use any letter or no letter at all. It does not have to be X. B1 correct answer only Follow through 15 and their critical region B1 for any one of the 5 correct statements up to a maximum of B2 -B1 for any incorrect statements			

Ques Num	tion ber	Scheme	Marks
Q7	(a)	x1p2p $P(X = x)$ $\frac{1}{4}$ $\frac{3}{4}$	
		$\mu = 1 \times \frac{1}{4} + 2 \times \frac{3}{4} = \frac{7}{4} \text{ or } 1\frac{3}{4} \text{ or } 1.75$	B1
		$\sigma^2 = 1^2 \times \frac{1}{4} + 2^2 \times \frac{3}{4} - \left(\frac{7}{4}\right)^2$	M1
		$=\frac{3}{16}$ or 0.1875	A1 (3)
	(b)	(1,1,1), (1,1,2) any order, (1,2,2) any order, (2,2,2)	B1
		(1,2,1) (2,1,1) (2,1,2) (2,2,1) all 8 cases considered.May be implied by $3 * (1,1,2)$ and $3*(1,2,2)$	B1 (2)
	(c)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	B1 M1 A1 M1 A1A1
			(6) Total [11]
		Notos	
Q7	(a)	B1 1.75 oe M1 for using $\sum (x^2 p) - \mu^2$ A1 0.1875 oe	
	(b)	ignore repeats	
	(c)	1 st B1 4 correct means (allow repeats) 1 st M1 for p^3 for either of the ends 1st A1 for 1/64or awrt 0.016 and 27/64 or awrt 0.422 2 nd M1 $3 \times p^2(1-p)$ for either of the middle two $0May be awarded for finding the probability of the 3 samples with mean of either 4/3or 5/3 .2nd A1 for 9/64 (or 3/64 three times) and 27/64 (or 9/64 three times) accept awrt 3dp.3rd A1 fully correct table, accept awrt 3dp.$	

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481

Email publications@linneydirect.com

Order Code UA023029 January 2010

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH

Mark Scheme (Results) Summer 2010

GCE

GCE Statistics S2 (6684/01)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http://www.edexcel.com/Aboutus/contact-us/

Summer 2010 Publications Code UA024768 All the material in this publication is copyright © Edexcel Ltd 2010

June 2010 Statistics S2 6684 Mark Scheme

Question Number		Scheme		
Q1	(a)	A population is collection of all items	B1	(1)
	(b)	(A random variable) that is a function of the sample which contains no unknown quantities/parameters.	B1	(1)
	(c)	The voters in the town	B1	
	Percentage/proportion voting for Dr Smith			
	(d)	Probability Distribution of those voting for Dr Smith from all possible samples (of size 100)	B1	(2)
				(1)
				[5]
		Notes		
	(a)	B1 – collection/group all items – need to have /imply all eg entire/complete/every		
	 (b) B1 – needs <u>function/calculation(o.e.) of the sample/random variables/observations</u> and <u>unknown quantities/parameters(o.e.)</u> NB do not allow unknown variables e.g. "A calculation based <u>solely</u> on observations from a given sample." B1 "A calculation based <u>only</u> on known data from a sample" B1 "A calculation based on known observations from a sample" B0 			oly no ities
	(c)	B1 – Voters		
		Do not allow 100 voters.		
		B1 – percentage/ proportion voting (for Dr Smith) the number of people voting (for Dr Smith) Allow 35% of people voting (for Dr Smith) Allow 35 people voting (for Dr Smith) Do not allow 35% or 35 alone		
	(d)	 B1 – answers must include all three of these features (i) All possible samples, (ii) their associated probabilities, (iii) context of voting for Dr Smith. 		
		e.g "It is all possible values of the percentage and their associated probabilities." B0 no	contex	xt

Q N	Question Scheme		Ma	ŕks			
Q	2 (a)	Let X be the random variable the number of games Bhim loses. $X \sim B(9, 0.2)$	B1				
		$P(X \le 3) - P(X \le 2) = 0.9144 - 0.7382 \text{or} (0.2)^3 (0.8)^6 \frac{9!}{3!6!}$ $= 0.1762 \text{avert } 0.1762 \text{avert } 0.1762$	M1 Δ1	(3)			
		- 0.1702 - 0.1702 awit 0.170		(0)			
	(b)	$P(X \le 4) = 0.9804$ awrt 0.98	M1A1	(2)			
	(c)	Mean = 3 variance = 2.85, $\frac{57}{20}$	B1 B1	(2)			
	(d)	Po(3) poisson	M1				
		$P(X > 4) = 1 - P(X \le 4)$	M1				
		= 1 - 0.8153					
		= 0.1847	A1	(3) [10]			
		Notes					
	(a)	B1 – writing or use of $B(9, 0.2)$					
		M1 for writing/using $P(X \le 3) - P(X \le 2)$ or $(p)^3 (1-p)^6 \frac{9!}{2!6!}$					
		A1 awrt 0.176					
	(b)	M1 for writing or using $P(X \le 4)$ A1 awrt 0.98					
	(c)	B1 3 B1 2.85, or exact equivalent					
	(d)	M1 for using Poisson M1 for writing or using $1 - P(X \le 4)$ NB P $(X \le 4)$ is 0.7254 Po(3.5) and 0.8912 Po(2.5) A1 awrt 0.185					
		Special case :Use of Po(1.8) in (a) and (b)					
		(a) can get B1 M1 A0 – B1 if written B(9, 0.2), M1 for $\frac{e^{-1.8}1.8^3}{21}$ or awrt to 0.161					
		3! If B(9, 0.2) is not seen then the only mark available for using Poisson is M1.					
		(b) can get M1 A0 - M1 for writing or using $P(X \le 4)$ or may be implied by awrt 0.964					
		Use of Normal in (d)					
		Can get M0 M1 A0 for M1 they must write $1 - P(X \le 4)$ or get awrt 0.187					

Question Number	Scheme					
Q3	Method 1	Method 2	Method 3			
	$P(X > 6) = \frac{1}{6}$	$P(4 < X < 6) = \frac{1}{3}$	$P(X > 6) = \frac{1}{6}$	B1 M1		
	$P(X < 4) = \frac{1}{2}$		$Y \sim U[3,9] P(Y > 6) = \frac{1}{2}$	A1		
	$total = \frac{1}{6} + \frac{1}{2} = \frac{2}{3}$	$1 - \frac{1}{3} = \frac{2}{3}$	$total = \frac{1}{6} + \frac{1}{2} = \frac{2}{3}$	M1dep B A1 (5)		
				[5]		
	Notes Methods 1 and 2 B1 for 6 and 4 (allow if seen on a diagram on x-axis) M1 for P(X > 6) or P($6 < X < 7$); or P($X < 4$) or P($1 < X < 4$); or P($4 < X < 6$) Allow $\leq and \geq$ signs A1 $\frac{1}{6}$; or $\frac{1}{2}$; $\frac{1}{3}$ must match the probability statement M1 for adding their "P($X > 6$)" and their "P($X < 4$)" or 1 - their "P($4 < X < 6$)" dep on getting first B mark A1 cao $\frac{2}{3}$ Method 3 Y~U[3,9] B1 for 6 with U[1,7]and 6 with U[3,9] M1 for P($X > 6$) or P($6 < X < 7$) or P($6 < Y < 9$) A1 $\frac{1}{6}$; or $\frac{1}{2}$; must match the probability statement M1 for adding their "P($X > 6$)" and their "P($Y > 6$)" dep on getting first B mark A1 cao $\frac{2}{3}$					

Question Number		Scheme					
Q4	(a)	$\frac{4}{9}(m^2+2m-3)=0.5$	M1				
		$m^2 + 2m - 4.125 = 0$					
		$m = \frac{-2 \pm \sqrt{4 + 16.5}}{2}$					
		m = 1.26, -3.264 (median =) 1.26	A1	(3)			
	(b)	Differentiating $\frac{d\left(\frac{4}{9}\left(x^2+2x-3\right)\right)}{dx} = \frac{4}{9}(2x+2)$					
		$f(x) = \begin{cases} \frac{8}{9}(x+1) & 1 \le x \le 1.5 \\ 0 & \text{otherwise} \end{cases}$	B1ft	(3)			
	(c)	$P(X \ge 1.2) = 1 - F(1.2)$ = 1 - 0.3733	M1				
		$=\frac{47}{75}, 0.6267$ awrt	A1	(2)			
		0.627					
	(d)	$(0.6267)^4 = 0.154$ awrt 0.154 or 0.155	M1 A1	(2)			
				[10]			
		Notes					
	(a)	M1 putting $F(x) = 0.5$ M1 using correct quadratic formula. If use calc need to get 1.26 (384) A1 cao 1.26 must reject the other root.	and M n	nark			
	(b)	M1 attempt to differentiate. At least one $x^n \rightarrow x^{n-1}$ A1 correct differentiation		iui K.			
	(c)	B1 must have both parts- follow through their F'(x) Condone < $t^{1.58}$ $t^{1.28}$					
		M1 finding/writing 1 – F(1.2) may use/write $\int_{1.2}^{1.5} \frac{\delta}{9}(x+1) dx$ or 1 - $\int_{1}^{1.2} \frac{\delta}{9}(x+1) dx$					
		or $\int_{1.2}^{1.5}$ "their f(x)" dx. Condone missing dx					
		A1 awrt 0.627					
	(d)	M1 (c) ⁺ If expressions are not given you need to check the calculation is correct to 2sf. A1 awrt 0.154 or 0.155					

Question Number		Scheme	Marks			
Q5 ((a)	Connecting occurs at random/independently, singly or at a constant rate	B1 (1)			
((b)	Po (8)				
	(i)	P(X=0) = 0.0003	M1A1			
((ii)	$P(X \ge 4) = 1 - P(X \le 3)$	M1			
		= 1 - 0.0424	A1 (5)			
		= 0.9576				
((C)	$H_0: \lambda = 4$ (48) $H_1: \lambda > 4$ (48)	B1			
		N(48,48)	M1 A1			
		Method I Method 2				
		$P(X \ge 59.5) = P\left(Z \ge \frac{59.5 - 48}{\sqrt{48}}\right) \qquad \left(\frac{x - 0.5 - 48}{\sqrt{48}} = 1.6449\right)$	M1 M1 A1			
		= P(Z > 1.66)				
		$= 1 - 0.\overline{9515}$				
		= 0.0485 $x = 59.9$	A1			
		0.0485 < 0.05	M1			
		Reject Π_0 . Significant, of lies in the Critical region The number of failed connections at the first attempt has increased	A1 ft (9)			
		The number of fance connections at the first attempt has increased.	[15]			
		Notes				
((a)	B1 Any one of randomly/independently/singly/constant rate. Must have context of	1			
		connection/logging on/fail				
((b)	B1 Writing or using Po(8) in (i) or (ii)				
	(i)	M1 for writing or finding $P(X = 0)$				
	(11)	A1 awrt 0.0003				
	(11)	M1 for writing or finding $1 - P(X \le 3)$				
	(c)	B1 both hypotheses correct. Must use λ or μ				
	• •	M1 identifying normal				
		A1 using or seeing mean and variance of 48				
		These first two marks may be given if the following are seen in the standardisation				
		formula : 48 and $\sqrt{48}$ or awrt 6.93				
		M1 for attempting a continuity correction (Method 1: 60 ± 0.5 / Method 2: $x \pm 0.5$)				
		M1 for standardising using their mean and their standard deviation and using either				
		Method 1 [59.5, 60 or 60.5. accept $\pm z$.] Method 2 [($x\pm 0.5$) and equal to a $\pm z$ value)				
		A1 correct z value awrt ± 1.66 or $\pm \frac{59.5 - 48}{\sqrt{48}}$, or $\frac{x - 0.5 - 48}{\sqrt{48}} = 1.6449$				
		A1 awrt 3 sig fig in range 0.0484 – 0.0485, awrt 59.9				
		M1 for "reject H_{0} " or "significant" maybe implied by "correct contextual comment"				
		If one tail hypotheses given follow through "their prob" and 0.05 , $p < 0.5$				
		If two tail hypotheses given follow through "their prob" with 0.025, $p < 0.5$				
		If one tail hypotheses given follow through "their prob" and 0.95, $p > 0.5$ If two tail hypotheses given follow through "their prob" with 0.075 $\rightarrow 0.5$				
		If no H ₁ given they get M0				
		A1 ft correct contextual statement followed through from their prob and H_1 need the	words			
		number of failed connections/log ons has increased o.e.				
		Allow "there are more failed connections"				
	NB A correct contextual statement alone followed through from their prob and H ₁ gets M					

Number	Scheme		
Q6 (a)	2 outcomes/faulty or not faulty/success or fail A constant probability Independence	B1 B1	
	Fixed number of trials (fixed <i>n</i>)		(2)
(b)	$X \sim B(50, 0.25)$	M1	
	$P(X \le 6) = 0.0194$		
	$P(X \le 7) = 0.0453$		
	$P(X \ge 18) = 0.0551$ P(X > 10) = 0.0287		
	$\Gamma(X \ge 19) = 0.0287$		
	$\operatorname{CR} X \le 6 \text{ and } X \ge 19$	A1 A1	(3)
(c)	0.0194 + 0.0287 = 0.0481	M1A1	(2)
(d)	8(It) is not in the Critical region or $8(It)$ is not significant or $0.0916 > 0.025$; There is evidence that the probability of a faulty bolt is 0.25 or the company's claim is correct.	M1; A1ft	(2)
(e)	$H_0: p = 0.25$ $H_1: p < 0.25$	B1B1	
	$P(X \le 5) = 0.0070 \text{ or } CR X \le 5$	MIAT	
	0.00/ < 0.01, 5 is in the aritical maximum mainer II as a significant	N/1	
	5 is in the chucal region, reject H_0 , significant.	Δ1ft	6)
	There is evidence that the probability of faulty boils has decreased	/////	[15]
	Notes		
(a)	B1 B1 one mark for each of any of the four statements. Give first B1 if only one correc	t statem	ent
(b)	given. No context needed.	1	f
(u)	WI for writing or using $B(50,0.25)$ also may be implied by both CK being correct. Con P in critical region for the method mark	done us	e 01
	A1 $(X) \le 6$ o.e. $[0,6]$ DO NOT accept P $(X \le 6)$		
	A1 $(X) \ge 19$ o.e. [19,50] DO NOT accept P $(X \ge 19)$		
(c)	M1 Adding two probabilities for two tails. Both probabilities must be less than 0.5 A1 awrt 0.0481		
(d)	M1 one of the given statements followed through from their CR.		
	A1 contextual comment followed through from their CR.		
	NB A correct contextual comment <u>alone</u> followed through from their CR.will get M1 A	A1	
(e)	BI for H ₀ must use p or π (pi)		
	BI for Π_1 must use p or π (p) M1 for finding or writing P(X < 5) or attempting to find a critical region or a correct c	ritical re	gion
	A1 awrt $0.007/CR X < 5$	intical ic	gion
	M1 correct statement using their Probability and 0.01 if one tail test		
	or a correct statement using their Probability and 0.005 if two tail test.		
	The 0.01 or 0.005 needn't be explicitly seen but implied by correct statement compatib	ole with	their
	H_1 . If no H_1 given M0	ta an 1	
	At correct contextual statement follow inrough from their prob and H_1 . Need faulty bold decreased	us and	
	NB A correct contextual statement <u>alone</u> followed through from their prob and H_1 get N	M1 A1	

Que: Nun	stion nber	Scheme			(S
Q7	(ai)	$f(y) \ge 0 \text{ or } f(3) \ge 0$	Ν	M1	
		$ky(a-y) \ge 0$ or $3k(a-3) \ge 0$ or $(a-y) \ge 0$ or $(a-3) \ge 0$			
		$a \ge 3$	ŀ	A1 cso	
	(ii)	3			
	(,	$\int k(ay - y^2)dy = 1$ integration	Ν	M1	
		$\left[\left k\left(\frac{ay^2}{y^2}-\frac{y^3}{y^3}\right)\right \right] = 1$ answer correct	4	A1	
		$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}_0$			
		$k\left(\frac{9a}{9a}-9\right)=1$ answer = 1	Ν	M1	
		$\binom{n}{2}$			
		$\left\lfloor k \left\lceil \frac{9a-18}{2} \right\rceil \right\rfloor = 1$			
		$k = \frac{2}{k} $ *	4	A1 cso	6)
		9(a-2)			- /
	(b)	f ³ 2 2			
		$\int_{0}^{1} k(ay^{2} - y^{3}) dy = 1.75 $ Int $\int xf(x)$	Ν	M1	
		$\begin{bmatrix} (av^3 v^4) \end{bmatrix}^3$ Correct integrat	tion 4	A1	
		$\left\lfloor k \left\lfloor \frac{x_{y}}{3} - \frac{y}{4} \right\rfloor \right\rfloor_{0} = 1.75 \text{f}(x) = 1.75 \text{ and limits}$	0,3 N	M1dep	
		k(9a-81)-1.75			
		$\left[\kappa\left(\frac{3a-4}{4}\right)^{-1.75}\right]$			
		$2(9a - \frac{81}{2}) = 15.75(a - 2)$ subst k	Ν	M1den	
		$\begin{bmatrix} 2 \\ 4 \end{bmatrix}^{-15.75(a-2)}$ substr		whucp	
		$2.25a = -31.5 + \frac{81}{2}$			
		a = 4 *	ļ	A1cso	
		$k = \frac{1}{2}$	F	B1	(6)
					(9)

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481

Email publications@linneydirect.com

Order Code UA024768 Summer 2010

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH

Mark Scheme (Results) January 2011

GCE

GCE Statistics S2 (6684) Paper 1

Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http://www.edexcel.com/Aboutus/contact-us/

January 2011 Publications Code UA026667 All the material in this publication is copyright © Edexcel Ltd 2011

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - B marks are unconditional accuracy marks (independent of M marks)
 - Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark

January 2011 Statistics S2 6684 Mark Scheme

Question Number	Scheme	Marks		
1. (a)	(a) Occurrences of the disease are independent The probability of catching the disease remains constant.			
(b)	$X \sim \text{Bin}(10,0.03)$ $P(X = 2) = \frac{10 \times 9}{2} (0.03)^2 (0.97)^8 = 0.0317$	B1 M1A1 (3)		
(c)	$E(X) = 100 \times 0.03 = 3$ Var(X) = 100 × 0.03 × 0.97 = 2.91	B1cao B1cao (2)		
(d)	$\lambda = 100 \times 0.03 = 3$ $Y \sim Po(3)$ $P(Y > 5) = 1 - P(Y \le 5)$ = 1 - 0.9161 = 0.0839	B1 (use of) dM1 A1 (3) [10]		
	Notes			
(a)	B1 independent B1 <u>probability</u> remains <u>constant</u> . One of these must have the context of disease. No context only one correct B0B0 If only one mark awarded give the first B1 SC if they are both correct without context award B1B0			
(b)	B1 for writing or using B(10,0.03) M1 for writing or using $(p)^2 (1-p)^8 \frac{10!}{2!8!}$ allow ${}^{10}C_2, \begin{pmatrix} 10\\2 \end{pmatrix}$ etc Allow P(X \le 2) - P(X \le 1) A1 awrt 0.0317			
(b)	B1 for <u>using</u> Poisson. Any mean. Common values which imply Poisson used 0.8153 dM1 for writing or using $1 - P(X \le 5)$ - use of binomial gets M0. This is dependent on them being awarded the previous B mark. A1 awrt 0.0839 SC: Use of Normal in (d) Can get B0 M1 A0 for M1 we must see $1 - P(X \le 5)$ or $1 - P(X \le 5.5)$ oe or get awrt 0.071	are 0.9665 and		

Question Number	Scheme				Marks
2.	$H_0: p = 0.2$ H_1	: <i>p</i> > 0.2			B1
	Under H_0 , $X \sim B$	Sin(10,0.2)			B1
	$P(X \ge 4)$ = 1	$-P(X \le 3)$	OR	P ($X \le 4$) = 0.9672	M1
	= 1	-0.8791		$P(X \ge 5) = 0.0328$	
	= (0.1209		$\operatorname{CR} X \ge 5$	A1
	0.1209>0.05. Insu:	fficient evidence	to reject H_0 so the set of th	teacher's claim is	N4 A 4 Ct
	supported.				MIAIIT
					[6]
			Notes		
	B1 for both H_0 and	l H ₁ correct. Mus	t use p or π (pi)		
	B1 for writing or u	using Bin(10,0.2))		
	MI for finding or	writing $I - P(X)$	≤ 3) or P ($X \leq 4$)	= 0.9672	
	$P(X \ge 5) = 0.0328$	oe or a correct c	ritical region		
	AT awrit 0.121 or 0	∠K A <u><</u> 3 d•			
	correct statem	u. ent using their P	robability and 0	05 if one tail test or	
	correct statem	ent using their P	robability and 0.	.025 if two tail test (condo	one a
	comparison w	ith 0.05 instead	of 0.025 for a tw	o tail test).	
	Do not allow no	on-contextual co	nflicting stateme	ents eg "significant" and "	accept H ₀ "
	A1ft correct contex	xtual statement f	ollowed through	from "their prob".	-
	Either a comment	on whether the t	eacher's claim w	vas correct or on whether t	he student was
	guessing the answers. NB if a correct contextual statement only is given for their probability then award M1 A1				
	If <i>p</i> >0.5				
	They may compare	e with 0.95 (one	tail method) or (0.975 (two tail method)	
	Probability is 0.87	91.			
Question Number	Scheme	Mark	S		
--------------------	--	------------	-------------		
3. (a)	$E(X) = \frac{3-1}{2} = 1$	B1 cao			
			(1)		
(b)	$\operatorname{Var}(X) = \frac{(3+1)^2}{12} = \frac{4}{3}$ oe	M1A1	(2)		
(c)	$E(X^{2}) = \frac{4}{2} + 1, = \frac{7}{2}oe$	M1,A1			
	3 3		(2)		
(d)	P(X<1.4)=0.6	B1 cao	(1)		
(e)	P(X < 0) = 0.25 <i>Y</i> is number of values less than 0	B1			
	$Y \sim Bin(40, 0.25)$ P(Y \ge 10) = 1 - P(Y \le 9)	M1A1 M1			
	= 1 - 0.4395 = 0.5605	AI	(5) [11]		
	Notes	•			
(b)	M1 $\frac{(3-1)^2}{12} or \frac{(3+1)^2}{12} or \frac{(31)^2}{12}$ A1 awrt 1.33				
(c)	M1 "their(b)" + ["their (a)"] ² or $\int_{-1}^{3} \frac{x^2}{4} dx$ A1 awrt 2 33				
(e)	B1 For writing or using the probability of a negative = 0.25 M1 Writing or use of B(40, p) A1 Writing or use of B(40, 0.25) M1 Writing or using $1 - P(Y \le 9)$ A1 awrt 0.561 or 0.560				

Question Number	Scheme	Marks
4.	H ₀ : $\lambda = 8$ or $\mu = 2$ H ₁ : $\lambda < 8$ or $\mu < 2$	B1 B1
	Under H_0 , $X \sim Po(8)$	M1
	$P(X \le 3) = 0.0424$ CR $X \le 3$	A1
	0.0424 < 0.05, Reject H ₀ . Richard's claim is supported.	M1A1ft
		[6]
	Notes	
	B1 for H ₀ correct. Must use λ or μ and 8 or 2	
	B1 for H ₁ correct. Must use λ or μ and 8 or 2	
	M1 for writing or using $Po(8)$ – may be implied by correct CR	
	A1 awrt 0.0424 or CR $X \le 3$	
	 M1 need p<0.5 and: correct statement using their Probability and 0.05 if one tail test or correct statement using their Probability and 0.025 if two tail test (condor comparison with 0.05 instead of 0.025 for a two tail test). Do not allow non-contextual conflicting statements eg "significant" and " A1ft correct contextual statement followed through from "their prob". Either a comment on whether Richard's claim was correct or on whether the service has improved. NB if a correct contextual statement only is given for their probability then av 	ne a 'accept H_0 " vard M1 A1
	They may compare with 0.95 (one tail method) or 0.975 (two tail method) Probability is 0.9576	<i>p</i> >0.5

Question Number	Scheme	Marks	
5. (a)	$m = -\frac{4}{0.5} = -8$ f(x) = 4 - 8x (*) f(x) = $\begin{cases} -8x + 4 & 0 \le x \le 0.5 \\ 0 & otherwise \end{cases}$	M1 A1cso B1 B1	(4)
(b)	$F(x) = \int_0^x (-8x+4)dx$ = $\left[-4x^2+4x\right]_0^x$ $F(x) = \begin{cases} 0 & x < 0 \\ -4x^2+4x & 0 \le x \le 0.5 \\ 1 & x > 0.5 \end{cases}$	M1 M1 A1 B1	(4)
(c)	$-4x^{2} + 4x = 0.5$ $x = \frac{1}{4}(2 - \sqrt{2}) = 0.146$	M1 M1A1	(3)
(d)	x = 0	B1 ((1)
(e)	Positive Skew as mode <median< td=""><td>B1ft ([1</td><td>(1) 3]</td></median<>	B1ft ([1	(1) 3]

Question Number	Scheme	Marks
	Notes	
(a)	M1 for $\pm \frac{4}{0.5}$ or attempt at gradient A1cso for proceeding to given expression with no incorrect working seen B1 for top line. Must have $f(x)$ and { and more than one line. Condone use of B1 for 0 otherwise and no other parts.	?<.
(b)	M1 attempting to integrate (at least one $x^n \rightarrow x^{n+1}$) (ignore limits) M1 correct limits used or +C and either F(0) = 0 or F(0.5) = 1, may be implied by seeing $4x - 4x^2$ A1 middle line. May write $4x - 4x^2$ B1 top and bottom line	
(c)	M1 Their F(x) = 0.5 M1 attempting to solve – either correct use of quadratic formula or correct completion of the square A1 awrt 0.146 or $\frac{2-\sqrt{2}}{4}$ o.e	
(d)	B1 for 0	
(e)	B1 ft their mode and median. Need direction and correct corresponding reason OR B1 positive skew from tail on right hand side in diagram	n

Question Number	Scheme	Marks	6
6.			
(a)	<i>X</i> ~Po(2.5)	M1A1	
			(2)
(b)	Cars arrive at the toll booth independently/randomly		
	Cars arrive one at a time	B1	
	The <u>rate of arrival</u> at a toll booth remains <u>constant</u> at 2.5 per minute	B1	
			(2)
(c)(i)	$P(X=0) = e^{-2.5} = 0.0821$	B1	
			(1)
(c)(ii)	$P(X > 3) = 1 - P(X \le 3)$	M1	
	= 0.2424	A1	
			(2)
(d)	Use of Po(10)	M1	
	1 - 0.0487 = 0.9513	M1	
	m = 15	A1 cao	
			(3)
(e)	$Y \sim N(25,25)$	B1B1	
	$P(X < 15) = P(Y \le 14.5)$	M1	
	$= P\left(Z \le \frac{14.5 - 25}{5}\right)$	M1	
	$= P(Z \leq -2.1)$	A1	
	= 0.01786	A1	
			(6)
			[16]

Question Number	Scheme	Marks			
	Notes				
(a)	M1 Poisson				
	A1 2.5				
(b)	Any two of the statements or equivalent. At least one must be in context. Need words that imply "cars arrive" or "rate of arrival." SC no context but 2 correct reasons B1B0 No context but 1 correct reason B0B0				
(c) (i)	B1 awrt 0.0821				
(ii)	M1 for writing or finding 1 - $P(X \le 3)$	M1 for writing or finding 1 - $P(X \le 3)$			
	A1 awrt 0.242				
(d)	M1 writing or using Po(10)				
	M1 for 1-0.0487 or 0.9513 seen or implied by correct value for m				
(e)	B1 use of normal B1 using or seeing mean and variance of 25 These first two marks may be given if the following are seen in the correct pla standardisation formula : 25 and $\sqrt{25}$ or 5 M1 for attempting a continuity correction (14 ± 0.5) or (15 ± 0.5) M1 for standardising using their mean and their standard deviation and using 13.5, 15 or 15.5] accept $\pm z$. A1 correct z value ± 2.1 or $\pm \frac{14.5 - 25}{5}$, A1 awrt 0.0179 NB use of calculator gets full marks if the answer is awrt 0.0179.	aces in the 5 [14.5, 14,			

Question Number	Scheme	Marks	i
7. (a)	$\int_{0}^{9} k(81x - x^{3}) \mathrm{d}x = 1$	M1	
	$k\left[\frac{81}{2}x^2 - \frac{1}{4}x^4\right]_0^9 = 1$	M1	
	$k(\frac{6561}{2} - \frac{6561}{4}) = 1$	A1 cso	
	$k = \frac{4}{6561} **ag**$		(3)
(b)	$E(X) = \int_0^9 k x^2 (81 - x^2) dx$		
	$=k\left[\frac{81}{3}x^{3}-\frac{x^{5}}{5}\right]_{0}^{9}$	M1A1	
	= k(19683 - 11809.8)	dM1	
	= 4.8	A1 cao	
			(4)
(C)	$P(X > 5) = \int_{5}^{9} k(81x - x^{3})$	M1	
	$= k \left[\frac{81}{2} x^2 - \frac{1}{4} x^4 \right]_5^9$	M1d	
	$= k \left(\frac{6561}{4} - 856.25 \right) = \text{awrt } 0.478 \text{ or } \frac{3136}{6561}$	A1	
			(3)
(d)	P(At least 2 queue for more than 5 mins) = $3(1-0.478)(0.478)^2 + 0.478^3$	M1A1ft	
	= 0.467	A1	(2)
			(3) [13]

Question Number	Scheme	Marks					
	Notes						
(a)	M1 putting integral = 1 ignore limits. =1 must appear at least once in the working.						
	M1 attempting to integrate at least one part must have correct power of x (ignore limits) A1cso subst of at least 9. Allow $1/1640.25$						
(b)	M1 attempt to use $xf(x)$ and attempt to multiply out bracket and attempt at integration – must have x^3 and x^5 terms (ignore limits) A1 correct integration (ignore limits) dM1 substituting correct limits (need not explicitly see 0). Dependent on having been awarded the first M1.						
(c)	M1 attempting to integrate at least one part must have correct power of x (ign M1 dep on previous M being awarded, substituting correct limits [may use $1 - \int_0^5 k(81x - x^3)$ with limits 0 and 5]	nore limits) –					
(d)	M1 3(1-p) $p^2 + p^3$ or $1 - (1-p)^3 - 3(1-p)^2 p$ 3 not need A1 for 3(1-p) $p^2 + p^3$ $1 - (1-p)^3 - 3(1-p)^2 p$ where p is their solution to part (c) A1 awrt 0.467	led					

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publications@linneydirect.com</u> Order Code UA026667 January 2011

For more information on Edexcel qualifications, please visit <u>www.edexcel.com/quals</u>

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH

Mark Scheme (Results)

June 2011

GCE Statistics S2 (6684) Paper 1

ALWAYS LEARNING

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025 or visit our website at <u>www.edexcel.com</u>.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our **Ask The Expert** email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

June 2011 Publications Code UA028840 All the material in this publication is copyright © Edexcel Ltd 2011

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - B marks are unconditional accuracy marks (independent of M marks)
 - Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod benefit of doubt
- ft follow through
- the symbol will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- L The second mark is dependent on gaining the first mark

June 2011 6684 Statistics S2 Mark Scheme

Question Number	Scheme	Marks
1. (a)	The <u>list</u> of <u>ID numbers</u>	B1 (1)
(b)	$F \sim B(50, 0.02)$	B1 B1 (2) 3
Notes: (a) (b)	B1 for idea of list/register/database and identity numbers NB B0 if referring to the sample or 50 or only part of the population. These must be in part (b) to gain the marks 1^{st} B1 for $n = 50$ and $p = 0.02$ or (50,0.02) NB (0.02, 50) is B0 Po(1) alone is B0B0 For a probability table 1^{st} B1 Use of B(50,0.02) NB P($X = 0$) = 0.3642 2^{nd} B1 Table must have all 50 values and their probabilities.	

advancing learning, changing lives

Question Number	Scheme		Marks
2. (a)	Poisson		B1 (1)
(b)	$H_0: \mu = 9 \text{ (or } \lambda = 36)$ $H_1: \mu > 9 \text{ (or } \lambda > 36)$		B1 B1
	$X \sim Po(9)$ and $P(X > 12) = 1 - P(X < 11)$ or	$P(X \le 14) = 0.9585$	2.41
		$P(X \ge 15) = 0.0415$	MI
	= 1-0.8030 = 0.197	$\underline{CR X} \geq \underline{15}$	A1
	(0.197 > 0.05)		
	so not significant/ accept H ₀ / Not in CR		Mld
	he does not have evidence to switch on the speed rest	trictions (o.e)	Alft (6)
(c)	Let $V =$ the number of vehicles in 10 s then $V = Po(6)$	5)	(0) R1
(t)	Exercise the number of vehicles in 10 s when $T \approx 1000$)	
	Tables: $P(Y \le 10) = 0.95/4$ so $P(Y \ge 11) = 0.0426$		MI
	so needs	11 vehicles	AI (2)
			(3)
Notes:			10
(a)	B1 for Poisson or Po. Ignore their value for the	mean.	
(b)	1 st B1 for H ₀ : $\mu / \lambda = 9$ or $\mu / \lambda = 36$		
	2^{nd} B1 for H ₁ : $\mu/\lambda > 9$ or $\mu/\lambda > 36$		
	<u>One tail</u>		
	1 st M1 for writing or using 1 - $P(X \le 11)$ or writing	$P(X \le 14) = 0.9585 \text{ or } P(X \ge 15) =$	0.0415.
	May be implied by correct CR.or probability = $0.19/$	K < 11 = 0.8020 or its sum soons	N/1 A 1
	2^{nd} M1 dependent on the 1 st M1 being awarded. For	$x \leq 11$ = 0.8050 on its own scores	able below
	Do not allow non-contextual conflicting statements e	g "significant" and "accept H_0 ". Is	znore
	comparisons.		2
	2 nd A1 for a correct contextualised statement. NB A c	correct contextual statement on its	own scores
	M1A1.		
	$0.05 p$	< 0.05 or p > 0.95	
	2 IVII not significant/ accept H ₀ / Not in CR si $2^{\text{nd}} \text{ A 1}$ Insufficient avidance to switch on the Si	Ignificant/ reject H ₀ / In CK	speed
	speed restrictions	estrictions	s <u>speeu</u>
	<u>Two tail</u>		
	1 st M1 for writing or using 1 - $P(X \le 11)$ or writing	$P(X \le 15) = 0.9780 \text{ or } P(X \ge 16) =$	0.022. May
	be implied by correct CR. or probability = 0.197	11) 0.0000	1 . 1
	All for 0.19/ or CR X \geq 16. Allow X \geq 15. NB P(X \leq 2 nd M1 dependent on the 1 st M1 being enverted. For	(11) = 0.8030 on its own scores M	IAI bla balow
	Do not allow non-contextual conflicting statements e	g"significant" and "accept H ₀ ".	nore

edexce advancing learning, changing lives

N	л	_	-	

Question Number	Scheme			Marks		
- Turnoon	comparisons.					
	2^{nd} A1 for a correct contextualised statement. NB A correct contextual statement on its own scores					
	M1A1.					
		0.025 < <i>p</i> < 0.975	p < 0.025 or $p > 0.975$			
	2^{nd} M1	not significant/ accept H ₀ / Not in CR	significant/ reject H ₀ / In CR			
	$2^{n\alpha}$ A1	Insufficient evidence to switch on the	Sufficient evidence to switch on the	e		
(-)	D1	speed restrictions	speed restrictions			
(C)	M1 d	for identifying $PO(6)$ - may be implied by	0.9799 or 0.0201 may be implied by	correct		
	answer	f 11	0.9799 of 0.0201 may be implied by	concer		
	Al	cao do not accept $X > 11$				
	NB answ	ver of 11 with no working gains all three	marks.			
3.	Moda - 1	2 from granh		D1		
(a)	Mode – .	5 nom graph		DI		
		<u>^</u>		(1)		
	$\frac{3}{1}$	$\begin{bmatrix} kx^3 \end{bmatrix}^3$		N 61 A 1		
(b)	$\int kx^2 dx$	$=0.5 \Rightarrow \boxed{\frac{3}{3}} = 0.5$		MI AI		
	0					
	So $\frac{27\kappa}{2}$	$-0 = 0.5 \implies k = \frac{1}{10}$	(using median $=$ 3)	M1d A1		
	3	18		(4)		
		1 1		(4)		
(c)	Height of	f triangle = $\frac{1}{18} \times 3^2 = \frac{1}{2}$		B1ft		
	Area of t	riangle = $\frac{1}{2} \times (a-3) \times \frac{1}{2} = \frac{1}{2}$		M1		
		$2 \qquad 2 \qquad 2 \qquad 3 \qquad $				
		cao		A1		
				(3)		
(d)	From gra	aph distribution is negative skew (left tai	l is longer)	B1		
	$\mu < \text{med}$	lian for negative skew so $E(X) < 3$		B1d		
				(2)		
	[N.B. E($(X) = 2\frac{23}{24}$]		10		
Notes:						
(b)	1 st M1	for attempt to integrate $f(x)$ (need x^3). Int	egration must be in part (b)			
	$1^{st} A1$	for correct integration. Ignore limits for	these two marks.			
	2 nd MI	Dependent on the previous M mark bein	g awarded. For use of correct limits			
	and set e	qual to 0.5 - leading to a linear equation for $h = \frac{1}{2}$ on event a substantial set	for k. No need to see 0 substituted.			
	Z AI	for $k = \frac{1}{18}$ or exact equivalent				
	NB $k = \frac{1}{1}$	$\frac{1}{18}$ with no working gains M0A0M0A0				
	1/2	1				
	$k = \frac{72}{9} =$	$=\frac{1}{18}$ without sight of integration is M0A0	M0A0			
	B1 for co	prrect height of triangle using their k. ie 9	k. May be seen in working for area of	f triangle.		
	Or correc	ct gradient of line ie $\frac{9k}{}$ o.e.		2		
(C)		\sim (3-a)				

GCE Statistics S2 (6684) June 2011

advancing learning, changing lives

Question Number	Scheme	Marks
	M1 for a correct linear equation for <i>a</i> , in the form $\pm \frac{1}{2} \times (a-3) \times 9k = \frac{1}{2}$ (Must see the set of	the halves)
	NB if they have stated their height and then used their height rather than $9k$ allow M1 A1 cao NB stating $a = 5$ and then verifying area of the triangle = 0.5 is acceptable	
	NB a = 5 on its own is B0M0A0 SC Integration of both parts = 1 or Integration of line = 0.5 leading to $a^2 - 8a + 15 = 0$ M1 and if they identify $a = 5$ A1	gets B1
(d)	1 st B1for identifying negative skew 2^{nd} B1dependent on previous B mark being awarded. For correct deduction E(X) <3	
4 (a)	$\frac{9.5-7}{10-7}$	M1
	$=\frac{5}{6}$ awrt 0.833	A1
		(2)
(b)	$P(Longest > 9.5) = 1 - P(all < 9.5) = 1 - \left(\frac{5}{6}\right)^{3}$	M1
	$=\frac{91}{216}$ or 0.421	A1
		(2)
(c)	$P(a \text{ stick} < 7.6) = \frac{0.6}{3} = 0.2$	B1
	Let $Y =$ number of sticks (out of 6) <7.6 then $Y \sim B(6, 0.2)$ $P(Y > 4) = 1 - P(Y \le 4)$ = 1 - 0.9984	M1 M1
	$= 0.0016 \text{ or } \frac{1}{625}$	A1 (4)
Notes:		0
(a)	M1 for an expression for the probability e.g. $\int_{7}^{9.5} \frac{1}{3} dx$	
(b)	M1 for $1-(a)^3$ or $(1-a)^3 + 3(1-a)^2 a + 3(1-a)a^2$	
(c)	A1 awrt 0.421 B1 0.2 may be implied by at least one correct probability 1^{st} M1 for writing or using B(6, p) may be implied by $np^x(1-p)^{6-x}$ using their p and n 2^{nd} M1 for writing or using $1 - P(Y \le 4)$ or $np^5(1-p) + p^6$ (n is an integer > 1) A1 cao	 <u>></u> 1
	NB 0.0016 with no working gets B0M0M0A0	
5. (a)	$X \sim Po(5); P(X \le 3) = 0.2650$	M1 A1
		(2)

advancing	learning,	changing	lives
-----------	-----------	----------	-------

Question Number	Scheme	Marks
(b)	Let Y = the no.of planks with at most 3 defects, Y ~Binomial $P(Y < 2) = P(Y \le 1)$ $= \begin{bmatrix} 0.735^6 + 6 \times 0.265 \times 0.735^5 \end{bmatrix}$ = 0.4987 awrt 0.499 or 0.498	M1 A1ft M1 A1 A1 (5)
(c)	Let $T = \text{total number of defects on 6 planks}, T \sim \text{Po}(30) \text{ so } T \approx S \sim \text{Normal}$ $S \sim \text{N}(30, 30)$ P(T < 18) = P(S < 17.5) $= P\left(z < \frac{17.5 - 30}{\sqrt{30}}\right)$ = P(Z < -2.28) = 0.01123 awrt 0.0112 or 0.0113	(3) M1 A1 M1 M1 A1 A1 (6) 13
Notes: (a) (b) (c)	M1 for identifying Po(5) - it should be clearly seen somewhere or implied A1 for correct probability. Allow 0.265 1 st M1 for writing or using the binomial - may be implied by use of $nq^x(1-q)^{6x}$ with $n \ge 1^{st}$ A1ft for $n = 6$ and $p =$ their (a) may be implied by $6p(1-p)^5$ or $(1-p)^6$ NB if they write B(6,(a)) they get M1 A1 2 nd M1 for writing P($Y \le 1$) or P($Y = 0$) + P($Y = 1$) or $(1-q)^6 + nq(1-q)^5$ with $n \ge 1$ 2 nd A1 (1-p) ⁶ + $6p(1-p)^5$ where $p =$ their (a) 3 rd A1 for a normal approx 1 st A1 for a normal approx 1 st A1 for correct mean and sd 2 nd M1 for use of continuity correction, either 17.5 or 18.5 or 42.5 or 41.5 seen 3 rd M1 Standardising with their mean and their sd and 17.5 or 18 or 18.5 or 41.5 or 42. NB if they have not written down a mean and sd then they need to be correct in the star to gain this mark. 2 nd A1 for $z = \pm 2.28$ or better. May be awarded for $\pm \frac{17.5 - 30}{\sqrt{30}}$ [NB no continuity cor 2.19] 3 rd A1 for awrt 0.0112 or 0.0113 [NB no approximation gives 0.00727] SC using P(X<18.5) – P(X<17.5) can get M1 A1 M1 M0A0A0	≥ 1 or 42.5 indardisation rection $z =$

advancing	learning,	changing	lives
-----------	-----------	----------	-------

Question Number	Scheme		Marks
6.	$H_0: p = 0.15$ $H_1: p \neq 0.15$		B1 B1
(a)	$X \sim B(30, 0.15)$		M1
	$P(X \le 1) = 0.0480 \text{ or } CR: X = 0$		Al
	(0.0480 > 0.025)		
	not a significant result or do not reject H_0 or not in	n CR	M1
	there is no evidence of a <u>change</u> in the <u>proportion</u>	of customers buying an item from	A1ft
	the display.		(6)
(b)	$H_0: p = 0.2$ $H_1: p > 0.2$		B1
	Let $S =$ the number who buy sandwiches, $S \sim B(120)$), 0.2),	
	$S \approx W \sim N(24 \sqrt{192^2})$		M1 A1
	$P(S \ge 31) = P(W \ge 30.5)$	24	M1
	$= P\left(Z > \frac{30.5 - 24}{\sqrt{1000}}\right)$ or $\frac{x - 0.5 - 1}{\sqrt{1000}}$	$\frac{-24}{-1} = 1.2816$	M1
	$(\sqrt{19.2})$ $\sqrt{19.2}$		
	[= P(Z > 1.48)] = 1 - 0 9306		M1
	= 0.0694	x = 30.1	Al
	< 0.10 so a significant result, there is evidence the	at more customers are purchasing	B1ft
	sandwiches or the shopkeepers claim is correct.		(8)
Notes:	1^{st} B1 for H ₀ must use $n = 2^{\text{nd}}$ B1 for H ₁ must use n		14
(a)	1^{st} M1 for writing or using B(30,0.15) – may be in	pplied by correct CR	
	1 st A1 0.0480 or $X = 0$. Allow $X \le 0$. Ignore upper C	\overrightarrow{CR} . NB Allow CR $X \leq 1$ if using one	tail test.
	2 nd M1 A correct statement (see table below) Do no	t allow non-contextual conflicting st	atements
	eg "significant" and "accept H_0 ". Ignore compariso $2^{nd} \wedge 1$ for a correct statement in context. For context	ons vt we need idea of change/decrease i	in number
	of customers buying from display – may use differe	ent words. NB A correct contextual s	tatement on
	its own scores M1A1		
	Two tail $0.025 or$	Two tail $p < 0.025$ or $p > 0.975$ or	
	One tail $0.05 \le p \le 0.95$	One tail $p < 0.05$ or $p > 0.95$	tovtuol
	M1 contextual	significant/ reject H ₀ / In CK of con	lexiual
	2^{nd} There is no evidence of a <u>change/decrease</u>	There is evidence of a <u>change/decre</u>	ease in
	A1 in the <u>proportion of customers</u> buying an	the proportion of customers buying	an item
(h)	1 st D1 both hypotheses correct reput use r	from the <u>display</u> .	
(0)	1^{st} M1 for a normal approx		
	1 st A1 for correct mean and sd		
	2^{nd}_{rd} M1 for use of continuity correction, either 30.5	or 31.5 or $(x \pm 0.5)$ seen	
	3 rd M1 standardising with their mean and their sd	and 30.5, 31 or 31.5 or x or $(x \pm 0.5)$	1
	4 IVIT IOF 1 - tables value or 1.2816 $2^{nd} A 1$ for awrt 0.069 or $r = 30.1$		
	2^{nd} B1ft For a correct conclusion in context using	their probability and 0.1 For context	we need
	idea of more customers buying sandwiches – may	use different words	• •

edexce advancing learning, changing lives

Question Number	Scheme	
	One tail $0.1 or Two tail One tail p < 0.1 or p > 0$).9 or Two tail <i>p</i> <
	0.05 $0.05 or p > 0.95$	*
	$\begin{vmatrix} 2^{nd} \\ M1 \end{vmatrix}$ not significant/ accept H ₀ / Not in CR or significant/ reject H ₀ / In Q	CR or contextual
	2^{nd} There is no evidence of an increase in There is evidence of a ch	ange/increase in the
	A1 the proportion of customers buying proportion of customers buying	buying sandwiches.
	sandwiches	
	SC using $P(X < 31.5) - P(X < 30.5)$ can get B1M1 A1 M1 M1M0A0B0	
7 (a)	\cap shape which does not go below the x-axis [condone missing patios]	B1
	Graph must end at the points $(1,0)$ and $(5,0)$ and the points labelled at 1 and	d 5 BI
(b)	F(X) = 3 (by symmetry)	(2
(0)	L(x) = 5 (by symmetry)	(1
	$\left[E(X^2) - \int x^2 f(x) dx - \frac{3}{2} \int (6x^3 - x^4 - 5x^2) dx \right]$	
(C)	$\begin{bmatrix} E(x - 1) - \int x - 1(x) dx - \frac{1}{32} \int (0x - x - 5x) dx \end{bmatrix}$	1011
	$\begin{bmatrix} 6x^4 & x^5 & 5x^3 \end{bmatrix}^5$	
	$=\frac{3}{32}\left \frac{3\pi}{4}-\frac{\pi}{5}-\frac{3\pi}{3}\right $	A1
		M1
	$=\frac{3}{42}\left(\left \frac{6\times625}{625}-625-\frac{625}{625}\right -\left \frac{6}{6}-\frac{1}{5}-\frac{5}{6}\right \right)=9.8$ (*	A1 cso
	$32\left(\left[\begin{array}{ccc}4\end{array}\right] 32\left(\left[\begin{array}{ccc}4\end{array}\right] 32\left(\left[\begin{array}{ccc}4\end{array}\right] 32\left[\begin{array}{ccc}4\end{array}\right] 32\left[\begin{array}{ccc}4\end{array}] 32\left[\begin{array}{ccc}4\end{array}\right] 32\left[\begin{array}{ccc}4\end{array}] 32\left[32\left[\begin{array}{ccc}4\end{array}] 32\left[\begin{array}{ccc}4\end{array}] 32\left[32\left[32\left] 32\left[32\left] 32\left[32\left[32\left] 32\left[32\left] 32\left[32\left[32\left] 32\left[32\left] 32\left[32\left] 32\left[32\left[32\left] 32\left[32\left[32\left] 32\left[32\left] 32\left[32\left[32\left[32\left] 32\left[32\left[32\left[32\left[32\left] 32\left[32\left[32\left[32\left[32\left[32\left[32\left[32\left[$	(4
(d)	$s.d. = \sqrt{9.8 - E(X)^2}$	M1
()	= 0.8944	rt 0 894 A 1
	awi	(2
(e)	$F(1) = 0 \Rightarrow \frac{1}{32}(a-15+9-1) = 0$, leading to $a = 7$	M1 A1
		(2
(f)	F(2.29) = 0.2449, F(2.31) = 0.2515	M1 A1
	Since $F(q_1) = 0.25$ and these values are either side of 0.25 then 2.29 $< q_1 < 1$	2.31 A1
		(3
(g)	Since the distribution is symmetric $q_3 = 5 - 1.3 = 3.7$	cao B1
		(1
(h)	We know P($q_1 = 2.3 < X < 3.7 = q_3$) = 0.5	
	so $k\sigma = 0.7$	M1
	$s_0 k = \frac{0.7}{0.7} = 0.7826 = awrt 0.78$	
	0.894	
		Al
		(2
		1

Question Number	Scheme		Marks
Notes:			
(c)	This part is a "show that" therefore we need to see all the ste	ps in the working	
	1 st M1 for showing intention of doing $\int x^2 f(x)$ and attempt	t to multiply out bracket	
	1^{st} A1 for correct integration, cao, ignore limits for this mar 2^{nd} M1 for use of correct limits. Need to see evidence of sub 2^{nd} A1 for cso leading to 9.8. Do not ignore subsequent work	k. ost both 5 and 1. rking for this final A mark.	
(d)	M1 for a correct expression for standard deviation, must	include $$	
	A1 allow awrt 0.894, $\sqrt{0.8}$, $\frac{2\sqrt{5}}{5}$ oe		
(e)	M1 for a correct method to find <i>a</i> . e.g F(5) = 1 or $\int_{1}^{5} f(x)$) = 1	
(f)	M1 for an attempt at $F(2.29)$ or $F(2.31)$ or	put $F(x) = 0.25$ (ft the	ir value of
	a) $1^{st} A1$ for both values seen. awrt 0.245 and 0.252 2.305, -0.064	find 3 solutions awrt 6.7	6/6.75,
	2^{nd} A1 for comparison with 0.25 and stating Q ₁	state only 2.30 in range a	nd stating
	Q_1		
	lies between 2.29 and 2.31	lies between 2.29 and 2.3	1
(h)	M1 For $k\sigma = awrt 0.7$		
	A1 Allow awrt 0.78		
	NB a correct awrt 0.78 gains M1 A1		

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email publication.orders@edexcel.com Order Code UA028840 June 2011

For more information on Edexcel qualifications, please visit www.edexcel.com/guals

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

Mark Scheme (Results)

January 2012

GCE Statistics S2 (6684) Paper 1

ALWAYS LEARNING

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at <u>www.edexcel.com</u>.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our **Ask The Expert** email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

January 2012 Publications Code UA030902 All the material in this publication is copyright © Pearson Education Ltd 2012

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for `knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod benefit of doubt
- ft follow through
- the symbol / will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- \square The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

General Principals for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^{2} + bx + c) = (x + p)(x + q)$$
, where $|pq| = |c|$, leading to $x = ...$
 $(ax^{2} + bx + c) = (mx + p)(nx + q)$, where $|pq| = |c|$ and $|mn| = |a|$, leading to $x = ...$

2. <u>Formula</u>

Attempt to use <u>correct</u> formula (with values for a, b and c), leading to x = ...

3. <u>Completing the square</u>

Solving $x^2 + bx + c = 0$: $(x \pm \frac{b}{2})^2 \pm q \pm c, q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. ($x^n \rightarrow x^{n-1}$)

2. Integration

Power of at least one term increased by 1. ($x^n \rightarrow x^{n+1}$)

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

January 2012 6684 Statistics S2 Mark Scheme

Question Number	Scheme	Mark	s
1 (a)	$E(X) = \frac{9+3}{2} = 6$	B 1	(1)
(b)	$Var(X) = \frac{(9-3)^2}{12} = 3$	M1A1	(2)
(c)	$P(X > 7) = (9 - 7) \times \frac{1}{6} = \frac{1}{3}$	M1A1	(2)
(d)	$P(X < 6 X > 4) = \frac{P(4 < X < 6)}{P(X > 4)}$	M1A1	(2)
	$=\frac{\frac{2}{6}}{\frac{5}{5}}=\frac{2}{5}$	A1	
	$\frac{1}{6}$		(3) 8
	Notes		
(b)	M1 $\frac{(9-3)^2}{12}$ or $\frac{(9+3)^2}{12}$		
(c)	M1 $\frac{(9-7)}{6}$ or $1 - \frac{(7-3)}{6}$ or $\int_{7}^{9} \frac{1}{6} dx$ or $1 - \int_{3}^{7} \frac{1}{6} dx$ A1 Also acceptable 0.3, 0.33 and awrt 0.333		
(d)	M1 $\frac{P(4 < X < 6)}{P(X > 4)}$ or $\frac{P(X < 6)}{P(X > 4)}$ or $\frac{\frac{2}{6}}{\frac{5}{6}}$ or $\frac{\frac{3}{6}}{\frac{5}{6}}$ or $1 - \frac{P(X > 6)}{P(X > 4)}$ or $\frac{6 - 4}{9 - 4}$ or $\frac{3}{5}$		
	A1 $\frac{P(4 < X < 6)}{P(X > 4)}$ or $\frac{\frac{2}{6}}{\frac{5}{6}}$ or $1 - \frac{P(X > 6)}{P(X > 4)}$ or $\frac{6 - 4}{9 - 4}$		
	An answer of $\frac{2}{5}$ gains all 3 marks.		
	$NB \leq and \geq are accepted in the above formulae$		

Question Number	Scheme	Marks
2	H ₀ : $p = 0.5$ H ₁ : $p > 0.5$ $X \sim B(30,0.5)$ P($X \ge 21$) = 1 - P($X \le 20$) or P($X \le 19$) = 0.9506 P($X \ge 20$) = 0.0494	B1 B1 M1 M1
	-1 - 0.9780 -0.0214 CR X > 20	Δ1
	so significant/reject H. /in Critical region	M1 dep
	Evidence to suggest David's claim is incorrect or The weather forecast produced by the local radio is better than those achieved by tossing/flipping a coin	A1 (7)
	Notes 1 st B1 for H ₀ : $p = 0.5$ 2 nd B1 for H ₁ : $p > 0.5$ SC If both hypotheses are correct but a different letter to p is used they get B1 B0. If no used they get B0 B0. 1 st M1 writing or using B(30,0.5) <u>One tail</u> 2 nd M1 for writing or using 1 - P($X \le 20$) or writing P($X \le 19$) = 0.9506 or P($X \ge 20$) = 0.04 ^s implied by correct CR.or probability = 0.0214 A1 for 0.0214 or CR $X \ge 20/X > 19$. NB P($X \le 20$) = 0.9786 on its own scores M1A1 3 rd M1 dependent on the 2 nd M1 being awarded. For a correct statement based on the table bel allow non-contextual conflicting statements eg "significant" and "accept H ₀ ". Ignore comparis 2 nd A1 for a correct contextualised statement. NB A correct contextual statement on its own score 0.05 < $p < 0.95$ 3 rd M1 not significant/ accept H ₀ / Not in CR 2 nd A1 David's claim is correct weather <u>forecast</u> produced by the local <u>radio</u> is no better than those achieved by better than those achieved by better than those achieved by	94. May be ow. Do not ons. res M1A1. adio is pping a
	Image:	May be ow. Do not cons. res M1A1.
Question	Scheme	Marks

Number			
3 (a)	$P(X = 0) = 0.85^{10}$ or from tables	M1	
	= 0.1969 awrt 0.197	A1	(2)
(b)	$P(X > 3) = 1 - P(X \le 3)$	M1	(2)
	=1-0.6477 = 0.3523 awrt 0.352	A1	(2)
(c)	$n \times 0.15 = 5$	M1	(2)
	n = 33 or 34	A1	(2)
(d)	1 - P(X = 0) > 0.95	M1	(-)
	$1 - (0.85)^n > 0.95.$ $0.85^n < 0.05$	AI	
	<i>n</i> >18.4		
	<i>n</i> = 19	A1	(3)
			9
	Notes		
(a)	M1 $(p)^{10}$ with 0		
(b)	M1writing or using 1 - P($X \le 3$)		
(c)	M1 $np = 5$ 0		
(d)	M1 writing or using 1 - P(X = 0) > 0.95 or P(X = 0) < 0.05 (also accepted are = or \ge in and = or \le instead of or <) P(X \le 0) is equivalent to P(X = 0) A1 writing or using 1 - (0.85) ⁿ > 0.95 or (0.85) ⁿ < 0.05 (also accepted are \ge instead of instead of or <). Any value of <i>n</i> may be used A1 cao	nstead of	> <
	NB an answer of 18.4 gets M1 A1 A0		
	An answer of 19 gets M1 A1 A1 unless it follows from clearly incorrect working.		

Question Number	Scheme	Mark	s
4 (a)	Poisson	B1	(1)
(b)	Hits occur singly in time Hits are independent <u>or</u> Hits occur randomly Hits occur at a constant rate	B1B1	(2)
(c)	<i>X</i> ~ Po(5)	B1	
	$P(X = 10) = P(X \le 10) - P(X \le 9)$ or $\frac{e^{-5}5^{10}}{10!}$	M1	
	= 0.9863 - 0.9682 = 0.0181 awrt 0.0181	A1	(3)
(d)	<i>X</i> ~ Po(10)	B1	(3)
	$P(X \ge 15) = 1 - P(X \le 14)$	M 1	
	= 1 - 0.9165 = 0.0835 awrt 0 .0835	A1	(3)
(e)	$X \sim \text{Po}(50)$	DIDI	(-)
	Approximated by $N(50,50)$	M1M1	
	$P(X > 70) = P\left(Z > \frac{70.5 - 50}{\sqrt{50}}\right)$		
	= P(Z > 2.899)	A1	
	=1-0.9981	M1	
	= 0.0019 awrt 0.0019	A1	(7)
			16
(b)	Notes 1st B1 Any one of the 3 statements - no context required. NB It must be a constant (mean) ra constant probability or a constant mean. 2nd B1 A different statement with context of <u>hits</u> . NB random and independent are the same	te and not a	
(c)	B1 writing or using Po(5)		
	M1 writing or using P(X \le 10) - P(X \le 9) or $\frac{e^{-5}5^{10}}{10!}$		
(d)	B1 writing or using Po(10) M1 writing or using 1- $P(X \le 14)$		
(e)	1st B1 for a normal approximation 2nd B1 for correct mean and sd (may be seen in standar 1st M1 for attempting a continuity correction (71 ± 0.5) 2nd M1 Standardising using their mean and their sd and using [69.5, 70, 70.5, 71 or 71.5] al NB if they have not written down a mean and sd then they need to be correct in the standardi this mark.	disation form low \pm z sation to gai	nula n
	1st A1 for $z = \pm$ awrt 2.9 or better. May be awarded for $\pm \frac{70.5 - 50}{\sqrt{50}}$		
	3rd M1 for 1 - tables value		
	SC using P(X<70.5/71.5) – P(X<69.5/70.5) can get B1B1 M0M1A0 M0A0		

Question Number	Scheme	Mark	s
5 (a)	$X \sim B(120, 0.075)$	B1	
	Approximated by Po(9)	M1A1	
	$P(X > 3) = 1 - P(X \le 3)$	M1	
	=1-0.0212		
	= 0.9788 awrt 0.979	A1	(5)
(b)	P(At least 4 defective components in each box) =P(X>3)×P(X>3)	M1	(5)
	$= 0.9788^{-1}$	Δ1	
	- 0.7500+7++ awit 0.750	711	(2)
			7
	Notes		
(a)	B1 Writing or use of B(120,0.075) may be implied by using Po(9) or N(9,8.325)		
	1st A1 writing or use of Poisson		
	2nd M1 for writing or using 1- P($X \le 3$) or this may be implied by an awrt 0.972		
	using normal approximation.		
(b)	M1 ((their (a)) ² or 0.979^2 or 0.9788^2 or 0.98^2		

Question Scheme Marks	Question Number	Scheme	Marks
-----------------------	--------------------	--------	-------

6 (a)	f(x)	
	k-0.5 shape	B1
	0.5	B1
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(2)
(b)	$\int_{1}^{k} \left(x - \frac{1}{2}\right) \mathrm{d}x = \frac{1}{2}$	M1
	$\left[\frac{1}{2}x^{2} - \frac{1}{2}x\right]_{1}^{k} = \frac{1}{2}$ $k^{2} - k - 1 = 0 0.6$	A1
	$k = \frac{1}{2} \left(1 + \sqrt{5} \right)$	M1A1 cso
(c)	$\begin{bmatrix} 0 & r < 0 \end{bmatrix}$	(4)
	$\frac{1}{2}x, \qquad 0 \le x < 1$	B1
	$F(x) = \begin{cases} \frac{1}{2} \\ \frac{1}{2} x^2 - \frac{1}{2} x + \frac{1}{2}, 1 \le x \le k \end{cases}$	M1A1A1B1
	1, x > k Note: Working for the M1A1A1	B1 1st and last (6)
	$\int_{1}^{k} x - \frac{1}{2} dx + C = \frac{1}{2} x^{2} - \frac{1}{2} x ; + \frac{1}{2}$	(M1A1;A1)
(d)	P(0.5 < X < 1.5) = F(1.5) - F(0.5) = 0.875 - 0.25 = 0.625	M1 A1 (2)
(e)	Median is $x = 1$	B1
	Mode is $x = k \text{ or } \frac{1}{2}(1 + \sqrt{5})$ or awrt1.62	B1 (2)
(f)	Negative skew Median <mode are="" from="" graph="" more="" or="" right.<="" th="" the="" to="" values=""><th>B1 B1d (2) 18</th></mode>	B1 B1d (2) 18
(a)	Notes 1st B1 Correct shape with straight lines. Must all be above the <i>x</i> -axis 2nd B1 A fully correct graph with the labels 1, <i>k</i> , 0.5, <i>k</i> - 0.5 seen in the correct places.	
	Allow the use of $\frac{1}{2}(1+\sqrt{5})/\text{awrt } 1.62$ instead of <i>k</i> .	

(b)	1st M1 $\int_{1}^{k} x - \frac{1}{2} dx = 0.5$					
	or $\int_{1}^{k} x - \frac{1}{2} dx + 0.5 = 1$ ignore limits					
	or $\int_{1}^{k} x - \frac{1}{2} dx + \int_{1}^{k} \frac{1}{2} dx = 1$					
	or $\frac{1}{2}(k-0.5+0.5)(k-1) = 0.5$ or any correct method of finding the area					
	1st A1 for a quadratic equation in the form $a(k^2 - k - 1) = 0$ or $ak^2 - ak = a$. where <i>a</i> is a constant. 2 nd M1 correct method for solving a quadratic of the form $ak^2 - bk + c = 0$ where $a,b,c \neq 0$. There must be at least one correct step before the final answer. Allow substituting in <i>k</i> into a quadratic of the form $ak^2 - bk + c = 0$.					
	$2^{nd} A1$ cso for $k = \frac{1}{2}(1+\sqrt{5})$					
(c)	1st B1 for second line. Do not penalise the use of < instead of \leq and vice versa					
	M1 for use of $\int_{1}^{k} x - \frac{1}{2} dx + C$ ignore limits. For use they must have $x \to x^{2}$					
	1st A1 correct integration $\frac{1}{2}x^2 - \frac{1}{2}x$					
	2nd A1 C = $\frac{1}{2}$					
	NB M1A1A1 may be implied by correct 3rd line in $F(x)$					
	2nd B1 for 3rd line. Statement of the form $\frac{1}{2}x^2 - \frac{1}{2}x \pm C$. Do not penalise the use of < instead	ad of \leq and				
	vice versa. Allow k or value of k . C may equal 0.					
	3rd B1 for first and last line. Do not penalise the use of \geq instead of $<$ and \geq instead of $>$. Allow k or value of k					
(d)	M1 Using $F(1.5) - F(0.5)$. 1.5 must be put into the third line of the c.d.f. and 0.5 must be put into the second line of the c.d.f					
	or $\int_{0.5}^{1} \frac{1}{2} x dx + \int_{1}^{1.5} x - \frac{1}{2} dx$ need to attempt integration, at least one $x^n \rightarrow x^{n+1}$					
	or seeing $0.25 + 0.375$ or any correct method of finding the area (NB if they have not used + C or C = 0 they will get 0.125. This will get M1A0). An answer of 0.125 from an incorrect method gains M0 A0					
(e)	If it is not clear which one is the mode and which one is the median assume the median is the first answer and mode the second					
(f)	B1 negative/negative skew(ness). Do not allow negative correlation. B1 dependent on previous B mark being awarded. Reason must follow from their values or					
	diagram.					

Question Number	Scheme		
7 (a) (i)	The <u>range of values/region/area/set of values</u> of the test statistic that would lead you	B1	
	to <u>reject H</u> ₀		
(a) (ii)	The probability of incorrectly rejecting H_0 or	B1	
	Probability of rejecting H_0 when H_0 is true	1	(2)

(b) (i)	X ~Po(8)						
	$P(X \le 4) = 0.0996$						
	P(X < 3)	= 0.0424					
	$\Gamma(X \le 3) = 0.0424$				Δ1		
						$\langle 0 \rangle$	
(b) (ii)	awrt 0.0424				BI	(3)	
(c)	$H_0: \lambda = 8 (\text{or } \mu = 8)$ $H_1: \lambda > 8 (\text{or } \mu > 8)$				B1		
	$P(X \ge 13)$	$= 1 - P(X \le 12)$	or $P(X \le 1)$	3) = 0.9658	M1		
		- 1 0.0262	or $P(X \ge 1)$	(4) = 0.0342			
		= 1 - 0.9302					
		= 0.0638	$\operatorname{CR} X \ge 14$		Al		
	so insuff	icient evidence to rej	ect H_0 /not significant/ no	ot in critical region	M1 dep		
	There in i	insufficient evidence	of an increase/change in	n the <u>rate/number</u> of sales per	A1		
	month <u>or</u> the estate <u>agents</u> claim is incorrect					(5)	
Notes						10	
(a)(i)	Allow acce	pt H ₁ instead of reject H ₀	. It must be clear which hype	othesis gets rejected/accepted.			
(ii)	Allow equi	valent wording.			1		
(b)	M1 Writing	g or using Po(8). May be	implied by correct critical re	gion.			
	A1 allow 0	A1 allow $0 \le X \le 3$ or CR ≤ 3 or $X \le 3$. Any letter may be used but not $P(X \le 3)$. This must be on its own.					
(c)	B1 both hy	potheses correct. Must us	e λ or μ .				
	One tail						
	1 st M1 for	writing or using 1 - $P(X)$	≤ 12) or writing P($X \leq 13$) =	0.9658 or $P(X \ge 14) = 0.0342$. May be	implied by		
	correct CR. A_1 for 0	or probability = 0.0638	>12 NP $P(Y < 12) = 0.0362$	on its own scores M1A1			
	2^{nd} M1 de	pendent on the 1^{st} M1 bei	ing awarded. For a correct sta	atement based on the table below. Do no	ot allow non	i-	
	contextual	conflicting statements eg	"not significant" and "reject	H ₀ ". Ignore comparisons.			
	2^{na} A1 for a	a correct contextualised st	atement. NB A correct conte	extual statement on its own scores M1A	1.	-	
	2 nd M1	0.05	(/Notin CD	p < 0.05 or $p > 0.95$		_	
	$2^{\text{nd}} \Delta 1$	Insufficient evidence of	an increase/change in the	Sufficient evidence of an increase/cha	ange in the		
	<u>rate/number</u> of sales per month rate/number of sales per month						
	Two tail						
	1 st M1 for writing or using 1 - P($X \le 12$) or writing P($X \le 14$) = 0.9827 or P($X \ge 15$) = 0.0173. May be implied by						
	correct CR.or probability = 0.0638						
	A1 for 0.0638 or $X \ge 15$. Allow $X > 14$. NB P($X \le 12$) = 0.9362 on its own scores M1A1 2^{nd} M1 dependent on the 1 st M1 being awarded. For a correct statement based on the table below. Do not allow non						
	contextual conflicting statements eg "not significant" and "reject H ₀ ". Ignore comparisons.						
	2^{nd} A1 for a	a correct contextualised st	ect contextualised statement. NB A correct contextual statement on its own scores M1A1.				
		0.025 < <i>p</i> < 0.975		<i>p</i> < 0.025 or <i>p</i> > 0.975]	
	2 nd M1	not significant/ accept H	I ₀ / Not in CR	significant/ reject H ₀ / In CR		1	
	$2^{nd} A1$	Insufficient evidence of	an increase/change in the	Sufficient evidence of an increase/char	nge in the	1	
		rate/number of sales p	er month	rate/number of sales per month			

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u> Order Code UA030902 January 2012

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

Mark Scheme (Results)

Summer 2012

GCE Statistics S2 (6684) Paper 1

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2012 Publications Code UA033140 All the material in this publication is copyright © Pearson Education Ltd 2012

Summer 2012 6684 Statistics 2 S2 Mark Scheme

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for `knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod benefit of doubt
- ft follow through
- the symbol / will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

Summer 2012 6684 Statistics S2 Mark Scheme

Question Number	Scheme	Marks	i
1(a)	$P(L>24) = \frac{1}{15} \times 6$ = $\frac{2}{5}$ or 0.4 oe	M1 A1	(2)
(b)	Let <i>X</i> represent the number of sweets with $L > 24$		
	<i>X</i> ~B(20, 0.4)	M1	
	$P(X \ge 8) = 1 - P(X \le 7)$	M1dep	
	= 1 - 0.4159		
	= 0.5841 awrt 0.584	A1	
			(3)
(c)	$P(both X \ge 8) = (0.5841)^2$	M1	
	= 0.341	A1 ft	
			(2)
		Tota	al 7
	notes		
1(a)	M1 $\frac{1}{15}$ × (6 or 5.5 or 6.5 or (30 – 24)) or 1 - $\frac{1}{15}$ ((24 – 15) or (23.5 – 15) or (24.5 – 15)))	
(0)	M1 dependent on 1 st M1. Writing or use of 1 $\mathbf{P}(Y \le 7)$		
	We dependent on 1 M1. writing of use of $1 - P(X \le 7)$		
	NB Use of normal/normal approximation/ Poisson/uniform gets M0 M0 A0		
(c)	M1 (their(b)) ² or $(0.58)^2$ or $(0.5841)^2$ or $(0.584)^2$		
	A1ft –either awrt 0.34 or follow through their answer to part (b) must be to 2sf or better.		
	Note you will have to check this.		

Question Number	Scheme	Marks
2.(a)	$X \sim B(25,0.5)$ may be implied by calculations in part a or b	M1
	$P(X \le 7) = 0.0216$	
	$P(X \ge 18) = 0.0216$	
	$\operatorname{CR} X \le 7; \ \cup \ X \ge 18$	A1,A1 (3)
(b)	$P(rejecting H_0) = 0.0216 + 0.0216$	M1
	= 0.0432 awrt 0.0432/0.0433	A1 (2)
		Total 5
	Notes	
2(a)	M1 - Using B(25,0.5) – may be implied by a correct critical region or by calculations in Note Just seeing either P($X \le 7$) or P($X \ge 18$) scores M1 A0 A0. You may need to check their probabilities in the tables for values other than 7 or 18. 1 st A1 – also allow $X < 8$ or [0,7] or $0 \le X \le 7$ or $0 \le X < 8$ oe e.g. [0, 8) or a full list DO NOT allow CRs given as P($X \le 7$) or 7 – 0 for the A mark. 2 nd A1 – also allow $X > 17$ or [18,25] or $18 \le X \le 25$ or $17 < X \le 25$ oe e.g. (17, 25] or a full list DO NOT allow CRs given as P($X \ge 18$) or $18 - 25$ for the A mark. SC $7 \ge X \ge 18$ gains M1 A1 A0.	part a or b
(b)	M1 – adding their two critical regions' probabilities together or may be awarded for awrt 0.0432 If they add their critical regions' probabilities and then go on and get a different probability as their answer then it is MOA0 e.g. $0.0216 + 0.0216 = 0.0432$ then $0.05 - 0.0432 = 0.0068$ gets M0 A0 e.g. $0.0216 + 0.0216 = 0.0432$ < 0.05 reject H ₀ gets M1 A1 e.g. $0.0216 + 0.0216 = 0.0432$ so probability of rejecting H ₀ is $1 - 0.0432 = 0.9568$ gets M0 A0	

Question Number	Scheme			Marks
3(a)	n - large/	high/big/ n >50		B1
	p-small	/close to $0 / p < 0.2$		B1 (2)
(b)	$H_0: p = 0$ Po(6) P(X \ge 12	0.03 $H_1: p > 0.03$ $) = 1 - P(X \le 11)$ or P(= 1 - 0.9799 P($(X \le 10) = 0.9574$ $X \ge 11) = 0.0426$	B1,B1 B1 M1
		= 0.0201 CR	$X X \ge 11$	Al
	(0.0201 < Reject H ₀ There is e	< 0.05) or Significant or 12 lies in the Critical reg evidence that the proportion of defective bo	ion. olts has increased.	M1 dep. A1 ft (7) Total 9
(b)	Notes 1^{st} B1 for H ₀ : $p = 0.03$ 2^{nd} B1 for H ₁ : $p > 0.03$ SC If both hypotheses are correct but a different letter to p is used they get B1 B0 Also allow B1 B0 for H ₀ : $\lambda = 6$ and H ₁ : $\lambda > 6$ B1 writing or using Po(6) <u>One tail</u> 1^{st} M1 for writing or using 1 - P($X \le 11$) or giving P($X \le 10$) = 0.9574 or giving P($X \ge 11$) = 0.0426. May be implied by correct CR or probability = 0.0201 1^{st} A1 for 0.0201 or CR $X \ge 11/X > 10$. NB P($X \le 11$) = 0.9799 on its own scores M1A1 2^{nd} M1 dependent on the 1^{st} M1 being awarded. For a correct statement based on the table below. Do not allow non-contextual conflicting statements eg "significant" and "accept H ₀ ". Ignore comparisons . 2^{nd} A1 ft for a correct contextualised statement. NB A correct contextual statement on its own scores			
	MIAI.	0.05 < <i>p</i> < 0.95	p < 0.05 or $p > 0.95$	
	2 nd M1	not significant/ accept H ₀ / Not in CR	significant/ reject H ₀ / In CR	
	2 nd A1	The proportion/number/amount/percentage oe of defective bolts has not increased/is not higher/oe	The proportion/number/amount/perc oe of defective bolts has increased/is h	<u>entage</u> ligher/oe
	Two tail 1^{st} M1forMay be im 1^{st} A1for 2^{nd} M1forallow non- 2^{nd} A1ftM1A1.	or writing or using 1 - P($X \le 11$) or giving P(X applied by correct CR or probability = 0.0201 or 0.0201 or CR $X \ge 12/X > 11$. NB P($X \le 11$ dependent on the 1 st M1 being awarded. For a -contextual conflicting statements eg "signification for a correct contextualised statement. NB A co	$X \ge 12$ = 0.0201 or giving P($X \le 11$) =) = 0.9799 on its own scores M1A1 correct statement based on the table b ant" and "accept H ₀ ". Ignore compar orrect contextual statement on its own	= 0.9799. elow. Do not isons . scores
		0.025 < <i>p</i> < 0.975	<i>p</i> < 0.025 or <i>p</i> > 0.975	
	2^{nd} M1	not significant/ accept H ₀ / Not in CR	significant/ reject H ₀ / In CR	
	2 nd A1	The proportion/number/amount/percentage <u>oe</u> of <u>defective bolts</u> has <u>not increased/is not</u> higher/oe	The proportion/number/amount/perc oe of defective bolts has increased/is h	<u>entage</u> igher/oe
	Use of N	(6,5.82) May get B1 B1 B0 M1 (must use	11.5)A0 M1dep A1 ft	

Question Number	Scheme	Marks
4(a)	Let <i>X</i> be the random variable the number of houses sold.	
	<i>X</i> ~Po(8)	B1
(i)	$P(X \le 3) - P(X \le 2) = 0.0424 - 0.0138$ or $\frac{e^{-8}8^3}{3!}$ = 0.0286 awrt 0.0286	M1 A1
(ii)	$P(X > 5) = 1 - P(X \le 5)$	M1
	= 1 - 0.1912 = 0.8088 awrt 0.809	A1
(b)	Let Y be the random variable = the number of periods where more than 5 houses are	(5)
	$Y \sim B(12, 0.8088)$ 12!	M1
	$P(Y=9) = (0.8088)^9 (1 - 0.8088)^3 \overline{93!}$	M1
	= 0.228 awrt 0.228	A1 (3)
(c)	N(20,20)	M1A1
	$P(X > 25) = 1 - P\left(Z \le \frac{25.5 - 20}{\sqrt{20}}\right)$ = 1 - P(Z \le 1.23) = 1 - 0.8907	M1,M1,A1
	= 0.1093 / 0.1094 awrt 0.109	A1 (6) Total 14
(a) (i)	Notes 1st B1 for writing or using Po(8) in either (i) or (ii) M1 writing or using P(X \le 3) - P(X \le 2) or $\frac{e^{-8}8^3}{2!}$	
(ii) (b)	M1 writing or using 1 - P($X \le 5$) M1 writing or attempting to use B(12,their (a(ii))) NB ft their a(ii) to at least 2sf	
	M1 $\frac{121}{93!}$ (a(ii)) ⁹ (1- a(ii)) ³ allow ¹² C ₃ or ¹² C ₉ or 220 instead of $\frac{121}{93!}$ NB ft their a(ii) to at	
(c)	least 1sf but an expression must be seen (No use of tables) 1^{st} M1 for writing or using a normal approximation 1^{st} A1 for correct mean and sd (may be given if correct in standardisation formula) 2^{nd} M1 Standardising using their mean and their sd and using [24.5, 25, 25.5, 26 or 26.5] and correct area by doing $1 - P(Z \le "their 1.23")$ NB if they have not written down a mean and sd then they need to be correct in the standardisat this mark	for finding tion to gain
	3^{rd} M1 for attempting a continuity correction (26 ± 0.5) 2^{rd} A1 for $\pm \frac{25.5 - 20}{25.5 - 20}$ or $\pm avert \pm 2$ or better	
	SC using P(X< 26.5/25.5) – P(X<25.5/24.5) can get M1A1 M0M1A0A0	

Question	Scheme	Marks
Number		
5(a)	$\int_0^k \frac{3}{32} x(k-x) = 1$	M1
	$\frac{3}{32} \left[\frac{kx^2}{2} - \frac{x^3}{3} \right]_{k}^{k} = 1$	A1
	$\frac{3k^3}{3k^3} - \frac{3k^3}{3k^3} = 1$	M1 dep
	$ \begin{array}{r} 64 & 96 \\ 3k^3 - 2k^3 = 64 \end{array} $	
	$k^3 = 64$ k = 4	A1cso
b	[E(X) =] 2	(4) B1
с	$E(X^2) = \int_0^4 \frac{3}{32} x^3 (4-x)$	(1) M1
	$=\left[\frac{3x^4}{32} - \frac{3x^5}{160}\right]_{a}^{4}$	
	$= \left[\frac{3 \times 4^4}{32} - \frac{3 \times 4^5}{160} \right]$	
	= 4.8 Var (X) = 4.8 - 4	A1 M1
	= 0.8	A1
d	$\int_{1.5}^{2.5} \frac{3}{32} x(4-x) = \left[\frac{3x^2}{16} - \frac{x^3}{32}\right]_{1.5}^{2.5} \text{or} \int_{0}^{1.5} \frac{3}{32} x(4-x) = \left[\frac{3x^2}{16} - \frac{x^3}{32}\right]_{0}^{1.5}$	(4) M1
	$= \frac{47}{128} = 0.3671875 \qquad \qquad = \frac{81}{256} = 0.31640625$	
	$1 - \frac{47}{128} = \frac{81}{128} \text{ awrt } 0.633 \qquad \qquad 2 \times \frac{81}{256} = \frac{81}{128} \text{ awrt } 0.633$	M1depA1
(-)	Notes 1^{St} N $1 = 5$ 1^{St} N $1 = 5$ 1^{St} N 1^{S	Total 12
(a)	1 M1 for an attempt to multiply out bracket and for attempting to integrate $I(x)$. Both $x \to x$ 1 st A1 for correct integration. Ignore limits for these two marks. Need $\frac{3}{22} \left(\frac{kx^2}{2} - \frac{x^3}{2} \right)$ oe	
	32(2 3) 2 nd M1 Dependent on the previous M mark being awarded. For correct use of correct limits and set equa	al to 1. No need
	to see 0 substituted in. For verifying they must have $\frac{3}{32}\left(\frac{4^3}{2}-\frac{4^3}{3}\right)$	
	2 nd A1 cso or for verifying $\frac{3}{32}\left(\frac{4^3}{2} - \frac{4^3}{3}\right) = 1$ or eg 3(4) ³ - 2(4) ³ = 64 and a correct comment "so $k =$	4"
(c)	1 st M1 attempt to multiply out bracket and attempting $\int x^2 f(x)$ Limits not needed. Both $x^n \rightarrow x^{n+1}$	
(d)	2^{nd} M1 for their E(X^2) – (their mean) ² 1 st M1 Multiply out brackets, attempting to integrate (both $x^n \rightarrow x^{n+1}$), with either limits (their(b) ± 0.5) of 0.5 and 0) Accept 2 sf for their limits.	or (their (b) –
	2^{nd} M1dep on gaining 1^{st} M1. 1 – (using limits (their(b) ± 0.5) or 2 × (using limits (their(b) – 0.5 at	nd 0)

Question Number	Scheme		Marks
6	Attempt to write down combinations	at least one seen	M1
	(1,1,1), (1,1,2) any order (1,2,2) any order, (2,2,2)	no extra combinations	A1
	Range 0 and 1	0 and 1 only	B1
	$[P(range = 0) =] (0.65)^{3} + (0.35)^{3}$ $= 0.3175 \text{ or } \frac{127}{400}$	either range	M1 A1cao
	$[P(range = 1) =] (0.35)^{2}(0.65) \times 3 + (0.65)^{2}(0.35) \times 3$ $= 0.6825 \text{ or } \frac{273}{400}$		Alcao
			(6)
			Total 6
	Notes		
	First M1 may be implied by either $(0.65)^3$ or $(0.35)^3$ or $(0.65)^3$ First A1 may be implied by $(0.65)^3$ and $(0.35)^3$ and $(0.65)^2$ (No need for X3 2^{nd} M1 $(p)^3 + (1-p)^3$ or $(1-p)^2(p) \times 3 + (p)^2(1-p) \times 3$ A1 for 0.3175 cao or exact equivalent e.g $\frac{254}{800}$ A1 for 0.6825 cao or exact equivalent e.g $\frac{546}{800}$ NB These probabilities do not need to be associated with the	² (0.35) or (0.35) ² (0.65) 0.35) and (0.35) ² (0.65) correct range	
			I

(a)	Notes 1^{st} B1 for a curve. It must start at (0, 0) and have the correct curvature.	
	2 nd B1 for a horizontal line that joins the first section of the graph (not by a dotted	
	line) 3 rd B1 for a straight line with negative gradient that joins the horizontal line and stops	
	on the positive x axis.	
	4 th B1 dependent on first 3 marks being gained. Fully correct graph with labels 0.2,	
(b)	For all the M marks, the attempt to integrate must have at least one $x^n \rightarrow x^{n+1}$	
	All A marks are for the correct expressions and ranges.	
	Do not penalise the use of \leq instead of $<$ and \geq instead of $>$.	
	1 st M1 for attempt to integrate $\int_{0}^{x} t^{2} dt$ is zero limits	
	<u>I</u> In altempt to integrate $\int_0^{10} \frac{dt}{45}$ ignore limits	
	$\frac{2^{\text{III}} \text{ M1}}{1}$	
	for attempt to integrate $\int_{3}^{x} \frac{1}{5} dt$ + their F(3) using correct limits.	
	or	
	for attempt to integrate $\int \frac{1}{5} dx + C$ and substituting in 3 and putting = to their F(3) or	
	substituting in 4 and putting = to their F(4) from their $4 \le x \le 10$ line	
	<u>3rd M1</u>	
	for attempt to integrate $\int_{4}^{x} \frac{1}{3} - \frac{x}{30} dt$ + their F(4) using correct limits.	
	or	
	for attempt to integrate $\int \frac{1}{3} - \frac{x}{30} dt + C$ and substituting in 4 and putting = to their	
	F(4) or substituting in 10 and putting = 1	
(c)	M1 substituting 8 into the 4 th line of their cdf or $F(3) + F(4) - F(3) + F(8) - F(4)$ or	
	1 - $\int_{8}^{10} \frac{1}{3} - \frac{x}{30}$ (attempt to integrate needed) or use areas e.g $1 - \frac{1}{2} \times 2 \times \frac{1}{15}$ or $1 - \frac{1}{15}$	
	A1 14/15 awrt 0.933 from correct working.	
	NB If using $F(3) + F(4) - F(3) + F(8) - F(4)$ then $F(x)$ must be correct.	

Question Number	Scheme				5
8(a)	Let <i>X</i> be the random variable the number of customers asking for water.				
(i)	$\begin{array}{ c c c c c }\hline X \sim B(10,0.6) & Y \sim B(10,0.4) \\ \hline P(X=6) = (0.6)^6 (0.4)^4 \frac{10!}{c!4!} & P(Y=4) = (0.4)^4 (0.6)^6 \frac{10!}{6!4!} \\ \hline \end{array}$		B1 M1		
	= 0.2508 = 0	.2508	awrt 0.251	Al	
(ii)	$ \begin{array}{r} X \sim B(10, 0.6) \\ P(X < 9) = 1 - (P(X = 10) + P(X = 9)) \\ = 1 - (0.6)^{10} - (0.6)^{9} (0.4)^{1} \frac{10!}{9!!!} \\ = 0.9536 $	$Y \sim B(10, 0.4)$ $P(X < 9) = 1 - P(Y \le 1)$ $= 1 - 0.0464$ $= 0.9536$	awrt 0.954	M1 A1	
(b)	$X \sim B(50.0.6)$			M1	(5)
	$Y \sim B(50, 0.0)$ $Y \sim B(50, 0.4)$ $P(X < n) \ge 0.9$ $P(Y > 50 - n) \ge 0.9$ $P(Y \le 50 - n) \le 0.1$ $50 - n \le 15$ $n \ge 35$ n = 35	P(X < 34) = 0.8439 awrt 0.84 P(X < 35) = 0.9045 awrt 0.90	4)4/0.905	M1 A1 To	(3) tal 8
(a)	Notes B1 writing or using $B(10,0.6) / B(10,0.6)$	4) in either part(i) or (ii)			
(i)	M1 $(0.6)^6 (1-0.6)^4 \frac{10!}{6!4!}$ Allow ${}^{10}C_6$ oe or writing or using P(X ≤ 6) - P(X ≤ 5) or P(X ≤ 4) - P(X ≤ 3) if using B(10,0.4) NB use of Poisson will gain M0A0	if using B(10,0.6) 4)			
(ii)	M1 writing or using $1 - (P(X = 10) + P)$ or $1 - P(Y \le 1)$ if using B(10,0.4)	(<i>X</i> = 9)) if using B(10,0.6)			
(b)	NB use of Poisson will gain M0A0 1^{st} M1 for writing or using either B(50,0.6) or B(50,0.4) 2^{nd} M1 P(Y > 50 - n) \geq 0.9 or P(Y \leq 50 - n) \leq 0.1 or P(X < 34) = awrt 0.844 or P(X < 30,904/0.905) or 50 - n = 15 or 50 - n = 16 or 50 - n \leq 15 or 50 - n \leq 16 - allow different A1 cao 35. Do not accept $n \geq$ 35 for final A1.				wrt s
	SC use of normal. M1 M0 A0 for use of N(30,12) leading	to an answer of 35			

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u> Order Code UA033140 Summer 2012

For more information on Edexcel qualifications, please visit our website <u>www.edexcel.com</u>

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

Mark Scheme (Results)

January 2013

GCE Statistics S2 (6684/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u> for our BTEC qualifications. Alternatively, you can get in touch with us using the details on our contact us page at

Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson. Their contact details can be found on this link: <u>www.edexcel.com/teachingservices</u>.

You can also use our online Ask the Expert service at <u>www.edexcel.com/ask</u>. You will need an Edexcel username and password to access this service.

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2013 Publications Code UA034852 All the material in this publication is copyright © Pearson Education Ltd 2013

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Unless indicated in the mark scheme a correct answer with no working should gain full marks for that part of the question.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

In some instances, the mark distributions (e.g. M1, B1 and A1) printed on the candidate's response may differ from the final mark scheme.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used.

- bod benefit of doubt
- ft follow through
- the symbol √ will be used for correct ft
 cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but incorrect answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the • attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

8. The maximum mark allocation for each question/part question(item) is set out in the marking grid and you should allocate a score of '0' or '1' for each mark, or "trait", as shown:

	0	1
aM		•
aA	•	
bM1		٠
bA1	۲	
bB	•	
bM2		•
bA2		•

January 2013 6684 Statistics S2 Mark Scheme

Scheme	Marks
n large	B1
<i>p</i> small	B1
	(2)
Let <i>X</i> be the random variable the number of letters delivered to the wrong house	
<i>X</i> ~B(1000,0.01)	
Po(10)	B1
$P(X \ge 4) = 1 - P(X \le 3)$	M1
= 1 - 0.0103	
= 0.9897	A1
	(3)
	Total 5
Notes B1 Accept <i>n</i> (the number of trials) large / high / big / $n > 50$ (accept any number larger than 50)	
B1 Accept <i>p</i> (the probability) small / close to $0 / p < 0.2$ (accept any number less than 0.2). Do not accept low.	
These must appear in part (a). B1 writing or using Po(10)	
M1 using a Poisson (λ need not equal 10) and for writing or using $1 - P(X \le 3)$. (Do not accept writing $1 - P(X \le 4)$ unless they have used $1 - P(X \le 3)$). A1 0.9897 cao must be 4 dp	
NB	
An awrt 0.990 on its own gains B0M0A0 unless there is evidence that $Po(10)$ is used. In which case it gets B1M1A0	
Using B(1000,0.01) gives 0.989927 and gains B0M0A0	
	Scheme n large p smallLet X be the random variable the number of letters delivered to the wrong house X -B(1000,0.01)Po(10)P(X ≥ 4) = 1 – P(X ≤ 3) $= 1 - 0.0103$ $= 0.9897$ NotesB1 Accept n (the number of trials) large / high / big / $n > 50$ (accept any number larger than 50)B1 Accept p (the probability) small / close to $0 / p < 0.2$ (accept any number less than 0.2). Do not accept low.These must appear in part (a).B1 writing or using PO(10)M1 using a Poisson (λ need not equal 10) and for writing or using $1 - P(X \leq 3)$. (Do not accept writing $1 - P(X < 4)$ unless they have used $1 - P(X \leq 3)$.A1 0.9897 cao must be 4 dpNBAn awrt 0.990 on its own gains BOM0A0 unless there is evidence that Po(10) is used. In which case it gets B1M1A0Using B(1000,0.01) gives 0.989927 and gains B0M0A0

Question Number	Scheme	Marks
2 (a)	Let <i>X</i> be the random variable the number power cuts.	
	$X \sim Po(3)$	B1
(i)	$P(X = 7) = P(X \le 7) - P(X \le 6) \text{or } \frac{e^{-3}3^7}{7!}$ = 0.9881 - 0.9665	M1
	-0.0216 over 0.0216	A 1
	- 0.0216 awrt 0.0216	AI
(ii)	$P(X \ge 4) = 1 - P(X \le 3)$	M1
	= 1 - 0.6472	
	= 0.3528 awrt 0.353	A1
		(5)
(b)	$X \sim Po(30)$	
(0)	N(30, 30)	M1 A 1
		WIAI
	$P(X < 20) = P\left(Z < \frac{19.5 - 30}{\sqrt{30}}\right)$	M1M1 A1
	= P(Z < -1.92)	
	= 1 - 0.9726	
	= 0.0274 - 0.0276	A1
		(6)
	Notes	Total 11
(a)	B1 Writing or using Po(3) in either (i) or (ii)	
(i)	M1 writing or using $P(X \le 7) - P(X \le 6)$ or $\frac{e^{-\lambda}\lambda^7}{7!}$	
(ii) (b)	M1 writing or using $1 - P(X \le 3)$. (Do not accept writing $1 - P(X \le 4)$ unless they have used $1 - P(X \le 3)$). 1 st M1 for writing or using a normal approximation 1 st A1 for correct mean and sd (may be given if correct in standardisation formula) 2 nd M1 Standardising using their mean and their sd and using [18.5, 19, 19.5, 20 or 20.5] and for finding correct area by doing $1 - P(Z \le \text{"their 1.92"})$ If they have not written down a mean and sd then these need to be correct here to award the mark 3 rd M1 for attempting a continuity correction (19 ± 0.5) i.e. 18.5 or 19.5 only . 2 nd A1 for $\pm \frac{19.5 - 30}{\sqrt{30}}$ or $\pm \text{awrt 1.9}$ or better. 3 rd A1 awrt 0.0274, 0.0275 or 0.0276 SC using P(X < 20.5/19.5) – P(X < 19.5/18.5) can get M1A1 M0M1A0A0	

Question Number		Scheme		Marl	ζS
3(a) (i)	P(X < 5) = 0.8424		awrt 0.842	B1	
(ii)	$\mathbf{P}(X \ge 7) = 1 - \mathbf{P}(X \le 6)$			M1	
	= 1 - 0.9857				
	= 0.0143		awrt 0.0143	A1	
					(3)
(b)	$P(X=0) = (1-p)^{12}$				
	$(1-p)^{12} = 0.05$			M1	
	$(1-p) = \sqrt[12]{0.05}$			M1	
	p = 0.221		awrt 0.221	A1	
					(3)
(c)	Variance $=12p(1-p)$				
	12p(1-p) = 1.92			M1	
	$12p - 12p^2 = 1.92$				
	$12p^2 - 12p + 1.92 = 0$	or	$p^2 - p + 0.16 = 0$ 25p ² - 25p + 4 = 0		
	$p = \frac{12 \pm \sqrt{12^2 - 4 \times 12 \times 1.92}}{24}$		(5p-1)(5p-4) = 0	M1	
	p = 0.2 or 0.8			A1,A1	
					(4)
	Notes			Tota	al 10
(a) (ii)	M1writing or using $1 - P(X \le 6$ been used) Do not acce	pt $1 - P(X < 7)$ unless $1 - P(X \le 6)$ has		
(b)	$1^{\text{st}} \text{M1} (1-p)^n = 0.05$ 2^{nd}M1 taking <i>n</i> th root. If they h	ave used logs	they need to get to a correct expression		
(c)	$1^{\text{st}} \text{ M1 } 12p(1-p) = 1.92 \text{ o.e.}$				
	Working must either be correct	for their quad	hg / completing the square / or formula. dratic (they may use a quadratic from an		
	incorrect rearrangement) or they correctly and only made 1 error	y must have w substituting in	vritten the appropriate formula down nto it. May be implied by a correct value		
	of p . 1 st A1 for 0.2	-			
	2 nd A1 for 0.8			<u> </u>	

Question Number	Scheme	Mark	ζS
4 (a)	Mean = 1	B1	(1)
(b)	$P(X \le 2.4) = (2.44) \times \frac{1}{10}$ = 0.64 or $\frac{16}{10}$	M1 A1	
(c)	25 P(-3 < X - 5 < 3) = P(2 < X < 6)	M1	(2)
(d)	= 0.4	A1 M1	(2)
	$\int_{a}^{4a} \frac{y}{4a-a} dy = \left\lfloor \frac{y}{9a} \right\rfloor_{a}^{a}$ $= \frac{64a^{3}-a^{3}}{4a-a^{3}}$	M1 dep)
	$= \frac{9a}{9a}$ $= 7a^2 $ *AG	Alcso	(4)
(e)	$\operatorname{Var}(Y) = \frac{1}{12}(4a-a)^2$ or $\operatorname{Var}(Y) = 7a^2 - \left(\frac{5}{2}a\right)^2$	M1	
	$=\frac{3}{4}a^2$	Alcso	(2)
(f)	$\frac{2}{3} = \frac{1}{3a} \left(\frac{8}{3} - a\right)$ $\frac{8}{3}$	M1 A1	(2)
	$a = \frac{1}{9}$	A1	(3)
		Tota	l 14
(b) (c)	Notes M1 $(2.44) \times \frac{1}{10}$ or $1 - (6 - 2.4) \times \frac{1}{10}$ o.e M1 finding P(2 < X < 6) or P(X > 2) or 1 - P(X < 2). May be implied by a correct answer if there is no incorrect working. Do not ignore subsequent incorrect working. NB if they change the distribution to U[-9,1] then M1 is for finding P(-3 < X < 1) or P(X > -3) or 1 - P(X < -3). May be implied by a correct answer if there is no incorrect working. Do not ignore subsequent incorrect working.		
(d)	NB remember the answer is given (AG) so they must show their working		
	1 st M1 writing or using $\int_{a}^{4a} y^{2} f(y) dy$ with correct limits used at some point. Condone omission of dy. $f(y)$ does not need to be correct.		
	2 nd M1 dependent on previous M being awarded. Attempting to integrate at $y^n \rightarrow \frac{y^{n+1}}{n+1}$		
	1^{st} A1 correct expression - the correct limits must be substituted. 2^{nd} A1 cso		

Question Number	Scheme	Marks
5(a)	$P(T > t) = \frac{225}{(t+15)^2}$ $P(T \le t) = 1 - P(T > t)$ $= 1 - \frac{225}{(t+15)^2}$	
	$F(t) = \begin{cases} 1 - \frac{225}{(t+15)^2} & t \ge 0\\ 0 & \text{otherwise.} \end{cases}$	B1 (1)
(b)	$P(T < 3) = 1 - \frac{225}{(3+15)^2}$ $= \frac{11}{36} \text{ or } 0.30555$	M1 A1
(c)	awrt 0.306 $P(T > 8 T > 3) = \frac{P(T > 8)}{P(T > 3)}$ $= \frac{\frac{225}{23^2}}{\frac{225}{18^2}}$	(2) M1 M1
	$= \frac{324}{529} \text{or } 0.612 \qquad \text{awrt } 0.612 /$	A1
(d)	$\frac{1 - F(t) = 0.1}{\frac{225}{(t+15)^2}} = 0.1$ or $1 - \frac{225}{(t+15)^2} = 0.9$ $\frac{225}{(t+15)^2} = (t+15)^2$	(3) M1 A1
	$\frac{1}{0.1} - (t+13)$ $t = \sqrt{\frac{225}{0.1}} - 15$ t = 32.4, also accept 32/33	M1 A1 (4) Total 10

(a)	Notes B1 The line $P(T \le t) = 1 - P(T > t)$ or $F(t) = 1 - P(T > t)$ or both of the following statem	ents
	$P(T > t) = \frac{225}{(t+15)^2}$ and $P(T \le t) / F(t) = 1 - \frac{225}{(t+15)^2}$ must be seen and no errors. Allow	v equivalent
	in words. Condone use of \leq instead of \leq or $>$ instead of \geq and vice versa.	
(b)	The cdf must be given. Allow $t > 0$ M1 substituting 3 into $F(t)$	
(0) (c)	1^{st} M1 The conditional probability must,	
	 be a quotient and have P(T > 3) or 'their numerical equivalent' for the denominator and 	
	• have $P(T > 8)$ or $P(T > 5)$ or $P(T > 8 \cap T > 3)$ or $P(T > 5 \cap T > 3)$ or 'their numerical equivalent' for the numerator.	
	Allow \geq in place of $>$	
	2^{nd} M1 writing or using P(T > 8) or P(T ≥ 8). NB This is independent of the first M mark.	
(d)	1 st M1 writing or using $1 - F(t) = 0.1$ or $P(T \ge t) = 0.1$ May be implied by $\frac{225}{(t+15)^2}$	= 0.1 o.e.
	2^{nd} M1 either square rooting or solving a quadratic either by factorising / completing the square / using the formula - must be correct for their quadratic. A1 awrt 32.4 or 32 or 33. Do not accept $15\sqrt{10} - 15$	

Question Number	Scheme	Mark	S
6(a)	A statement concerning a population parameter	B1	
(b)	A critical region is the <u>range</u> / <u>set of values / answers</u> or a <u>test statistic</u> or <u>region/area</u> or values (where the test is significant)	B1	
	that would lead to the rejection of H0 / acceptance of H_1	B1	
			(3)
(c)	$H_0: p = 0.45$ $H_1: p < 0.45$ (or $p \neq 0.45$)		(0)
	$X \sim B(20, 0.45)$	M1	
	$P(X \le 5) = 0.0553$ CR $X \le 4$	A1	
	Accept H_0 . Not significant. 5 does not lie in the Critical region.	M1d	
	There is no evidence that the proportion who voted for <u>Mrs George</u> is not 45% or there is evidence to support Mrs George's claim	Alcso	
			(4)
(d)	B(8, 0.45): P(0) = 0.0084	M1	
	B(7, 0.45): P(0) = 0.0152	A1	
	Hence smallest value of n is 8	B1	
	Alternative		(3)
	$(0.55)^n < 0.01$	M1	
	$n\log 0.55 < \log 0.01$		
	<i>n</i> > 7.7	A1	
	Hence smallest value of n is 8	B1cso	
(a) (c)	Notes It must be a statement including the words population parameter . 1^{st} M1 using B(20, 0.45) and finding P($X \le 5$) or P($X \ge 6$) Using the normal approximation to the binomial is M0 A1 0.0553 (allow 0.9447) if not using CR or CR $X \le 4$ or $X < 5$ 2^{nd} M1 dependent on previous M being awarded. A correct statement (do not allow if there are contradicting non contextual statements nor award if 2 probabilities are given which would result in different conclusions) A1 cso Conclusion must contain the words Mrs George . There must be no incorrect working seen. If there are no hypotheses you cannot award this mark. NB A correct contextual statement on it's own will score M1 A1.	Tota	d 10
(d)	M1 Attempt to find P(0) from B(n , 0.45) or $(0.55)^n < 0.01$ or $(0.55)^n = 0.01$ or $(0.55)^n > 0.01$ A1 P(0) = 0.0084 and P(0) = 0.0152 or getting 7.7 May be implied by correct answer. B1 cso. $n = 8$ should not come from incorrect working. NB An answer of 8 on its own with no working gains M1A1B1		

Question Number	Scheme	Marks
7(a)	$\int_{a}^{5} a + bx \mathrm{d}x = 1$	M1
	$\left[ax + \frac{bx^2}{2}\right]_0^5 = 1$	A1
	$5a + \frac{25b}{2} = 1$	M1dep
	10a + 25b = 2	Alcso
(b)	$\int_{0}^{5} ax + bx^{2} \mathrm{d}x = \frac{35}{12}$	(4) M1
	$\left[\frac{ax^2}{2} + \frac{bx^3}{3}\right]_0^5 = \frac{35}{12}$	A1
	$\frac{25a}{2} + \frac{125b}{3} = \frac{35}{12}$ $30a + 100b = 7$	A1 (3)
(c)	30a + 100b = 7	M1
	10a + 25b = 2 $a = 0.1 \ b = 0.04$	A1,A1 (3)
(d)	$\int_{0}^{m} 0.1 + 0.04x \mathrm{d}x = 0.5$	M1
	$\begin{bmatrix} 0.1x + \frac{0.04x^2}{2} \end{bmatrix}_0^m = 0.5$ $0.1m + 0.02m^2 - 0.5 = 0$ $m = \frac{-0.1 \pm \sqrt{0.1^2 + 4 \times 0.02 \times 0.5}}{2 \times 0.02}$	Alft
	m = 3.09, -8.09 therefore 3.09	A1
(e)	mean < median (< mode) negatively skewed	(3) B1ft B1 dep ft
		(2) Toal 15
(a)	Notes 1^{st} M1 Attempting to integrate with correct limits or for an attempt to find area $0.5(a + a)$ Attempting to integrate and using $F(5) = 1$ 1^{st} A1 Correct integration or correct area 2^{nd} M1 for using =1. This is dependent on the first M1 being awarded. 2^{nd} A1 cso condone missing dx	b)h or
(b)	M1 using or writing (limits not needed) $\int_{0}^{5} ax + bx^{2} dx = \frac{35}{12}$	
	1^{st} A1 correct integration 12	
	2^{nd} A1 may be awarded for an unsimplified version $\frac{25a}{2} + \frac{125b}{3} = \frac{35}{12}$	

(c)	M1 attempting to solve "their equations" simultaneously – either using rearranging and substitution or making one of the coefficients the 'same' (ignore sign) and either adding or subtracting. May
	be implied by correct values for a and b
	1 st A1 for 0.1
	2 nd A1 for 0.04
(d)	M1 writing or using $\int_0^m "their a"+"their b"x dx = 0.5$: limits not needed
	1 st A1 correct integration for their "a" and "b"
	NB the correct equation simplifies to $m^2 + m - 25 = 0$
	A1 3.09 only. If they have both roots then they must select 3.09
(e)	1 st B1ft. They must compare their values for mean and median correctly. They only need to
	compare 2 of mean, median and mode. If they compare either the median or mean with the
	mode only then the value of the mode must be stated. They may draw a sketch that matches
	their values of 'a' and 'b' for $0 \le x \le 5$. It must not go below the x-axis This may be seen in part
	(a).
	2^{nd} B1 dependent ft on the previous B being awarded

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u>

Order Code UA034852 January 2013

For more information on Edexcel qualifications, please visit our website www.edexcel.com

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

Mark Scheme (Results)

Summer 2013

GCE Statistics 2 (6684/01R)

ALWAYS LEARNING

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2013 Publications Code UA037002 All the material in this publication is copyright © Pearson Education Ltd 2012

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.
- 8. In some instances, the mark distributions (e.g. M1, B1 and A1) printed on the candidate's response may differ from the final mark scheme

Question Number	Scheme	Marks
1. (a)	(1, 1, 1), (5, 5, 5), (1, 5, 5), (1, 5, 1) (1,1,1); (5,5,5); (1, 5, 5); (5, 1, 5); (5, 5, 1) (5, 1, 1); (1, 5, 1); (1, 1, 5)	B1 B1 (2)
(b)	r: 0 and 4 $P(R = 0) = \frac{9}{2}$ or $\frac{1}{2}$ $P(R = 4) = \frac{18}{2}$ or $\frac{2}{2}$	B1 M1d A1
	27 3 27 3	(3)
	Notes	
(a)	 1st B1 for any two of the triples 2nd B1 for all 8 cases. No incorrect extras – condone repeats. Allow (1, 5, 5) 5) (x 3) instead of writing all three cases down 	(x 3) and (1, 1,
(b)	B1 for both values of r M1 d dependent on previous B1. For an attempt to evaluate one of the probabilities for r correctly e.g. for $r = 0$; $\left(\frac{2}{3}\right)^3 + \left(\frac{1}{3}\right)^3$ and for $r = 4$; $3 \times \left(\frac{1}{3}\right)^2 \times \left(\frac{2}{3}\right) + 3 \times \left(\frac{1}{3}\right) \times \left(\frac{2}{3}\right)^2$ Working must be shown. A1 for both values of r and their correct corresponding probabilities. Allow awrt 0.333 and 0.667 NB Correct answer with no working will gain B1M0A0	

Question Number	Scheme	Marks
2.		
(a)	F(2) = 1 gives: $\frac{1}{4} (2^3 - 4 \times 2^2 + 2k) = 1$	M1
	$\underline{k} = \underline{6}$	A1 (2)
(b)	$f(y) = \frac{d}{dy} (F(y)) = \frac{1}{4} (3y^2 - 8y + "6")$	M1A1ft
	$f(y) = \begin{cases} \frac{1}{4} (3y^2 - 8y + 6) & 0 \le y \le 2\\ 0 & \text{otherwise} \end{cases}$	A1
		(3)
(c)	$P(Y > 1) = 1 - F(1) = 1 - \frac{1}{4} \left(1^3 - 4 \times 1^2 + k \right)$	M1
	$=\frac{1}{4}$ (o.e.)	A1
		(2)
	Notes	[/]
(a)	M1 for an attempt to use $F(2) = 1$. Clear attempt to form a linear equation for	or k
(b)	M1 for some correct differentiation $y^n \rightarrow y^{n-1}$	
	1 st A1ft for $3y^2 - 8y + 6''$, follow through their value of k or even k as a let	ter
	2^{nd} A1 for a fully correct solution including the 0 otherwise.	
(c)	M1 for clear use of $1 - F(y)$ or attempt at integrating $f(y)$; at least one concorrect coefficient, and using limit of 1 and 2	prrect term with
	A1 for $\frac{1}{4}$ or any exact equivalent	
Question Number	Scheme	Marks
--------------------	--	--
3. (a)	$\frac{1}{2}(a+b) = 23 \text{ and } \frac{1}{12}(b-a)^2 = 75$ $a+b = 46 \text{ and } b-a = \sqrt{12 \times 75} (= 30)$ Adding gives $2b = 76$ $\underline{b = 38}$ and $\underline{a = 8}$ $\frac{\text{alternative}}{\frac{1}{2}(a+b) = 23} \text{ and } \frac{1}{12}(b-a)^2 = 75$ $a+b = 46$ and hence $(46-2a)^2 = 900$ oe	B1B1 M1 M1 A1 A1 (6) B1B1 M1
(b)	$a^{2} - 46a + 304 = 0$ (a-8)(a-38) = 0 $\underline{b = 38}$ and $\underline{a = 8}$ P(23 < X < c) = 0.5 - 0.32	M1 A1 A1 (6) M1 A1 (2) [8]
	Notes	
(a) (b)	1^{st} B1for at least one correct equation using given formulae 2^{nd} B1for any 2 correct equations for a and b using both 23 and 75 1^{st} M1for rearranging to get two linear equations in a and b or rearranging and substituting linear equation into quadratic. 2^{nd} M1for solving i.e. eliminating one variable leading to a linear equation or solving their quadratic correctly by any method. 1^{st} A1for $b = 38$ 2^{nd} A1for $a = 8$ SC If they get $b = 8$ and $a = 38$ or they give two sets of values and do not elim they can get B1B1M1M1A1A0M1for a correct method, e.g. a correct expression calculation for probabilityA1for 0.18 only	in one variable inate one then on for <i>c</i> and

Question Number	Scheme	Marks	
4.			
(a)	$\int \mathbf{f}(x) \mathrm{d}x = k \left[3x + x^2 - \frac{x^3}{3} \right]$	M1	
	$\int_{0}^{3} f(x) dx = 1 \text{ gives } k \left[\left(9 + 9 - \frac{27}{3} \right) - (0) \right] = 1$	M1	
	So $k = \frac{1}{9}$ (*)	Alcso	
(b)	f'(x) = k(2-2x) f'(x) = 0 implies x = 1 so mode = 1	(3) M1	
	$1(x) = 0 \text{ implies } x - 1 \text{ so } \underline{\text{mode}} = 1$	(2)	
(c)	$E(X) = \int_{0}^{1} \frac{1}{9} (3x + 2x^2 - x^3) dx$	M1	
	$= \frac{1}{9} \left[\frac{3x^2}{2} + \frac{2x^3}{3} - \frac{x^4}{4} \right]_0$	M1dA1	
	$= \left\{ \frac{1}{9} \left[\left(\frac{3}{2} \times 9 + \frac{2}{3} \times 27 - \frac{81}{4} \right) - 0 \right] \right\} = \frac{5}{4}$	A1	
(d)	Mean > mode	(4) M1	
	So <u>positive skew</u>	$\begin{bmatrix} A_1 \\ (2) \\ [11] \end{bmatrix}$	
	Notes	[]	
(a)	NB This is a 'Show that so working must be seen'		
	1^{st} M1for some correct integration $x^n \to x^{n+1}$ for at least one term 2^{nd} M1for some correct use of the limit 3 and at least implied use of limit 0 and put =1A1csofor correct solution with no incorrect working seen.		
(b)	M1 for attempt to differentiate and putting = 0. At least one correctly differentiated x term. or for an alternative method for finding the maximum such as completing the square and selecting the corresponding x value or using a sketch and symmetry.		
	A1 for mode = 1		
(c)	1^{st} M1 for clear attempt to use $xf(x)$ with an intention of integrating (Integral sign enough) Ignore limits. Must substitute in $f(x)$		
	2 nd M1d dependent on 1st M being awarded. For some correct integrationat least one correct term with the correct coefficient. 1 st A1 for fully correct (possibly un-simplified) integration. Ignore limits		
	2^{nd} A1 for answer of 5/4 or 1.25 or some other exact equivalent		
(d)	 M1 for a comparison of mean and mode (ft their values of mode and mean). Do not allow median. A1 for positive skew only (provided this is compatible with their values and comparison of the statement of t	omparison)	
Question	Scheme	Marks	
Number			
5.	[X = number of customers joining the queue in the next 10 mins ~Po(3)]		

Question Number	Scheme	Marks
(a)	$P(X = 4) = P(X \le 4) - P(X \le 3)$ or $\frac{e^{-3}3^4}{4!}$	M1
	0.8153 - 0.6472 = 0.1681 or 0.1680313 (awrt <u>0.168</u>)	A1 (2)
(b)	<i>Y</i> [= number of customers joining the queue in the next 20 mins] ~ Po(6) P(<i>Y</i> > 10) = $1 - P(Y < 10)$	B1 M1
	= 1 - 0.9574 = 0.0426(209) (awrt <u>0.0426</u>)	A1 (3)
(c)	P(T > 3.5) = 0.3	B1 (1)
(d)	$C \sim B(5, 0.3)$ P($C \ge 3$) = 1 - P($C \le 2$)	M1 M1
	$= 1 - 0.8369 = 0.1631 \text{ (0r } 0.16308) \text{ (awrt } \underline{0.163}\text{)}$	A1 (3)
(e)	P(Bethan is served in < 4 minutes) = 0.8 (o.e.)	B1
	$J =$ number joining the queue in 4 mins has $J \sim Po(1.2)$	M1
	$P(J=0) = e^{-1.2} = 0.30119$	Al
	P(Betnan is served and $J = 0$) = 0.8×e = 0.240955 (awrt <u>0.241</u>)	(4)
	Notes	[13]
(a)	M1for a correct method. May use incorrect λ A1for awrt 0.168	
(b)	B1for writing or using Po(6)M1for writing or using $1 - P(Y \le 10)$ A1for awrt 0.0426	
(d)	1 st M1 for identifying that <i>C</i> ~B(5, 0.3). Follow through their 0.3. May be in 2^{nd} M1 for writing or using 1 − P(<i>C</i> ≤ 2) A1 for awrt 0.163 SC if they use normal distribution they may get M0 M1 A0 if they find P(<i>C</i> ≥	nplied 2.5)
(e)	 B1 for 0.8 for P(Bethan is served in the next 4 minutes) M1 for identifying Po(1.2) A1 for e^{-1.2} or awrt 0.301 A1 for awrt 0.241 	

Question Number	Scheme	Marks
6. (a)	[X = the number of raisins in a mini-muffin] $X \sim Po(8)$ e.g. $P(X \le 3) = 0.0424$, $P(X \le 13) = 0.9658$ so $P(X \ge 14) = 0.0342$ So Critical Region is $X \le 3$ or $X \ge 14$	B1 M1 A1 A1 (4)
(0)	= 0.0766 (or better)	A1 (2)
(c)	$H_{o}: \lambda = 8 \text{ (or } \mu = 80) \qquad H_{1}: \lambda > 8 \text{ (or } \mu > 80)$ [R = no. of raisins in 10 muffins. R ~ Po(80).] Use Y ~ N(80, 80) P(R \ge 95) ~ P(Y \ge 94.5) = P\left(Z > \frac{94.5 - 80}{\sqrt{80}}\right) = P(Z > 1.62) = 1 - 0.9474 = awrt <u>0.053</u>	B1 M1A1 M1 M1 A1
	Probability is greater than 0.05 so not significant (accept H_0) Insufficient evidence to support the <u>bakery's claim</u> <u>Or</u> insufficient evidence of an increase in the (mean) number of <u>raisins</u> per <u>muffin</u>	M1 A1cso (8)
	Notes	
(a)	B1 for Po(8) seen or implied by use M1 for clear evidence of use of Po(8), may be implied by a correct CR (all probability statement) or a probability seen in part(b). If they give 3 and 14 1 st A1 for $X \le 3$ or $0 \le X \le 3$ or $0,1,2,3$ or $[0,3]$ Allow any letter 2 nd A1 for $X \ge 14$ or $[14,\infty)$ condone $[14,\infty]$ Allow any letter These A marks must be for statements with X only – not in prob statements	ow written as a
(b) (c)	M1 for showing they are adding together the two probabilities that correspondent of allow M1 A1 for correct answer B1 for both hypotheses. Must be in terms of λ or μ , 8 or 80 can be swap 1 st M1 for normal approx 1 st A1 $E(Y) = 80$ and $Var(Y) = 80$ (or correct st. dev seen somewhere) 2 nd M1 for use of a continuity correction 94.5 or 95.5 3 rd M1 Standardising using their mean and their sd, If they have not written do then these need to be correct here to award the mark. They must also use 94.5, find the correct area ie using 1 - P(Z ≤ "their 1.62") 2 nd A1 for awrt 0.053 or awrt 0.947 4 th M1 for a correct statement based on their probability and 0.05 3 rd A1 cso for a correct contextualised statement and a fully correct solution seen. Need either bakery's claim or <u>Raisins</u> and muffin NB If Found P(X=95) they can get B1 M1 A1 M0M0A0M0A0	oond to their CR ped wn a mean and sd 95.5 or 95 and with no errors
Question Number	Scheme	Marks
7.		

Question Number	Scheme	Marks
(a)	$X \sim B(20, 0.2)$	M1 A1
(b)	S = 4X - 1(20 - X) S = 5X - 20	(2) M1 A1cso
(c)	E(X) = 4, Var(X) = 3.2 E(S) = $5 \times 4 - 20 = 0$, Var(S) = 5^2 Var(X) = 80	(2) B1, B1 M1 A1
(d)	$S \ge 20$ implies $5X - 20 \ge 20$ [So $5X \ge 40$] $X \ge 8$	(4) M1 A1
	$P(S \ge 20) = P(X \ge 8) = 1 - P(X \le 7) = 1 - 0.9679 = 0.0321$	A1 M1 A1 (4)
(e)	[Let $C = \text{no. Cameron gets correct. } C \sim B(100, 0.4)$] $Y \sim N(40, \sqrt{24}^2)$ P($C > 50$) $\simeq P(Y > 50.5)$ = $P(Z > \frac{50.5 - 40}{2})$	M1A1
	= P(Z > 2.14) = 1 - 0.9838 = 0.0162 or 0.016044 (awrt 0.016) N.B. exact Bin (0.01676) Poisson approx (0.0526)	A1 (5)
	Notes	[17]
(a)	M1for "binomial" or B(A1for $n = 20$ and $p = 0.2$	
(b)	NBthis is a 'show that' so working must be shownM1for attempt at any correct expression for S that uses 4 and -1 (1 may not beA1csofor correct expression derived. No incorrect working seen and M1 scored.	seen)
(c)	1^{st} B1for $E(X) = 4$ seen. Condone $E(S) = 4$. May be implied by correct $E(S)$ or be a calculation for $E(S)$ 2^{nd} B1for $Var(X) = 3.2$ seen. Condone $Var(S) = 3.2$. May be implied by correct Varte calculation for $Var(S)$ M1for a correct formula for $E(S)$ or $Var(S) -$ follow through their $E(X)$ and $Var(X)$ by either answer being correctA1for 0 and 80 correctly assigned.	een in the ar(S) or be seen in (X) may be implied
(d)	1 st M1 for an attempt to solve the inequality for X 2 nd M1 for $1 - P(X \le 7)$	
(e)	1 st M1 for use of normal approx. and mean = 40 1 st A1 for Var = 24 or st. dev = $\sqrt{24}$ May be implied by later work 2 nd M1 49.5 or 50.5 3 rd M1 Standardising using their mean and their sd, If they have not written down at these need to be correct here to award the mark. They must also use 50.5, 49.5 or 50 at area ie using 1 - P(Z ≤ "their 2.14"), 2 nd A1 for awrt 0.016	mean and sd then and find the correct

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u> Order Code UA037002 Summer 2013

For more information on Edexcel qualifications, please visit our website <u>www.edexcel.com</u>

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

Mark Scheme (Results)

Summer 2013

GCE Statistics S2 (6684/01)

ALWAYS LEARNING

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2013 Publications Code UA036999 All the material in this publication is copyright © Pearson Education Ltd 2013

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- •

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.
- 8. In some instances, the mark distributions (e.g. M1, B1 and A1) printed on the candidate's response may differ from the final mark scheme

Question Number	Sch	eme		Marks
1 (a)	(5,5,5) or (1,5,5) or (2,5,5)			B1
	(5,5,5) $(5,5,1)$ $(5,1,5)$ $(1,5,5)$ $(5,5,2)$ $(5,2,5)$ $(2,5,5)or (5,5,5) and (5,5,1) (\times 3) and (5,5,2) (\times 3)$			B1 (2)
1(b)	(5,5,5) $\left(\frac{3}{10}\right)^3 = \frac{27}{1000} = 0.027$			B1
	(5,5,1) $3 \times \frac{1}{2} \times \left(\frac{3}{10}\right)^2 = \frac{135}{1000}$	M1		
	(5,5,2) $3 \times \frac{1}{5} \times \left(\frac{3}{10}\right)^2 = \frac{54}{1000}$	$=\frac{27}{500}=0.05$	4	
	$P(M = 5) = \left(\frac{3}{10}\right)^3 + 3 \times \frac{1}{2} \times \left(\frac{3}{10}\right)^2 +$	$3 \times \frac{1}{5} \times \left(\frac{3}{10}\right)^2$	$=\frac{27}{125}=0.2$	16 oe A1A1 (4)
1(c)	$P(M = 1) = (0.5)^3 + 3(0.5)^2(0.2) + 3(0.5)^2(0.$	$(0.5)^2(0.3)$		M1
	= 0.5			A1
	P $(M = 2) = \left(\frac{1}{5}\right)^3 + 3 \times \left(\frac{1}{5}\right)^2 \times \frac{1}{2} + 3$	$3 \times \left(\frac{1}{r}\right)^2 \times \frac{3}{10}$	$+6 \times \frac{1}{2} \times \frac{1}{5} \times \frac{1}{5}$	3 M1
	$= 0.284 \text{ or } \frac{71}{250} \text{ oe}$	(3) 10	2 5	A1
	250 m 1	2	5	A1
	$P(M=m) \qquad 0.5$	0.284	0.216	(5)
				notal 11 marks
	No	tes		
1(a)	1^{st} B1 for two of the given triples 2^{nd} B1 for all 7 cases, no incorrect	, any order et extras		
1(b)	B1 $\left(\frac{3}{10}\right)^3$ or 0.027 oe. This can	n be a single te	erm in a summ	ation
	M1 either "3" $\times \frac{1}{2} \times \left(\frac{3}{2}\right)^2$ or "	$3'' \times \frac{1}{3} \times \left(\frac{3}{3}\right)$	² oe. May omi	t the 3 \times or have
	another positive integer in p	place of the 3 .	These may be	seen as a single
	term in a summation $(3)^3 = (3)^2$	$(3)^2$		
	A1 $\left(\frac{3}{10}\right)^2 + 3 \times \frac{1}{2} \times \left(\frac{3}{10}\right)^2 + 3 \times \frac{1}{5} \times \left(\frac{3}{10}\right)^2$ oe			
1(c)	Al 0.216 oe 1^{st} M1 correct calculation for P(M = 1) or P(M = 2), working must be shown			
1(0)	and not implied by a correct answer.			
	1 st A1 either $P(M = 1)$ or $P(M = 2)$ correct 2 nd M1 correct calculation for both $P(M = 1)$ and $P(M = 2)$ or their probabilities			
	2 M1 correct calculation for both $P(M = 1)$ and $P(M = 2)$, or their probabilities adding up to 1, but do not allow probabilities of 0.5, 0.2 and 0.3			
	$2^{nd} A1$ both $P(M = 1)$ and $P(M = 1)$	2) correct		
	3 rd Aldep on both M marks awarde	d. All three va in part (c) but	alues written do they do not ne	own with their red to be in a
	table.	m purt (0) out		
	NB A fully correct table with no worki	ng will get M0	A0 M1 A1 A0.	
Question Number	Scheme			Marks

2(a)	$P(X=1) = 0.25e^{-0.25} = 0.1947$	awrt 0.195	M1A1
			(2)
2(b)	<i>X</i> ~Po(1.5)		B1
	$P(X > 2) = 1 - P(X \le 2)$		M1
	= 1 - 0.8088		
	= 0.1912	awrt 0.191	A1
			(3)
2(c)	$[\lambda = 300 \times 0.25 = 75]$		
	<i>X</i> ~N(75,75)		B1 B1
	$P(X < 90) = P(X < \frac{89.5 - 75}{5})$		M1M1
	√75		
	$= P(Z \le 1.6743)$		
	= awrt 0.953 or 0.952		A1
			(5)
			Total 10 marks
	Notos		
2 (a)	M1 0 25 $e^{-0.25}$ o.e		
$\frac{2(a)}{2(b)}$	B1 stating or using $Po(1.5)$		
-(0)	M1 stating or using 1 - $P(X < 2)$		
2(c)	1^{st} B1 for normal approximation and cor	rect mean	I
	2^{nd} B1 Var (X) = 75 or sd = $\sqrt{75}$ or awrt	8.66 (may be given if corre	ct in standardisation
	formula)		
	1 st M1 using either 89.5 or 88.5		
	2^{nd} M1 Standardising using their mean	and their sd, using [89.5, 88	8.5 or 89] and for
	finding correct area	CO 0400 1 '	1
	NB use of Poisson gives an answer of	0.9498 and gains no mai	KS

Question Number	Scheme	Marks	
3 (a)	<i>X</i> ~Po(7)	B1	
	$P(X > 10) = 1 - P(X \le 10)$	M1	
	= 1 - 0.9015 = 0.0985 awrt 0.0985	A 1	
		(3)	
3(b)	$P(X > d) < 0.05$ Or $P(X \ge d) < 0.05$		
	$P(X \le d) > 0.95 \qquad P(X \le d) > 0.95$ $P(X \le 11) = 0.0467 \qquad P(X \le 12) = 0.0467$	MI	
	$P(X \le 12) = 0.9407$ $P(X \le 12) = 0.9407$ $P(X \le 12) = 0.9407$ $P(X \le 13) = 0.9730$	A1	
	Least number of games =12 Least number of games 13	Al	
		(3)	
3(c)	H ₀ : $\lambda = 1$, ($\mu = 28$) H ₁ : $\lambda > 1(\mu > 28)$	B1	
	$Y \sim Po(28)$ approximated by N(28,28)	B1	
	$P(Y \ge 36) = P(Z \ge \frac{35.5 - 28}{\sqrt{22}})$ 1 6449 = $\frac{x - 0.5 - 2}{\sqrt{22}}$	$\frac{28}{100}$ M1M1	
	$\frac{\sqrt{28}}{\sqrt{28}}$		
	$= P(Z \ge 1.42)$ = 0.0778 or 1.42 < 1.6449 CR X > 37.2	A 1	
	0.0778 > 0.05 so do not reject H ₀ /not significant. Not in CR	M1	
	There is no evidence that the average rate of sales per day has	Alcso	
	increased.	(7)	
		Total 13	
	Notos	marks	
3 (a)	B1 stating or using Po(7)		
C (U)	M1 stating or using 1 - $P(X \le 10)$		
3(b)	M1 using or writing $P(X > d) < 0.05$ or $P(X < d) > 0.95$ (condone \ge instead of > and \le instead of <) May be implied by correct answer. Different letters may be used. $1^{st} A1 P(X \le 12) / P(X < 13) = awrt 0.973$ or $P(X \le 11) / P(X < 12) = awrt 0.947$ May be implied by a correct answer $2^{nd} A1 12$ or 13 NB An answer of 12/13 on its own with no working gains M1A1A1		
3(c)	1 st B1 both hypotheses correct using λ or μ , and 1 or 28 2nd B1 for writing or using a normal approximation with correct mean and Var (may be given if sd correct in standardisation formula) 1 st M1 for use of a continuity correction 35.5 or 36.5 or $x \pm 0.5$ 2 nd M1 Standardising using their mean and their sd. If they have not written down a mean and sd then these need to be correct here to award the mark. They must use [35.5, 36.5, 36, x or $x \pm 0.5$] For CR must have = awrt 1.64 or 1.65 1 st A1 awrt 0.0778 or 0.9222 or the statement 1.42 < awrt 1.65/1.64 or CR		
	X ≥ 37.2/X > 37.2 3 rd M1 a correct conclusion for their probability. May be implied by a correct contextual conclusion. NB Non contextual contradicting statements gets M0 2 nd A1 a correct contextual conclusion for their hypotheses and a fully correct solution with no errors seen. Need the words " rate/average number ", " sales " and " increased " oe NB If found P(X = 36) they can get B1B10M0A0M0A0		
Question Number	Scheme	Marks	

4 (a)	$E(X) = \frac{5b}{2} $ B1	(1)
4(b)	$Var(X) = E(X^2) - (E(X))^2$	
	$= \int_{-\infty}^{4b} \frac{x^2}{x^2} dx - (\frac{5b}{2})^2 $ M1	
	$\begin{bmatrix} 3b & 3b & 2 \\ -[x^3]^{4b} & 25b^2 \end{bmatrix} M1$	d
	$= \begin{bmatrix} 9b \end{bmatrix}_b = \frac{4}{4}$	
	$=\frac{63b^3}{2b}-\frac{25b^2}{4}$	
	$_{3b^2}^{9b}$ 4 A1	cso
	4	(3)
4(c)	$Var(3-2X) = 4Var(X)$ $= 2h^{2}$ MI	
	$= 3b^{-}$	(2)
4(d)		D 1
	$\begin{array}{c} 0 \\ x < 1 \\ \end{array}$	B1 (2)
	$\mathbf{F}(x) = \begin{cases} \frac{x-1}{3} & 1 \le x \le 4 \end{cases}$	
	$1 \qquad x > 4$	
4(e)	$\frac{x-1}{3} = 0.5$ so $x = 2.5$ B1	(1)
		Total 9 marks
Alt 4(b)	$\operatorname{Var}(X) = \int_{a}^{b} \frac{(x-\bar{x})^{2}}{b-a} \mathrm{d}x$	
	$= \int_{a}^{4b} \frac{4x^2 - 20bx + 25b^2}{x^2} dx$ M1	
	$\begin{bmatrix} \frac{4x^3}{12b} \\ \frac{4x^3}{10bx^2+25b^2x} \end{bmatrix}^{4b} $ M1	
	$= \left \frac{3}{12b} \right _{b}$	
	$=\frac{9b^3}{2b}$	
	$\begin{array}{c} 12b \\ 3b^2 \end{array} \qquad $	cso(3)
	$=\frac{1}{4}$	(-)
4(b)	Notes NB remember the answer is given (AG) so they must show their worki	ng
	1 st M1 for using $\int \frac{x^2}{2x} dx$ - (their (a)) ² limits not needed and condone missi	ng d <i>x</i> . NB
	need	
	not use the letter x but if they use b instead do not award if they can	cel down to $\frac{b}{3}$
	NB Check they have subtracted $(\text{their}(a))^2$	5
	2^{nd} M1 dependent on previous M being awarded. For some correct integrat	$\lim_{x \to \infty} x^n \to x^{n+1}$
	A1 for correct solution with no incorrect working seen.	l (40)
4(c)	M1 for writing or using $4Var(X)$	1 ()
4(d)	2^{nd} B1 top and bottom line. Allow use of \leq instead of \leq and \geq instead of \leq and \geq instead of \leq	ad oi >
Question	Scheme	Marks
Number 5(a)		M1
5(a)	$F(1) = 0, \frac{1}{10} + a + b = 0$	
		A1

	0 4		
	$a = -\frac{3}{2}$ or $b = \frac{1}{2}$		
	$F(2) = 1, 2 \pm 2a \pm b = 1$	M1	
	r(2) = 1, 2 + 2u + b = 1	A1	
	Solving gives $a = -\frac{1}{5}, b = \frac{1}{5}$		
	Alt $\mathbf{F}(\mathbf{x}) = \mathbf{F}(\mathbf{x}) + \mathbf{F}(\mathbf{x}) +$	(4) M1)
	$F(2) - F(1) = 1, 2 + 2a + b - \frac{1}{10} - a - b = 1$	1011	
	$a = -\frac{3}{r}$	A1	
	F(2) = 1 or $F(1) = 0$		
	$2 - \frac{6}{5} + b = 1$ or $\frac{4}{10} - \frac{3}{5} + b = 0$	M1	
	$b = \frac{1}{5}$	A1 (4)	
5(b)	Differentiating cdf gives $f(x) = \frac{3}{10}x^2 + \frac{6}{10}x + a$, $1 \le x \le 2$		
		B1 cso	
	$=\frac{1}{10}(x^2+2x-2)$	(1))
5(c)	$E(X) = \int_{-\infty}^{2} \frac{3}{x^{2}} (x^{3} + 2x^{2} - 2x) dx$	M1	
	$J_1 = 10$		
	$=\frac{3}{10}\left \frac{1}{4}x^4+\frac{2}{2}x^3-x^2\right ^2$	M1d A1	
	13	Δ 1	
	$=\frac{-1}{8}$	(4))
 5(d)	F(1.425) = 0.24355, F(1.435) = 0.25227	M1A1	
	0.25 lies between $F(1.425)$ and $F(1.435)$ hence result.	A1 (3)	
	Notes	Total 12 marks	s
5(a)	1^{st} M1 using F(1) = 0. Clear attempt to form a linear equation for <i>a</i> and	d <i>b</i>	
	1 st A1 either $a = -0.6$ or $b = 0.2$ Previous M must be awarded		
	2^{nd} M1 using F(2) = 1. Clear attempt to form a second linear equation f	for a and b	
	2^{14} A1 if 1 st A1 awarded then both a and b must be correct otherwise a either $a = 0.6$ or $b = 0.2$	ward if	
	alt 1^{st} M1 F(2) - F(1) = 1. Leading to a value for <i>a</i> : 1^{st} A1 $a = -0.6$		
	2^{nd} M1 using F(2) = 1 or F(1) = 0. Leading to a value for b: 2^{nd} A	A1 $b = 0.2$	
	NB correct values for a and b with no working scores no marks.		
5(b)	B1 They must differentiate and then factorise. cso	1 .	
5(c)	1° M1 for clear attempt to use $xf(x)$ with an intention of integrating (integrating consuch) language limits. Must substitute in $f(x)$ or "their $f(x)$ "	egral sign	
	2^{nd} M1d dependent on previous M being awarded for some correct inter	gration at least	
	one correct term with the correct coefficient.	gration at least	
	1 st A1 for fully correct (possibly unsimplified) integration. Ignore limit	its	
	2 nd A1 Accept 1.63 and 1.625 or some other exact equivalent		
5(d)	M1 expression showing substitution of 1.425 or 1.435 into $F(x)$ [or in	nto $F(x) - 0.25$]	
	[or putting their $F(x) = 0.25$ and attempting to solve leading to $x =$] Ma	ay be implied by	
	either pair of the correct answers as given below for the 1^{-1} A1 $1^{\text{st}} \Delta 1$ awrt 0.244 and awrt 0.252 [or awrt -0.00645 and awrt 0.00227] [or $r = awrt 1 4321$	
	2^{nd} A1 0.25 lies between F(1.425) and F(1.435) [or change in sign there	fore root	
	between] [or "1.432" lies between 1.425 and 1.435 therefore roo	ot	
	between]. Statement must be true for their method		┭
Question	Scheme	Marks	
Number			
6(a)	X~B(20,0.25)	M1	
	$P(X \ge 10) = 1 - 0.9861 = 0.0139$	Al	
	$P(X \le 1) = 0.0243$	AI	

	$(0 \le) X \le 1 \cup 10 \le X (\le 20)$	A1A1
		(5)
6(b)	H ₀ : $p = 0.25$ H ₁ : $p < 0.25$ $X \sim B(20.0.25)$	B1
	$P(X \le 3) = 0.2252$ or CR $X \le 1$	M1A1
	Insufficient evidence to reject H_0 , Accept H_0 , Not significant. 3 does not lie in the Critical region.	M1d
	No evidence that the changes to the process have reduced the percentage of defective articles (oe)	Alcso
		(5)
		Total 10 marks
	Notes	
6(a)	M1 using B(20,0.25) may be implied by a correct CR (allow w probability statement) 1^{st} A1 awrt 0.0139 2^{nd} A1 awrt 0.0243 3^{rd} A1 $X \le 1$ or $0 \le X \le 1$ or [0,1] or 0,1 or equivalent statem 4^{th} A1 $X \ge 10$ or $10 \le X \le 20$ or 10,11,12,13,14,15,16,17,18 or equivalent statements NB These two A marks must be for statements with X (any letter) on probability statements and SC for CR written as $1 \ge X \ge 10$ gets A	ritten as a ments 3,19,20 or [10,20] ly – not in A1 A0
6(b)	B1 both hypotheses with p 1 st M1 using B(20, 0.25) and finding P($X \le 3$) or P($X \ge 4$) may correct CR 1 st A1 0.2252 (allow 0.7748) if not using CR or CR $X \le 1$ or X 2 nd M1dependent on previous M being awarded. A correct state allow if there are contradicting non contextual statements) A1cso Conclusion must contain the words changes/new proces number/percentage oe , and defective articles/defectives . The incorrect working seen.	be implied by a < 2 ment (do not ss oe, reduced oe ere must be no

Total model Image of the second	Question	Scheme	Marks
7(a) Distribution $\lambda \sim B(n, 0, 1)$ B1 (1) 7(b) $Y \sim B(10, 0, 1)$ B1 (1) $P(Y \ge 4)$ $= 1 - P(Y \le 3)$ M1 $= 0.0128$ A1 (3) 7(c) $0.9^n < 0.05 \text{ or } 1 - (0.9)^n > 0.95$ M1 $n \ge 28.4$ A1 (3) $n \ge 28.4$ A1 (3) $altermative$ B(28,0.1): P(0) = 0.0523 M1 $B(28,0.1): P(0) = 0.0471$ A1 A1 $n = 29$ (3) B1 $P(C > 10) = 1 - P(C \le 10)$ B1 M1 $= 0.0137$ A1 (3) 7(d) $C \sim Po(5)$ B1 $P(C > 10) = 1 - P(C \le 10)$ M1 (3) $= 0.0137$ A1 (3) Total marks 10 M1 (3) <td< th=""><th></th><th>$\mathbf{D}_{\mathbf{r}}^{\mathbf{r}}$</th><th>D1</th></td<>		$\mathbf{D}_{\mathbf{r}}^{\mathbf{r}}$	D1
7(b) $Y \sim B(10, 0.1)$ $P(Y \ge 4)$ $= 1 - P(Y \le 3)$ = 1 - 0.9872 = 0.0128 B1 M1 7(c) $0.9^n < 0.05 \text{ or } 1 - (0.9)^n > 0.95$ n > 28.4 A1 $n = 29$ A1 alternative M1 B(29,0.1): P(0) = 0.0523 B(29,0.1): P(0) = 0.0471 A1 A1 cao $n = 29$ A1cao 7(d) $C \sim Po(5)$ $P(C > 10) = 1 - P(C \le 10)$ = 1 - 0.9863 = 0.0137 B1 A1 7(a) B1 for "binomial" or B(7(b) Mu 7(c) M1 writing or using B(10,0.1) M1 writing or using B(10,0.1) M1 writing or using B(10,0.1) M1 writing or using 1 - P(Y \le 3) A1 awrt 0.0128 A1 (3) Total marks 10 7(c) M1 (0.9) ⁿ < 0.05, oc, or (0.9) ⁿ = 0.05, oc, or (0.9) ⁿ > 0.05, oc, or seeing 0.0523 or seeing 0.0471 1 st A1 [P(0)] = 0.0471 or getting awrt 28.4 May be implied by correct answer. 2 nd A1 cao $n = 29$ should not come from incorrect working. NB An answer of 29 on its own with no working gains M1A1A1	/(a)	Distribution $X \sim B(n, 0.1)$	B1 (1)
Item (b) P(Y \ge 4) = 1 - P(Y \le 3) M1 P(Y \ge 4) = 1 - 0.9872 A1 = 0.0128 A1 7(c) $0.9^n < 0.05$ or $1 - (0.9)^n > 0.95$ M1 $n \ge 28.4$ A1 $n = 29$ A1 alternative B(28,0.1): P(0) = 0.0523 M1 B(29,0.1): P(0) = 0.0471 A1 $n = 29$ A1cao (3) (3) 7(d) $C \sim Po(5)$ P(C > 10) = 1 - P(C \le 10) B1 $= 1 - 0.9863$ 0.0137 7(a) B1 for "binomial" or B(7(b) B1 writing or using B(10,0.1) M1 writing or using B(10,0.1) M1 writing or using B(10,0.1) M1 writing or using 1 - P(Y \le 3) A1 awrt 0.0128 7(c) M1 (0.9) ⁿ < 0.05, oc, or (0.9) ⁿ = 0.05, oc, or (0.9) ⁿ > 0.05, oc, or seeing 0.0523 or seeing 0.0471 1 st A1 [P(0)] = 0.0471 or getting awrt 28.4 May be implied by correct answer. 2 nd A1 cao $n = 29$ should not come from incorrect working. NB An answer of 29 on its own with no working gains M1A1A1	7(b)	$V_{\rm ex} B(10.0.1)$	(1) R1
$1(1 \ge 1)$ $= 1 - 0.9872$ $= 0.0128$ A1 $3(3)$ $3(3)$ $3(3)$ $7(c)$ $0.9^n < 0.05 \text{ or } 1 - (0.9)^n > 0.95$ M1 $n \ge 28.4$ A1 $n \ge 29$ A1 $alternative$ $B(28,0.1): P(0) = 0.0523$ M1 $B(28,0.1): P(0) = 0.0471$ A1 $n = 29$ A1cao $7(d)$ $C \sim Po(5)$ B1 $P(C > 10) = 1 - P(C \le 10)$ M1 $= 1 - 0.9863$ $= 0.0137$ $7(a)$ B1 for "binomial" or $B()$ $7(a)$ B1 for "binomial" or $B()$ $7(b)$ B1 writing or using $B(10,0.1)$ M1 writing or using $B(10,0.1)$ M1 writing or using $B(10,0.1)$ M1 writing or 0.05 , oc, or $(0.9)^n = 0.05$, oc, or $(0.9)^n > 0.05$, oc, or seeing 0.0523 or seeing 0.0471 $1^{st} A1 [P(0)] = 0.0471$ or getting awrt 28.4 May be implied by correct answer. $2^{rd} A1$ cao $n = 29$ should not come from incorrect working. NB An answer of 29 on its own with no working gains M1A1A1	/(0)	P(Y > A) = 1 P(Y < 3)	M1
$= 0.0128$ A1 $= 0.0128$ A1 $= 0.0128$ A1 $= 0.0128$ A1 $= 0.0128$ M1 $n \ge 28.4$ A1 $n = 29$ A1 alternative B(28,0.1): P(0) = 0.0523 B(28,0.1): P(0) = 0.0471 A1 $n = 29$ A1 $B(29,0.1): P(0) = 0.0471$ A1 $n = 29$ A1 $P(C > 10) = 1 - P(C \le 10)$ B1 $= 1 - 0.9863$ B1 $= 0.0137$ A1 (3) Total marks 10 Total marks 10 Total marks 10 7(a) B1 for "binomial" or B(7(b) B1 writing or using B(10,0.1) M1 writing or using B(10,0.1) M1 writing or using B(10,0.1) M1 writing or using B(10,0.1) A1 awrt 0.0128 7(c) M1 (0.9) ⁿ < 0.05, oc, or (0.9) ⁿ = 0.05, oc, or (0.9) ⁿ > 0.05, oc, or seeing 0.0523 or seeing 0.0471 $1^{st} A1 [P(0)] = 0.0471$ or getting awrt 28.4 May be implied by correct answer. $2^{nd} A1 cao n = 29$ should not come from incorrect working. NB An answer of 29 on its own with no working gains M1A1A1		$1(1 \ge 4)$ $1 = 1(1 \ge 5)$ = 1 - 0.9872	1411
7(c) (3) $0.9^n < 0.05 \text{ or } 1 - (0.9)^n > 0.95$ M1 $n > 28.4$ A1 $n = 29$ A1 alternative M1 $B(28,0.1): P(0) = 0.0523$ M1 $B(29,0.1): P(0) = 0.0471$ A1 $n = 29$ A1cao 7(d) $C \sim Po(5)$ B1 $P(C > 10) = 1 - P(C \le 10)$ M1 $= 1 - 0.9863$ A1 $= 0.0137$ A1 (3) Total marks 10 7(a) B1 for "binomial" or B(7(b) B1 writing or using B(10,0.1) M1 M1 writing or using 1 - P(Y \le 3) A1 awrt 0.0128 7(c) M1 (0.9) ⁿ < 0.05, oe, or (0.9) ⁿ = 0.05, oe, or (0.9) ⁿ > 0.05, oe, or seeing 0.0523 or seeing 0.0471 $1^{st} A1 [P(0)] = 0.0471$ or getting awrt 28.4 May be implied by correct answer. $2^{nd} A1 cao n = 29$ should not come from incorrect working. NB An answer of 29 on its own with no working gains M1A1A1		= 0.0128	A1
7(c) $0.9^n < 0.05 \text{ or } 1 - (0.9)^n > 0.95$ M1 $n > 28.4$ A1 $n = 29$ A1 alternative B(28,0.1): P(0) = 0.0523 M1 $B(29,0.1): P(0) = 0.0471$ A1 $n = 29$ A1 cao (3) Total marks 10 7(d) $C \sim Po(5)$ B1 $P(C > 10) = 1 - P(C \le 10)$ M1 $= 1 - 0.9863$ A1 $= 0.0137$ A1 (3) Total marks 10 7(a) B1 for "binomial" or B(7(b) B1 writing or using B(10,0.1) M1 writing or using 1 - P(Y \le 3) A1 awrt 0.0128 7(c) M1 (0.9) ⁿ < 0.05, oe, or $(0.9)^n = 0.05, oe, or (0.9)^n > 0.05, oe, or seeing 0.0523 or seeing 0.0471 1^{eft} A1 [P(0)] = 0.0471 or getting awrt 28.4 May be implied by correct answer. 2^{eft} A1 cao n = 29 should not come from incorrect working. NB An answer of 29 on its own with no working gains M1A1A1 $			(3)
$0.9^n < 0.05 \text{ or } 1 - (0.9)^n > 0.95$ M1 $n > 28.4$ A1 $n = 29$ A1 alternative B(28,0.1): P(0) = 0.0523 B(29,0.1): P(0) = 0.0471 A1 $n = 29$ A1cao 7(d) $C \sim Po(5)$ $P(C > 10) = 1 - P(C \le 10)$ B1 $= 1 - 0.9863$ A1 $= 0.0137$ A1 (3) Total marks 10 7(a) B1 for "binomial" or B(7(b) B1 writing or using B(10,0.1) M1 writing or using B(10,0.1) M1 writing or using B(10,0.1) M1 writing or using P(Y \le 3) A1 awrt 0.0128 7(c) M1 (0.9) ⁿ < 0.05, oc, or (0.9) ⁿ = 0.05, oc, or (0.9) ⁿ > 0.05, oc, or seeing 0.0523 or seeing 0.0471 $1^{st} A1 [P(0)] = 0.0471$ or getting awrt 28.4 May be implied by correct answer. $2^{nd} A1$ cao $n = 29$ should not come from incorrect working. NB An answer of 29 on its own with no working gains M1A1A1	7(c)		(-)
$n > 28.4$ A1 $n = 29$ A1 alternative B(28,0.1): P(0) = 0.0523 M1 B(29,0.1): P(0) = 0.0471 A1 $n = 29$ A1cao (3) Total marks 10 $P(C > 10) = 1 - P(C \le 10)$ M1 $= 1 - 0.9863$ A1 $= 0.0137$ A1 (3) Total marks 10 7(a) B1 for "binomial" or B(7(b) B1 for "binomial" or B(7(c) M1 (0.9) ⁿ < 0.05, oe, or (0.9) ⁿ = 0.05, oe, or (0.9) ⁿ > 0.05, oe, or seeing 0.0523 or seeing 0.0471 $1^{st} A1 [P(0)] = 0.0471$ or getting awrt 28.4 May be implied by correct answer. $2^{nd} A1$ cao $n = 29$ should not come from incorrect working. NB An answer of 29 on its own with no working gains M1A1A1		$0.9^n < 0.05$ or $1 - (0.9)^n > 0.95$	M1
$n = 29$ A1 $alternative$ $B(28,0.1): P(0) = 0.0523$ $B(29,0.1): P(0) = 0.0471$ A1 $n = 29$ A1 cao (3) (3) $7(d)$ $C \sim Po(5)$ $P(C > 10) = 1 - P(C \le 10)$ M1 $= 1 - 0.9863$ A1 $= 0.0137$ A1 (3) Total marks 10 $7(a)$ B1 for "binomial" or B($7(b)$ B1 writing or using B(10,0.1) M1 writing or using B(10,0.1) M1 writing or using 1 - P(Y \le 3) A1 awrt 0.0128 A1 $7(c)$ M1 (0.9) ⁿ < 0.05, oe, or (0.9) ⁿ = 0.05, oe, or (0.9) ⁿ > 0.05, oe, or seeing 0.0523 or seeing 0.0471 $1^{st} A1 [P(0)] = 0.0471$ or getting awrt 28.4 May be implied by correct answer. $2^{nd} A1$ cao $n = 29$ should not come from incorrect working. NB An answer of 29 on its own with no working gains M1A1A1		n > 28.4	A1
alternative M1 B(28,0.1): P(0) = 0.0523 M1 B(29,0.1): P(0) = 0.0471 A1 $n = 29$ A1cao (3) (3) 7(d) $C \sim Po(5)$ B1 $P(C > 10) = 1 - P(C \le 10)$ M1 $= 1 - 0.9863$ (3) $= 0.0137$ A1 (3) Total marks 10 7(a) B1 for "binomial" or B(7(b) B1 writing or using B(10,0.1) M1 writing or using 1 - P(Y \le 3) A1 awrt 0.0128 A1 awrt 0.05, oe, or $(0.9)^n > 0.05$, oe, or seeing 0.0523 or seeing 0.0471 $1^{st} A1 [P(0)] = 0.0471$ or getting awrt 28.4 May be implied by correct answer. $2^{nd} A1$ cao $n = 29$ should not come from incorrect working. NB An answer of 29 on its own with no working gains M1A1A1		n = 29	A1
B(28,0.1): P(0) = 0.0523 M1 B(29,0.1): P(0) = 0.0471 A1 $n = 29$ A1 cao (3) (3) 7(d) $C \sim Po(5)$ B1 $P(C > 10) = 1 - P(C \le 10)$ M1 $= 1 - 0.9863$ A1 $= 0.0137$ A1 (3) Total marks 10 7(a) B1 for "binomial" or B(7(b) B1 writing or using B(10,0.1) M1 writing or using 1 - P(Y \le 3) A1 awrt 0.0128 7(c) M1 (0.9) ⁿ < 0.05, oe, or (0.9) ⁿ = 0.05, oe, or (0.9) ⁿ > 0.05, oe, or seeing 0.0523 or seeing 0.0471 1 st A1 [P(0)] = 0.0471 or getting awrt 28.4 May be implied by correct answer. 2 nd A1 cao $n = 29$ should not come from incorrect working. NB An answer of 29 on its own with no working gains M1A1A1		alternative	
B(29,0.1): P(0) = 0.04/1 A1 $n = 29$ A1 cao 7(d) $C \sim Po(5)$ B1 $P(C > 10) = 1 - P(C \le 10)$ M1 $= 1 - 0.9863$ A1 $= 0.0137$ A1 (3) Total marks 10 7(a) B1 for "binomial" or B(7(b) B1 writing or using B(10,0.1) M1 writing or using 1 - P(Y \le 3) A1 awrt 0.0128 7(c) M1 (0.9) ⁿ < 0.05, oe, or (0.9) ⁿ = 0.05, oe, or (0.9) ⁿ > 0.05, oe, or seeing 0.0523 or seeing 0.0471 $1^{st} A1 [P(0)] = 0.0471$ or getting awrt 28.4 May be implied by correct answer. $2^{rd} A1 cao n = 29$ should not come from incorrect working. NB An answer of 29 on its own with no working gains M1A1A1		B(28,0.1): P(0) = 0.0523	MI
$n = 29$ Alcao 7(d) $C \sim Po(5)$ B1 $P(C > 10) = 1 - P(C \le 10)$ M1 $= 1 - 0.9863$ A1 $= 0.0137$ A1 (3) Total marks 10 7(a) B1 for "binomial" or B(7(b) B1 writing or using B(10,0.1) M1 writing or using B(10,0.1) M1 writing or using 1 - P(Y \le 3) A1 awrt 0.0128 Output 7(c) M1 (0.9) ⁿ < 0.05, oe, or (0.9) ⁿ = 0.05, oe, or (0.9) ⁿ > 0.05, oe, or seeing 0.0523 or seeing 0.0471 Ist A1 [P(0)] = 0.0471 or getting awrt 28.4 May be implied by correct answer. 2^{nd} A1 cao $n = 29$ should not come from incorrect working. NB An answer of 29 on its own with no working gains M1A1A1		B(29,0.1): P(0) = 0.0471	Al
7(d) $C \sim Po(5)$ B1 $P(C > 10) = 1 - P(C \le 10)$ M1 $= 1 - 0.9863$ A1 $= 0.0137$ A1 (3) Total marks 10 7(a) B1 for "binomial" or B(7(b) B1 writing or using B(10,0.1) M1 writing or using 1 - P(Y \le 3) A1 awrt 0.0128 7(c) M1 (0.9) ⁿ < 0.05, oe, or (0.9) ⁿ = 0.05, oe, or (0.9) ⁿ > 0.05, oe, or seeing 0.0523 or seeing 0.0471 1 st A1 [P(0)] = 0.0471 or getting awrt 28.4 May be implied by correct answer. 2 nd A1 cao n = 29 should not come from incorrect working. NB An answer of 29 on its own with no working gains M1A1A1		n = 29	Alcao (2)
7(d) $C < FO(3)$ B1 $P(C > 10) = 1 - P(C \le 10)$ M1 $= 1 - 0.9863$ A1 $= 0.0137$ A1 (3) Total marks 10 7(a) B1 for "binomial" or B(7(b) B1 writing or using B(10,0.1) M1 writing or using 1 - P(Y \le 3) A1 awrt 0.0128 7(c) M1 (0.9) ⁿ < 0.05, oe, or (0.9) ⁿ = 0.05, oe, or (0.9) ⁿ > 0.05, oe, or seeing 0.0523 or seeing 0.0471 $1^{st} A1 [P(0)] = 0.0471$ or getting awrt 28.4 May be implied by correct answer. $2^{nd} A1$ cao $n = 29$ should not come from incorrect working. NB An answer of 29 on its own with no working gains M1A1A1	7 (d)	$C_{\rm ex} {\rm Po}(5)$	(3) P1
P(C > 10) = 1 - P(C \le 10) M1 = 1 - 0.9863 A1 = 0.0137 A1 (3) Total marks 10 7(a) B1 for "binomial" or B(7(b) B1 writing or using B(10,0.1) M1 writing or using 1 - P(Y \le 3) A1 awrt 0.0128 7(c) M1 (0.9) ⁿ < 0.05, oe, or (0.9) ⁿ = 0.05, oe, or (0.9) ⁿ > 0.05, oe, or seeing 0.0523 or seeing 0.0471 1 st A1 [P(0)] = 0.0471 or getting awrt 28.4 May be implied by correct answer. 2 nd A1 cao n = 29 should not come from incorrect working. NB An answer of 29 on its own with no working gains M1A1A1	/(u)	$C \sim ro(3)$	DI M1
$I = 0.9803$ $= 0.0137$ A1 (3) Total marks 10NotesImage: Notes7(a)B1 for "binomial" or B(B1 writing or using B(10,0.1) M1 writing or using 1 - P(Y \le 3) A1 awrt 0.0128A1 awrt 0.01287(c)M1 (0.9) ⁿ < 0.05, oe, or $(0.9)^n = 0.05$, oe, or $(0.9)^n > 0.05$, oe, or seeing 0.0523 or seeing 0.0471 1^{st} A1 [P(0)] = 0.0471 or getting awrt 28.4 May be implied by correct answer. 2^{nd} A1 cao $n = 29$ should not come from incorrect working. NB An answer of 29 on its own with no working gains M1A1A1		$P(C > 10) = 1 - P(C \le 10)$ - 1 0.0863	IVI I
Image: The problem is a set of the problem interval of the problem is a set of the problem interval of the problem is a set of the pr		-1 - 0.9805	A 1
NotesTotal marks 10NotesTotal marks 107(a)B1 for "binomial" or B(7(b)B1 writing or using B(10,0.1) M1 writing or using1 – P($Y \le 3$) A1 awrt 0.01287(c)M1 (0.9) ⁿ < 0.05, oe, or $(0.9)^n = 0.05$, oe, or $(0.9)^n > 0.05$, oe, or seeing 0.0523 or seeing 0.0471 1^{st} A1 [P(0)] = 0.0471 or getting awrt 28.4 May be implied by correct answer. 2^{nd} A1 cao $n = 29$ should not come from incorrect working. NB An answer of 29 on its own with no working gains M1A1A1		- 0.0137	A1 (3)
Notes7(a)B1 for "binomial" or B(7(b)B1 writing or using B(10,0.1) M1 writing or using1 - P(Y ≤ 3) A1 awrt 0.01287(c)M1 (0.9) ⁿ < 0.05, oe, or $(0.9)^n = 0.05$, oe, or $(0.9)^n > 0.05$, oe, or seeing 0.0523 or seeing 0.0471 1^{st} A1 [P(0)] = 0.0471 or getting awrt 28.4 May be implied by correct answer. 2^{nd} A1 cao $n = 29$ should not come from incorrect working. NB An answer of 29 on its own with no working gains M1A1A1			Total marks 10
7(a)B1 for "binomial" or B(7(b)B1 writing or using B(10,0.1) M1 writing or using1 - P(Y \le 3) A1 awrt 0.01287(c)M1 $(0.9)^n < 0.05$, oe, or $(0.9)^n = 0.05$, oe, or $(0.9)^n > 0.05$, oe, or seeing 0.0523 or seeing 0.0471 $1^{st} A1 [P(0)] = 0.0471$ or getting awrt 28.4 May be implied by correct answer. $2^{nd} A1$ cao $n = 29$ should not come from incorrect working. NB An answer of 29 on its own with no working gains M1A1A1		Notes	
7(b)B1 writing or using B(10,0.1) M1 writing or using 1 - P(Y \le 3) A1 awrt 0.01287(c)M1 $(0.9)^n < 0.05$, oe, or $(0.9)^n = 0.05$, oe, or $(0.9)^n > 0.05$, oe, or seeing 0.0523 or seeing 0.0471 1^{st} A1 [P(0)] = 0.0471 or getting awrt 28.4 May be implied by correct answer. 2^{nd} A1 cao $n = 29$ should not come from incorrect working. NB An answer of 29 on its own with no working gains M1A1A1	7(a)	B1 for "binomial" or B(
M1 writing or using $1 - P(Y \le 3)$ A1 awrt 0.0128 7(c) M1 $(0.9)^n < 0.05$, oe, or $(0.9)^n = 0.05$, oe, or $(0.9)^n > 0.05$, oe, or seeing 0.0523 or seeing 0.0471 $1^{st} A1 [P(0)] = 0.0471$ or getting awrt 28.4 May be implied by correct answer. $2^{nd} A1$ cao $n = 29$ should not come from incorrect working. NB An answer of 29 on its own with no working gains M1A1A1	7(b)	B1 writing or using B(10,0.1)	
A1 awrt 0.0128 7(c) M1 $(0.9)^n < 0.05$, oe, or $(0.9)^n = 0.05$, oe, or $(0.9)^n > 0.05$, oe, or seeing 0.0523 or seeing 0.0471 1 st A1 [P(0)] = 0.0471 or getting awrt 28.4 May be implied by correct answer. 2 nd A1 cao $n = 29$ should not come from incorrect working. NB An answer of 29 on its own with no working gains M1A1A1		M1 writing or using $1 - P(Y \le 3)$	
7(c) M1 $(0.9)^n < 0.05$, oe, or $(0.9)^n = 0.05$, oe, or $(0.9)^n > 0.05$, oe, or seeing 0.0523 or seeing 0.0471 $1^{st} A1 [P(0)] = 0.0471$ or getting awrt 28.4 May be implied by correct answer. $2^{nd} A1$ cao $n = 29$ should not come from incorrect working. NB An answer of 29 on its own with no working gains M1A1A1		A1 awrt 0.0128	
$1^{\text{st}} \text{A1} [P(0)] = 0.0471$ or getting awrt 28.4 May be implied by correct answer. 2^{nd}A1 cao $n = 29$ should not come from incorrect working. NB An answer of 29 on its own with no working gains M1A1A1	7(c)	$M1 (0.9)^{n} < 0.05, \text{oe, or } (0.9)^{n} = 0.05, \text{oe, or } (0.9)^{n} > 0.05, \text{ oe, or s}$	eeing 0.0523 or
2^{nd} A1 cao $n = 29$ should not come from incorrect working. NB An answer of 29 on its own with no working gains M1A1A1		seeing 0.0471 1 st $\Delta 1$ [P(0)] = 0.0471 or getting awrt 28.4 May be implied by (correct answer
NB An answer of 29 on its own with no working gains M1A1A1		2^{nd} A1 cao $n = 29$ should not come from incorrect working.	
		NB An answer of 29 on its own with no working gains M1A1A	1
7(d) B1 writing or using Po(5)	7(d)	B1 writing or using Po(5)	
M1 writing or using $1 - P(C \le 10)$		M1 writing or using $1 - P(C \le 10)$	
A1 awrt 0.0137		A1 awrt 0.0137	

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u> Order Code UA036999 Summer 2013

For more information on Edexcel qualifications, please visit our website <u>www.edexcel.com</u>

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

January 2014 (IAL)

Mark Scheme (Results)

January 2014

Pearson Edexcel International Advanced Level

Statistics 2 (WST02/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2014 Publications Code IA037876 All the material in this publication is copyright © Pearson Education Ltd 2014

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

Question Number	Scheme	Marks
1(a)	Let X = the number of leaf cuttings successfully taking root	
	$X \sim B(10, 0.05)$	B1
(i)	P(X = 1) = P(X ≤ 1) - P(X = 0) or ¹⁰ C ₁ ×0.05×0.95 ⁹ = 0.9139 - 0.5987	M1
	= 0.3152 awrt 0.315	A1
(ii)	$P(X > 2) = 1 - P(X \le 2) = 1 - 0.9885$	M1
	= 0.0115 awrt 0.0115	A1
		(5)
1(b)	$Y \sim \text{Po}(8)$	B1
	$\mathbf{P}(Y \ge 10) = 1 - \mathbf{P}(Y \le 9)$	M1
	= 1 - 0.7166	
	= 0.2834 awrt 0.283	A1
		(3)
		Total (8)
	Notes	
(a)	B1 use of B(10,0.05). May appear in (i) or (ii) or may be implied	
(i)	M1 writing or using $P(X \leq 1) - P(X = 0)$ or ${}^{n}C_{1} \times p \times (1-p)^{n-1}$ $(0$	
(ii)	M1 writing or using $1-P(X \leq 2)$	
(b)	B1 writing or using Po(8) or writing or using N(8,7.6)	
	M1 writing or using $1 - P(Y \le 9)$ or for M1 for $P\left(Z > \frac{9.5 - 8}{\sqrt{7.6}}\right)$	
	A1 for awrt 0.283 from poisson or an answer in the range (0.293,0.295) from normal	
	NB using binomial, $P(X \ge 10) = 0.280125$ scores B0M0A0	
	Answer only 0.28 or awrt 0.280 scores B0M0A0 Answer only awrt 0.283 scores B1M1A1	
	Answer only in the range (0.293,0.295) B1M1A1	

Question Number	Scheme	Marks
2(a)	List of all the customers (who eat in the restaurant)	B1 (1)
(b)	<u>Customer(s)</u> (who ate in the restaurant)	B1 (1)
(c)	Advantage: more/total accuracy, unbiased	B1
(d)	Disadvantage: time consuming to obtain data and analyse it, expensive, difficult to ensure entire population is included Let $X =$ the number of customers who would like more choice on the menu.	B1 (2)
	$H_0: p = 0.3$ $H_1: p > 0.3$	B1
	<i>X</i> ~B(50,0.3)	M1
	$P(X \ge 20) = 1 - P(X \le 19)$ or $CR P(X \le 20) = 0.9522$	M1
	$= 1 - 0.9152$ $P(X \ge 21) = 0.0478$	
	$= 0.0848 \qquad \qquad X \ge 21$	A1
	Do not reject $H_0/$ not significant/20 is not in critical region	M1
	The percentage of <u>customers</u> who would like more <u>choice</u> on the menu is not more than Bill believes. or	
	There is no evidence to reject <u>Bill's belief</u> .	Alcso
		(6)
		(0) Total (10)
	Notes	10111(10)
(a)	B1 Need the idea of list/register/database and 'customer(s)' Do not allow customer's opinions. 'All' may be implied. Do not allow a partial list e.g. 'A list of 50 customers'	
(b)	B1 customer(s)	
(c)	If not labelled, assume the response refers to a census. $1^{st} B1$ is for the advantage and $2^{nd} B1$ is for the disadvantage.	
(d)	B1 need both hypotheses with <i>p</i> M1 using B(50,0.3)	
	M1 for $1 - P(X \leq 19)$ or	
	$P(X \le 20) = 0.9522 \text{ or } P(X \ge 21) = 0.0478 \text{ leading to a critical region } X > k \text{ or } X > $	or $X \ge k$
	A1 awrt 0.0848 or critical region $X \ge 21$ or $X \ge 20$ M1 a correct conclusion for their probability. May be implied by a correct contextual conclusion. A1 a correct contextual conclusion for their hypotheses and a fully correct solution with no errors seen. Must mention 'customers' and 'choice' <u>or</u> 'Bill' and 'belief'.	
	NB P(<i>X</i> =20) can score B1M1M0A0M0A0 NB normal approximation gives 0.082(457) and loses all A marks	

Question Number	Scheme	Marks
3(a)	$\frac{1}{6}a(a+1) = 0.6$	M1
	$a^{2} + a - 3.6 = 0$ $a = \frac{-1 \pm \sqrt{1 + 4 \times 3.6}}{2}$	M1
	=1.462 a = 1.46 only	A1
		(3)
3(b)	$f(x) = \frac{d}{dx}F(x) = \frac{1}{3}x + \frac{1}{6}$	M1A1
(i)	$E(X) = \int_{0}^{2} x \left(\frac{1}{3}x + \frac{1}{6}\right) dx$	M1
	$= \left[\frac{x^3}{9} + \frac{x^2}{12}\right]_0^2$	A1
	$=\frac{11}{9}$ awrt 1 .22	A1
(ii)	$Var(X) = \int_0^2 x^2 \left(\frac{1}{3}x + \frac{1}{6}\right) dx - \left(\frac{11}{9}\right)^2$	M1
	$= \left[\frac{x^4}{12} + \frac{x^3}{18}\right]_0^2 - \left(\frac{11}{9}\right)^2$	A1ft
	$=\frac{23}{81}$ awrt 0.284	A1
		(8)
		Total (11)
	Notes	
(a)	M1 putting $F(x) = 0.6$ or $1 - 0.4$ M1 attempting either completing the square or quadratic formula (one slip allowed) (condone + instead of <u>+</u>) Must set $f(a) = 0.6$ or $f(a) = 0.4$ to score this mark. May be implied by implied by awrt 1.46 or awrt -2.46 A1 for 1.46 only (must reject other root if stated) (condone awrt 1.46)	
(b)	1 st M1 attempting to differentiate $F(x)$ at least one $x^n \to x^{n-1}$	
(1)	2^{nd} M1 for intention to use $\int_0^2 xf(x) dx$ using their f(x) which must be a changed function	n from $F(x)$.
	No need for limits 2^{nd} A1 correct integration (may be unsimplified)	
(ii)	3^{rd} M1 for intention to use $\int x^2 f(x) dx - \mu^2$ using their $f(x)$ which must be a changed fur	nction from
	$F(x)$. No need for limits. This may be seen on separate lines. Must substitute their value 4^{th} A1ft correct integration. Ft their $E(X)$.	of $\mu/E(X)$

Question Number	Scheme	Mark	s
4(a)	$(H_1:) \lambda > 1.5$	B1	(1)
4(b)	<i>C</i> ~Po(6)	B1	
	$P(C > 10) = 1 - P(X \le 10)$	M1	
	= 1 - 0.9574		
	= 0.0426 awrt 0.0426	A1	
			(3)
4(c)	$P(X \le 10 \mu = 7) = 0.9015$	M1	
	$P(X \le 10 \mu = 7.5) = 0.8622$		
	Parameter $\mu = 7$	A1	
	$\lambda = \frac{7}{4}, 1.75$	A1	
	4 '		(3)
		Total (7)
	Notes		
(a)	B1 Must use λ		
(b)	B1 writing or using Po(6)		
	M1 writing or using $1 - P(X \le 10)$		
	A1 do not isw. e.g. If the response goes on to state the level of significance is 5%, withhold the A mark.		
	NB $P(X \le 9) = 0.9161 P(X \le 11) = 0.9799 \text{ can imply B1}$		
(c)	M1 either $P(X \le 10 \mu = 7) = 0.9015$ or $P(X \le 10 \mu = 7.5) = 0.8622$ award for sight of 0.9015 (or 0.0985) or 0.8622 (or 0.1378)		
	NB λ = 7 scores M1A1A0 allow awrt 1.76 from calculator to score M1A1A1		

Question Number	Scheme	Mark	KS
5(a)	Let X = the number of break downs per month		
	$X \sim \operatorname{Po}\left(\frac{15}{12}\right)$	B1	
	$P(X=3) = \frac{e^{-1.25}1.25^3}{3!}$	M1	
	= 0.0933 awrt 0.0933	A1	
			(3)
(b)	$P(X \ge 2) = 1 - P(X = 0) - P(X = 1)$		
	$= 1 - e^{-1.25} (1 + 1.25)$ = 0.35536	M1	
	= 0.355 **AG	Alcso	
			(2)
(c)	$(0.355)^4 = 0.0159$ awrt 0.016	M1A1	
			(2)
(d)	$Y \sim$ number of months the photocopier does break down at least twice.		
	<i>Y</i> ~ B(12, 0.355)	M1A1	
	$P(Y \ge 2) = 1 - P(Y = 0) - P(Y = 1)$	dM1	
	$= 1 - (1 - 0.355)^{12} - 12(1 - 0.355)^{11}(0.355)$	A1	
	= 0.961	A1	
			(5)
		Total (1	12)
	Notes		
(a)	B1 writing or using Po(1.25)		
	M1 $\frac{e^{-\lambda}\lambda^3}{\lambda^3}$		
(b)	3! NB remember the answer is given (AG) so they must show their working		
(0)	M1 $1-P(X=0)-P(X=1)$ or $1-P(X \le 1)$ and a correct expression using their λ		
	Condone 0.3554 or better		
(c)	M1 Their $[(b)]^4$		
(d)	M1 for identifying Binomial		
	1 st A1 B(12, their (b))		
	dM1 $1-P(Y=0)-P(Y=1)$ or $1-P(X \le 1)$ dependent on 1^{st} M1		
	2 nd A1 for a correct expression 3 rd A1 for awrt 0.961		

PhysicsAndMathsTutor.com

Question Number	Scheme	Marks
6(a)	4k $4k$ -1 0 1 2 3	B1 B1
(b)	$\int_{-1}^{1} k(x+1)^2 dx + \int_{1}^{3} k(6-2x) dx = 1$ $\int_{-1}^{1} k(x^2 + 2x + 1) dx + \int_{1}^{3} k(6-2x) dx = 1$ $k \left[\frac{x^3}{2} + x^2 + x \right]^{1} + k \left[6x - x^2 \right]^{3} = 1$	(2) M1 M1A1
	$k \begin{bmatrix} 2 \\ 3 \end{bmatrix} + k \begin{bmatrix} 2 \\ -5 \end{bmatrix} = 1$ $k \begin{bmatrix} 2 \\ 3 \end{bmatrix} + k \begin{bmatrix} 9 \\ -5 \end{bmatrix} = 1$	dM1
	$6\frac{3}{3}k = 1$ $k = \frac{3}{20} **AG$	A1cso (5)
(c)	$\int_{-1}^{x} k(x^{2} + 2x + 1)dx = k \left[\frac{x^{3}}{3} + x^{2} + x \right]_{-1}^{x} \text{ or } \left[\frac{k}{3} (x + 1)^{3} \right]_{-1}^{x}$ $= \frac{3}{20} \left(\frac{x^{3}}{3} + x^{2} + x + \frac{1}{3} \right) \text{ or } \frac{1}{20} (x + 1)^{3}$	M1
	$\int_{1}^{x} k(6-2x)dx + \int_{-1}^{1} k(x^{2}+2x+1)dx = k \left[6x - x^{2} \right]_{1}^{x} + \frac{2}{5}$ $= \frac{3}{20} \left(6x - x^{2} - 5 \right) + \frac{2}{5}$ $= \frac{9}{10} x - \frac{3}{20} x^{2} - \frac{7}{20}$	M1
	$F(x) = \begin{cases} 0 & x < -1 \\ \frac{3}{20} \left(\frac{x^3}{3} + x^2 + x + \frac{1}{3} \right) & -1 \le x \le 1 \\ (9 & 3 & 2 & 7 \end{cases}$	B1 A1 A1
	$ \begin{pmatrix} \frac{1}{10}x - \frac{1}{20}x^2 - \frac{1}{20} \\ 1 & x > 3 \end{pmatrix} $ $1 < x \le 3$	(5)

Question Number	Scheme	Marks	
6. cont. (d)	$\frac{9}{10}x - \frac{3}{20}x^2 - \frac{7}{20} = 0.5$	M1	
	$3r^2 - 18r + 17 - 0$		
	$x = \frac{18 \pm \sqrt{18^2 - 4 \times 3 \times 17}}{1000}$	dM1	
	$6 x = 1.17 ext{ only}$	Al	
		(3)	
		Total (15)	
	Notes		
(a)	B1 correct shape with correct curvature and straight line with negative gradient. Must st	art and end	
	on the x-axis. B1 -1, 1, 3 and 4k (or 0.6) labelled in the correct place		
(b)	M1 adding two areas and putting equal to 1 eg $\int_{-1}^{1} k(r+1)^2 dr + 4k - 1$		
	We always and putting equal to 1 eg $\int_{-1}^{-1} k(x+1) dx + 4k = 1$ M1 attempting to integrate (at least one $x^n \rightarrow x^{n+1}$) or finding area of triangle		
	Ivit all integrate (at least one $x \to x^{-1}$) or finding area of triangle		
	At contect integration $k\left(\frac{x}{3} + x + x\right)$ and $k\left(0x - x\right) \underbrace{01}_{3} k\left(\frac{x}{3} + x + x\right)$ and $4k$		
	$\underline{\text{or}} \ k\left(\frac{(x+1)^3}{3}\right) \text{ and } k\left(\frac{(6-2x)^2}{-4}\right)$		
	M1 dependent on previous two M marks. For using correct limits A1 correct solution with no incorrect working seen		
(c)	For both M marks, attempt to integrate at least one $x^n \rightarrow x^{n+1}$		
	M1 for attempt to integrate line 1 of $f(x)$ with correct limits <u>or</u> with + c and substituting in -1 and setting = 0		
	M1 for attempt to integrate line 2 of $f(x)$ with correct limits and adding $\frac{2}{5}$ or their F(1)	l)	
	$\underline{\text{or}}$ with + c and substituting in 3 and setting = 1		
	B1 top and bottom row correct 1^{st} A1 for 2^{nd} line of F(x) with correct range 2^{nd} A1 for 3^{rd} line of F(x) with correct range		
	Do not penalise the use of \leq instead of $<$ and \geq instead of $>$		
(d)	M1 for setting their 2^{nd} line or 3^{rd} line of $F(x) = 0.5$ dM1 for solving a 3 term quadratic dependent on first M1 (must be using their 3^{rd} line of A1 for 1.17 only (condone awrt 1.17) must reject other solution (4.825)	f F(<i>x</i>))	

Question Number	Scheme	Marks
7	$\frac{64.5 - \mu}{\sigma} = 0.75$	B1 M1 M1 A1
	$\frac{52.5-\mu}{\sigma} = -1.25$	A1
	$64.5 - \mu = 0.75\sigma$	dM1
	$52.5 - \mu = -1.25\sigma$	
	$\sigma = 6$	A1
	$\mu = 60$	A1
	np = 60	M1
	np(1-p) = 36	M1
	1 - p = 0.6	
	p = 0.4	A1
	n = 150	A1
		(12)
		Total (12)
	Notes	
	B1 ± 0.75 and ± 1.25 (or better) seen	
	$1^{\text{st}} \text{ M1 } 64 \pm 0.5 \text{ or } 52 \pm 0.5$	
	2^{nd} M1 standardising either using 64, 65 or 64 ± 0.5 or 52,53 or 52 ± 0.5 with μ and σ or <i>np</i> and $\sqrt{np(1-p)}$ (need not be set equal to a z-value)	
	1 st A1 for $\frac{64.5 - \mu}{\sigma} = 0.75$ (with compatible signs)	
	$2^{\text{nd}} \text{A1 for} \frac{52.5 - \mu}{\sigma} = -1.25$ (with compatible signs)	
	3^{rd} M1 solving simultaneous equations dependent on 2^{nd} M1. Must attempt to eliminate μ or σ or <i>np</i> or $\sqrt{np(1-p)}$	
	$3^{rd} A1 \sigma = 6$ $4^{th} A1 \mu = 60$ $4^{th} M1$ using $\mu = np$ (may be awarded at any stage in the working)	
	5 th M1 using $\sigma = \sqrt{np(1-p)}$ (may be awarded at any stage in the working)	

PhysicsAndMathsTutor.com

January 2014 (IAL)

PhysicsAndMathsTutor.com

January 2014 (IAL)

Mark Scheme (Results)

Summer 2014

Pearson Edexcel GCE in Statistics 2 (6684/01)

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2014 Publications Code UA040123 All the material in this publication is copyright © Pearson Education Ltd 2014

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- _ or d... The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

Question Number	Scheme	Mark	s
1. (a)	Po(9)	B1	
(i)	$P(X \le 7) - P(X \le 6) = 0.3239 - 0.2068 \qquad \frac{e^{-9}9^7}{7!}$	M1	
	= 0.1171	A1	
(ii)	$\mathbf{P}(X \ge 10) = 1 - \mathbf{P}(X \le 9)$	M1	
	= 1 - 0.5874 = 0.4126	A1	(5)
(b)	Po(1.5) P(next patient before 11:45) = 1- P(0)	B1 M1	(3)
	$= 1 - e^{-1.5}$ = 0.7769	Al	
			(3) [8]
	Notes		
(a) (i)	B1 Po(9) written or used in either (i) or (ii)		
	M1 writing $P(X \le 7) - P(X \le 6)$ or $\frac{e^{-\lambda} \lambda^7}{7!}$		
	This may be implied by $0.3239 - 0.2068$		
	A1 awrt 0.117		
	$\mathbf{M} = \mathbf{M} + \mathbf{D} (\mathbf{M} < 0)$		
(ii)	M1 writing $1 - P(X \le 9)$ This may be implied by 1 = 0.5874		
	This may be implied by $1 - 0.3874$.		
	A1 awrt 0.413		
(b)	B1 Po(1.5) written or used		
	M1 writing or using $1 - P(0)$ or $1 - e^{-\lambda}$.		
	This may be implied by $1 - 0.2231$		
	A1 awrt 0.777		

Question Number	Scheme	Marks
2. (a)	$\int_0^9 c\left(81 - t^2\right) \mathrm{d}t = 1$	M1
	$c\left[81t - \frac{t^3}{3}\right]_0^9 = 1$	A1
	$c\left[81 \times 9 - \frac{9^3}{3}\right] = 1$	M1d
	$486c = 1$ $c = \frac{1}{486}$	A1cso (4)
(b)	$F(t) = \frac{1}{486} \int_0^t 81 - x^2 dx$	M1
	$= \frac{1}{486} \left[81t - \frac{x^3}{3} \right]_0^t$	
	$=rac{t}{6}-rac{t^3}{1458}$	
	$\begin{bmatrix} 0 & t < 0 \end{bmatrix}$	
	$F(t) = \begin{cases} \frac{t}{6} - \frac{t^3}{1458} & 0 \le t \le 9\\ 1 & t > 9 \end{cases}$	Alcso
(c)	$P(T>3) = 1 - \left(\frac{3}{6} - \frac{3^3}{1458}\right)$	M1
	$=\frac{14}{27}$ or awrt 0.519	A1 (2)
(d)	$P(T > 7 T > 3) = \frac{0.068587}{0.5185}$	M1A1ft
	$=\frac{25}{189}$ or awrt 0.132	A1 (3)
(e)	${}^{3}C_{2}(0.5185)^{2}(1-0.5185) = \frac{2548}{6561}$ or awrt 0.388/0.387	M1A1ftA1
		(3) [14]

	N 4
	Notes
(a)	1 st M1 Attempting to integrate, For attempt $x^n \rightarrow x^{n-1}$ and c must remain as c or
()	1/486. Ignore limits
	1 st A1 Correct integration. Ignore limits.
	2 nd M1 dependent on previous M being awarded.
	Putting = 1 and substitution of 9 as a limit seen. Need at least one intermediate step
	before getting 486
	or substitution of 1/486 and 9 seen and leading to an answer of 1
	At $c = \frac{1}{486}$ cso or if verifying, the statement $c = \frac{1}{486}$
	007
(b)	MI Attempting to integrate with correct limits or $\int f(t) dt + C$ and $F(0) = 0$ or $F(9) = 1$.
	Subst in c at some point
	A1 F(t) must be stated and cso. Condone use of \leq instead of \leq etc.
	1 .9
(c)	M1 using or writing $1 - F(3)$ or $\frac{1}{406} \int_{0}^{1} 81 - x^2 dx$ or $1 - P(X \le 3)$
	486 53
	A1 awrt 0.519
	a probability
(d)	$\frac{1}{their} (c)$
	where $0 \le a$ probability $\le their(a) \le 1$. If a probability $\ge their(a)$ give M0
	where $0 < u$ probability < then $(c) < 1$. If u probability \geq then (c) , give who.
	A1ft $\frac{729}{0}$ or $\frac{awrt0.0686}{0}$
	their (c) their (c)
	25
	A1 $\frac{25}{100}$ or awrt 0.132
	189
(e)	M1 Allow $(their '0.5185')^2 (1-their '0.5185')$
	A1ft Allow ${}^{3}C_{2}$ (their '0.5185') ² (1 – their '0.5185')
	A1 awrt 0.388 or 0.387

Question Number	Scheme	Marks
3. (a)	 Any two of Emails are independent/occur at random Emails occur singly Emails occur at a constant rate 	B1B1d
(b)	$X \sim Po(4)$ P(X = 0) = 0.0183 P(X \ge 9) = 0.0214	(2)
(c)	CR $X = 0$; $X \ge 9$ 0.0183 + 0.0214 = 0.0397 or 3.97%	B1B1 (2)
(d)	8 is not in the critical region or $P(X \ge 8) = 0.0511$ therefore there is evidence that the company's <u>claim</u> is true	M1 A1ft
(e)	$H_0: \lambda = 6 (\text{or } \lambda = 2) H_1: \lambda < 6 (\text{or } \lambda = 2) \text{allow } \lambda \text{ or } \mu$ $Po(6)$ $P(X \le 2) = 0.0620 CR X \le 2$	(2) B1 M1 A1
	0.0620 < 0.10 Reject H ₀ or Significant. There is evidence at the 10% level of significance that the mean <u>rate/number/amount</u> of <u>emails</u> received <u>is lower/ has decreased/is less</u> . Or <u>fewer emails</u> are received	M1 dep. A1 cso (5)
	N-4	[13]
(a)	B1 any correct statement with context of emails in B1d Dependent on previous B1. Any correct statement, need not have context SC for 2 correct statements without context B1 B0	<u> </u>
(b)	B1 $X = 0$ or $X \le 0$ Allow any letter. B1 $X \ge 9$ or $X > 8$ Allow any letter. SC if write correct CR's as probability statements award B1 B0 For these 2 marks import any variancies (1) or intersection size (2)	
(c)	M1 adding their probabilities of 'their' critical regions if sum gives a probabilit or award if a correct answer given	y less than 1
(d)	M1 correct reason ft their CR. Do not allow non-contextual contradictions. A1 correct conclusion for their CR. Allow conclusion in context of <u>emails</u> are	
(e)	B1 both hypotheses correct, must have λ or μ and either 2 or 6. M1 using Po(6) may be implied by correct answer. A1 0.062 or $X \le 2$ M1 dependent on previous method being awarded. Do not allow conflicting not statements. Follow through their hypotheses.	n-contextual

Question Number	Scheme	Marks
4. (a)	X is the random variable the Number of successes, $X \sim B(10, 0.75)$	B1
(i)	$P(X=6) = (0.75)^6 (0.25)^{4} {}^{10}C_6 \text{ or } P(X \le 6) - P(X \le 5)$	M1
(ii)	= 0.145998 awrt 0.146 Using $X \sim B(10, 0.75)$	A1
	$P(X \ge 8) = P(X = 8) + P(X = 9) + P(X = 10)$	M1
	$= (0.75)^8 (0.25)^{2} {}^{10}C_8 + (0.75)^9 (0.25)^{1} {}^{10}C_9 + (0.75)^{10}$	
	= 0.52559 awrt 0.526	A1
	Or Using V $D(10, 0.25)$ and $D(V < 2) = 0.5256$	(5)
	Using $I \sim B(10, 0.25)$ and $F(I \le 2) = 0.5250$	(5)
(b)	1 - P(0) = 0.8 or $P(0) = 0.2$	M1
	$(1-p)^{20} = 0.2$	
	1 - p = 0.9227	
	p = 0.0773	A1
	$\frac{3}{200}(90-x) = 0.0773$	M1
	x = 84.84	
	x = 85	Alcao (4)
(c)	X - successes ~B(100, 0.975)	B1
	$Y - \text{not successes} \sim B(100, 0.025)$	N(1 + 1
	$Y \sim Po(2.5)$ P(Y < 5) = 0.958	$ \begin{array}{c} \text{MIAI} \\ \text{M1A1} \end{array} (5) $
	Notes	[14]
(a)	B1 writing or using $p = 0.75$ or $p = 0.25$ anywhere in (a)(i) or (a)(ii)	
(i)	M1 writing or using $(p)^{6} (1-p)^{4} {}^{10}C_{6}$ or writing for $p = 0.75$, $P(X \le 6) - (X$	≤5)
(ii)	or for $p = 0.25$, $P(X \le 4) - P(X \le 3)$ or correct answer.	ý O)
()	MI writing B(10, 0.75) and writing or using $P(X = 8) + P(X = 9) + P(X = 10)$	0) oe
	or writing B(10, 0.25) and writing or using $P(Y \le 2)$.	
	Using correct Binomial must be shown by $(0.75)^n (0.25)^{10-n}$ or a correct answ	wer.
(b)	M1 for writing or using $1 - P(0) = 0.8$ or $P(0) = 0.2$ or $(1-p)^{20} = 0.2$. Allow any	inequality
	sign. A1 awrt 0.0773 or awrt 0.923.	
	M1 subst in $\frac{3}{200}(90-x)$ for <i>p</i> NB this may be substituted in earlier for <i>p</i> .	
	Allow for $\frac{3}{200}(90-x) = k$ where $0 < k < 1$ $k \neq 0.8$ or 0.2 Allow any inequality	ity sign
	A1 condone $x \ge 85$ Do not allow $x \le 85$	
(c)	B1 writing or using 0.975 or 0.025 , may be implied by Po(2.5)	
	M1 using Po approximation	
	$\begin{array}{c} A1 \operatorname{Po}(2.5) \\ M1 \text{ writing on writing } \mathbf{P}(V \leq 5) \end{array}$	
	$1 \text{ writing or using } \mathbf{r}(I \geq 3)$	
	SC use of normal approximation can get B1 M0A0M1A0	
	B1 writing or using 0.975 or 0.025 implied by normal with mean 97.5 or answ M1 for awrt 0.973	rer of 0.973

Question Number	Scheme	Marks	
5.(a)	<i>n</i> is large and <i>p</i> close to 0.5	B1B1 (2)	
(b)	There would be no pea seeds left	B1 (1)	
(c)	$H_0: p = 0.55$ $H_1: p \neq 0.55$	B1 (1)	
(d)	X~N(121, 54.45)	B1	
	$P(X \ge 134.5) = P\left(Z \ge \frac{134.5 - 121}{\sqrt{54.45}}\right) \text{ or } \pm \frac{x - 0.5 - 121}{\sqrt{54.45}} = 1.96$ $= P(Z \ge 1.8295)$	M1M1A1	
	= 1 - 0.9664		
	$= 0.0336/0.0337 \qquad \qquad x = 135.96$	A1	
	Accept H_0 not in CR, not significant The <u>company's claim</u> is justified or <u>55</u> % of its pea <u>seeds germinate</u>	M1 A1cso (7)	
	$\frac{\text{Alternative}}{X \sim N(99, 54.45)}$	B1	
	$P(X \le 85) = P\left(Z \le \frac{85.5 - 99}{\sqrt{54.45}}\right) \text{ or } \pm \frac{x + 0.5 - 99}{\sqrt{54.45}} = 1.96$	M1 M1 A1	
	$= P(Z \ge 1.8295) = 1 - 0.9664$		
	$= 0.0336/0.0337 \qquad \qquad x = 107.5$		
	Accept H_0 not in CR, not significant	M1	
	The company's claim is justified or 55% of its pea seeds germinate	A1cso [11]	
	Notes		
(a)	B1 accept $n > 50$ (or any number bigger than 50)		
	B1 p close to 0.5 MP Do not accort $nn > 5$ $na > 5$		
(b)	No Do not accept $np > 5$, $nq > 5$. Must have the idea of no neas left. They must mention either nea or seeds .		
(0) (c)	B) both hypotheses correct Must use p or π and 0.55 or Accept the hypotheses	s in part (d)	
(d)	D_1 court hypotheses correct. Wast use p of n and 0.55 cc. Recept the hypotheses	$\int \frac{1}{54.45}$	
(4)	BI correct mean and Var, may be seen in the standardiation formula as 121 and	$1 \sqrt{54.45}$ or	
	 7.38 to 2dp or implied by a correct answer M1 for attempting a continuity correction (Method 1:135/85 ± 0.5 / Method 2:x ± 0.5) M1 for standardising using their mean and their standard deviation and using either Method 1 [134.5, 135, 135.5, 85, 85.5 or 84.5 accept ± z.] Method 2 [(x ± 0.5) and equal to a ± z value] 		
	A1 correct z value awrt ± 1.83 or $\pm \frac{134.5 - 121}{\sqrt{54.45}} \left(\frac{85.5 - 99}{\sqrt{54.45}}\right)$ or $\pm \frac{x - 0.5 - 121}{\sqrt{54.45}} = 1.96$		
	$\left(\pm \frac{x+0.5-99}{\sqrt{54.45}} = 1.96\right)$ or (allow 1.6449 if 1 tail test in (c))		
	A1 awrt 0.0336/0.0337 or awrt 136 (allow 126 if one tail test in (c)) or a compa awrt1.83 with 1.96 (1.6449)	rison of	
	M1 A correct statement. Accept H_0 , oe if a 2-tailed test in (c), reject H_0 , oe if a 1-tailed test in (c). Allow for a correct contextual statement. Do not allow contradictions of non-		
	A1 A correct contextual statement to include words in bold/underlined for a 2-tailed test.		
	NB if finding $P(X = 135)$ they can get B1 M1 M1 A0 A0 M0 A0		

Question Number	Scheme	Marks
6.		
(a)	$E(X) = \int_0^1 \frac{2x^2}{9} dx + \int_1^4 \frac{2x}{9} dx + \int_4^6 \frac{2x}{3} - \frac{x^2}{9} dx$	M1
	$= \left[\frac{2x^{3}}{27}\right]_{0}^{1} + \left[\frac{2x^{2}}{18}\right]_{1}^{4} + \left[\frac{x^{2}}{3} - \frac{x^{3}}{27}\right]_{4}^{6}$	A1
	$= \left[\frac{2}{27}\right] + \left[\frac{32}{18} - \frac{2}{18}\right] + \left[4 - \frac{80}{27}\right]$	M1d
	$=2\frac{7}{9}$ or awrt 2.78	A1 (4)
	$\int 0 \qquad r < 0$	(+)
	$\frac{x^2}{2}$ $0 \le x \le 1$	B1
	9	
(b)	$\left F(x) - \right = 2x + 1$	M1A1
(0)	$\left[\begin{array}{c} 1 \\ x \\ y \\ y$	M1 A1
	$2x x^2$	
	$\frac{-3}{3} - \frac{-1}{18} - 1$ $4 \le x \le 6$	B1
	$1 \qquad x > 6$	
	1 st M1 For 1 < x < 4, $F(x) = \int_{1}^{x} \frac{2}{9} dx + \frac{1}{9}$	
	f^{x} f^{x} f^{x} f^{x} f^{z}	
	$2^{n\alpha}$ M1 For $4 \le x \le 6$, $F(x) = \int_{4}^{2} \frac{\pi}{3} - \frac{\pi}{9} dx + \frac{\pi}{9} dx$ use +C and $F(6) = 1$	
	577	(6)
(c)	F(x) = 0.5	M1
	2m - 1 - 0.5	A 1 ft
	$\frac{-9}{9} - \frac{-9}{9} - 0.5$	AIII
	m = 2.75	A1
		(3)
(d)	Median < mean therefore positive skew	MlAlcao
	Of Ivican≈ median meretore no skewness	(2)
		[15]

	Notes
(a)	M1 using $\int x f(x) dx$ ignore limits. Must have at least one $x^n \rightarrow x^{n+1}$
	They must add the 3 parts together. Do not allow division by 3. A1 all integration correct; ignore limits M1 dependent on previous M being awarded. Subst in correct limits – no need to see zero substituted. $A1.2\frac{7}{2}$ or or awrt 2.78
(b)	$\begin{array}{c} 1112 \\ 9 \\ 1212 \\ 9 \\ 1212 \\ 1$
(D)	B1 for 2 line- allow use of < instead of \leq M1 For 1 < x < 4, $F(x) = \int_{1}^{x} \frac{2}{9} dx + \frac{1}{9}$. Limits are needed.
	or use $F(x) = \int_{1}^{x} \frac{2}{9} dx$ + their F(1) need limits
	or use "their $F(1)$ " = $\int \frac{2}{9} dx + C$ and subst $x = 1$ into RHS
	or use "their $F(4)$ " = $\int \frac{2}{9} dx + C$ and subst $x = 4$ into RHS
	A1 for 3^{rd} line allow use of \leq instead of $<$
	M1 For $4 \le x \le 6$, $F(x) = \int_{4}^{x} \frac{2}{3} - \frac{x}{9} dx + \frac{7}{9}$. Limits are needed.
	or use $F(x) = \int_4^x \frac{2}{3} - \frac{x}{9} dx$ + their F(4). Limits are needed.
	or use "their $F(4)$ " = $\int \frac{2}{3} - \frac{x}{9} dx + C$ and subst $x = 4$ into RHS
	or use $1 = \int \frac{2}{3} - \frac{x}{9} dx + C$ and subst $x = 6$ into RHS
	A1 for 4 th line allow use of \leq instead of \leq B1 for first and last line - allow use of \leq instead of $<$ and \geq instead of $>$ and
<i>.</i>	"otherwise" for one of $x < 0$ and $x > 6$
(c)	M1 putting any one of their lines = 0.5 A1their 3 rd line = 0.5
	A1 2.75
(d)	Must compare the median and mean, ignore references to mode
	A1 no ft Correct answer only from correct values of the mean and median or a
	correct and fully labelled sketch.

PMT

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

Mark Scheme (Results)

Summer 2014

Pearson Edexcel GCE in Statistics S2R (6684/01R)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2014 Publications Code UA040126 All the material in this publication is copyright © Pearson Education Ltd 2014

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- or d... The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

Question	Scheme	Marks
1.	$H_0: p = 0.2$ $H_1: p < 0.2$	B1
	$[X \sim B(40, 0.2)]$ $P(X \le 3) = 0.0285$ or CR of $X \le 3$	M1A1
	[0.0285 < 0.05] significant, reject H ₀	M1dep
	There is evidence to support the supplier's <u>claim</u>	Alcso
	or The probability of a ball failing the bounce test is less than 0.2	
		(5)
	Notes	
	1 st B1 for both H_0 and H_1 must use p or π	
	1 st M1 for writing or using B(40, 0.2), may be implied by correct answer 1 st A1 awrt 0.0285 or CR of $X < 3$ as their final answer	
	2 nd M1 dependent on the previous method mark being awarded. A correct statement (this may be contextual) comparing "their probability" and 0.05 (or comparing 3 with their critical region). Do not allow conflicting statements.	
	2 nd A1cso This is cso so can only be awarded for a fully correct solution. A concontextualised conclusion (to include the words underlined in bold)	rect

Question	Scheme	Marks
2. (a)	(i) $S \underline{is}$ a statistic, (ii) $D \underline{is} \underline{not}$ a statistic, (iii) $F \underline{is}$ a statistic	B1, B1, B1
(b)	$T \sim B(10, 0.4)$	(3) M1A1 (2)
(c)	$P(2' 2' 2) = 0.6^{2} \times 0.4 = P(5 5 2, 5 > 5 2, >5 > 5 2)$ $= (0.25)^{2} (0.4) + 2 \times (0.25) (0.35) (0.4) + (0.35)^{2} (0.4)$	M1
	= 0.144	A1 (2) (7)
	Notes	
(a)	B1 for each variable. Accept "yes, no, yes" o.e.	
(b)	M1 for binomial A1 for $n = 10$ and $p = 0.4$ NB If they give 2 options then unless they select the correct one they gain M0A0	0
(c)	M1 for identifying the correct possibilities 2' 2' 2 <u>or</u> 5 5 2 and 5 > 5 2 and > 5 5 2 and > 5 5 2 and > 5 5 2 or a correct probability statement. The possibilities must be in the correct order. Condone $2 \times (5 > 5 2)$ or $2 \times (> 5 5 2)$. Implied a correct answer. A1 for 0.144 or exact equivalent e.g. $\frac{18}{125}$	

PMT

Question	Scheme	Marl	ks
3. (a)	$X \sim \text{Po}(9)$	M1A1	
(b)	$P(X > 7) = 1 - P(X \le 7)$ = [1-0.3239] = 0.6761	M1 A1	(2)
(c)	$[Y = \text{no. of accidents in a month}] Y \sim \text{Po}(1.5)$ P(Y \ge 1) = 1 - P(Y = 0) = [1-0.2231] = 0.7769 (= 0.777 (3dp))*	B1 M1 A1cso	(2)
(d)	[A = no. of months with at least one accident] A ~ B(6, 0.777) $P(A = 4) = \binom{6}{4} (0.777)^4 (0.223)^2$	M1 M1	(3)
	= 0.2719 awrt 0.272	A1	(3) (10)
	Notes		
(a)	M1 for Poisson (accept Po). Condone P(9) A1 for mean of 9		
(b)	M1 for writing $1 - P(X \le 7)$. This may be implied by $1 - 0.3239$ or a correct a A1 for awrt 0.676	answer	
(c)	B1 Po(1.5) written or used M1 writing or using $1 - P(Y = 0)$ or $1 - P(Y \le 0)$ or $1 - e^{-\lambda}$ [may not be Y] A1 for at least $(1 - 0.223)$ or better. No need for final comment.* answer given so 0.777 does not imply all three marks		
(d)	1 st M1 for identifying binomial with $n = 6$ and $p = 0.777$ or better. Condone use 0.223. May be implied by $(p)^4(1-p)^2 p = \text{awrt } 0.777$ or awrt 0.223 2 nd M1 Must have ${}^6C_4 (0.777)^4(1-0.777)^2$ A1 for awrt 0.272	e of <i>p</i> =	

Quest	tion	Scheme	Marks
4.	(a)		B1B1B1
	(b)	$Mode = 2 \qquad \qquad$	(3) B1 (1)
	(c)	Mean < mode, so negative skew	B1, dB1 (2)
	(d)	$3k \times 1 + \int_{1}^{4} (4kx - kx^2) dx = 1$	M1, B1
		$3k + \left[2kx^2 - \frac{kx^3}{3}\right]_1^4 \{=1\}$	M1
		$3k + \left(32k - \frac{64k}{3}\right) - \left(2k - \frac{k}{3}\right) = 1$	M1d
		$12k = 1$ so $k = \frac{1}{12}$	A1
	(e)	Lower Quartile = 1	(5) B1 (1)
	(f)	P(1 < X < 2) = P(2 < X < 3) by symmetry	M1 (1)
		So $P(X>3) = 1 - 3k - \frac{22}{36} = \frac{5}{36}$	A1 (2)
			(14)
		Notes	(1)
	(a)	1 st B1 for horizontal line $y = 3k$ and $3k$ marked on y-axis 2 nd B1 for correct share for $1 \le y \le 4$ marking y avia at (4, 0) and not avian dia	
		2 B1 for correct shape for $1 < x < 4$, meeting x-axis at (4, 0) and not extendin axis. Must be a curve	ig below x-
		3^{rd} B1 for $x = 1$ marked and graphs meeting at the point $(1, 3k)$	
	(b) (c)	1^{st} B1 for a suitable reason which matches their mode. The mode must be a n	umber. Must
		use mean. 2 nd dB1 not ft, dependent on 1 st B1. Correct answer from correct value of Mode.	
	(d)	1^{st} M1 for attempting the sum of both areas = 1, ignore limits B1 for 3k seen added to integral	
		2^{nd}_{rd} M1 For some correct integration, at least one $kx^n \rightarrow kx^{n+1}$	
		3 rd M1d Dependent on 1 st M1 being awarded. For use of correct limits.	
	(e)	$\begin{array}{ccc} A1 & 101 \ k - \frac{1}{12} \\ B1 & \text{for } 1 \end{array}$	
	(f)	M1 for identifying the symmetry. May be implied by $P(1 < x < 2) = \frac{11}{36}$ four	nd by any
		method	
		or writing down a correct equation (ft their k). e.g 11	
		$0.75 - 2 \times \frac{11}{36} \text{or } \int_{3}^{7} kx (4-x) dx \text{ or } 1 - 3k - \frac{11}{36} - \int_{1}^{2} 4kx - kx^2 \text{ with the}$	eir <i>k</i> subst in
		A1 Ior $\frac{1}{36}$ or exact equivalent	

Ρ	M	Т

Ouestion	Scheme	Marks
5. (a)	$H_0: \lambda = \frac{1}{8} (\text{ or } \lambda = 5)$ $H_1: \lambda \neq \frac{1}{8} (\text{ or } \lambda \neq 5)$ allow $\lambda \text{ or } \mu$	B1
	$X \sim Po(5)$, $P(X \le 1) = 0.0404$ or $P(X \ge 10) = 0.0318$ or $P(X \ge 9) = 0.0681$ Critical Regions: $X \le 1$ or $X \ge 10$	M1 A1, A1
(b)	0.0404 + 0.0318 = 0.0722 (or 7.22% significance level)	M1A1 (2)
(c)	$H_0: \lambda = \frac{1}{8} \text{ (or } \lambda = 25 \text{)} \qquad H_1: \lambda < \frac{1}{8} \text{ (or } \lambda < 25 \text{)} \qquad \text{allow } \lambda \text{ or } \mu$	B1
	[Y= no. of defects in 200m of wallpaper] Y~Po(25) $Y \approx N(25, \sqrt{25}^2)$	M1A1
	P(Y≤19) ≈ P $\left(Z < \frac{19.5 - 25}{\sqrt{25}}\right)$ or $\pm \frac{x - 0.5 - 25}{5} = 1.96$	M1M1
	= [P(Z < -1.1)] = 0.1357 (or 0.13566 from calc) x = 35.3	A1
	[> 0.05] not significant, there is insufficient evidence to support Thomas '	Alcso
	Or The number/rate/amount of defects is not decreased/less/reduced	(7) (13)
	Notes	
(a) (b)	B1 for suitable hypotheses M1 for correct use of Po(5). Award if one relevant probability is seen or a correct CR. Allow if a correct CR written as a Probability statement $1^{st} A1$ for $X \le 1$ or $X < 2$ or $0 < X < 2$ or $0 \le X < 2$ or $0 < X \le 1$ oe. Allow any letter $2^{nd} A1$ for $X \ge 10$ or $X > 9$ or $10 \le x \le 40$ or $9 < x \le 40$ oe. Allow any letter Ignore any \cup or \cap signs Do not allow CR written as probability statements M1 for adding their probabilities of 'their' critical regions if sum gives a probability less than 1 or award if a correct answer given A1 for awrt 0.0722 (o.e)	
(c)	B1 for suitable hypotheses 1 st M1 for normal approximation	
	1 st A1 for mean =25 and variance = 25 or sd = 5 may be seen in the standardiation formula or implied by a correct answer 2 nd M1 for attempting a continuity correction (Method 1:19 ± 0.5 / Method 2:x ± 0.5) 3 rd M1 for standardising using their mean and their standard deviation and using either Method 1 [19.5, 19, 18.5 accept ± z.] Method 2 [(x±0.5) and equal to a ± z value] 2 nd A1 for awrt 0.136 or 35.3 or -1.1 > -1.96 3 rd A1 for a correct contextualised conclusion. cao for a one tailed test, must come from correct working. Condone incorrect hypotheses. NB if finding P(X=19) ie P(X≤19.5) - P(X≤18.5)they can get B1 M1 A1M1 M1 A0 A0	

Ouestion	Scheme	Marks
6. (a)	$\frac{d^2}{d^4} - \frac{d^4}{d^4} = \frac{1}{d^4}$	M1
	2 16 2	1,11
	$\left[d^4 - 8d^2 + 8 = 0 \Rightarrow\right] 8 = (d^2 - 4)^2 \text{ or } d^2 = \frac{8 \pm \sqrt{64 - 32}}{2}$	M1
	$d^2 = 4 - \sqrt{8}$	M1d
	$d = \sqrt{4 - \sqrt{8}} = 1.08239$ awrt 1.08	A1 (4)
(b)	$f(d) = d - \frac{d^3}{4}$	M1
	$\left[f'(d) = 0 \Longrightarrow\right] 1 - \frac{3d^2}{4} = 0$	M1A1
	$\left[d^2 = \frac{4}{3} \text{ so}\right]d = 1.154$	A1
	$f''(d) = -\frac{6d}{4} < 0 \text{ so max}$	B1 (5)
(c)	$P(D < 1) = \left[\frac{1}{2} - \frac{1}{16}\right] = \frac{7}{16}$	B1
	Number of children = $80 \times \frac{7}{16}$, = 35	M1, A1
		(3)
	Notes	(12)
(a)	1 st M1 for forming this equation based on $F(d) = 0.5$ oe	
	2 nd M1 for attempting to solve (complete the square or use formula) –must be of their equation	correct for
	$d3^{rd}$ M1 for square rooting to get $d = \dots$ Do not award for $d = awrt1.17$ Depa	endent on
	previous M being awarded.	
	Al for awrt 1.08 Must reject any negative answers	
(b)	1 st M1 for attempting to find f(d). Some correct differentiation. $x^n \rightarrow x^{n-1}$	1
	2^{nd} M1 for attempting f'(d) and setting it =0 Some correct differentiation x ⁿ to	$\mathbf{X}^{\mathbf{H} + \mathbf{I}}$
	1 A1 for a correct equation for a	
	2^{na} A1 for awrt 1.15 or 1.155 or $\sqrt{\frac{1}{3}}$ or $\frac{2\sqrt{3}}{3}$ or $\frac{2}{\sqrt{3}}$ oe	
	B1 for a method confirming that their value gives a max not a min	
(c)	M1 for $80 \times p$, 0	
	A1 for 35 only	

Question	Scheme	Marks
7. (a)	X~U[0, 9]	B1 (1)
(b)	$[P(X > 6) =] \frac{1}{3} \text{ oe} \qquad \text{allow awrt}$	B1 (1)
	0.333	(1)
(c)	$R = X(9-X), = 9X - X^2$	M1, A1
(d)	E(X) = 4.5	(2) B1
	Var(X) = $\frac{81}{12} = \frac{27}{4}$ or $E(X^2) = \int_0^9 \frac{x^2}{9} dx$	B1
	$E(X^{2}) = Var(X) + [E(X)]^{2}$ or $= \left[\frac{x^{3}}{2\pi}\right]^{9}$	M1
	$\lfloor 27 \rfloor_0$ $E(X^2) = 27$	A1
	So $E(R) = 9 \times 4.5 - 27 = 13.5$	dM1A1
	Alternative method	(6)
	$\int_{0}^{9} \frac{(9x - x^{2})}{9} dx = \left[\frac{9x^{2}}{18} - \frac{x^{3}}{27}\right]^{9}$	B1 B1 M1A1
	$=\frac{81}{2} - \frac{81}{2}$	dM1
	= 13.5 $= 13.5$	A1
(e)	$R > 2X^2$ or $9X - X^2 > 2X^2$	M1
	$9X > 3X^2$	A1 M1
	$=\frac{1}{2}$	A1
	3	
		(4) (14)

	Notes
(a)	B1 for $X \sim U[0, 9]$ or "continuous uniform"/"rectangular" distribution with correct range
	Or allow the pdf f(x) = $\begin{cases} \frac{1}{9} & 0 \le x \le 9\\ 0 & \text{otherwise} \end{cases}$
(c)	M1 for $X(9-X)$ or $9X - X^2$ may be implied by a correct answer A1 for $9X - X^2$ or $a = -1$ and $b = 9$
(d)	1 st B1 for 4.5 or may be implied 2 nd B1 for $\frac{81}{12}or\frac{27}{4}$ or $\int_{0}^{9}\frac{x^{2}}{9}$ ignore limits 1 st M1 for full method for $E(X^{2})$ using their Var (X) and $E(X)$ or attempt to integrate $x^{n} \rightarrow x^{n+1}$ leading to a value for $E(X^{2})$. Need to be using $\int_{0}^{9}\frac{x^{2}}{9}$ ignore limits. 1 st A1 for $E(X^{2})=27$, may be implied. d2 nd M1 for using $9E(X) - E(X^{2})$. With their $E(X)$ and $E(X^{2})$. This may be implied by a correct answer. Dep on first M
	Alternative B1 $\int_{0}^{9} \frac{(9x - x^{2})}{9} dx$ ignore limits, ft their (c) which must be of the form $aX^{2} + b$ B1 $\int_{0}^{9} \frac{(9x - x^{2})}{9} dx$ with correct limits, ft their (c) M1 attempt to integrate at least one $x^{n} \rightarrow x^{n+1}$. Need to be using their $\int_{0}^{9} \frac{(9x - x^{2})}{9} dx$ condone limits missing A1 Correct Integration dM1 subst in limits, need to see 9 substituted. Condone missing 0
(e)	Allow \leq instead of $<$ and \geq instead of $>$ in this part 1 st M1 for forming a suitable inequality in <i>R</i> and <i>X</i> or just <i>X</i> . May be implied by a correct probability in <i>X</i> . 1 st A1 for simplifying to $9X > 3X^2$ or $3 > X$. May be implied by a correct probability in <i>X</i> 2 nd M1 for forming a correct probability in <i>X</i> 2 nd A1 for $\frac{1}{3}$ or exact equivalent

PMT

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

Mark Scheme (Results)

Summer 2014

Pearson Edexcel International A Level in Statistics 2 (WST02/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2014 Publications Code IA040144 All the material in this publication is copyright © Pearson Education Ltd 2014

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. Ignore wrong working or incorrect statements following a correct answer.

Question	Scheme	Marks
Number		
1. (a)	<i>n</i> -large (allow $n > 50$ or any number greater than 50) ["too" large is OK] p-small (allow $p < 0.2$ or a probability less than 0.2)	B1
(b) (c)	$H_0: p = 0.009$ $H_1: p > 0.009$ Po(4.5)Critical Region (CR) $P(X \ge 9) = 1 - P(X \le 8)$ $P(X \le 7) = 0.9134$ $= 1 - 0.9597$ $P(X \le 8) = 0.9597$ $= 0.0403$ $CR \ X \ge 9$ Reject $H_0 \ or$ Significantor9 is in the Critical region.There is evidence that the farmer's claim is true.OrOrThere is evidence that the proportion of eggs with a double yolk is > 0.009	(1) B1 (1) B1 M1 A1 M1d A1cso (5)
	Notos	[7]
(b)	B1 both hypotheses correct Must mention p (or π) Words only is B0	
(c) (c)	B1 writing or using Po(4.5)(Check their probs using tables if Po(4.5) is no 1 st M1 writing 1– P($X \le 8$) May be implied by sight of 1 – 0.9597 <u>or</u> for CR method: P($X \le 7$) = 0.9134 or P($X \le 8$) = 0.9597 (NB may see P($X \le 9$) = 0.9829 Allow this if trying a two-tail test and CR ap They can score M1 for writing 1– P($X \le 8$) even if they later go on to distribution such as B(500, 0.009). Exact binomial gives 0.039526 but scores 1 st A1 for probability awrt 0.0403 or CR of $X > 8$ or $X \ge 9$ Allow awrt 0.9597 if accompanied by a correct comparison with 0.9 2 nd dM1 correct statement that must agree with hypotheses. Dependent on B1 Contradictory non-contextual statement. Depends on all other marks in (c) being Must mention "farmer" and "claim" <u>or</u> "eggs" and "double yolk"	t seen) oproach) use another A0 95 H ₀ " score M0 g scored.
2-tail	NBA correct calculation followed only by a correct contextual comment sfinal M1(implied) and A1If 2-tail hypotheses in (b)Score B0 in (b)Could score B1 M1A1and M1 for a correct non contextual comment but A0 sinceshould not be rejecting H_0 in this case (or they have scored A0 earlier so not csore)	ce they

Question Number	Scheme	Marks
2. (a)	$\int_{0}^{2} k (4 - y^{2}) dy [= 1] \qquad \underline{\text{or}} \text{attempt } F(y)$	M1
	$k\left[4y - \frac{y^3}{3}\right]_0^2 \left[=1\right] \qquad \qquad$	A1
	$k \left 4 \times 2 - \frac{2^3}{3} \right = 1$ <u>or</u> must use $F(2) = 1$	M1d
	$k = \frac{3}{16} \qquad (*)$	A1cso (4)
(b)	$E(Y) = \frac{3}{16} \int_{0}^{2} (4y - y^{3}) dy$	M1
	$= \frac{3}{16} \left[2y^2 - \frac{y^4}{4} \right]_0^2 , = \frac{12}{16} \text{or} 0.75$ $= 750 \text{ (kg)}$	A1, A1
(c)	$E(Y^{2}) = \frac{3}{16} \int_{0}^{2} 4y^{2} - y^{4} dy$	M1
	$= \frac{3}{16} \left[\frac{4y^3}{3} - \frac{y^5}{5} \right]_0^2 \qquad (= 0.8)$	A1
	$Var(Y) = 0.8 - 0.75^2$ = 0.2375	M1 A1
	Standard deviation = 0.48734 or 487 (kg) $2 \sqrt{3}$	A1 (5) B1
(d)	$P(Y>1.5) = \frac{3}{16} \int_{1.5}^{2} (4-y^2) dy \ \underline{\text{or}} \qquad 1 - \frac{3}{16} \left[4y - \frac{y}{3} \right]_{0}$	M1
	$= \frac{3}{16} \left[4y - \frac{y^3}{3} \right]_{1.5}^2 \text{or} 1 - \frac{3}{16} \left[4y - \frac{y^3}{3} \right]_0^{1.5} = 0.0859 \text{ or} \frac{11}{128}$	A1 (3)
	Notes	[16]
(a)	1 st M1 attempting to integrate $f(y)$, (at least one term $y^n \rightarrow y^{n+1}$). Ignore limits. 1 st A1 fully correct integration. Ignore limits and accept any letters. 2 nd dM1 dep on 1 st M1. Subst in correct limits – condone not seeing 0 substitute 2 nd A1 cso – no incorrect working seen. "Verifying" requires statement "so $k = NB$ An "= 1" must appear somewhere before the line $\frac{16k}{2} = 1$	d. =" here
(b)	1 st M1 Attempting to integrate $yf(y)$, (at least one term $y^n \rightarrow y^{n+1}$). Ignore limit	ts
	1^{st} A1 correct integration which must be shown. No integration loses all 4 ma 2^{nd} A1 0.75 or any exact equivalent. May be implied by a correct ans. of 750 (H 3^{rd} A1cao 750 only. Condone missing "kg"	arks (g)
(c)	1 st M1 Attempting to integrate $y^2 f(y)$ (at least one term $y^n \to y^{n+1}$). Ignore limits. Containing the second se	ondone in $$
	2^{nd} M1 using $E(Y^2) - [E(Y)]^2$ follow through their $E(Y^2)$ and $E(Y)^2$ Must see value 2^{nd} A1 0.2375 may be implied by correct sd. Allow $\frac{19}{80}$ or exact equivalent 3^{rd} A1 awrt 0.487 or awrt 487 (no fractions)	ies <u>used</u>
(d)	B1 using 1.5 in an integral or $1 - F(1.5)$. Must be part of a correct expression M1 Correct integration and at least intention to use correct limits so 1.5, 2 or A1 awrt 0.0859 or $\frac{11}{128}$ or exact equivalent	on. 0, 1.5 seen

Question Number	Scheme	Marks
3. (a)	$\left[E(T) = \frac{\alpha + \beta}{2} = 2 \right], \Rightarrow \alpha + \beta = 4$, B 1
	$\left[\operatorname{Var}(T) = \frac{(\beta - \alpha)^2}{12} = \frac{16}{3}\right], \Rightarrow (\beta - \alpha)^2 = 64$, B1
	$\alpha = -2, \beta = 6$	M1 A1 A1
		(5)
(b)	$P(T < 3.4) = \frac{1}{8} \times (5.4)$	M1
	= 0.675	A1
		(2)
		[7]
	Notes	
(a)	$1^{\text{st}} B1 \qquad \alpha + \beta = 4 \text{ oe}$	
	2 nd B1 $(\beta - \alpha)^2 = 64$ or allow $(\beta - \alpha) = +8$ or $(\beta - \alpha) = -8$ or $3(\beta - \alpha)^2$	=192
	May be implied by a correct equation in one variable	
	M1 Correct processes to obtain a correct equation in one variable. Allow	one slip.
	e.g. $(\beta - [4 - \beta])^2 = 64$ or $2\beta = 12$ or $4\alpha^2 - 16\alpha - 48 = 0$ or $(2 - \alpha)^2$	=16
	$1^{\mathrm{st}} \mathrm{A1} \qquad \alpha = -2,$	
	$2^{nd} A1 \qquad \beta = 6$	
	If both correct answers only appear then this implies all 5 marks.	
(b)	M1 $\frac{1}{\pm \text{ their "}(\beta - \alpha)"} \times (3.4 - \text{'their } \alpha')$ If their nexpression is -ve or > 1 t	hen M0
	A1 0.675 or exact equivalent e.g. $\frac{27}{40}$	

Question Number	Scheme	Marks
4. (a)	$P(L > 100) = P\left(Z > \frac{100 - \mu}{0.5}\right) = 0.3$	
	$\Rightarrow \frac{100 - \mu}{0.5} =, \ 0.5244$	M1 B1
	$\mu = 99.7378$ cm awrt 99.7	A1
(b)	X represents number more than 100cm. $X \sim B(12, 0.3)$	(3) B1
	$P(X \le 2) = 0.2528$ awrt 0.253	M1A1
(c)	Normal approximation $\mu = 400 \times 0.3 = 120$, $\sigma^2 = 84$	(3) M1, A1
	$P(X > 127) \approx 1 - P(Z < \frac{127.5 - 120}{\sqrt{84}})$ ±0.5, standardise	M1, M1, A1
	$\approx 1 - P(Z < 0.818)$	
	=1-0.7939	
	= 0.206 or 0.207	A1 (6)
		[12]
	Notes	0 7
(a)	M1 standardising (\pm) with 100, μ and 0.5 and setting equal to a z value. 0.5	< <i>z</i> < 0.7
	B1 $z = \pm 0.5244$ or better (Calc. Gives 0.5244005). Must be used in an equilation of the second statement of the second s	uation for <i>u</i>
	A1 awrt 99.7. Answer only is $0/3$	μ
	NB M1 + answer only of awrt 99.7 scores M1B0A1 but allow B1 for 99.7376 $\leq \mu$	≤ 99.7379
(b)	B1 writing B(12, 0.3)	
	M1 writing $P(X \le 2)$ May be implied by sight of 0.252 or 0.253.	
	NB P(X < 3) alone is M0 unless they show that $P(X < 3) = P(X = 0) + P(X = 1)$	+ P(X=2)
	A1 awrt 0.253. Answer only scores 3/3	
(c)	1 st M1 attempting to use a Normal approx. State N(μ , σ^2) with $\mu \text{ or } \sigma$ correct 1 st A1 correct mean and var/sd 2 nd M1 continuity correction used: either 127.5 or 126.5 seen 3 rd M1 standardising with their μ and σ and finding correct area. Must lead to P(Z > 4 2 nd A1 $\frac{127.5 - 120}{\sqrt{84}}$ or awrt 0.82 3 rd A1 for awrt 0.206 or 0.207	-ve) (o.e.)

Question Number	Scheme	Marks
5. (a)(i)	$H_0: p = 0.35$ $H_1: p \neq 0.35$	B1
(ii)	B(15,0.35)	M1
	$CR X \le 1 \cup X \ge 10 \qquad (Allow any letter)$	A1A1
		(4)
(b)	8 is not in CR	M1
	There is evidence that the Company's <u>claim</u> is true	A1ft
		(2)
(c)	0.0142 + 0.0124 = 0.0266	B1
		(1)
		[7]
	Notes	
(a) (i)	B1 both hypotheses correct. Must mention p (or π). Words only is B0	
(ii)	M1 Writing B(15,0.35) May be implied by e.g. $P(X \le 1) = 0.0142$ or $P(X \le 9)$) = 0.9876
	1 st A1 $X \le 1$ (accept $X < 2$) Allow $0 \le X \le 1$ but P($X \le 1$) is A0	
	2 nd A1 $X \ge 10$ (accept $X > 9$) Allow $10 \le X \le 15$ but P($X \ge 10$) is A0	
	Either correct answer will imply M1	
(b)	M1 for a reason that matches their CR. "Interpret" their CR of $P(X \ge 10)$ as	$X \ge 10$ etc
	Allow calculation of $P(X \ge 8) = 1 - 0.8868 = 0.1132$ and "not sig" comm	nent
	Do not allow contradictory remarks e.g. 8 is not in CR so significant (the	is gets M0)
	A1ft for a conclusion correct for their CR in context	
	Must mention "claim" or "peas" and "germinating"	
	NB A correct contextual claim on its own scores M1A1	
(c)	B1 for 0.0266 or awrt 0.0266 (calc gives 0.02662196)	

Question	Scheme	Marks	
Number 6. (a)	$F(1.23) = awrt \ 0.495$ $F(1.24) = awrt \ 0.501$ 0.5 lies between therefore median value lies between 1.23 and 1.24	M1 A1 A1 (3)	
(b)	$ [f(x) =] \begin{cases} \frac{9x}{10} - \frac{3x^2}{10} & 0 \le x \le 2\\ 0 & \text{otherwise} \end{cases} $	M1A1 B1 (3)	
(c)	$\frac{18}{20} - \frac{12x}{20} = 0 \text{or completeing square so: } \frac{3}{10} \left[\frac{9}{4} - \left(x - \frac{3}{2} \right)^2 \right]$ $x = 1.5$	M1	
(d)	Median $<$ mode, negative skew	M1,A1 (2) (2)	
		[10]	
(a)	M1 attempt at both F(1.23) and F(1.24) and at least one correct $\underline{\text{or}} \frac{x^2}{20}(9-2x) = 0.5$ 1 st A1 both awrt 0.495 and awrt 0.501 <u>or</u> 1.238 2 nd A1 correct comment about the value of the <u>median</u> (not just 0.495 < F(<i>m</i>) < 0.501)		
(b)	M1 attempting to differentiate. Multiply out and at least one term $x^n \to x^{n-1}$ A1 correct differentiation. Allow $\frac{18x}{20} - \frac{6x^2}{20}$ or $\frac{3}{10}x(3-x)$ or any exact equivalent. B1 correct pdf, including 0 otherwise and $0 \le x \le 2$		
(c)	M1 for an attempt to differentiate pdf and put = 0 or complete the square or a sketch Sketch should have the correct shape and show some positive values on x – axis. An attempt at completing the square should get to $p \pm q(x-1.5)^2$ Answer only scores M1A1		
(d)	 M1 reason must match their values/ sketch (NB mean = 1.2). Their values must be in [0, 2] No mode or median will score M0 unless their reason is based on their sketch A1 no ft correct answer only e.g. If their mode = 1 and they say "mode < median" score M1 for a correct reason but A0 even if they say "positive skew" since there is no ft and "negative skew" would follow incorrect working. 		

Question Number	Scheme	Marks	
7. (a)	<i>F</i> represents number of flaws per 50 m \Rightarrow <i>F</i> ~ Po(2)		
	$P(F = 5) = 0.9834 - 0.9473$ or $\frac{e^{-2}2^5}{5!}$	M1	
	= 0.0361	A1 (2)	
(b)	<i>G</i> represents number of flaws per 200 m \Rightarrow <i>G</i> ~ Po(8)	B1	
	$P(G < 7) = P(G \le 6) = 0.3134$	B1	
	[<i>R</i> = number of 200 m rolls containing fewer than 7 flaws.] $R \sim B(4, 0.3134)$	M1A1ft	
	$P(R = 1) = C_1^4 \times 0.3134 \times (1 - 0.3134)^3 = 0.40576$ awrt 0.406	M1 A1 (6)	
(c)	<i>N</i> represents number of flaws in a <i>x</i> m roll \Rightarrow <i>N</i> ~ Po(λ)		
	$P(N < 26) = P(\frac{25.5 - \lambda}{\sqrt{\lambda}})$ ±0.5, standardise	M1, M1 A1	
	$\frac{25.5 - \lambda}{\sqrt{\lambda}} = 0.1 \qquad \text{gives} \lambda + 0.1\sqrt{\lambda} - 25.5 = 0$	B1	
	$\sqrt{\lambda} = \frac{-0.1 \pm \sqrt{0.1^2 + 4 \times 25.5}}{2}$	dM1	
	$\left[\sqrt{\lambda} = 5\right] \qquad \text{so} \lambda = 25$	A1	
	$x = \frac{25}{2} \times 50$, so $x = 625$ m	dM1	
	2	A1 (8)	
		[16]	
	Notes		
(a)	M1 Writing $P(X \le 5) - P(X \le 4)$ or $\frac{e^{-\lambda}\lambda^5}{5!}$ (any value of λ) A1 awrt 0.0361		
(b)	1^{st} B1 Writing or using Po(8) 2^{nd} B1 awrt 0.313 (calc gives 0.3133742)		
	1 st M1 Recognize Binomial 1^{st} A1ft writing B(4, 'their 0.313') May be =	>by next line	
	$2^{nd} dM1$ (dep. on $1^{st} M1$) $C_1^4 \times ' \text{their } 0.3134' \times (1 - ' \text{their } 0.3134')^3 = 2^{nd} A1 av$	wrt 0.406	
(c)	1 st M1 continuity correction used. Either 25.5 or 26.5		
	2 nd M1 standardising using their λ and $\sqrt{\lambda}$ for mean and sd. Any letter may be used or $\frac{x}{25}$ etc		
	1 st A1 $\frac{25.5 - \lambda}{\sqrt{\lambda}} = z$ where $0 < z < 0.5$ May be implied by their correct quadratic (25.5 req'd)		
	B1 0.1 (calc 0.09992) used as their z value in an equation. Allow e.g. $\frac{26-\mu}{\sigma} = 0.1$		
	3^{rd} dM1 (dep on 2^{nd} M1) some attempt at solving their $3TQ \frac{-b \pm \sqrt{+ve}}{2a}$ 2^{nd} A1 25 (o.e.)		
	4 th dM1 (dep on 3 rd M1) $\frac{\text{their } 25}{2} \times 50$ (If using $\frac{x}{25}$ award when $x =$) 3 rd A1	awrt 625	

PMT
PMT

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

Mark Scheme (Results)

January 2015

Pearson Edexcel International A Level in Statistics 2 (WST02/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2015 Publications Code IA040682 All the material in this publication is copyright © Pearson Education Ltd 2015

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. Ignore wrong working or incorrect statements following a correct answer.

January 2015 WST02 Statistics S2 Mark Scheme

Question Number	Scheme	Mark	s
1 (a)	<i>X</i> ~Po(3.2)	B1	
	$P(X=3) = \frac{e^{-3.2} \cdot 3.2^3}{2}$	M1	
	3!	A 1	(2)
(b)	-0.2220 awr 0.223	B1	(3)
	$P(Y \ge 1) = 1 - P(Y = 0)$	M1	
	$= 1 - e^{-1.6}$		
	= 0.7981 awrt 0.798	A1	(3)
(c)	$X \sim Po(0.8)$		
	$\frac{P(X=1) \times P(X=3)}{P(X=1)} = \frac{\left(e^{-0.8} \times 0.8\right) \times \left(\frac{e^{-0.8} 0.8^3}{3!}\right)}{e^{-1.61} e^4}$	M1 M1 M1 A1	
	$P(Y=4) \qquad \qquad \frac{e^{-1.5}1.6^4}{41}$	MIAI	
	0.3594×0.0383		
	$=\frac{0.0551000000}{0.05513}$		
	= 0.25	A1	(5)
(d)	$A \sim Po(72)$ approximated by N(72,72)	B1	
	$\frac{5000}{60} = 83.33$	M1	
	$\begin{pmatrix} 60 \\ (825 72 \end{pmatrix}$		
	$P(A \ge 84) = P\left(Z \ge \frac{83.3 - 72}{\sqrt{72}}\right)$	M1 M1	
	$= P(Z \ge 1.355)$	A 1	$\langle \boldsymbol{r} \rangle$
	= 0.0869 awrt 0.08 //0.088	AI	(5)
(a)	B1 for writing or using Po(3.2)		
	M1 $\frac{e^{-\lambda}\lambda^3}{2}$		
(b)	3! P1 for writing or using Po(1.6)		
(0)	M1 1 $P(Y=0)$ or 1 $e^{-\lambda}$		
(c)	$1^{\text{st}} M1 \text{ using Po}(0.8) \text{ with } X=1 \text{ or } X=3 \text{ (may be implied by 0.359 or 0.0383)}$		
	$2^{nd} M1 \left(e^{-\lambda} \times \lambda\right) \times \left(\frac{e^{-\lambda} \lambda^3}{3!}\right) \text{ (consistent lambda) awrt 0.0138 implies } 1^{st} 2 M$		
	marks		
	3^{rd} M1 correct use of conditional probability with denominator = $\frac{e^{-1.6}1.6^4}{1.6^4}$		
	4!		
	2^{nd} A1 0.25 (allow awrt 0.250)		
(d)	B1 Writing or using N(72,72)		
	1 st M1 for exact fraction or awrt 83.3 (may be implied by 84)		
	(Note: Use of N(4320,4320) can score B1 and 1^{st} M1) 2^{nd} M1 Using 84 ± 70.5		
	2^{-1} W11 USHig 04 $\pm/-$ U.3 3 rd M1 standardising using 82 5 83 83 3 (awrt 83 3) 83 5 83 8 84 or 84 5		
	'their mean' and 'their sd'		

Question Number	Scheme	Marks
2(a)	P(X > 4) = 1 - F(4)	M1
	$=1-\frac{3}{5}$	
	$=\frac{2}{2}$ oe	A 1
	5	(2)
(b)	1	B1
		(1)
(c)	$f(x) = \frac{dF(x)}{dx} = \frac{1}{5}$	M1
	$f(x) = \int \frac{1}{5} 1 \le x \le 6$	A1
	$1(x) = \begin{bmatrix} 5 \\ 0 \end{bmatrix}$ otherwise	
		(2)
(d)	E(X) = 3.5	B1
		(1)
(e)	Variance = $\frac{(6-1)^2}{12}$ or $\int_1^6 \frac{1}{5} x^2 dx - (3.5)^2$	M11
	$=\frac{25}{2}$ awrt 2.08	A1
	12	
(f)	$E(X^2) = Var(X) + [E(X)]^2$	(2)
	$= \frac{25}{12} + 3.5^2 \text{or} \int_1^6 \frac{1}{5} x^2 dx \qquad \text{or} \int_1^6 \frac{1}{5} (3x^2 + 1) dx$	M1
	$=\frac{43}{3}$	
	$\begin{bmatrix} 3x^3 & x \end{bmatrix}^6$	
	$E(3X^2 + 1) = 3 E(X^2) + 1 = \left[\frac{1}{15} + \frac{1}{5}\right]$	dM1
	$= 44 \qquad \qquad = 44$	Alcao
	N - 4	(3)
(a)	Notes $M1$ writing or using $1 - F(4)$ oe	
(c)	M1 for differentiating to get 1/5 A1 both lines correct with ranges	
(e)	M1 $\frac{(6-1)^2}{1-x^2}$ or $\int_{-1}^{6} \frac{1}{x^2} dx$ - 'their 3.5' ²	
(f)	$\frac{12}{1^{st}} \frac{J_1}{5} = \frac{1}{5}$	od in (a))
(1)	$x^{n} = x^{n} = x^{n+1}$ which must follow from the 1 metric $x^{n} = x^{n} = x^{n+1}$	1
	$\left \underline{\mathbf{or}} \right _{1} \frac{1}{5} x^{2} dx$ and integrating $\frac{1}{n+1}$ (may be seen in (e)) $\underline{\mathbf{or}}$ writing $\int_{1}^{1} \frac{1}{n+1}$	$\frac{1}{5}(3x^2+1) dx$
	(May be implied by $\frac{43}{3}$ seen)	
	2^{nd} M1 (dependent on previous M1) using $3 \times (\text{their } E(X^2)) + 1$	
	or $\int_{1}^{6} \frac{1}{5} (3x^2 + 1) dx$ and integrating $x^n \rightarrow \frac{1}{n+1}$	

Question Number			Scheme			Mark	s
	(A random varia	ble) that is a func	tion of a (random) sample involving	g no unknown		
	quantities/param	eters					
3 (a)	or					B1	
	A quantity calcu	lated solely from	a random sample				
	ri quantity curcu	lated solely from	a fundom sumple				(1)
	16 - 11 11		£				(1)
(b)	then the values of	mples are chosen of a statistic and the	from a population	ı; abilities is a samn	ling		
	distribution				B1		
	or a probability distribution of a statistic					(1)	
		. 3					(1)
(c)	Mean = $100 \times \frac{1}{7}$	$+200 \times \frac{3}{7}$					
	_ 1000	·			ut 1/2	D1	
	=7			aw.	11 145	ы	
	Variance – 100	$^{2} \times ^{4} + 200^{2} \times ^{3}$	$(1000)^2$			M1	
	variance – 100	$\frac{1}{7}$ $\frac{1}{200}$ $\frac{1}{7}$	$-\left(-7\right)$			1411	
	$=\frac{120}{1000}$	0000		awr	t 2450 (to 3sf)	A1	
	-	49			· · · · ·		(2)
(d)	(100,100,100)						(3)
()	(100,100,200) (100,200,100) (200,100,100) or 3 x (100,100,200)				B2		
	(100,200,200)	(200,100,200)	(200,200,100) c	or 3 x (100,200,2	00)		
	(200,200,200)						(2)
		$(4)^{3}$	64				(-)
(e)	(100,100,100)	$\left(\frac{1}{7}\right) =$	343	awrt 0.187			
		$(3)^{3}$	27				
	(200,200,200)	$\left(\frac{3}{7}\right) =$	343	awrt 0.0787		B1 both	
		$(4)^2$	(3) 144				
	(100,100,200)	$3 \times \left(\frac{1}{7}\right)$	$\times \left(\frac{5}{7}\right) = \frac{111}{343}$	awrt 0.42	0 (allow 0.42)	M1	
		(4)	$(3)^2$ 108				
	(100,200,200)	$3 \times \left(\frac{1}{7}\right) >$	$\left(\frac{3}{7}\right) = \frac{100}{343}$	awrt (0.315	A1	
	m	100	400/	500/	200		
			/3	/3 awrt 167			
	P(M = m)	64	144	108	27		
		$\frac{1}{343}$ or	$\frac{1}{343}$ or	$\frac{1}{343}$ or	$\frac{1}{343}$ or	AI	
		awrt 0.187	awrt 0.420	awrt 0.315	awrt 0.0787		
			(allow 0.42)			l	
							(4)

Question Number	Scheme	Marks		
(a)	Notes B1 for a definition which includes each of the following 3 aspects A function ¹ of a (random) sample ² involving no unknown quantities/parameter 1. function/quantity/calculation/value/random variable 2. sample/observations/data 3. no unknown parameters/no unknown values/solely (from a sample)	s ³	<u> </u>	
(b)	B1 requires all underlined words: <u>All values</u> of a <u>statistic</u> with their associated <u>probabilities</u> or <u>probability distribution</u> of a <u>statistic</u>			
(c)	M1 $100^2 \times \frac{4}{7} + 200^2 \times \frac{3}{7} - (\text{their mean})^2$			
(d)	B1 any 2 of $(100,100,100)$, $(100,100,200)$ any order, $(100,200,200)$ any ord B1 all correct allow 3 x (100,100,200) and 3 x (100,200,200) and (100,100,100)	(200,200,200,200,200,200,200,200,200,200	00)	
(e)	(200,200,200) Note: Allow other notation for 100 and 200 e.g. Small and Large B1 Both probabilities for (100,100,100) and (200,200,200) correct	,100) and		
	M1 $3 \times p^2 \times (1-p)$			
	A1 either correct			
	means must be associated with correct probabilities)			

Question Number	Scheme	Marks
4(a)	$X \sim Po(6)$ P(5 ≤ X < 7) = P(X ≤ 6) - P(X ≤ 4) or $\frac{e^{-6}6^5}{5!} + \frac{e^{-6}6^6}{6!}$	M1 M1
	= 0.6063 - 0.2851 = 0.3212 awrt 0.321	A1 (3)
(b)	$H_0: \lambda = 9 \qquad H_1: \lambda < 9$	B1
	$X \sim Po(9)$ therefore	
	$P(X \le 4) = 0.05496 \text{ or } CR \ X \le 3$	B1
	Insufficient evidence to reject H_0 or Not Significant or 4 does not lie in the critical region	dM1
	There is no evidence that the mean number of <u>accidents</u> at the crossroads has <u>reduced/decreased</u> .	Alcso
		(4)
(a)	Notes M1 writing or using Po(6)	
	M1 either $P(X \le 6) - P(X \le 4)$ or $\frac{e^{-\lambda}\lambda^5}{5!} + \frac{e^{-\lambda}\lambda^6}{6!}$	
(b)	1 st B1 both hypotheses correct (λ or μ) allow 0.5 instead of 9	
	2 nd B1 either awrt 0.055 or critical region $X \le 3$ dM1 for a correct comment (dependent on previous B1)	
	Contradictory non-contextual statements such as "not significant" so "reject H"	
	score M0	
	(May be implied by a correct contextual statement)	
	A1 cso requires correct contextual conclusion with underlined words and all	
	previous marks m (b) to be scored.	

Question Number	Scheme	Marks
5(a)	$\int_{-1}^{2} k(x^{2} + a) dx + \int_{2}^{3} 3k dx = 1$	M1
	$\left[k\left(\frac{x^{3}}{3}+ax\right)\right]_{-1}^{2}+\left[3kx\right]_{2}^{3}=1$	dM1
	$k\left(\frac{8}{3} + 2a + \frac{1}{3} + a\right) + 9k - 6k = 1$ 6k + 3ak = 1	A1
	$\int_{-1}^{2} k(x^{3} + ax) dx + \int_{2}^{3} 3kx dx \left[= \frac{17}{12} \right]$	M1
	$\left[k\left(\frac{x^{4}}{4} + \frac{ax^{2}}{2}\right)\right]_{-1}^{2} + \left[\frac{3kx^{2}}{2}\right]_{2}^{3} = \frac{17}{12}$	dM1
	$k\left(4+2a-\frac{1}{4}-\frac{a}{2}\right)+\frac{27k}{2}-6k=\frac{17}{12}$	A1
	$\frac{45k}{4} + \frac{3ak}{2} = \frac{17}{12}$ 135k + 18ak = 17	
	99k = 11	ddM1
	$a = 1, k = \frac{1}{9}$	A1 (8)
(b)	2	B1 (1)
(a)	Notes 1 st M1 writing or using $\int_{-1}^{2} k(x^2 + a) dx + \int_{2}^{3} 3k dx = 1$ ignore limits 2 nd dM1 attempting to integrate at least one $x^n \rightarrow \frac{x^{n+1}}{n+1}$ and sight of correct	
	limits (dependent on previous M1)	
	1 st A1 a correct equation – need not be simplified 3 rd M1 $\int_{-1}^{2} k(x^3 + ax) dx + \int_{2}^{3} 3kx dx$ ignore limits	
	4 th dM1 setting = $\frac{17}{12}$ and attempting to integrate at least one $x^n \rightarrow \frac{x^{n+1}}{n+1}$	
	and sight of correct limits (dependent on previous M1)	
	2 nd A1 a correct equation – need not be simplified	
	5 th ddM1 attempting to solve two simultaneous equations in <i>a</i> and <i>k</i> by eliminating 1 variable (dependent on 1^{st} and 3^{rd} M1s)	
	3^{rd} A1 both <i>a</i> and <i>k</i> correct	

Question Number	Scheme	Marks	
6. (a)	$P(X=5) = {}^{20}C_5(0.3)^5(0.7)^{15}$ or $0.4164 - 0.2375$	M1	
	= 0.17886 awrt 0.179	A1	(2)
(b)	Mean = 6	B1	(2)
	$sd = \sqrt{20 \times 0.7 \times 0.3}$	M1	
	= 2.049 awrt 2.05	A1	
			(3)
(c)	$H_0: p = 0.3$ $H_1: p > 0.3$	BI	
	∦ ~B(20.0.3)	M1	
	$P(X \ge 8) = 0.2277$ or $P(X \ge 10) = 0.0480$, so $CR X \ge 10$	Al	
	Insufficient evidence to reject H_0 or Not Significant or 8 does not lie in the critical region.	dM1	
	There is no evidence to support the <u>Director (of Studies')</u> <u>belief</u> /There is no evidence that the <u>proportion</u> of <u>parents</u> that <u>do not support</u> the <u>new</u> <u>curriculum</u> is greater than 30%	Alcso	
			(5)
(d)	$X \sim B(2n, 0.25)$ $X \sim B(8, 0.25) P(X \ge 4) = 0.1138$ $X \sim B(10, 0.25) P(X \ge 5) = 0.0781$	M1	
		Δ 1	
	2n = 10	A1 A1	
	n = 5		(3)
	Notes		(3)
(a)	M1 ${}^{20}C_5(p)^5(1-p)^{15}$ or using P($X \le 5$) – P($X \le 4$)		
(b)	M1 use of $20 \times 0.7 \times 0.3$ (with or without the square root)		
(c)	B1 both hypotheses correct (<i>p</i> or π) M1 using $X \sim B(20,0.3)$ (may be implied by 0.7723, 0.2277, 0.8867 or 0.1133) A1 awrt 0.228 or CR $X \ge 10$		
	dM1 a correct comment (dependent on previous M1) A1 cso requires correct contextual conclusion with underlined words and all previous marks in (c) to be scored.		
(d)	M1 for 0.1138 or 0.0781 or 0.8862 or 0.9219 seen 1^{st} A1 B(10, 0.25) selected (may be implied by $n = 10$ or $2n = 10$ or $n = 5$) An answer of 5 with no incorrect working seen scores 3 out of 3		
	Special Case: Use of a normal approximation, M1 for $\frac{(n-0.5)-\frac{n}{2}}{\sqrt{\frac{3}{8}n}} = z$ with $1.28 \le z \le 1.29$, 1 st A1 for $n=4.2/4.3$, 2 nd A1 for $n=5$		

PhysicsAndMathsTutor.com

Number Scheme	Marks
7. $Y \sim N\left(\frac{n}{5}, \frac{4n}{25}\right)$	B1
$P(Y \ge 30) = P\left(Z > \frac{29.5 - \frac{n}{5}}{\frac{2}{5}\sqrt{n}}\right)$	M1 M1A1
$\frac{\frac{29.5 - n_{5}}{2}}{\frac{2}{5}\sqrt{n}} = 2$	B1
$n + 4\sqrt{n} - 147.5 = 0$ or $0.04n^2 - 12.44n + 870.25 = 0$	dM1
$\sqrt{n} = 10.3$ $n = 106.26$ or $n = 204.73$	A1
n = 106	A1 cao (8)
Notes	
1 st B1 writing or using N $\left(\frac{n}{5}, \frac{4n}{25}\right)$	
1^{st} M1 writing or using 30 ± -0.5 2^{nd} M1 standardising using 29, 29.5, 30 or 30.5 and their mean and their 1^{st} A1 fully correct standardisation (allow $\pm -)$	sd
2^{nd} B1 for $z = +/-2$ or awrt 2.00 must be compatible with their	
standardisation 3^{rd} dM1 (dependent on 2^{rd} M1) getting quadratic equation and solving	
leading to a value of \sqrt{n} or n 2 nd A 1 evert 10.3 or evert (106 or 107 or 204 or 205)	
3^{rd} A1 for 106 only (must reject other solutions if stated)	
Note: $\frac{29.5 - n/5}{\frac{2}{5}\sqrt{n}} = -2$ leading to an answer of 106 may score	
B1M1M1A1B0M1A1A1	

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

Mark Scheme (Results)

June 2015

Pearson Edexcel International A Level in Statistics 2 (WST02/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2015 Publications Code IA042723 All the material in this publication is copyright © Pearson Education Ltd 2015

General Marking Guidance

• All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.

• Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.

• Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.

• There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.

• All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

• Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.

• Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- _ or d... The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

June 2015 WMST02/01 Statistics 2 Mark Scheme

Question Number	Scheme	Marks
1. (a)	${P(X > 4) =} 1 - F(4)$ 1 - F(4) seen or used	M1
	$\left\{=1-\frac{3}{5}\right\} = \frac{2}{5} \qquad \qquad \frac{2}{5} \text{ or } 0.4$	A1
	P(2 < V < c) = 0.642	[2]
(b)	F(a) - F(3) = 0.642 $F(a) - F(3) = 0.642$	M1 o.e.
	$F(a) - \frac{1}{20}(3^2 - 4) = 0.642 \ \{\Rightarrow F(a) = 0.892\}$ Correct equation	Al o.e.
	$\frac{1}{5}(2a-5) - \frac{1}{20}(3^2-4) = 0.642 \Rightarrow a = \dots$ Solving this equation o.e., leading to $a = \dots$ (or $x = \dots$). Follow through their F(3)	dM1
	$\left\{\frac{1}{5}(2a-5) = 0.892 \implies \right\} a = 4.73 \qquad a = 4.73 \text{ (or } x = 4.73 \text{)}$	A1 cao
	Alternative Mathead for David (k)	[4]
(6)	Alternative Method for Part (b) $\int_{3}^{4} \left(\frac{1}{10}x\right) \{dx\}$ Correct expression for finding the probability between $x = 3$ and $x = 4$	M1
	$\left\{ = \left[\frac{x^2}{20} \right]_3^4 \right\} = \frac{4^2}{20} - \frac{3^2}{20} \left\{ = \frac{7}{20} \right\}$ Correct $\frac{4^2}{20} - \frac{3^2}{20}$, simplified or un-simplified.	A1
	$\int_{3}^{4} \left(\frac{1}{10}x\right) \{dx\} + \int_{4}^{a} \left(\frac{2}{5}\right) \{dx\} = 0.642 \Rightarrow a = \dots$ Writes a correct equation and attempts to solve leading to $a = \dots$ (or $x = \dots$)	dM1
	$\left\{\frac{7}{20} + \frac{2}{5}a - \frac{8}{5} = 0.642 \implies \right\}a = 4.73 \qquad a = 4.73 \text{ (or } x = 4.73 \text{)}$	A1 cao
		[4]
(c)	$f(x) = \begin{pmatrix} d \\ 1 \\ (x^2 \\ 4) \end{pmatrix} = \begin{pmatrix} 1 \\ x \\ 1 \end{pmatrix}$ Attempt at differentiation. See notes.	M1
	$I(x) = \frac{1}{dx} \left(\frac{1}{20} (x - 4) \right) = \frac{1}{10} x$ At least one of $\frac{1}{10} x$ or $\frac{2}{5}$ At least one of $\frac{1}{10} x$ or $\frac{2}{5}$	A1
	$f(x) = \frac{1}{dx} \left(\frac{1}{5} (2x-5) \right) = \frac{2}{5}$ Both $\frac{1}{10} x$ and $\frac{2}{5}$	A1
	$f(x) = \begin{cases} \frac{1}{10}x, & 2 \le x \le 4\\ \frac{2}{5}, & 4 < x \le 5\\ 0, & \text{otherwise} \end{cases}$ This mark is dependent on M1 All three lines with limits correctly followed through from their F'(x)	dB1ft
		[4] 10

PhysicsAndMathsTutor.com

		Question 1 Notes
1. (a)	M1	1 - F(4) seen or used.
	Note	Can be implied by either $1 - \frac{3}{5}$ or $1 - \frac{1}{5}(2(4) - 5)$ or $1 - \frac{1}{20}(4^2 - 4)$
		The probability statements $1 - P(X \le 4)$ or $1 - P(X < 4)$ are not sufficient for M1
	A1	$\frac{2}{5}$ or 0.4
	Note	Give M1A1 for the correct answer from no working.
(b)	NOTE	In part (b), candidates are allowed to write F(x) = F(x)
		• $F(a)$ as either $P(X \le a)$ of $P(X \le a)$. Also condone $F(a)$ written as $F(x)$ • $F(2)$ as either $P(X \le 2)$ or $P(X \le 2)$
		• $F(3)$ as either $P(X < 3)$ of $P(X \leq 3)$
	MI	For writing $F(a) - F(5) = 0.042$ or equivalent (see NOTE above)
	A1	For an un-simplified $F(a) - \frac{1}{20}(3^2 - 4) = 0.642$ or equivalent (see NOTE above)
	Note	Give 1 st M1 1 st A1 for $F(a) = 0.892$ or $P(X \ge a) = 0.108$
	SC	Allow SC 1 st M1 1 st A1 for $\frac{1}{20}(a^2-4) - \frac{1}{20}(3^2-4) = 0.642$
	Note	Give 1^{st} M0 for $F(a-1) - F(3) = 0.642$ o.e. without a correct acceptable statement
	dM1	dependent on the FIRST method mark being awarded.
		Attempts to solve $\frac{1}{5}(2a-5)$ – "their F(3)" = 0.642 leading to $a =$ (or $x =$)
	Note	dM1 can be given for either $\frac{1}{5}(2a-5) = 0.892$ or $1 - \frac{1}{5}(2a-5) = 0.108$ leading to
		$a = \dots$ (or $x = \dots$)
	AI	a = 4.73 (or $x = 4.75$) cao
	Note	Give M0A0M0A0 for $F(a) - (1 - F(3)) = 0.642 \{ \Rightarrow F(a) = 1.392 \}$
	Note	Give M0A0M0A0 for $\int_{3}^{a} \left(\frac{1}{10}x\right) dx = 0.642$ (this solves to give awrt 4.67)
(c)	M1	At least one of either
		$\frac{1}{20}(x^2 - 4) \rightarrow \pm \alpha x \pm \beta, \ \alpha \neq 0, \ \beta \text{ can be } 0$
		$\frac{1}{5}(2x-5) \to \pm \delta, \ \delta \neq 0$
	1 st A1	At least one of $\frac{1}{10}x$ or $\frac{2}{5}$. Can be simplified or un-simplified.
	2 nd A1	Both $\frac{1}{10}x$ and $\frac{2}{5}$. Can be simplified or un-simplified.
	dB1ft	dependent on the FIRST method mark being awarded.
		All three lines with limits correctly followed through from their $F'(x)$
	Note	Condone the use of $<$ rather than \leq or vice versa.
	Note Note	0, otherwise is equivalent to 0, $x < 2$ and 0, $x > 5$
	INOLE	In part (c), accept 1 being expressed consistently in another variable eg. u

Question Number	Scheme	Marks	
2. (a)	$X \sim \text{Po}(8)$		
	$\{P(X \neq 8)\} = 1 - P(X = 8)$ $1 - P(X = 8)$, can be implied	M1	
	$= 0.860413 \text{ or } 0.8605 \qquad 0.86 \text{ or awrt } 0.860 \text{ or awrt } 0.861$	A1	
		[2]	
(b)	$X \sim Po(8)$		
	$\{P(X \ge 8)\} = 1 - 0.453 1 - 0.453 \text{ or awrt } 0.547$	B1	
	$\left\{ \left[P(X \ge 8) \right]^4 \right\} = (1 - 0.453)^4 \left\{ = (0.547)^4 \right\} $ Applying $\left[\text{ their } P(X \ge 8) \right]^4$	M1	
	= 0.089526 0.09 or awrt 0.090	A1	
(c)	V = number of chocolate chins in the 9 biscuits	[3]	
(0)	$(x - p_1(72)) = (72)$ Normal or N	M1	
	$\{I \sim \text{PO}(72) \approx\} I \sim N(72, 72)$ (72, 72)	A1	
	$\{P(Y > 75)\} \approx P(Y > 75.5)$ For either 74.5 or 75.5	M1	
	$(755-72)$ Standardising (\pm) with their mean,		
	$= P\left(Z > \frac{\sqrt{72}}{\sqrt{72}}\right)$ their standard deviation and either	M1	
	P(7 > 0.41) = 1.06501 (5.5 or 7.5 or 7.4.5		
	= P(Z > 0.41) = 1 - 0.0391	1	
	= 0.3409 (from calculator 0.339994) awrt 0.341 or awrt 0.340	AI [5]	
(4)	$H \cdot i = 15$ $H \cdot i > 15$ or $H \cdot i = 6$ $H \cdot i > 6$ Both hypotheses	D1	
(u)	$\Pi_0 : \lambda = 1.5, \ \Pi_1 : \lambda \ge 1.5 \text{ or } \Pi_0 : \lambda = 0, \ \Pi_1 : \lambda \ge 0$ are stated correctly	DI	
	{Under H_0 , for 4 hours} $X \sim Po(6)$		
	Probability MethodCritical Region Method $P(X \ge 11) = 1 - P(X \le 10)$ $P(X \le 9) = 0.9161$ or $P(X \ge 10) = 0.0839$		
	$= 1 - 0.9574$ $P(X \le 10) = 0.9574$ or $P(X \ge 11) = 0.0426$	M1	
	Note: Award 1 st M1 for the use of $X \sim Po(6)$		
	$P(X \ge 11) = 0.0426$ CR : $X \ge 11$ Either $P(X \ge 11) = 0.0426$ or	۸1	
	$CR: X \ge 11 \text{ or } CR: X \ge 10$		
	Reject H ₀ or significant or 11 lies in the CR dependent on previous M See notes	dM1	
	Conclude either Correct		
	 The <u>rate of sales</u> of packets of biscuits has <u>increased</u>. The <u>mean</u> number of packets of biscuits sold has 	A1 cso	
	increased. in context.		
		[5]	
		13	

		Question 2 Notes
2. (a)	M1	$1 - P(X = 8)$ or $P(X < 8) + P(X > 8)$ or $P(X \le 7) + P(X \ge 9)$
	Note	Can be implied by either $1 - \frac{e^{-8}8^8}{8!}$ or $1 - \left(P(X \le 8) - P(X \le 7)\right)$
		or $1 - (0.5925 - 0.4530)$ or $1 - 0.1395$ or $P(X \le 7) + 1 - P(X \le 8)$
	A1	0.86 or awrt 0.860 or awrt 0.861
(b)	B 1	1-0.453 or awrt 0.547 (Note: calculator gives 0.5470391905)
	M1	Applying $\left[\text{their P}(X \ge 8) \right]^4$
	A1	0.09 or awrt 0.090 (Note: calculator gives 0.08955168526)
(c)	1 st M1	For writing N or for using a normal approximation.
	1 st A1	For a correct mean of 72 and a correct variance of 72
	Note	1 st M1 and/or 1 st A1 may be implied in applying the standardisation formula
	2 nd MI	For either 74.5 or 75.5 (i.e. an attempt at a continuity correction)
	3 ^{ru} M1	Standardising (\pm) with their mean, their standard deviation and either 75.5 or 75 or 74.5
	Note	Award 2 nd M1 3 rd M0 for $\frac{75.5-72}{72}$ from a correct $Y \sim N(72, 72)$
	Note	You can recover the 1 st A1 in part (c) for N(72, $\sqrt{72}$) $\Rightarrow z = \frac{75.5 - 72}{\sqrt{72}}$
	2 nd A1	awrt 0.341 or awrt 0.340. (Note: calculator gives 0.339994)
(d)	B1	$H_0: \lambda = 1.5, H_1: \lambda > 1.5$ correctly labelled or $H_0: \lambda = 6, H_1: \lambda > 6.$
	Note	Allow μ used instead of λ
	Note	B0 for either $H_0 = 6$, $H_1 > 6$ or $H_0 : x = 6$, $H_1 : x > 6$ or $H_0 : p = 6$, $H_1 : p > 6$
	1 st M1	For use of $X \sim Po(6)$ (may be implied by 0.9161, 0.9574, 0.9799, 0.0839, 0.0426 or
		0.0201). Condone by $\frac{e^{-6}(6)^{11}}{11!}$. Allow any value off the Po(6) tables.
	1 st A1	For either $P(X \ge 11) = 0.0426$ or $CR : X \ge 11$ or $CR : X > 10$ Condone $CR \ge 11$
	Note	Award 1 st M1 1 st A1 for writing down CR : $X \ge 11$ or CR : $X > 10$ from no working.
	Note	Give A0 stating CR : $P(X \ge 11)$
	2 nd dM1	dependent on the FIRST method mark being awarded. For a correct follow through comparison based on their probability or CR and their significance level compatible with their <i>stated</i> alternative hypothesis. Do not allow non-contextual conflicting statements. Eq. "significant" and "accept H.".
	Note	M1 can be implied by a correct contextual statement 3^{-1}
	Note	Give final M0A0 for $P(X = 11) = 0.9799 - 0.9574 = 0.0225 \implies \text{Reject H}$, etc.
	Note	Give final M0A0 for $P(X \le 11) = 0.9799 \Rightarrow Accept H_{}$ etc
	2 nd A1	Award for a correct solution only with all previous marks in part (d) being scored
		Correct conclusion which is in context, using either the words
		rate of sales and increased or mean sold and increased
	Γ	

	Question 3 Notes				
3. (a)	1 st B1	A horizontal line drawn above the x-axis in the first quadrant			
	2 nd dB1	dependent on the FIRST B mark being awarded.			
		Labels of c, 2c and $\frac{1}{c}$, marked on the graph.			
	Note	Allow the label $\frac{1}{2c-c}$ as an alternative to $\frac{1}{c}$			
	Note	Ignore $\{O\}$, $\{x\}$ and $\{f(x)\}$			
(b)	B1	$E(X) = \frac{3c}{2}$, simplified or un-simplified. This mark can be implied.			
	Note	B1 can be given for an un-simplified $\left(\frac{(2c)^2}{c}\right) - \left(\frac{c^2}{c}\right)$ or $\frac{3c^2}{2c}$ or $2c - \frac{c}{2}$ etc.			
	Note	$\int_{c}^{2c} \frac{1}{c} x dx \text{or} \left[\frac{x^2}{2c}\right]_{c}^{2c} \text{ are not sufficient for B1.}$			
	1 st M1	Correct E(X ²) expression of $\int_{c}^{2c} x^2 f(x) \{ dx \}$ where $f(x)$ is equivalent to $\frac{1}{c}$.			
	Note	Must have limits of $2c$ and c . Note the dx is not required for this mark.			
	2 nd M1	$\pm Ag(c)x^2 \rightarrow \pm Bg(c)x^3$, $A \neq 0$, $B \neq 0$, where $g(c)$ is a function of c			
	Note	Limits are not required for the second 2^{nd} M1 mark.			
	3 rd dM1	dependent on the FIRST method mark being awarded.			
		Applies limits of $2c$ and c to an integrated function in x and subtracts the correct way round.			
	4 th M1	dependent on the FIRST method mark being awarded. Applying the variance formula correctly with their follow through $E(X)$.			
	Note	Allow 4 th M1 for $\left\{ \operatorname{Var}(X) = \right\} \int_{c}^{2c} \left(\frac{1}{2c-c} x^2 \right) \left\{ dx \right\} - \left(\int_{c}^{2c} \left(\frac{1}{2c-c} x \right) \left\{ dx \right\} \right)^2$			
	A1	Correctly proves that $Var(X) = \frac{c^2}{12}$. Note: Answer is given			
(c)	1 st M1	For writing down a correctly un-simplified (or simplified) inequality statement. Eg: $X > 2(2c - X)$ or $P(X > 2(2c - X))$ (Note: "P" is not required for this mark)			
	2 nd dM1	dependent on the FIRST method mark being awarded. Rearranges to give $P(X > \pm \alpha c)$ or $P(X < \pm \alpha c)$ or $X > \pm \alpha c$ or $X < \pm \alpha c$, $\alpha \neq 0$			
	Note	"P" is not required for these cases above			
	Note	Also allow, with P, the statements $1 - P(X \le \alpha c)$ or $1 - P(X \ge \alpha c)$, $\alpha \ne 0$			
	NOTE	Give M2 for either $X > \frac{4c}{3}$ or $P\left(X > \frac{4c}{3}\right)$ or $1 - P\left(X < \frac{4c}{3}\right)$			
	A1	$\frac{2}{3}$ or $\frac{4}{6}$ or $0.\dot{6}$			
	Note	Give M1M1A1 for a final answer of $\frac{2}{3}$ <i>from any</i> working.			

Question Number	Scheme					
3.	Alternative Method 1 for Part (b)					
(b)	$\left\{ \operatorname{Var}(X) = \right\}$					
	Implied $E(X) = \frac{3c}{2}$	B1				
	$\int_{c}^{2c} x^{2} f(x) \{ dx \} \text{ where } f(x) \text{ is equivalent to } \frac{1}{c}.$ (Limits are required)	1 st M1				
	$\int_{c} \left(2c - c \begin{pmatrix} x & 2 \end{pmatrix} \right)^{dx} $ Applies $\int_{c}^{2c} f(x) \left(x - \frac{3c}{2} \right)^{2} \left\{ dx \right\} $ where $f(x)$ is a is equivalent to $\frac{1}{2}$. (Limits are required)	4 th dM1				
	$=\frac{1}{c}\left[\frac{1}{3}\left(x-\frac{3c}{2}\right)^{3}\right]_{\{c\}}^{\{2c\}} \qquad \qquad$	2 nd M1				
	$=\frac{1}{3c}\left(\left(\frac{c}{2}\right)^{3} - \left(-\frac{c}{2}\right)^{3}\right)$ dependent on first M mark. Applies limits of 2c and c to an integrated function in x and subtracts the correct way round.	3 rd dM1				
	$=\frac{1}{3c}\left(\frac{c^3}{4}\right) = \frac{c^2}{12} *$ Correct proof	A1				
	Alternative Method 2 for Part (b)					
(b)	$\{\operatorname{Var}(X)=\}$					
	$\int_{c}^{2c} \left(\frac{1}{2c-c} \left(x - \frac{3}{2}c \right)^{2} \right) \{ dx \}$ Award as in Alt. Method 1	B1 1 st M1 4 th M1				
	$= \frac{1}{c} \int_{c}^{2c} \left(x^2 - 3cx + \frac{9}{4}c^2 \right) \{ dx \}$					
	$= \frac{1}{c} \left[\frac{1}{3} x^3 - \frac{3}{2} c x^2 + \frac{9}{4} c^2 x \right]_{\{c\}}^{\{2c\}} \qquad \qquad \pm Ag(c)(x-\delta)^2 \to \pm Bg(c)(\pm \alpha x^3 \pm \beta x^2 \pm \delta x)^3, \\ A, B, \alpha, \beta, \delta \neq 0 \text{ (Ignore limits for this mark)} \right]$	2 nd M1				
	$=\frac{1}{c}\left(\left(\frac{1}{3}(2c)^3 - \frac{3}{2}c(2c)^2 + \frac{9}{4}c^2(2c)\right) - \left(\frac{1}{3}(c)^3 - \frac{3}{2}c(c)^2 + \frac{9}{4}c^2(c)\right)\right) $ As earlier	3 rd dM1				
	$=\frac{1}{c}\left(\left(\frac{8}{3}c^{3}-6c^{3}+\frac{9}{2}c^{3}\right)-\left(\frac{1}{3}c^{3}-\frac{3}{2}c^{3}+\frac{9}{4}c^{3}\right)\right)$					
	$=\frac{1}{c}\left(\left(\frac{7}{6}c^3\right) - \left(\frac{13}{12}c^3\right)\right) = \frac{1}{c}\left(\frac{c^3}{12}\right)$					
	$=\frac{c^2}{12}*$ Correct proof	A1 [6]				

Question Number		Scheme			
4. (a)	$P(X = P(X = P(X = P(X = e^{-k} < 0)))$	$0 k = 3) = 0.0498$ At least one probabilities $0 k = 4) = 0.0183$ probabilities $0 k = 5) = 0.0067$ seen in the $0.025 \Rightarrow k > $ 3.688	e of these 9 or awrt 3.7 ir working.	B1	
	$P(X \leqslant P(X %$	$8 k = 3) = 0.9962, P(X \ge 9 k = 3) = 0.0038$ $8 k = 4) = 0.9786, P(X \ge 9 k = 4) = 0.0214$ $8 k = 5) = 0.9319, P(X \ge 9 k = 5) = 0.0681$ Both P(X = 0) aw either P(X \ge 9) or P(X \le 9)	=0.0183 or (xrt 3.7 and) = 0.0214 (8) = 0.9786	B1	
	Both ta	ils less than 2.5% when $\underline{k} = 4$ Final answer give	en as $k = 4$	B1	
(b)	Actual	sig. $level = 0.0214 + 0.0183$	See notes	[3] M1	
		= 0.0397	0.0397	A1 cao	
				[2] 5	
		Question 4 Notes			
4. (a)	1 st B1 For any of 0.0498, 0.0183, 0.0067, 0.9962, 0.9786, 0.9319, 0.0038, 0.0214, 0.0681 or awrt 3.7 seen in their working.				
	2 nd B1 Noto	For both $P(X = 0) = 0.0183$ or awrt 3.7 and either $P(X \ge 9) =$ These must be written as probability statements	0.0214 or P($(X \leqslant 8) = 0.9786$	
	3 rd B1	Note 1 nese must be written as probability statements. $\mathbf{R}^{rd} \mathbf{B1}$ Final answer given as $k = A$. Also allow $2 = A$			
	Solution I mar answer given as $\underline{k-4}$. Also allow $\lambda = 4$ Note Do not recover working for part (a) in part (b)				
(b)	M1	For the addition of two probabilities for two tails, where each t	ail < 0.05		
	A1	0.0397 cao			

Question Number	Scheme					Marks	
5.	$Y = \frac{2X_1 + X_2}{3} $ w	where F	$\begin{array}{c} x \\ P(X=x) \end{array}$	6 0.35	9 0.65		
	Note: Yo	ou can ma	rk parts (a)) and (b) to	gether for	this question.]
(a)	$\frac{2(6)+6}{3} = 6$	$\frac{2(9)}{3}$	$\frac{+9}{-}=9$		At least thre	ee correct values for y of either 6, 7, 8 or 9	B1
	$\frac{2(6)+9}{3} = 7$	$\frac{2(9)}{3}$	$\frac{+6}{-} = 8$	Correct	t values for	y of 6, 7 8 and 9 only	B1
							[2]
(b)	$\begin{cases} (6, 6) \Rightarrow P(Y = \\ \{(6, 9) \Rightarrow P(Y = \\ \end{cases}) \end{cases}$	(6) = (0.3) (7) = (0.6)	5) ² 5)(0.35)	(0.6	At least 5)(0.35),(0	one of either $(0.35)^2$, .35)(0.65) or $(0.65)^2$	M1
	$\{(9, 6) \Rightarrow P(Y =$	(8) = (0.3	5)(0.65)		At least	two of either $(0.35)^2$	
	$\{(9,9) \Rightarrow P(Y=9)\} = (0.65)^2 \qquad (0.65)(0.35), (0.35)(0.65) \text{ or } (0.65)^2$					$(0.55)^2$ (0.65) or $(0.65)^2$	M1
	sample	(6, 6)	(6, 9)	(9, 6)	(9, 9)		A 1
	y y	6	7	8	9	See notes	AI
	$\mathbf{P}(\mathbf{Y}=\mathbf{y})$	0.1225	0.2275	0.2275	0.4225	At least 3 correct	A1
	or $P(Y = y)$	49	91	91	169		D10
		400	400	400	400	See notes	BItt
							[5]
(c)	$(E(Y)) = 6(0.1225) + 7(0.2275) + 8(0.2275) + 9(0.4225) = 7.95 \text{ or } \frac{159}{20}$				7.95 or $\frac{159}{20}$	M1;A1 cao	
							[2]
		(1 1 A D					9
(c)	Alternative Met	thod for P	<u>art (c)</u>		·····		
	$\begin{cases} E(Y) = \frac{2}{3}E(X_1) \end{cases}$	$+\frac{1}{3}\mathrm{E}(X_{2})$	$=\frac{2}{3}\mathrm{E}(X)$	$+\frac{1}{3}\mathrm{E}(X) =$	$= \mathrm{E}(X) \bigg\}$		
	= 6(0.35) + 9(0.65)	= 7.95 or	$\frac{159}{20}$			M1; A1 cao
							[2]

		Question 5 Notes		
5. (a)	5. (a) Note You can mark parts (a) and (b) together for this question.			
	1 st B1	At least three correct values for y of either 6, 7, 8 or 9		
	2 nd B1	Correct values for y of 6, 7 8 and 9 only. Note: Any extra value(s) given is 2 nd B0.		
(b)	1 st M1	At least one of either $(0.35)^2$, $(0.65)(0.35)$, $(0.35)(0.65)$ or $(0.65)^2$. Can be implied.		
	2 nd M1	At least two of either $(0.35)^2$, $(0.65)(0.35)$, $(0.35)(0.65)$ or $(0.65)^2$. Can be implied.		
	1 st A1	At least two correct probabilities given which either must be linked		
		to a correct sample (x_1, x_2) or their followed through y-value.		
	2 nd A1	At least 3 correct probabilities corresponding to the correct value of y.		
	B1ft	Either		
		• all 4 correct probabilities corresponding to the correct value of y		
		• 6, 7, 8 and 9 with two correct probabilities, two other probabilities		
		and $\sum p(y) = 1$		
	Note	B1ft is dependent on 1 st M1 2 nd M1 1 st A1.		
	Note	A table is not required but y-values must be linked with their probabilities for 2 nd A1 B1		
	Note	Eg: $(6, 6)$ by itself does not count as an acceptable value of y		
(c)	M1	A correct follow through expression for $E(Y)$ using their distribution		
	Note	Also allow M1 for a correct expression for $E(X)$		
	A1	7.95 cao Allow $\frac{159}{20}$		

Question Number	Scheme				
6. (a)	$X \sim B(30, 0.4)$ $X \sim B(30, 0.4)$				
(b)	 Eg: Any one of either Constant probability of buying <u>insurance</u> Customers buy <u>insurance</u> independently of each 	other Any one of these two assumptions in context which refers to insurance.	[1] B1		
			[1]		
(c)	P(X < r) < 0.05				
	$ \{ P(X \le 8) = P(X < 9) \} = 0.0940 $ For at 1 $ \{ P(X \le 7) = P(X < 8) \} = 0.0435 $	east one of either 0.094(0) or 0.0435 seen in part (c)	M1		
	So <i>r</i> = 8	<i>r</i> = 8	A1		
		Normal or N	[2] M1		
(d)	$\{Y \sim B(100, 0.4) \approx\} Y \sim N(40, 24)$	(40, 24)	Al		
	$\left\{ \mathbf{P}(Y \ge t) \right\} \approx \mathbf{P}(Y > t - 0.5)$	For either $t - 0.5$ or $t + 0.5$	M1		
	$\left\{ = P\left(Z > \frac{(t - 0.5) - 40}{\sqrt{24}}\right) = 0.938 \right\}$				
	Standardising (\pm) with their mean and their				
	$\frac{(t-0.5)-40}{\sqrt{24}} = -1.54$	standard deviation and either -0.5 or <i>t</i> or $t+0.5$ or $t-1.5$	M1		
	-1.54 or 1.54 or $awrt - 1.54$ or $awrt 1.54$				
	So, $\{$ So, $t = 32.955571 \} \Rightarrow t = 33$	t = 33	A1 cao		
			[6]		
(e)	$H_0: p = 0.4, H_1: p < 0.4$ Both hy	ypotheses are stated correctly	B1		
	$\{\text{Under H}_0, X \sim B(25, 0.4)\}$	•			
	<u>Probability Method</u> $P(X \le 6) = 0.0736$	$P(X \le 6)$	M1		
	$P(X \le 6) := 0.0736 \qquad \{P(X \le 7) = 0.1536\}$	Fither 0.0736 or	1011		
	$CR: X \leq 6$	$CR: X \leq 6 \text{ or } CR: X < 7$	A1		
	{0.0736 < 0.10}	1			
	Reject H_0 or significant or 6 lies in the CR	Dependent on 1 st M1 See notes	dM1		
	So percentage (or proportion) who buy insurance has	decreased.	A1 cso		
			[5] 15		
			13		

Question		Scheme	Marks		
6. (e)	Alternative Method: Normal approximation to the Binomial Distribution				
	• Normal Approximation gives 0.0764 (or 0.07652) and loses all A marks				
	$H_0: p = 0$	Both hypotheses are stated correctly Both hypotheses are stated correctly $P_{1,2}$	B1		
	$\{Y \sim B(2)\}$	$(5, 0.4) \approx Y \sim N(10, 6)$			
	$\frac{1}{P(X \le 6)} \approx P(X \le 6.5)$ $P(X \le 6) \text{ or } P(X \le 6.5)$				
	```	(65-10)			
		$= P\left(Z < \frac{0.5 - 10}{\sqrt{6}}\right)$			
		= P(Z < -1.4288)			
		$\{=1-0.9236\}=0.0764$ Award A0 here	A0		
	{0	0.0764 < 0.10			
	Reject	$H_0$ or significant As in the main scheme	M1		
	So <u>percer</u>	<b>tage</b> (or <b>proportion</b> ) who buy <b>insurance</b> has <b>decreased</b> . Award A0 here	A0		
		Question 6 Notes			
<b>6.</b> (a)	<b>B1</b>	$X \sim B(30, 0.4)$ or $X \sim Bin(30, 0.4)$ . Condone $X \sim b(30, 0.4)$			
	Note	$X \sim B(30, 0.4)$ o.e. must be seen in part (a) only.			
(b)	<b>B1</b>	For any one of the two acceptable assumptions listed anywhere in part	(b).		
	Note	A contextual statement, which refers to insurance, is required for this m	nark.		
(c)	Note	Award M1 A1 for $r = 8$ seen from no incorrect working.			
(d)	1 st M1	For writing N or for using a normal approximation.			
	1 st A1	For a correct mean of 40 and a correct variance of 24			
	Note	I MI and/or I AI may be implied in applying the standardisation formula For either $t = 0.5$ or $t = 0.5$ (i.e. an ettempt of a continuity correction)			
		<b>M1</b> As described on the mark scheme			
	3" MI R1	-1.54 or 1.54 or awrt $-1.54$ or awrt 1.54. Note: Calculator gives $-1.5382$			
		t = 23 cao (The integer value is required)			
(a)	2 AI D1	$H : n = 0.4$ H : $n < 0.4$ correctly labelled Also allow H : $\pi = 0.4$ H : $\pi$	< 0.4		
(e)	<b>BI</b> $\Pi_0: p = 0.4, \ \Pi_1: p < 0.4$ corecult labelled. Also allow $\Pi_0: \pi = 0.4, \ \Pi_1: \pi < 0.4$		< 0.4		
		Also allow $\Pi_0 \cdot x = 0.4$ , $\Pi_1 \cdot x < 0.4$ of $\Pi_0 \cdot p(x) = 0.4$ , $\Pi_1 \cdot p(x) < 0.4$			
	Note	BUTOR $H_0 = 0.4$ , $H_1 < 0.4$			
	1 st M1	<b>Probability Method &amp; CR Method:</b> Stating $P(X \le 6)$			
	1 st A1	Either 0.0736 or CR : $X \le 6$ or CR : $X < 7$ Note: Condone CR $\le 6$			
	<b>Note</b> Award 1 st M1 1 st A1 for writing down CR : $X \le 6$ or CR : $X < 7$ from no working.				
	Note	Give A0 for stating CR : $P(X \leq 6)$			
	$2^{nd} dM1$	dependent on the FIRST method mark being awarded.			
		For a correct follow through comparison based on their probability or CR and	their		
	significance level compatible with their <i>stated</i> alternative hypothesis.				
	NT. 4	M1 and a simplified have a superstant and a significant and a	ссері п ₀ .		
	INOLE	Award for a correct contextual statement.	mad		
	2 A1	Award for a correct solution only with all previous marks in part (e) being sec	tion)		
		insurance and decreased (or equivalent words for decreased)	<u>11011</u> ),		
		insurance and decreased (or equivalent words for decreased).			

Question Number	Scheme	Marks
<b>7.</b> (a)	$\int_{0}^{k} \left(\frac{2x}{15}\right) \left\{ dx \right\} + \int_{5}^{k} \frac{1}{5} (5-x) \left\{ dx \right\} = 1$ Complete method of writing a correct equation for the area <i>with correct limits</i> and setting the result equal to 1	M1
	$\begin{bmatrix} x^2 \end{bmatrix}^{\{k\}} \qquad \qquad \text{Evidence of } x^n \to x^{n+1}$	M1
	$\left[ \frac{x}{15} \right]_{\{0\}} + \left[ x - \frac{x}{10} \right]_{\{k\}} = 1 \qquad \text{Both } \frac{2x}{15} \to \frac{x^2}{15} \text{ and } \frac{1}{5}(5-x) \to x - \frac{x^2}{10}$	A1 o.e.
	$\left(\frac{k^2}{15}\right) + \left(5 - \frac{5^2}{10} - \left(k - \frac{k^2}{10}\right)\right) = 1$	
	$2k^2 + 150 - 75 - 30k + 3k^2 = 30$	
	$k^{2} - 6k + 9 = 0$ or $\frac{k^{2}}{6} - k + \frac{3}{2} = 0$	
	Dependent on the 1 st M mark	
	$(k-3)(k-3) = 0 \implies k =$ Attempt to solve a 3 term quadratic equation leading to $k =$	dM1
	k = 3 $k = 3$	A1
		[5]
(b)	$\{\text{mode} =\} 3$ 3 or states their k value from part (a)	B1 ft
		[1]
(c)	$\left\{ P\left(X \leq \frac{k}{2} \middle  X \leq k\right) = \frac{P\left(X \leq \frac{k}{2} \cap X \leq k\right)}{P(X \leq k)} \right\}$	
	$= \frac{P\left(X \leq \frac{k}{2}\right)}{P\left(X \leq k\right)}$ Either $\frac{P\left(X \leq \frac{k}{2}\right)}{P\left(X \leq k\right)}$ or $\frac{F\left(\frac{k}{2}\right)}{F(k)}$ seen or implied.	M1
	$= \frac{\int_{0}^{\frac{k}{2}} \left(\frac{2x}{15}\right) \{dx\}}{\int_{0}^{k} \left(\frac{2x}{15}\right) \{dx\}}$ see notes	dM1
	$= \frac{\frac{1}{15}\left(\frac{k}{2}\right)^2}{\frac{k^2}{15}}$ Correct substitution of their limits or their k into conditional probability formula.	Alft
	$\left\{ = \frac{\left(\frac{9}{60}\right)}{\left(\frac{9}{15}\right)} = \frac{0.15}{0.6} \right\} = \frac{1}{4} \qquad \qquad \frac{1}{4} \text{ or } 0.25$	A1 cao
		[4]
		10

	Question 7 Notes				
<b>7.</b> (a)	1 st M1	$\int_{0}^{k} \left(\frac{2x}{15}\right) \left\{ dx \right\} + \int_{5}^{k} \frac{1}{5} (5-x) \left\{ dx \right\} = 1.  (with \ correct \ limits \ and = 1)  \left\{ dx \right\} \text{ not needed.}$			
	2 nd M1	Evidence of $x^n \to x^{n+1}$			
	1 st A1	Both $\frac{2x}{15} \to \frac{x^2}{15}$ and $\frac{1}{5}(5-x) \to x - \frac{x^2}{10}$			
	3 rd dM1	dependent on the FIRST method mark being awarded.			
		Attempt to solve a <b>three term</b> quadratic equation. Please see table on page 20			
	2 nd A1	k = 3 from correct working.			
	Note	<b>WARNING:</b> $\frac{2x}{15} = \frac{1}{5}(5-x)$ to get $k = 3$ is M0M0A0M0A0.			
	Note	It is possible to give M0M1A1M0A0 in part (a).			
(b)	B1 ft	Mode = 3 or candidate states their k value from part (a), where $0 < \text{their } k < 5$			
(c)	1 st M1	Either $\frac{P\left(X \leq \frac{k}{2}\right)}{P\left(X \leq k\right)}$ or $\frac{F\left(\frac{k}{2}\right)}{F(k)}$ , seen or implied by their later working.			
	Note	Without reference to a correct conditional probability statement give 1st M0 for either			
		$\frac{f\left(\frac{k}{2}\right)}{f(k)} \text{ or } \frac{F\left(k\right) - F\left(\frac{k}{2}\right)}{F\left(k\right)} \text{ or } \frac{P\left(X \leqslant \frac{k}{2}\right) \times P\left(X \leqslant k\right)}{P\left(X \leqslant k\right)}$			
	$2^{nd} dM1$	lependent on the FIRST method mark being awarded.			
		Applies the conditional probability statement by writing down • $\frac{\int_{0}^{\frac{k}{2}} \left(\frac{2x}{15}\right) \{dx\}}{\int_{0}^{k} \left(\frac{2x}{15}\right) \{dx\}}$ with limits. • $\frac{F\left(\frac{k}{2}\right)}{F(k)}$ where $F(x)$ is defined as $F(x) = \frac{x^{2}}{15}$ These statements can be implied by later working.			
	Note	Finding $P(X \le 1.5) = 0.15$ and $P(X \le 3) = 0.6$ without applying $\frac{0.15}{0.6}$ is $2^{nd}$ M0			
	1 st A1ft	Correct substitution of their limits or their k into conditional probability formula.			
	Note	Candidates can work in terms of k for this 1 st A1 mark.			
	2 nd A1	$\frac{1}{4}$ or 0.25 <b>cao</b>			
	Note	Condone giving 2 nd A1 for achieving a correct answer of 0.25 where at least one of their			
		stated $P\left(X \leq \frac{k}{2}\right)$ or $P\left(X \leq k\right)$ is greater than 1			
	Note	Alternative method using similar triangles. Area up to $\frac{k}{2}$ is $\frac{1}{4}$ of the area up to k.			
		This can score 4 marks.			

<b>7.</b> (a)	Alternative Method 1 for Part (a) Using the CDF			
	$0 \leqslant x \leqslant k, \ \mathbf{F}(x) = \int_{0}^{k} \frac{2t}{15} \{ \mathbf{d}t \} = \left[ \frac{2t^2}{\underline{30}} \right]_{0}^{x} = \frac{x^2}{\underline{15}} $ Evidence of $x^n \to x^{n+1}$	2 nd M1		
	$k < x \le 5, \ F(x) = F(k) + \int_{k}^{x} \frac{1}{5} (5-t) \{dt\}$ Both $\frac{2x}{15} \to \frac{x^{2}}{15}$ and	1 st A1		
	$=\frac{k^2}{15} + \left[\frac{1}{5}\left(5t - \frac{t^2}{2}\right)\right]_k^x \qquad \qquad$	o.e.		
	$=\frac{k^{2}}{15} + \frac{1}{5}\left(\frac{5x - \frac{x^{2}}{2}}{2}\right) - \frac{1}{5}\left(5k - \frac{k^{2}}{2}\right)$			
	$=x-\frac{x^2}{10}-k+\frac{k^2}{6}$			
	$\{F(5) = 1 \implies \} 5 - \frac{5^2}{10} - k + \frac{k^2}{6} = 1$ Complete method of writing a correct equation for the area <i>with correct limits</i> and setting F(5) = 1	1 st M1		
	then apply the main scheme			
<b>7.</b> (a)	Alternative Method 2 for Part (a) Use of Area			
	$\frac{1}{k}\left(\frac{2k}{2k}\right) + \frac{1}{k}\left(\frac{5-k}{2k-k}\right) = 1$ Complete area expression put = 1 At least one term correct on LHS	MI M1		
	$2^{\kappa}(15) + 2(-5)(5^{\kappa}\kappa) = 1$ Correct LHS	Al o.e.		
	then apply the main scheme			
General	Note The c.d.f is defined as			
	$F(x) = \begin{cases} 0, \ x < 0 \\ \frac{x^2}{15}, \ 0 \le x \le 3 \\ x - \frac{x^2}{10} - \frac{3}{2}, \ 3 < x \le 5 \\ 1, \ x > 5 \end{cases}$			
<b>7.</b> (a)	<u>Method mark for solving a 3 term quadratic of the form $x^2 + bx + c = 0$</u>			
	Factorising/Solving a quadratic equation is tested in Question 7(a).			
	1. Factorisation			
	$(x^{2} + bx + c) = (x + p)(x + q)$ , where $ pq  =  c $ , leading to $x =$			
	$(ax^{2} + bx + c) = (mx \pm p)(nx \pm q)$ , where $ pq  =  c $ and $ mn  =  a $ , leading to $x =$			
	<b>2. Formula</b> Attempt to use correct formula (with values for <i>a</i> , <i>b</i> and <i>c</i> )			
	3. Completing the square			
	Solving $x^2 + bx + c = 0$ : $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$ , $q \neq 0$ , leading to $x =$			

PhysicsAndMathsTutor.com

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom


# Mark Scheme (Results)

Summer 2015

Pearson Edexcel GCE in Statistics 2 (6684/01)



ALWAYS LEARNING

## **Edexcel and BTEC Qualifications**

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

#### Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2015 Publications Code UA042711 All the material in this publication is copyright © Pearson Education Ltd 2015

### **General Marking Guidance**

• All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.

• Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.

• Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.

• There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.

• All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

• Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.

• Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

# PEARSON EDEXCEL GCE MATHEMATICS

## **General Instructions for Marking**

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol  $\sqrt{}$  will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- or d... The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks

affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
  - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
  - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

Question Number	Scheme		Marks
		notes	
<b>1.</b> (a)	P(N > 10) - 1 - P(N < 0)	M1: using or writing $1 - P(N \le 9)$ or	N 1 A 1
	$1(1 \vee 210) - 1 - 1(1 \vee 29)$	1 - P(N < 10)	MIAI
	= 0.4126	A1: awrt 0.413	

<b>(b)</b>	<i>Y</i> represents number of owls per 200 km ² $\Rightarrow$ <i>Y</i> ~ Po(1.8)	B1: using or writing Po(1.8)	B1
	$P(Y=2) = \frac{e^{-1.8}1.8^2}{2!}$	M1 : for a single term of the form $\frac{e^{-\lambda}\lambda^2}{2!}$ with any value for $\lambda$ or $P(X \le 2) - P(X \le 1)$	M1 A1
	= 0.2678	A1: awrt 0.268	

(c)	Normal approximation	M1: Using or writing, normal approximation with mean = 450	M1
	$\mu = 50 \times 9 = 450 \ \sigma^2 = 450$	M1: Using or writing the mean = variance. Does not need to be 450. May be seen in the standardisation calculation.	M1
		M1: $\pm \left(\frac{(470 \text{ or } 469.5 \text{ or } 470.5) - their \text{ mean}}{their \text{ sd}}\right)$ May be implied by a correct answer or $z = \text{awrt } 0.92$	M1
	$P(X \ge 470) \approx 1 - P\left(Z < \frac{469.5 - 450}{\sqrt{450}}\right)$	M1: dep on previous method mark being awarded. Using a continuity correction $470 \pm 0.5$ May be implied by a correct answer or $z = awrt 0.92$ A1: correct standardisation no need to subtract from 1. Award for $\frac{469.5 - 450}{\sqrt{450}}$ or awrt 0.92 or a correct answer	dM1 A1
	= 0.1788	A1: awrt 0.179	A1
			(0)

Question Number	Scheme		Marks
<b>2</b> ( <b>a</b> )		notes	
	$X \sim B(30, 0.25)$	B1: using B(30, 0.25)	B1
	$P(X \le 10) - P(X \le 4) = 0.8943 - 0.0979$	M1: using $P(X \le 10) - P(X \le 4)$ or $P(X \ge 5) - P(X \ge 11)$ oe	M1 A1
	= 0.7964	A1: awrt 0.796	
	NB a correct answer gains full marks		

<b>(b</b> )	$H_0: p = 0.25$ $H_1: p < 0.25$	B1: Both hypotheses correct, labelled $H_0$ or NH or $H_n$ and $H_1$ or AH or $H_a$ , must use <i>p</i> or <i>p</i> ( <i>x</i> ) or $\pi$	B1
	B(15, 0.25)	M1: for using B(15, 0.25)	
	$P(X \le 1) = 0.0802$	A1: awrt 0.0802 or CR $X \le 1$ (allow P( $X \ge 2$ ) = 0.9198)	M1 A1
	NB: Allow M1 A1 for a correct CR with no	incorrect working	
	Reject H ₀ or Significant or 1 lies in the critical region	M1: A correct statement – do not allow contradictory non contextual statements. Follow through their Probability/CR (for 1 or 2 tail test). If no H ₁ given then M0. Ignore their comparison. For a probability < 0.5, statement must be correct compared to 0.1 for 1 tail test and 0.05 for 2 tailed test or if the probability > 0.5, statement must be correct compared to 0.9 for 1 tail test and 0.95 for 2 tailed test.	dM1 A1cso
	There is evidence that the radio <b><u>company's</u></b> claim is true.	A1: cso (all previous marks awarded) and a correct statement containing the	
	Or	word <b>company</b> if writing about the	
	The new transmitter will reduce the		
	proportion of nouses unable to receive <b>radio</b>	or rauto 11 1011 context.	
		1	1

Question Number	Scheme		Marks
		Notes	
3(a)	$\int_{0}^{2} kx^{2} dx + \int_{2}^{6} k \left(1 - \frac{x}{6}\right) dx = 1$	M1: for adding the two integrals, and attempting to integrate, at least one integral $x^n \rightarrow x^{n+1}$ , ignore limits and does not need to be put equal to 1. Do <b>not</b> award if they add before integrating	M1 A1
	$k\left[\frac{x^3}{3}\right]_0^2 + k\left[x - \frac{x^2}{12}\right]_2^0 = 1$	A1: correct integration, ignore limits and does not need to be put equal to 1	
	$k\left[\frac{8}{3}\right] + k\left[3 - \frac{5}{3}\right] = 1$	M1: dependent on first M being awarded, correct use of limits and putting equal to 1. This may be seen as $F(2) = \frac{8}{3}k$ and	dM1
	41 1	using $F(6) = 1$	Alcso
	4k = 1	A1: cso answer given so need $4k = 1$	
	$k=rac{1}{4}$ *	leading to $k = \frac{1}{4}$	
NB Validati mark they i	ion – if they substitute in $k = \frac{1}{4}$ you may award th must say " therefore $k = \frac{1}{4}$ "	e 1 st three marks as per scheme. For the Fi	nal A
(b)	2	B1: cao	B1
``´´			
(c)	$\int_0^x kt^2 dt = \frac{kx^3}{3}$	M1: attempting to find $\int_0^x kt^2 dt$ $t^2 \rightarrow t^3$ , ignore limits, may leave in terms of k	M1
(c)	$\int_0^x kt^2 dt = \frac{kx^3}{3}$ $\int k\left(1 - \frac{t}{6}\right) dt = k\left[t - \frac{t^2}{12}\right] + C$ $= kt - k\frac{t^2}{12} + C$	M1: attempting to find $\int_0^x kt^2 dt$ $t^2 \rightarrow t^3$ , ignore limits, may leave in terms of k M1: attempting to find $\int k(1-\frac{t}{6})dt$ at least one integral $t^n \rightarrow t^{n+1}$ and either have $+ C (C \neq 0)$ and use F(6) =1	M1 M1
(c)	$\int_0^x kt^2 dt = \frac{kx^3}{3}$ $\int k\left(1 - \frac{t}{6}\right) dt = k\left[t - \frac{t^2}{12}\right] + C$ $= kt - k\frac{t^2}{12} + C$ $F(6) = 1$	M1: attempting to find $\int_0^x kt^2 dt$ $t^2 \rightarrow t^3$ , ignore limits, may leave in terms of k M1: attempting to find $\int k(1-\frac{t}{6})dt$ at least one integral $t^n \rightarrow t^{n+1}$ and either have $+ C (C \neq 0)$ and use F(6) =1 or have limits 2 and x and + "their $\int_0^2 kt^2 dt$ " and attempt to integrate $t^n \rightarrow t^{n+1}$	M1 M1
(c)	$\int_{0}^{x} kt^{2} dt = \frac{kx^{3}}{3}$ $\int k\left(1 - \frac{t}{6}\right) dt = k\left[t - \frac{t^{2}}{12}\right] + C$ $= kt - k\frac{t^{2}}{12} + C$ $F(6) = 1$ $6k - 3k + C = 1  \therefore  C = \frac{1}{4}$	M1: attempting to find $\int_0^x kt^2 dt$ $t^2 \rightarrow t^3$ , ignore limits, may leave in terms of k M1: attempting to find $\int k(1-\frac{t}{6})dt$ at least one integral $t^n \rightarrow t^{n+1}$ and either have + C (C $\neq 0$ ) and use F(6) =1 or have limits 2 and x and + "their $\int_0^2 kt^2 dt$ " and attempt to integrate $t^n \rightarrow t^{n+1}$ NB: may use any letter, need not be t , condone use of x	M1 M1
(c)	$\int_{0}^{x} kt^{2} dt = \frac{kx^{3}}{3}$ $\int k \left(1 - \frac{t}{6}\right) dt = k \left[t - \frac{t^{2}}{12}\right] + C$ $= kt - k \frac{t^{2}}{12} + C$ $F(6) = 1$ $6k - 3k + C = 1  \therefore \ C = \frac{1}{4}$ $F(6) = 1$ $F(c) \begin{cases} 0 & x < 0 \\ \frac{x^{3}}{12} & 0 \le x \le 2 \\ \frac{x}{4} - \frac{x^{2}}{48} + \frac{1}{4} & 2 < x \le 6 \\ 1 & x > 6 \end{cases}$	M1: attempting to find $\int_0^x kt^2 dt$ $t^2 \rightarrow t^3$ , ignore limits, may leave in terms of k M1: attempting to find $\int k(1-\frac{t}{6})dt$ at least one integral $t^n \rightarrow t^{n+1}$ and either have $+ C (C \neq 0)$ and use $F(6) = 1$ or have limits 2 and x and + "their $\int_0^2 kt^2 dt$ " and attempt to integrate $t^n \rightarrow t^{n+1}$ NB: may use any letter, need not be t ,condone use of x A1: second line correct A1: third line correct B1: first and fourth line correct they may use "otherwise" instead of $x < 0$ or $x > 6$ but not instead of both	M1 M1 A1 A1 B1

Question Number	Scheme	2	Marks
( <b>d</b> )	$\frac{x}{4} - \frac{x^2}{48} + \frac{1}{4} = 0.75$	M1: putting their line 2 or their line 3 = $0.75$	M1 A1
	$x^2 - 12x + 24 = 0$ oe	like terms must be collected together	
	$x = \frac{12 \pm \sqrt{144 - 4 \times 24}}{2}$	M1d: dep on previous M1 being awarded. A correct method for solving a 3 term quadratic equation = 0 leading to $x =$ Use either the quadratic formula or completing the square - If they quote a correct formula and attempt to use it, award the method mark if there are small errors. Where the formula is not quoted, the method mark can be implied from correct working with values but is lost if there is a mistake. If they attempt to factorise award M1 if they have $(x^2 + bx + c) = (x + p)(x + q)$ , where $ pq  =  c $ leading to $x =$ May be implied by a correct value for x	dM1 A1
	$= 2.54 \text{ or } 6 - 2\sqrt{3}$	A1: awrt 2.54 or $6-2\sqrt{3}$ or $6-\sqrt{12}$ . If 2 values for x are given they must eliminate the incorrect one.	

Question Number	Scheme		Marks
		Notes	
<b>4</b> (a)	0.8	B1: cao	B1

**(b)** 0.25

B1: cao

B1

(c)	$\frac{(0.5-0)^2}{12} = \frac{1}{48} \text{ or awrt } 0.0208$	M1: for $\frac{(0.5\pm0)^2}{12}$ or for $\int_0^{0.5} 2x^2 dx - (\text{their } (b))^2 \text{ with some}$ integration $x^n \rightarrow x^{n+1}$ A1: $\frac{1}{48}$ or awrt 0.0208 or	M1A1
		awrt 2.08 $\times 10^{-2}$	

( <b>d</b> )	P(L > 0.4) = 0.2	P( $L < 0.4$ ) = 0.8	An awrt 0.123 award B1 M1 A1	
	<i>Y</i> ~ B(30, 0.2)	<i>Y</i> ~ B(30, 0.8)	B1: using or writing B(30, their P( $L < 0.4$ ) or B(30, their P( $L > 0.4$ ). If they have not written these probabilities in this part use answer from part (a) ie P( $L < 0.4$ ) = (a) or P( $L > 0.4$ ) = 1- (a)	B1
	$P(Y \le 3) = 0.1227$	$P(Y \ge 4) = 0.1227$	M1: dependent on previous B mark being awarded. Using B(30,P( $L>0.4$ ) with P( $Y \le 3$ ) written or used <b>Or</b> B(30 P( $L<0.4$ )) with P( $Y \ge 4$ ) written or used A1: awrt 0.123	dM1A1
(e)	$1 - \left[4 \times 0.4 - 4 \times 0.4^{2}\right]$	$] = \frac{1}{25}$ or 0.04	M1: Using 1- F(0.4) or F(0.5) – F(0.4) or P( $X \le 0.5$ ) – P( $X \le 0.4$ ). Must see some substitution of 0.4 A1: $\frac{1}{25}$ or 0.04 only	M1A1
(f)	Po(4)		B1ft: using or writing Po(4) <b>NB</b> for ft they must either write $100 \times$ "their 0.04" and use Poison or write Po("their $\lambda$ ") Allow P instead of Po	B1ft
	$P(X \ge 8) = 1 - P(X \le 7)$		M1 using or writing 1- P( $X \le 7$ ) If using normal approximation, they must either write this or $\frac{7.5-4}{2}$ or $\frac{7.5-4}{\sqrt{3.84}}$ or $\frac{7.5-4}{\text{awrt }1.96}$ or $\frac{7.5-20}{\sqrt{16}}$	M1
	= 1 - 0.9489 = 0.0511		A1 awrt 0.0511	A1

Question Number	Scheme		Marks
		Notos	<u> </u>
5(a)	$X \sim Po(4)$ P(X = 0) = 0.0183 $P(X \ge 8) = 0.0511$ $P(X \le 1) = 0.0916$ $P(X \ge 9) = 0.0214$ $CR \ X = 0$ $X \ge 9$	M1: using Po(4), need to see a probability from Po(4), need not be one of the 4 given here. May be implied by a single correct CR A1: $X = 0$ or $X \le 0$ or $X < 1$ A1: $X \ge 9$ or $X > 8$ Any letter(s) may be used instead of X eg CR or Y or in words SC candidates who write P(X = 0) and	M1 A1 A1
		P( $X \ge 9$ ) award M1A1 A0 <b>NB</b> Candidates who write $8 < x \le 0$ oe get M1A0A0	
(b)	$H_0: \lambda = 4  H_1: \lambda \neq 4$	B1: both hypotheses correct, labelled $H_0$ or NH or $H_n$ and $H_1$ or AH or $H_a$ may use $\lambda$ or $\mu$ . These must be seen in part (b)	B1
	There is evidence that <i>Liftsforall's</i> claim is true	B1: ft their CR only, Do not ft hypotheses.Needs to include the word <i>Liftsforall.</i> If no Critical region stated in part (a) award B0	B1ft
	or There is insufficient evidence to doubt <i>Liftforall's</i> claim	or $P(X \le 3) = awrt \ 0.434$ and a correct conclusion.	
(c)	0.0183 + 0.0214 = 0.0397	B1: Awrt 0.0397	B1
(h)		M1	
(4)	$P(B \le 3   B \sim Po(6)) = 0.1512$	$P(B \le 3)$ oe. A1: awrt 0.151	M1 A1
(u)	$P(B \le 3   B \sim Po(6)) = 0.1512$ $X \sim B(4, 0.1512)$	P(B $\leq$ 3) oe. A1: awrt 0.151 B1ft: dep on M1 being awarded. Using or writing B(4,"their 0.151") for use they need $(1-p)^4$ or $p(1-p)^3$ or $p^2(1-p)^2$	M1 A1 dB1ft
(4)	$P(B \le 3   B \sim Po(6)) = 0.1512$ X ~ B(4, 0.1512) Alternative method for first 3 marks	P(B $\leq$ 3) oe. A1: awrt 0.151 B1ft: dep on M1 being awarded. Using or writing B(4,"their 0.151") for use they need $(1-p)^4$ or $p(1-p)^3$ or $p^2(1-p)^2$	M1 A1 dB1ft
(4)	$P(B \le 3   B \sim Po(6)) = 0.1512$ $X \sim B(4, 0.1512)$ Alternative method for first 3 marks $P(B \ge 4   B \sim Po(6)) = 0.8488$	M1: using Po(6) and writing or using $P(B \le 3)$ oe. A1: awrt 0.151 B1ft: dep on M1 being awarded. Using or writing B(4, "their 0.151") for use they need $(1-p)^4$ or $p (1-p)^3$ or $p^2(1-p)^2$ M1: using Po(6) and writing or using $P(B \ge 4)$ oe A1: awrt 0.849	M1 A1 dB1ft M1 A1
(u)	$P(B \le 3   B \sim Po(6)) = 0.1512$ $X \sim B(4, 0.1512)$ Alternative method for first 3 marks $P(B \ge 4   B \sim Po(6)) = 0.8488$ $Y \sim B(4, 0.849)$	M1: using Po(6) and writing or using $P(B \le 3)$ oe. A1: awrt 0.151 B1ft: dep on M1 being awarded. Using or writing B(4, "their 0.151") for use they need $(1-p)^4$ or $p(1-p)^3$ or $p^2(1-p)^2$ M1: using Po(6) and writing or using $P(B \ge 4)$ oe A1: awrt 0.849 B1ft: dep on M1 being awarded. Using or writing B(4, "their 0.849") for use they need $(p)^4$ or $p^3(1-p)$ or $p^2(1-p)^2$	M1 A1 dB1ft M1 A1 dB1ft
(u)	$P(B \le 3   B \sim Po(6)) = 0.1512$ $X \sim B(4, 0.1512)$ Alternative method for first 3 marks $P(B \ge 4   B \sim Po(6)) = 0.8488$ $Y \sim B(4, 0.849)$ If $0$	M1: using Po(6) and writing or using $P(B \le 3)$ oe. A1: awrt 0.151 B1ft: dep on M1 being awarded. Using or writing B(4,"their 0.151") for use they need $(1-p)^4$ or $p(1-p)^3$ or $p^2(1-p)^2$ M1: using Po(6) and writing or using $P(B \ge 4)$ oe A1: awrt 0.849 B1ft: dep on M1 being awarded. Using or writing B(4,"their 0.849") for use they need $(p)^4$ or $p^3(1-p)$ or $p^2(1-p)^2$	M1 A1 dB1ft M1 A1 dB1ft
(u)	$P(B \le 3   B \sim Po(6)) = 0.1512$ $X \sim B(4, 0.1512)$ Alternative method for first 3 marks $P(B \ge 4   B \sim Po(6)) = 0.8488$ $Y \sim B(4, 0.849)$ If $0  P(X \le 1) = P(X = 0) + P(X = 1)$	M1: using Po(6) and writing or using $P(B \le 3)$ oe. A1: awrt 0.151 B1ft: dep on M1 being awarded. Using or writing B(4, "their 0.151") for use they need $(1-p)^4$ or $p(1-p)^3$ or $p^2(1-p)^2$ M1: using Po(6) and writing or using $P(B \ge 4)$ oe A1: awrt 0.849 B1ft: dep on M1 being awarded. Using or writing B(4, "their 0.849") for use they need $(p)^4$ or $p^3(1-p)$ or $p^2(1-p)^2$ M1: using or writing P(X = 0) + P(X = 1) oe	M1 A1 dB1ft M1 A1 dB1ft M1
(u)	$P(B \le 3   B \sim Po(6)) = 0.1512$ $X \sim B(4, 0.1512)$ Alternative method for first 3 marks $P(B \ge 4   B \sim Po(6)) = 0.8488$ $Y \sim B(4, 0.849)$ If $0  P(X \le 1) = P(X = 0) + P(X = 1) (1 - 0.1512)^{4} + 4 \times (1 - 0.1512)^{3} \times 0.1512$	M1: using Po(6) and writing or using $P(B \le 3) \text{ oe.} \qquad A1: awrt 0.151$ B1ft: dep on M1 being awarded. Using or writing B(4,"their 0.151") for use they need $(1-p)^4$ or $p(1-p)^3$ or $p^2(1-p)^2$ M1: using Po(6) and writing or using $P(B \ge 4)$ oe A1: awrt 0.849 B1ft: dep on M1 being awarded. Using or writing B(4,"their 0.849") for use they need $(p)^4$ or $p^3(1-p)$ or $p^2(1-p)^2$ M1: using or writing P(X=0) + P(X=1) oe M1: $(1-p)^4 + 4 \times (1-p)^3 \times p$ oe	M1 A1 dB1ft M1 A1 dB1ft M1 dM1
(4)	$P(B \le 3   B \sim Po(6)) = 0.1512$ $X \sim B(4, 0.1512)$ Alternative method for first 3 marks $P(B \ge 4   B \sim Po(6)) = 0.8488$ $Y \sim B(4, 0.849)$ If $0  P(X \le 1) = P(X = 0) + P(X = 1) (1 - 0.1512)^4 + 4 \times (1 - 0.1512)^3 \times 0.1512 = 0.889$	M1: using Po(6) and writing or using $P(B \le 3)$ oe. A1: awrt 0.151 B1ft: dep on M1 being awarded. Using or writing B(4, "their 0.151") for use they need $(1-p)^4$ or $p(1-p)^3$ or $p^2(1-p)^2$ M1: using Po(6) and writing or using $P(B \ge 4)$ oe A1: awrt 0.849 B1ft: dep on M1 being awarded. Using or writing B(4, "their 0.849") for use they need $(p)^4$ or $p^3(1-p)$ or $p^2(1-p)^2$ M1: using or writing P(X = 0) + P(X = 1) oe M1: $(1-p)^4 + 4 \times (1-p)^3 \times p$ oe A1: awrt 0.889	M1 A1 dB1ft M1 A1 dB1ft M1 dM1 dM1 A1
	$P(B \le 3   B \sim Po(6)) = 0.1512$ $X \sim B(4, 0.1512)$ Alternative method for first 3 marks $P(B \ge 4   B \sim Po(6)) = 0.8488$ $Y \sim B(4, 0.849)$ If $0  P(X \le 1) = P(X = 0) + P(X = 1) (1 - 0.1512)^4 + 4 \times (1 - 0.1512)^3 \times 0.1512 = 0.889 If 0.5$	M1: using Po(6) and writing or using P(B $\leq$ 3) oe. A1: awrt 0.151 B1ft: dep on M1 being awarded. Using or writing B(4,"their 0.151") for use they need $(1-p)^4$ or $p(1-p)^3$ or $p^2(1-p)^2$ M1: using Po(6) and writing or using P(B $\geq$ 4) oe A1: awrt 0.849 B1ft: dep on M1 being awarded. Using or writing B(4,"their 0.849") for use they need $(p)^4$ or $p^3(1-p)$ or $p^2(1-p)^2$ M1: using or writing P(X = 0) + P(X = 1) oe M1: $(1-p)^4 + 4 \times (1-p)^3 \times p$ oe A1: awrt 0.889	M1 A1 dB1ft M1 A1 dB1ft M1 dM1 A1
(u)	$P(B \le 3   B \sim Po(6)) = 0.1512$ $X \sim B(4, 0.1512)$ Alternative method for first 3 marks $P(B \ge 4   B \sim Po(6)) = 0.8488$ $Y \sim B(4, 0.849)$ If $0  P(X \le 1) = P(X = 0) + P(X = 1) (1 - 0.1512)^4 + 4 \times (1 - 0.1512)^3 \times 0.1512 = 0.889 If 0.5  P(Y \ge 3) = P(Y = 3) + P(Y = 4)$	M1: using Po(6) and writing or using P(B $\leq$ 3) oe. A1: awrt 0.151 B1ft: dep on M1 being awarded. Using or writing B(4, "their 0.151") for use they need $(1-p)^4$ or $p(1-p)^3$ or $p^2(1-p)^2$ M1: using Po(6) and writing or using P(B $\geq$ 4) oe A1: awrt 0.849 B1ft: dep on M1 being awarded. Using or writing B(4, "their 0.849") for use they need $(p)^4$ or $p^3(1-p)$ or $p^2(1-p)^2$ M1: using or writing P(X = 0) + P(X = 1) oe M1: $(1-p)^4 + 4 \times (1-p)^3 \times p$ oe A1: awrt 0.889 M1: using or writing P(X = 3) + P(X = 4) oe	M1 A1 dB1ft M1 A1 dB1ft dB1ft M1 dM1 A1 M1
	$P(B \le 3   B \sim Po(6)) = 0.1512$ $X \sim B(4, 0.1512)$ Alternative method for first 3 marks $P(B \ge 4   B \sim Po(6)) = 0.8488$ $Y \sim B(4, 0.849)$ If $0  P(X \le 1) = P(X = 0) + P(X = 1) (1 - 0.1512)^{4} + 4 \times (1 - 0.1512)^{3} \times 0.1512 = 0.889 If 0.5  P(Y \ge 3) = P(Y = 3) + P(Y = 4) 4 \times (0.8488)^{3} \times 0.1512 + (0.8488)^{4}$	M1: using Po(6) and writing or using P(B $\leq$ 3) oe. A1: awrt 0.151 B1ft: dep on M1 being awarded. Using or writing B(4, "their 0.151") for use they need $(1-p)^4$ or $p(1-p)^3$ or $p^2(1-p)^2$ M1: using Po(6) and writing or using P(B $\geq$ 4) oe A1: awrt 0.849 B1ft: dep on M1 being awarded. Using or writing B(4, "their 0.849") for use they need $(p)^4$ or $p^3(1-p)$ or $p^2(1-p)^2$ M1: using or writing P(X = 0) + P(X = 1) oe M1: $(1-p)^4 + 4 \times (1-p)^3 \times p$ oe A1: awrt 0.889 M1: using or writing P(X = 3) + P(X = 4) oe M1: $(p)^4 + 4 \times (p)^3 \times (1-p)$ oe	M1 A1 dB1ft M1 A1 dB1ft dB1ft M1 dM1 A1 M1 dM1 dM1
	$P(B \le 3   B \sim Po(6)) = 0.1512$ $X \sim B(4, 0.1512)$ Alternative method for first 3 marks $P(B \ge 4   B \sim Po(6)) = 0.8488$ $Y \sim B(4, 0.849)$ If $0  P(X \le 1) = P(X = 0) + P(X = 1) (1 - 0.1512)^{4} + 4 \times (1 - 0.1512)^{3} \times 0.1512 = 0.889 If 0.5  P(Y \ge 3) = P(Y = 3) + P(Y = 4) 4 \times (0.8488)^{3} \times 0.1512 + (0.8488)^{4} = 0.889 The tensus implies full marks have the first 1 to 100000000000000000000000000000000$	M1: using Po(6) and writing or using P(B $\leq$ 3) oe. A1: awrt 0.151 B1ft: dep on M1 being awarded. Using or writing B(4, "their 0.151") for use they need $(1-p)^4$ or $p(1-p)^3$ or $p^2(1-p)^2$ M1: using Po(6) and writing or using P(B $\geq$ 4) oe A1: awrt 0.849 B1ft: dep on M1 being awarded. Using or writing B(4, "their 0.849") for use they need $(p)^4$ or $p^3(1-p)$ or $p^2(1-p)^2$ M1: using or writing P(X = 0) + P(X = 1) oe M1: $(1-p)^4 + 4 \times (1-p)^3 \times p$ oe A1: awrt 0.889 M1: using or writing P(X = 3) + P(X = 4) oe M1: $(p)^4 + 4 \times (p)^3 \times (1-p)$ oe A1: awrt 0.889 mork if act our 40 899 and a use to d	M1 A1 dB1ft M1 A1 dB1ft dB1ft dM1 dM1 A1 dM1 dM1 dM1 a1

Question Number	Scheme		Marks
	<b>NB:</b> All powers of 1 <b>must</b> be simplified fo	r the Accuracy(A) marks	T
		notes	
6(a)	$\left[\frac{kx^{n+1}}{n+1}\right]_0^1 = 1$	M1: attempting to integrate $x^n \rightarrow x^{n+1}$ and putting equal to 1, ignore limits A1: correct integration	M1A1
	k = n + 1	A1: $k = n + 1$ Do <b>not</b> accept $\frac{n+1}{1^{n+1}}$	A1
(b)	$[I_{rr}^{n+2}]^{l}$	M1: Writing or using $\int_0^1 kx^{n+1} dx$ , ignore limits Allow $\int_0^1 kx(x)^n dx$	
	$\int_0^1 k x^{n+1} \mathrm{d}x = \left\lfloor \frac{k x}{n+2} \right\rfloor_0$	Allow substitution of their k	M1A1
		A1: correct integration $\frac{kx^{n+2}}{n+2}$	
	$=\frac{n+1}{n+2}$	A1: correct answer only- must be in terms or <i>n</i>	Alcao
			1
(c)	$\int_0^1 kx^{n+2} \mathrm{d}x = \left[\frac{kx^{n+3}}{n+3}\right]$	M1: Attempting to integrate $\int_0^1 kx^{n+2} dx, \ x^{n+2} \to x^{n+3}, \text{ ignore}$ limits. Do not allow substitution of k if it has x in it. This must be on its own with no extra bits added on.	M1
	$=\frac{n+1}{n+3}$	A1: correct answer only SC if they have $\frac{k}{n+2}$ as answer to part(b) award A1 for $\frac{k}{n+3}$	Alcao
			1
(d)	Var $(X) = \frac{3}{5} - \left(\frac{3}{4}\right)^2 = \frac{3}{80}$	M1: using "their(c)" - ["their(b)"] ² with $n = 2$ or correct Var(X) Using $\int_0^1 kx^4 dx - \left[\int_0^1 kx^3 dx\right]^2$ for Var(X)	M1
	Var(3X) = 9 Var(X)	M1: for writing or using 9 Var (X) or $3^2$ Var(X)	M1
	$=\frac{27}{80}$ oe or 0.3375 or 0.338	A1: cso	Alcso

Question Number	Scheme		Marks
		Notes	
7	NB: If there is a fully correct table award full marks.		
	P(10) = 0.2, P(20) = 0.4  and  P(50) = 0.4	B1: using $P(10) = 0.2 (p) P(20) =$	B1
		0.4(q) and $P(50) = 0.4(r)$ may be seen	
		in calculations or implied by	
		a correct probability.	
	Median 10, 20, 50	B1: three correct medians and no extras.	B1
	P(Median 10) =	M1: allow if $(p+q+r)=1$ and use	
	$02^{3}+3\times02^{2}\times04+3\times02^{2}\times04$	$\frac{1}{3} \cdot \frac{2}{2} \cdot \frac{2}$	
	or	$p + 3 \times p \times q + 3 \times p \times r$	
	$0.2^3 + 3 \times 0.2^2 \times 0.8$	or	
	$0.2 + 3 \times 0.2 \times 0.8$	$p^3+3\times p^2\times (q+r)$	
		1 6 6	
		$\frac{100 \text{ k for }}{125} + \frac{125}{125} + \frac{125}{125}$	
	P(Median 50) =	M1: allow if $(p+q+r)=1$ and use	
	$04^{3}+3\times04^{2}\times02+3\times04^{2}\times04$	$\frac{1}{3} \cdot 2 \cdot 2 \cdot \cdot 2 \cdot 2 \cdot 2 \cdot \cdot 2 \cdot 2 \cdot \cdot 2 \cdot 2 \cdot 2 \cdot \cdot 2 $	
	or	$r + 3 \times r \times p + 3 \times r \times q$	See
	$0 A^3 + 3 \times 0 A^2 \times 0.6$	or	below
	U. + J × U. + × U. U	$r^3 + 3 \times r^2 \times (p+q)$	for how
		Legis for 8 12 24	to award
		$\frac{1}{125} + \frac{1}{125} + \frac{1}{125} + \frac{1}{125}$	
	P(Median 20) =	M1: allow if $(p+q+r)=1$ and use	
	$3 \times 0.2 \times 0.4^{2} + 6 \times 0.2 \times 0.4 \times 0.4 + 0.4^{3} +$	$3 \times n \times a^{2} + 6 \times n \times a \times r + a^{3} +$	
	$3 \times 0.4^2 \times 0.4$	$3 \times p \times q + 0 \times p \times q \times r + q + 2$	
		$3 \times q^2 \times r$	
		12 + 24 + 8 + 24	
		125 125 125 125	
	<b>How to award the M marks</b> – Allow the use of 1, 2 and 5 for the medians for the <b>method marks</b> M1 any correct calculation (implied by correct answer) for $P(m = 10)$ or $P(m = 20) = P(m = 50)$		
	$P(m = 20) \text{ or } P(m = 50)$ $M1 \text{ any } 2 \text{ correct calculations (implied by 2 \text{ correct answers) } P(m = 10) \text{ or }$ $P(m = 20) \text{ or } P(m = 50)$ $M1 \text{ any } 3 \text{ correct calculations (implied by 3 \text{ correct answers) } for P(m = 10) \text{ and } P(m = 20) \text{ and } P(m = 50) \text{ or }$ $3 \text{ probabilities that add up to 1 providing it is 1 - their 2 other calculated}$		
	probabilities. Do <b>not</b> allow $\frac{1}{2} = \frac{2}{2}$		
	5 5 5		
	<b>NB</b> if they do not have a correct answer their v	working must be clear including the	
	madian 10 20 50	A1: awrt any 1 correct	A2
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	A2: awrt all 3 correct	
		These do not need to be in a table as	
	$\left  \text{Or } \frac{15}{125} \right  \text{Or } \frac{06}{125} \left  \text{Or } \frac{44}{125} \right $	long as the correct probablity is with	
	125 125 125	the correct median $(10, 20 \& 50)$	
		NB: Do Not allow the use of 1,2 and	
		<b>5</b> for the medians for the A marks	

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom