

# **General Certificate of Education**

# Mathematics 6360

MS2B Statistics 2B

# Mark Scheme

## 2006 examination – June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

## Key To Mark Scheme And Abbreviations Used In Marking

| М          | mark is for method                                         |                 |                            |  |  |  |  |
|------------|------------------------------------------------------------|-----------------|----------------------------|--|--|--|--|
| m or dM    | mark is dependent on one or more M marks and is for method |                 |                            |  |  |  |  |
| А          | mark is dependent on M or m marks and is for accuracy      |                 |                            |  |  |  |  |
| В          | mark is independent of M or m marks an                     | d is for method | l and accuracy             |  |  |  |  |
| E          | mark is for explanation                                    |                 |                            |  |  |  |  |
|            |                                                            |                 |                            |  |  |  |  |
| or ft or F | follow through from previous                               |                 |                            |  |  |  |  |
|            | incorrect result                                           | MC              | mis-copy                   |  |  |  |  |
| CAO        | correct answer only                                        | MR              | mis-read                   |  |  |  |  |
| CSO        | correct solution only                                      | RA              | required accuracy          |  |  |  |  |
| AWFW       | anything which falls within                                | FW              | further work               |  |  |  |  |
| AWRT       | anything which rounds to                                   | ISW             | ignore subsequent work     |  |  |  |  |
| ACF        | any correct form                                           | FIW             | from incorrect work        |  |  |  |  |
| AG         | answer given                                               | BOD             | given benefit of doubt     |  |  |  |  |
| SC         | special case                                               | WR              | work replaced by candidate |  |  |  |  |
| OE         | or equivalent                                              | FB              | formulae book              |  |  |  |  |
| A2,1       | 2 or 1 (or 0) accuracy marks                               | NOS             | not on scheme              |  |  |  |  |
| –x EE      | deduct x marks for each error                              | G               | graph                      |  |  |  |  |
| NMS        | no method shown                                            | с               | candidate                  |  |  |  |  |
| PI         | possibly implied                                           | sf              | significant figure(s)      |  |  |  |  |
| SCA        | substantially correct approach                             | dp              | decimal place(s)           |  |  |  |  |

#### No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

### Otherwise we require evidence of a correct method for any marks to be awarded.

| MS2B   |                                            |       |       |                          |
|--------|--------------------------------------------|-------|-------|--------------------------|
| Q      | Solution                                   | Marks | Total | Comments                 |
| 1(a)   | For a 1-year period                        |       |       |                          |
|        | The number of A grades $\sim Po(3)$        |       |       |                          |
|        | For a 5-year period                        |       |       |                          |
|        | Number of A grades ~ $Po(15)$              | B1    |       |                          |
|        | P(Total A-grades > 18)                     |       |       |                          |
|        | $=1-(Total \le 18)$                        | M1    |       |                          |
|        | =1-0.8195                                  |       |       |                          |
|        | = 0.1805                                   |       |       |                          |
|        | = 0.181                                    | A1    | 3     | AWFW 0.180 to 0.181      |
| (b)(i) | $X + Y \sim \operatorname{Po}(10)$         | B1    |       |                          |
|        | $P(X+Y\leq 14)=0.917$                      | M1A1  | 3     | AWFW 0.916 to 0.917 incl |
| (ii)   | X and Y are independent variables.         | E1    | 1     |                          |
|        | Total                                      |       | 7     |                          |
| 2(a)   | $\overline{x} = \frac{254}{5} = 50.8$      | B1    |       |                          |
|        | s = 4.55                                   | B1    |       |                          |
|        | v = 5 - 1 = 4                              | B1    |       |                          |
|        | $t_{\rm crit} = 2.776$                     | B1    |       |                          |
|        | 95% confidence interval                    |       |       |                          |
|        | $=50.8\pm2.776\times\frac{4.55}{\sqrt{5}}$ | M1√   |       | ft their values          |
|        | $=50.8\pm5.648$                            |       |       |                          |
|        | =(45.2,56.4)                               | A1    | 6     |                          |
| (b)    | 0.05                                       | B1    | 1     |                          |
|        | Total                                      |       | 7     |                          |

| MS2B | (cont) |
|------|--------|
|------|--------|

| Q            | Solution                                                                                                                                              | Marks | Total | Comments                           |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|------------------------------------|
| <b>3</b> (a) | $\mathbf{E}(R) = \sum_{i=1}^{n} r \mathbf{P}(R=r)$                                                                                                    |       |       |                                    |
|              | all r                                                                                                                                                 |       |       |                                    |
|              | $= \left(1 \times \frac{7}{16}\right) + \left(2 \times \frac{5}{16}\right) + \left(3 \times \frac{3}{16}\right) + \left(4 \times \frac{1}{16}\right)$ |       |       |                                    |
|              | _ 30                                                                                                                                                  |       |       |                                    |
|              | $=\frac{30}{16}$                                                                                                                                      |       |       |                                    |
|              | $=1\frac{7}{8}$                                                                                                                                       | B1    |       | (1.875)                            |
|              | 8                                                                                                                                                     |       |       |                                    |
|              |                                                                                                                                                       |       |       |                                    |
|              | $\mathbf{E}\left(R^{2}\right) = \sum_{\text{all } r} r^{2} \mathbf{P}\left(R=r\right)$                                                                |       |       |                                    |
|              | $=\frac{70}{16}$ or $4\frac{3}{8}$                                                                                                                    | D1    |       | (4.275)                            |
|              | $-\frac{1}{16}$ or $+\frac{1}{8}$                                                                                                                     | B1    |       | (4.375)                            |
|              | $\operatorname{Var}(R) = 4\frac{3}{8} - \left(1\frac{7}{8}\right)^2$                                                                                  | M1    |       |                                    |
|              |                                                                                                                                                       |       |       |                                    |
|              | $=\frac{220}{256}$ or $\frac{55}{64}$                                                                                                                 | A1    | 4     | (0.859375)                         |
|              | 256 64                                                                                                                                                | AI    | 4     | (0.839373)                         |
| (b)(i)       | $32 \times \frac{1}{4} = 8$                                                                                                                           |       |       |                                    |
|              | $32 \wedge \frac{1}{4} = 0$                                                                                                                           | B1    | 1     |                                    |
| (ii)         | (7,1)(5,1) 0                                                                                                                                          |       |       |                                    |
|              | $= \left(32 \times \frac{7}{16} \times \frac{1}{5}\right) + \left(32 \times \frac{5}{16} \times \frac{1}{2}\right) + 8 \times \frac{9}{10}$           | M1    |       |                                    |
|              | = 2.8 + 5 + 7.2                                                                                                                                       |       |       | A0 if these numbers rounded before |
|              | =15                                                                                                                                                   | A1    | 2     | adding                             |
|              | Total                                                                                                                                                 |       | 7     |                                    |
| I            |                                                                                                                                                       |       |       |                                    |

| Q           |                          | S              | Solution        |                                                                         | Marks | Total | Comments                               |
|-------------|--------------------------|----------------|-----------------|-------------------------------------------------------------------------|-------|-------|----------------------------------------|
| 4(a)(i)     | ſ                        | •              | D               | T - 4 - 1                                                               |       |       |                                        |
|             | 22.24                    | A 21           | B<br>32         | Total 52                                                                |       |       |                                        |
|             | 22-34<br>35-39           | 21<br>72       | 36              | 53<br>108                                                               | B1    |       | for A values                           |
|             |                          |                |                 |                                                                         | B1    | 2     | for B values                           |
|             | 40-59                    | 27             | 12<br>80        | 39                                                                      |       |       |                                        |
|             | Total                    | 120            | 80              | 200                                                                     |       |       |                                        |
| (ii)        | U .no o                  | aggintion      | n hatwaa        | 2 0 5 0 0                                                               |       |       |                                        |
|             | $H_0$ : no as            |                |                 | l alea                                                                  | B1    |       |                                        |
|             |                          | age profil     |                 |                                                                         | DI    |       | At least H <sub>0</sub>                |
|             | H <sub>1</sub> : assoc   |                |                 | ea                                                                      |       |       |                                        |
|             | and a                    | age profi      | ile             |                                                                         |       |       |                                        |
|             |                          |                |                 |                                                                         |       |       |                                        |
|             |                          |                |                 | $(0 - E)^2$                                                             | M1    |       | Attempt at Row & Column totals         |
|             | O <sub>i</sub>           |                | E <sub>i</sub>  | $\frac{\left(\mathrm{O}_{i}-\mathrm{E}_{i}\right)^{2}}{\mathrm{E}_{i}}$ | M1    |       | Attempt at $E_i$                       |
|             | i                        |                | i               | $E_i$                                                                   | 2.61  |       | $(\Omega - E)^2$                       |
|             | 24                       | 3              | 1.8             | 3.6679                                                                  | M1    |       | Attempt at $\frac{(O_i - E_i)^2}{E_i}$ |
|             | 72                       | 6              | 64.8            | 0.8000                                                                  |       |       |                                        |
|             | 24                       | 2              | 23.4            | 0.5538                                                                  | M1    |       | Attempt at $\chi^2$                    |
|             | 32                       |                | 21.2            | 5.5019                                                                  |       |       |                                        |
|             | 36                       |                | 3.2             | 1.2000                                                                  |       |       |                                        |
|             | 12                       |                | 5.6             | 0.8308                                                                  | A1    |       | AWFW 12.5 to 12.6 provided correct     |
|             | $\sum O_i = 2$           | $200 \sum E_i$ | $\lambda = 200$ | $\chi^2 = 12.554$                                                       |       |       | method used                            |
|             | $v = (3-1)^{2}$          | (2-1) =        | 2               |                                                                         | B1    |       |                                        |
|             | (2)                      | 0.210 <        | 10 554          |                                                                         |       |       |                                        |
|             | $\chi^2_{1\%}(2) =$      | 9.210<         | 12.334          |                                                                         | B1√   |       | ft on their $v$ and $\chi^2$           |
|             | Reject H                 | 0              |                 |                                                                         |       |       |                                        |
|             | The evide                | ence sugo      | ests that       | the area within                                                         |       |       |                                        |
|             |                          |                |                 | eems to have an                                                         |       |       |                                        |
|             | effect on                |                |                 |                                                                         | E1√   | 9     | ft on $\chi^2$ and calculated value    |
|             | employed                 |                |                 |                                                                         |       |       | depends on $H_0$ correct, if stated    |
| <b>(L</b> ) | Thora an -               | mata h-        | former          | ff ampland in                                                           |       |       |                                        |
| (b)         | 1 here see<br>22 - 34 ag |                |                 | aff employed in                                                         |       |       |                                        |
|             | school A                 | se group       | man expe        |                                                                         | E1    |       |                                        |
|             | and more                 | than exp       | ected in        | school B                                                                | E1    | 2     |                                        |
|             |                          | mun onp        |                 | Tota                                                                    |       | 13    |                                        |

5

| Q       | Solution                                                                                              | Marks | Total | Comments                                          |
|---------|-------------------------------------------------------------------------------------------------------|-------|-------|---------------------------------------------------|
| 5(a)(i) | $\mathrm{E}(X) = \frac{1}{2}b$                                                                        | B1    | 1     |                                                   |
| (ii)    | $\mathbf{E}\left(X^2\right) = \int_0^b \frac{1}{b} x^2 \mathrm{d}x$                                   | M1    |       |                                                   |
|         | $E(X^{2}) = \int_{0}^{b} \frac{1}{b} x^{2} dx$ $= \frac{1}{b} \left[ \frac{x^{3}}{3} \right]_{0}^{b}$ | A1    |       | For correct integration                           |
|         | $=\frac{1}{b}\left(\frac{b^3}{3}\right)$                                                              |       |       |                                                   |
|         | $=\frac{1}{3}b^2$                                                                                     | A1    |       | OE                                                |
|         | $\operatorname{Var}(X) = \frac{1}{3}b^2 - \left(\frac{b}{2}\right)^2$                                 | m1    |       | Depending on using integration<br>to get $E(X^2)$ |
|         | $=\frac{1}{3}b^2-\frac{1}{4}b^2$                                                                      |       |       |                                                   |
|         | $=\frac{1}{12}b^2$                                                                                    | A1    | 5     | AG                                                |
| (b)     | P( T  > 0.02) = 1 - P(-0.02 < T < 0.02)                                                               | M1    |       |                                                   |
|         | $= 1 - 0.04 \times 5$                                                                                 | M1    |       |                                                   |
|         | = 0.8                                                                                                 | A1    | 3     |                                                   |

| MS2B | (cont) |
|------|--------|
|      | (COHC) |

| MS2B (cont)<br>Q | Solution                                                                                                                   | Marks    | Total | Comments                                                           |
|------------------|----------------------------------------------------------------------------------------------------------------------------|----------|-------|--------------------------------------------------------------------|
| <b>6</b> (a)     |                                                                                                                            | B1       | 1000  |                                                                    |
|                  | $\overline{x} = \frac{471}{5} = 94.2$                                                                                      | DI       |       |                                                                    |
|                  | s = 6.058                                                                                                                  | B1       |       | Or $s^2 = 36.7$                                                    |
|                  | v = 4 1-tailed test                                                                                                        | B1       |       |                                                                    |
|                  | $t_{\rm crit} = -2.132$                                                                                                    | B1       |       | Or on diagram                                                      |
|                  | $H_0: \mu = 100$<br>$H_1: \mu < 100$                                                                                       | B1       |       |                                                                    |
|                  | $t = \frac{94.2 - 100}{6.058 / \sqrt{5}} = -2.14$                                                                          | M1A1     |       | $\frac{\text{their } \bar{x} - 100}{(\text{their } s) / \sqrt{5}}$ |
|                  | Reject H <sub>0</sub> at 5% level of significance                                                                          | A1√      |       | On their <i>t</i> and critical value                               |
|                  | Evidence at the 5% level of significance<br>to support the members' belief that the<br>batteries last less than 100 hours. | E1√      | 9     |                                                                    |
| (b)              | $\overline{x} = \frac{8080}{80} = 101$                                                                                     |          |       |                                                                    |
|                  | $s^{2} = \frac{6399}{79} = 81$ (or $\frac{6399}{80} = 79.9875$ )<br>s = 9 (or $s = 8.944$ )                                | B1       |       | For $s(\text{ or } s^2)$ and $\overline{x}$                        |
|                  | $H_0: \mu = 100$<br>$H_1: \mu \neq 100$                                                                                    | B1       |       |                                                                    |
|                  | $\bar{X} \sim N\left(100, \frac{81 \text{ (or } 79.9875)}{80}\right)$ under H <sub>0</sub>                                 | B1       |       | Or 100, $\frac{9}{\sqrt{80}}$ used                                 |
|                  | $z = \frac{101 - 100}{9/\sqrt{80}} = 0.99$                                                                                 | M1<br>A1 |       | Allow use of <i>t</i> method<br>AWFW 0.99 to 1.00 (allow 1)        |
|                  | 2-tailed test<br>$z_{\text{crit}} = \pm 1.96$                                                                              | B1       |       | Or $z = 1.96$                                                      |
|                  | Accept $H_0$ at 5% level of significance.                                                                                  | A1√      |       | On their <i>z</i> and critical value<br>Or <i>t</i>                |
|                  | Sufficient evidence at the 5% level of significance to support the manufacturer's belief.                                  | E1√      | 8     |                                                                    |
|                  | Total                                                                                                                      |          | 17    |                                                                    |

### MS2B (cont)

| 7(a)<br>(b)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)<br>(c)(i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MS2B (cont)<br>Q | Solution                                                                  | Marks | Total | Comments                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------------------------------------------------------|-------|-------|----------------------------|
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (b)(i)           | for $0 \le x \le 1$                                                       | B2    | 2     | B1 for correctly shaped    |
| $ \begin{vmatrix} = \left\lfloor \frac{1}{5} (x^2 + x) \right\rfloor_{0}^{x} & A1 \\ = \frac{1}{5} x(x+1) & A1 & 3 \\ \end{vmatrix} $ $ \begin{array}{c} \text{(ii)} \\ P(X \le 1) = F(1) \\ = \frac{2}{5} & B1 & 1 \\ \\ \text{(iii)} \\ P(X \ge x) = \frac{17}{20} \Rightarrow F(x) = \frac{3}{20} & M1 \\ \frac{1}{5} x(x+1) = \frac{3}{20} & m1 \\ x(x+1) = \frac{3}{4} & x^2 + x - \frac{3}{4} = 0 & A1 \\ \\ x^2 + x - \frac{3}{4} = 0 & A1 \\ \left( \frac{x - \frac{1}{2}}{2} \right) \left( x + \frac{3}{2} \right) = 0 & m1 \\ x = \frac{1}{2} & A1 & 5 \\ F(q) = \frac{1}{5} (q^2 + q) = 0.25 & M1 \\ \Rightarrow & q^2 + q = 1.25 & q^2 + q = 1.25 \\ q^2 + q - 1.25 = 0 & A1 \\ \Rightarrow & q = \frac{-1 \pm \sqrt{1 - 4 \times (-1.25)}}{2} & m1 \\ \Rightarrow & q = \frac{-1 \pm \sqrt{1 - 4 \times (-1.25)}}{2} & m1 \\ \end{vmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | $F(x) = \int_{0}^{x} \frac{1}{5} (2x+1) dx$                               | M1    |       | Ignore limits              |
| (ii) $P(X \le 1) = F(1) = \frac{2}{5}$ B1 1 (iii) $P(X \ge x) = \frac{17}{20} \Rightarrow F(x) = \frac{3}{20}$ M1 $\frac{1}{5}x(x+1) = \frac{3}{20} \Rightarrow F(x) = \frac{3}{20}$ M1 $\frac{1}{5}x(x+1) = \frac{3}{4} \Rightarrow x^2 + x - \frac{3}{4} = 0$ (iv) $F(1) = 0.4, \ q \ \text{lies in } 0 \le r \le 1$ $F(q) = \frac{1}{5}(q^2 + q) = 0.25 \Rightarrow M1$ $\Rightarrow q^2 + q = 1.25 \Rightarrow q^2$ |                  | $= \left\lfloor \frac{1}{5} \left( x^2 + x \right) \right\rfloor_{0}^{x}$ | A1    |       | Ignore limits              |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | $=\frac{1}{5}x(x+1)$                                                      | A1    | 3     |                            |
| $P(X \ge x) = \frac{1}{20} \implies F(x) = \frac{2}{20} \qquad M1$ $\frac{1}{5}x(x+1) = \frac{3}{20} \qquad m1$ $x(x+1) = \frac{3}{4}$ $x^{2} + x - \frac{3}{4} = 0 \qquad A1$ $\left(x - \frac{1}{2}\right)\left(x + \frac{3}{2}\right) = 0 \qquad m1$ $x = \frac{1}{2} \qquad A1 \qquad 5$ (iv) Since $F(1) = 0.4$ , $q$ lies in $0 \le r \le 1$ $F(q) = \frac{1}{5}(q^{2} + q) = 0.25 \qquad M1$ $\Rightarrow \qquad q^{2} + q = 1.25$ $q^{2} + q - 1.25 = 0 \qquad A1$ $\Rightarrow \qquad q = \frac{-1 \pm \sqrt{1 - 4 \times (-1.25)}}{2} \qquad m1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (ii)             |                                                                           | B1    | 1     |                            |
| (iv) $\begin{cases} x - \frac{1}{2} \end{pmatrix} \begin{pmatrix} x + \frac{3}{2} \end{pmatrix} = 0 \\ x = \frac{1}{2} \\ F(q) = \frac{1}{5} \begin{pmatrix} q^2 + q \end{pmatrix} = 0.25 \\ q^2 + q = 1.25 \\ q^2 + q - 1.25 = 0 \\ \Rightarrow q = \frac{-1 \pm \sqrt{1 - 4 \times (-1.25)}}{2} \\ q = \frac{1}{2} \begin{pmatrix} \sqrt{5} - 1 \end{pmatrix}  (q \ge 0) \end{cases}$ Any valid method attempted CAO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (iii)            | $P(X \ge x) = \frac{17}{20}  \Rightarrow  F(x) = \frac{3}{20}$            | M1    |       |                            |
| (iv) $\begin{cases} x - \frac{1}{2} \end{pmatrix} \begin{pmatrix} x + \frac{3}{2} \end{pmatrix} = 0 \\ x = \frac{1}{2} \\ F(q) = \frac{1}{5} \begin{pmatrix} q^2 + q \end{pmatrix} = 0.25 \\ q^2 + q = 1.25 \\ q^2 + q - 1.25 = 0 \\ \Rightarrow q = \frac{-1 \pm \sqrt{1 - 4 \times (-1.25)}}{2} \\ q = \frac{1}{2} \begin{pmatrix} \sqrt{5} - 1 \end{pmatrix}  (q \ge 0) \end{cases}$ Any valid method attempted CAO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | $\frac{1}{5}x(x+1) = \frac{3}{20}$ $x(x+1) = \frac{3}{4}$                 | m1    |       |                            |
| (iv) $\begin{aligned} x &= \frac{1}{2} \\ F(q) &= 0.4, \ q \text{ lies in } 0 \le r \le 1 \\ F(q) &= \frac{1}{5} \left( q^2 + q \right) = 0.25 \\ \Rightarrow & q^2 + q = 1.25 \\ q^2 + q - 1.25 = 0 \\ \Rightarrow & q = \frac{-1 \pm \sqrt{1 - 4 \times (-1.25)}}{2} \\ \Rightarrow & q = \frac{-1 \pm \sqrt{1 - 4 \times (-1.25)}}{2} \\ \end{array} $ M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | $x^{2} + x - \frac{3}{4} = 0$                                             | A1    |       |                            |
| (iv) Since F(1) = 0.4, q lies in $0 \le r \le 1$<br>F(q) = $\frac{1}{5}(q^2 + q) = 0.25$<br>$\Rightarrow q^2 + q = 1.25$<br>$q^2 + q - 1.25 = 0$<br>$\Rightarrow q = \frac{-1 \pm \sqrt{1 - 4 \times (-1.25)}}{2}$<br>$\Rightarrow q = \frac{1}{2}(\sqrt{6}, 1) = (q \ge 0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                                                                           | m1    |       | Any valid method attempted |
| $F(q) = \frac{1}{5}(q^{2} + q) = 0.25$ $\Rightarrow q^{2} + q = 1.25$ $q^{2} + q - 1.25 = 0$ $\Rightarrow q = \frac{-1 \pm \sqrt{1 - 4 \times (-1.25)}}{2}$ $m1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (iv)             | 2                                                                         | A1    | 5     | САО                        |
| $\Rightarrow q^{2} + q = 1.25$ $q^{2} + q = 1.25 = 0$ $\Rightarrow q = \frac{-1 \pm \sqrt{1 - 4 \times (-1.25)}}{2}$ $m1$ $q = \frac{1}{\sqrt{6}} (\sqrt{6} + 1) = (q > 0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (17)             |                                                                           | M1    |       |                            |
| $\Rightarrow q = \frac{-1 \pm \sqrt{1 - 4 \times (-1.25)}}{2} \qquad m1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  | $\Rightarrow q^2 + q = 1.25$                                              |       |       |                            |
| $a = \frac{1}{\sqrt{6}} (\sqrt{6} + 1) (a > 0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |                                                                           |       |       |                            |
| $q = \frac{1}{2}(\sqrt{6} - 1)$ (q > 0) A1 A WFW (0.724 to 0.725)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  | -                                                                         | 1111  |       |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |                                                                           | A1    | 4     | AWFW (0.724 to 0.725)      |
| Total     15       TOTAL     75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |                                                                           |       |       |                            |