Version 1.0

General Certificate of Education (A-level) 2011

Mathematics

MS2B

(Specification 6360)

Statistics 2B

PMT

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2011 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

М	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\checkmark or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
С	candidate
sf	significant figure(s)
dp	decimal place(s)

Key to mark scheme abbreviations

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MS2B	Mark Scheme – General Certificate of Ed			
Question	Solution	Marks	Total	Comments
1(a)				
	$ \begin{array}{c} Y \sim N(\mu_{Y}, 4) \\ n = 16, \overline{y} = 450 \end{array} $			
	$n = 16, \overline{y} = 450 \int$			
	(known variance) \Rightarrow use z			
		D1		
	For 95% CI $z_{crit} = 1.96$	B1		
	$450 \pm 1.96 \times \frac{2}{2}$			
	$450\pm1.96\times\frac{2}{\sqrt{16}}$	M1		
	450 ± 0.98			
	(449,451)			
		A1	3	awrt
(b)(i)	$X \sim \mathrm{N}(\mu_{X}, \sigma^{2})$			
	(unknown variance) \Rightarrow use t_{n-1}			
	$n = 9$ & $\overline{r} = \frac{4950}{50} = 550$			
	$\begin{bmatrix} n-y & \alpha & x-\frac{y}{9} \end{bmatrix} = 550$	B1		both
	$ \begin{array}{c} n = 9 \& \overline{x} = \frac{4950}{9} = 550 \\ s_{n-1}^2 = \frac{334}{8} = 41.75 (s_{n-1} = 6.461) \end{array} $	DI		both
	8			
	For 90% CI $t_{crit} = 1.860$	B1		
				f their s
	$550 \pm 1.860 \times \frac{\sqrt{41.75}}{\sqrt{9}}$	M1		$\begin{cases} \text{their } \overline{x} \pm t_8 \times \frac{\text{their } s_{n-1}}{\sqrt{9}} \end{cases}$
	$\sqrt{9}$			(must have a t_8 -value)
	550 ± 4.0	4.1.0		
		A1ft		
	(546,554)	A1	5	awrt
				Alternative $H_0: \mu_x = 545$
(ii)	545 not in 90% CI	B1ft		$H_0.\mu_X = 545$ $H_1:\mu_X \neq 545$
	∴ Reject claim	(dep on		
	Evidence to suggest that mean content of a bottle of tomato sauce is not	(b)(i))		$t = \frac{550 - 545}{\sqrt{41.75/9}} = 2.32$
	545 grams and hence to reject Holly's			
	claim	E1ft		$t_{\rm crit} = 1.86 < 2.32$ B1
	at 10% level of significance .	(dep on		Reject $H_0 \int B f$
		(b)(i))		Comment in context E1
		B1	3	10% significance level B1
	Alternatives (such as):			$t_{\rm crit} = 3.355 > 2.32$
	Claim justified at 10/ level of			$l_{\text{crit}} = 5.555 > 2.52$ Accept H ₀
	Claim justified at 1% level of significance			1% significance level
	Total		11	
	1000	I		l

Mark Scheme – General Certificate of Education (A-level) Mathematics – Statistics 2B – 2011

AS2B(cont)		``````````````````````````````````````	,	-
Question	Solution	Marks	Total	Comments
2(a)	CLLDOPTotM15614412060480F21613510881540Tot3722792281411020	B1 B1	2	For each correct row
(b)	 H₀: No association between gender and the way students vote H₁: Association between gender and the way students vote 	B1		For at least H ₀ correct
	$\begin{array}{c c c} O_i & E_i & (O_i - E_i)^2 / E_i \\ \hline 156 & 175.06 & 2.075 \\ \hline 216 & 196.94 & 1.844 \\ \hline \end{array}$	M1		Attempt at E_i
	144 131.29 1.230 135 147.71 1.093 120 107.20 1.505	M1		Attempt at $(O_i - E_i)^2 / E_i$
	120 107.29 1.505 108 120.71 1.337 60 66.35 0.608 81 74.65 0.541	M1		Attempt at $\sum \left(\frac{(O_i - E_i)^2}{E_i} \right)$
	$X^2 = 10.233$	A1		awfw 10.2 to 10.3 (A1 dependent on all 3 method marks)
	$\nu = 3 \implies \chi^2_{crit} = 11.345$	B1 B1ft		ft on their v value
	$X^2 < \chi^2_{crit}$: accept H_0	A1		
	Accept claim at 1% level. Evidence to suggest that the way students vote is independent of gender.	E 1	9	
	Total		11	

Mark Scheme – General Certificate of Education (A-level) Mathematics – Statistics 2B – 2011

Question	Solution	Marks	Total	Comments
3(a)(i)	$X \sim P_o(0.6)$			
	$P(X \le 1) = 0.8781$	B1	1	Awrt 0.878
(ii)	For matches : The number of run outs: $Y \sim P_0(0.15)$ $P(Y \ge 1) = 1 - P(Y = 0)$			
	$= 1 - e^{-0.15}$ = 1 - 0.8607	M1		must use $P_0(0.15)$
	= 1 - 0.8007 = 0.1393	A1		awrt 0.139
	P(X ≤1 and Y ≥1) = 0.8781×0.1393 = 0.122	M1 A1	4	their (a)(i) × their $P(Y \ge 1)$ awrt
(b)	<i>X</i> and <i>Y</i> are independent. Number of catches and runouts independent	B1	1	
(c)(i)	For Season: $S \sim P_o(9.6)$ $P(S=10) = \frac{e^{-9.6} \times 9.6^{10}}{10!}$	M1		Use of $\lambda = 9.6$ in correct Poisson expression
	= 0.124	A1	2	
(ii)	$T \sim P_{o}(9.6 + 2.4) = P_{o}(12)$	B1		$P_{o}(12)$ used or seen
	$P(T \ge 15) = 1 - P(T \le 14)$ = 1 - 0.7720 = 0.228	B2,1	3	(1-0.8444 = 0.155 to 0.156) B1
	Total		11	

AS2B(cont)	Mark Scheme – General Certificate of Ed			
Question	Solution	Marks	Total	Comments
4(a)(i)	$E(X) = \sum_{x} x \times P(X = x) = 2.8$ $E(X^{2}) = \sum_{x} x^{2} \times P(X = x) = 9$	B1	Total	Comments
	$Var(X) = 9 - 2.8^2$	M1		$(\text{their } \mathrm{E}(X^2) - \text{their } \mathrm{E}^2(X))$
	=1.16	A1	3	cao
(ii)	$\mathrm{E}(S) = 3 \times \mathrm{E}(X) = 8.4$	B1ft		on their $E(X)$
	$\operatorname{Var}(S) = 3 \times \operatorname{Var}(X) = 3.48$	B1ft	2	$3 \times \text{their Var}(X) \text{ from (i)} > 0$
				NB There was a problem with part 4(a)(ii) which affected the marking of this part. Please see the Report on the Examination for details.
(b)	$\mathrm{E}(Y) = 3.5$			
	$\mathrm{E}(Y^2) = 13$	B1		for $E(Y)$
	$\operatorname{Var}(Y) = 13 - 3.5^2 = 0.75$	M1		on their $E(Y)$ and $E(Y^2)$
		A1ft		$\operatorname{Var}\left(Y\right) > 0$
	$E(T) = 3 \times E(Y) = 10.5$	B1		cao
	$\operatorname{Var}(T) = 3^2 \times \operatorname{Var}(Y)$			
	=9×0.75	M1		$9 \times \text{their } \text{Var}(Y) > 0$
	= 6.75	A1		cao
	Alternative:			
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(M1A1)		
	$E(T^{2}) \qquad \overset{?}{20} \qquad \overset{?}{720} \qquad \overset{243}{20} \qquad \overset{2016}{20} \qquad 117$	(M1A1)		
	$\operatorname{Var}(T) = \operatorname{E}(T^{2}) - \left[\operatorname{E}(T)\right]^{2}$	(M1)		(used)
	$=117-10.5^{2}$ = 6.75	(A1)	6	

MS2B(cont)				
Question	Solution	Marks	Total	Comments
4(c)(i)	Solution P(X > 1) = 0.8 $P(T = 3) = \frac{1}{20}$ and $P(T = 3 \text{ or } 6) = \frac{3}{20}$ $P(X + T \le 9 \text{ and } X > 1)$ = P([2,3 or 6], [3,3 or 6], [4,3])	Marks B1	1 1	Alternative: $P(T = 3) = \frac{1}{20}$ and $P(T = 6) = \frac{2}{20}$ $P(X + T \le 9 \text{ and } X > 1)$ = P([(2,3,4),3], [(2,3),6])
	$= 0.1 \times \frac{3}{20} + 0.4 \times \frac{3}{20} + 0.3 \times \frac{1}{20}$ $= 0.015 + 0.06 + 0.015$ $= 0.09$	B4	4	$= 0.8 \times \frac{1}{20} + 0.5 \times \frac{2}{20}$ = 0.04 + 0.05 = 0.09 SC [any 4 correct p's from table B2] [0.12 B3] [0.096 or 0.072 B2] $\begin{cases} P(T=3) = \frac{1}{20} \text{ and } P(T=3 \text{ or } 6) = \frac{3}{20} \\ P(T=3) = \frac{1}{20} \text{ and } P(T=6) = \frac{2}{20} \end{cases}$
				B1
(iii)	$P(X + T \le 9 X > 1) = \frac{0.09}{0.80}$ $= \frac{9}{0.0} (0.1125)$	M1		$\frac{\text{their (c)(ii)}}{0.80} (0$
	$=\frac{1}{80}(0.1125)$	A1	2	cao
	Total		18	

Mark Scheme – General Certificate of Education (A-level) Mathematics – Statistics 2B – 2011

MS2B(cont)			1		
Question	Soluti	ion	Marks	Total	Comments
5(a)(i)	$H_0: \mu = 165$		D 1	1	
	H ₁ :µ>165		B1	1	
(ii)	David (5%)	James (1%)			
	$z = \frac{167.1 - 1}{\sqrt{1010}}$	-165	M1		
	$\sqrt{101.2}/10$ = 2.09		A1		awfw 2.08 to 2.09
	$z_{crit} = 1.6449$ ($t_{crit} = 1.660$)	$z_{crit} = 2.3263$ ($t_{crit} = 2.364$)	B1		(both)
	Reject H_0	Accept H ₀	A1		(both) dependent on M1
	suggest that the mean height of students in final	No evidence to suggest an increase in the mean height of final year students at 1%	E1 E1		
		level		6	
(iii)	Population not stated / not known. Heights of all students Normal/ Known		B1	1	Large sample size of 100 indicates that the distribution of the sample mean is very likely to be Normal even though the parent population not given as being Normal . Hence $\overline{X} \sim N\left(\mu, \frac{s^2}{n}\right)$
(b)(i)	David: $\mu = 165$ \therefore rejected H ₀ when I \Rightarrow Type I error	H ₀ correct	M1 A1		
(ii)	James: $\mu = 165$				
	$\therefore \text{ accepted } H_0 \text{ when} \\ \Rightarrow \text{ No error}$	H ₀ correct	M1 A1	4	
		Total		12	

Mark Scheme – General Certificate of Education (A-level) Mathematics – Statistics 2B – 2011

MS2B(cont)		ucation (A-		
Question	Solution	Marks	Total	Comments
6(a)		В3	3	B1 for concave curve from (0, 1) to $\left(\frac{1}{2}, \frac{3}{32}\right)$ B1 for horizontal straight line $f = \frac{3}{32}$ from $\left(\frac{1}{2}, \frac{3}{32}\right)$ to $\left(\frac{1}{2}, \frac{3}{32}\right)$ B1 for correct axes
(b)(i)	$P\left(X \ge 8\frac{1}{3}\right) = \left[\frac{3}{32} \times \left(11 - 8\frac{1}{3}\right)\right]$ $= \frac{3}{32} \times \frac{8}{3}$	M1		Any correct method attempted in either part
	$=\frac{1}{4}$	A1		AG
(ii)	P(X ≥ 3) = $\frac{3}{32}$ ×(11-3) = $\frac{3}{4}$	A1	3	Any correct method attempted AG
(c)(i)	Interquartile Range = $5\frac{1}{3}$	B1		cao
(ii)	Median = $5\frac{2}{3}$	B2		cao sc if B0 then:
	Alternative : $\frac{1}{64} + \frac{3}{32} \left(m - \frac{1}{2} \right) = \frac{1}{2}$ $\Rightarrow 3 \left(m - \frac{1}{2} \right) = 15.5 \Rightarrow m = 5\frac{2}{3}$ $P\left[(X < m) \cap (X \ge 3) \right] = \frac{1}{4}$ $P\left(X < m X \ge 3 \right) = \frac{\frac{1}{4}}{\frac{3}{4}} = \frac{1}{3}$		3	M1 for correct method seen $\frac{1}{2} \left(8\frac{1}{3} + 3 \right) \text{ or } \frac{1}{2} \times 11\frac{1}{3}$ or $\frac{3}{32} (11 - m) = \frac{1}{2} \implies 11 - 5\frac{1}{3}$
(d)	$\mathbf{P}\big[\big(X < m\big) \cap \big(X \ge 3\big)\big] = \frac{1}{4}$	B1		$\left(\frac{3}{4}-\frac{1}{2}\right)$ attempted
	$P(X < m X \ge 3) = \frac{\frac{1}{4}}{\frac{3}{4}} = \frac{1}{3}$	M1		(their $p)/3_4$ for 0
		A1	3	cao Alternative:
				(Ratio of relevant two areas) $P(X < m X \ge 3) = \frac{2\frac{2}{3}}{8} = \frac{1}{3}$ cao
	Total		12	
	TOTAL		75	