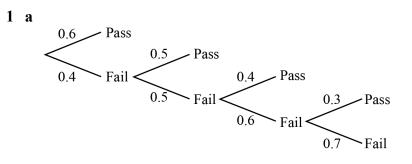


Practice paper



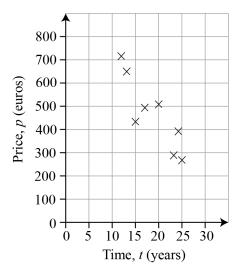
b Let *X* be the probability that Sudeshna passes on the first or second attempt. $P(X) = 0.6 + 0.4 \times 0.5$

$$= 0.8$$

Let *Y* be the probability that Sudeshna gets a certificate.

$$P(X | Y) = \frac{0.8}{0.916}$$

= 0.873 (3 s.f.)



b Negative correlation

2 c
$$\overline{t} = 18.63, \ \overline{p} = 468.75, \ S_{up} = -5023.75, \ S_{u} = 181.88, \ S_{pp} = 179\,337.50$$

 $p = a + bt$ where $b = \frac{S_{up}}{S_u}$ and $a = \overline{p} - b\overline{t}$
 $b = \frac{S_{up}}{S_u}$
 $= \frac{-5023.75}{181.88}$
 $= -27.6...$
 $a = 468.75 + 27.6... \times 18.63$
 $= 983.33...$
Therefore:
 $p = 983 - 27.6t$ (3 s.f.)
d when $t = 22$
 $n = 983.33 = -27.62$ (22)

p = 983.33... - 27.62...(22)= 375.66... Therefore, it should cost £376

- e Not a good decision as 39 years is outside the range of the data.
- **3** a $\sum go = 29 \times 130 + 31 \times 128 + 36 \times 126 + 41 \times 123 + 43 \times 121 + 46 \times 91 + 48 \times 83 + 50 \times 75$ = 34 440

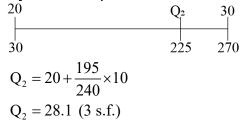
$$b \quad S_{go} = \sum go - \frac{\sum g \sum o}{n}$$
$$= 34\ 440 - \frac{324 \times 877}{8}$$
$$= -1078.5$$

c $S_{oo} = 3583.88$ and $S_{gg} = 426$ S_{go}

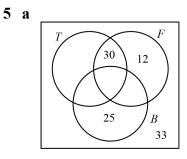
$$r = \frac{go}{\sqrt{S_{gg}S_{oo}}}$$
$$= \frac{-1078.5}{\sqrt{426 \times 3583.33}}$$
$$= -0.873 (3 \text{ s.f.})$$

- **d** As the price of oil decreases, the price of gold increases.
- e The ninth year goes against the correlation. As a result, the PMMC will decrease (get weaker).

- 4 a Total area of shaded bars is: $5 \times 7.5 + 10 \times 30 + 5 \times 22.5 + 5 \times 7.5 + 5 \times 15 = 562.5$ small squares, which represents 450 employees. Therefore 1.25 small squares represents 1 employee. The number of employees claiming more than 35 hours overtime is: $\frac{5 \times 7.5 + 5 \times 15}{1.25} = 90$ 12 5 $\times 20 + 25 \times 240 + 225 \times 00 + 275 \times 20 + 425 \times 10^{-10}$
 - **b** $\overline{x} = \frac{12.5 \times 30 + 25 \times 240 + 32.5 \times 90 + 37.5 \times 30 + 42.5 \times 60}{450}$ = 28.8 hours (3 s.f.)
 - c By linear interpolation:



d The median, as the data is skewed.



b Tennis and basketball (or football and basketball).

c
$$P(F \cup T \cup B') = \frac{33}{100}$$

d $P(F) = \frac{42}{100} = \frac{21}{50}$
e $P(T \cup B) = \frac{55}{100} = \frac{11}{20}$
5 f $P(T | F) = \frac{\frac{30}{100}}{\frac{42}{100}}$
 $= \frac{5}{7}$

6	a	i	$E(X) = 0.6 \text{ and } E(X^2) = 4$ $E(X) = -2 \times a + 0 \times b + 2 \times a + 4 \times c$ 4c = 0.6 c = 0.15
		ii	$E(X^{2}) = (-2)^{2} \times a + 0 \times b + 2^{2} \times a + 4^{2} \times 0.15$ 8a + 2.4 = 4 a = 0.2 Since 2a + b + c = 1 b = 0.45
	b	Va	$ar(X) = E(X^2) - (E(X))^2$ = 4 - 0.6 ² = 3.64
	c		F = 7 - 4X (Y) = E(7 - 4X) = 7 - 4E(X) = 7 - 4(0.6) = 4.6
	d	-	= 7 - 4X ar(Y) = Var(7 - 4X)

$$Var(Y) = Var(7 - 4X)$$

= 4²Var(X)
= 16(3.64)
= 58.24

e

x	-2	0	2	4
y	15	7	-1	-9
P(Y=y)	0.2	0.45	0.2	0.15

$$P(Y \ge 0) = 0.8$$

INTERNATIONAL A LEVEL

Statistics 1 Solution Bank

7 a Let X be the volume of coffee, in ml, delivered by the machine to a cup. $X \sim N(505, 1.8^2)$

i
$$P(X > 507) = 1 - P(X < 507)$$

$$= 1 - P\left(Z < \frac{507 - 505}{1.8}\right)$$
$$= 1 - P\left(Z < 1.1111\right)$$
$$= 1 - 0.8667$$
$$= 0.133 (3 \text{ s.f})$$

ii
$$P(501 < X < 505) = P(X < 505) - P(X < 501)$$

$$= P(X < 509) - 0.5$$

= $P(Z < \frac{509 - 505}{1.8}) - 0.5$
= $P(Z < 2.2222) - 0.5$
= $0.9868 - 0.5$
= $0.487(3s.f)$

b
$$X \sim N(503, 1.6^2)$$

 $P(1006 - w < X < w) = P(X < w) - P(X < 1006 - w)$
 $P(X < w) - P(X < 1006 - w) = 0.9246$
 $P\left(Z < \frac{w - 503}{1.6}\right) - P\left(Z < \frac{(1006 - w) - 503}{1.6}\right) = 0.9246$
 $\frac{w - 503}{1.6} - \frac{(1006 - w) - 503}{1.6} = 1.4367...$
 $w - 503 - 1006 + w + 503 = 2.2987...$
 $2w - 1006 = 2.2987...$
 $w = 504$ (3s.f)

Statistics 1

Solution Bank

7 c
$$X \sim N(r,q^2)$$

 $P(Z < z_1) = 0.01 \Rightarrow z_1 = -2.3263$
 $\frac{499 - r}{q} = -2.3263 \Rightarrow q = \frac{r - 499}{2.3263}$ (1)
 $P(Z > z_2) = 0.05 \Rightarrow z_2 = 1.6449$
 $\frac{505 - r}{q} = 1.6449 \Rightarrow q = \frac{505 - r}{1.6449}$ (2)
Equating (1) and (2) gives:
 $\frac{r - 499}{2.3263} = \frac{505 - r}{1.6449}$
 $1.6449(r - 499) = 2.3263(505 - r)$
 $3.9712r = 1995.5866$
 $r = 502.5147$
 $q = \frac{505 - 502.5147}{1.6449}$
 $= 1.5108$
 $r = 503, q = 1.51 (3 s.f)$