Solution Bank

1

Exercise 6G

1 For a discrete uniform distribution:

$$E(X) = \frac{n+1}{2}$$

$$= \frac{5+1}{2}$$

$$= 3$$

$$Var(X) = \frac{(n+1)(n-1)}{12}$$

$$= \frac{(5+1)(5-1)}{12}$$

$$= 2$$

2 a For a discrete uniform distribution:

$$E(X) = \frac{n+1}{2}$$
$$= \frac{7+1}{2}$$
$$= 4$$

b
$$\operatorname{Var}(X) = \frac{(n+1)(n-1)}{12}$$

= $\frac{(7+1)(7-1)}{12}$
= 4

3 a For a discrete uniform distribution:

$$E(X) = \frac{n+1}{2}$$

$$= \frac{6+1}{2}$$

$$= \frac{7}{2}$$

$$Var(X) = \frac{(n+1)(n-1)}{12}$$

$$= \frac{(6+1)(6-1)}{12}$$

$$= \frac{35}{12}$$

Statistics 1

Solution Bank

3 b
$$Var(X) = \frac{35}{12}$$

Therefore

$$\sigma = \sqrt{\frac{35}{12}}$$
$$= 1.707...$$

$$\overline{x} - \sigma = 1.792...$$
 and $\overline{x} + \sigma = 5.207...$

$$\overline{x} - \sigma = 1.792...$$
 and $\overline{x} + \sigma = 5.207...$
 $P(1.792... < x < 5.207...) = P(2 \le x \le 5)$
 $= P(2) + P(3) + P(4) + P(5)$
 $= \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6}$
 $= \frac{2}{3}$

4 a
$$P(X > 15) = 0.3$$

x	2	4	6	8	10	12	14	16	18	20
P(X=x)	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1

$$E(X) = \sum xP(X = x)$$

$$= 2 \times 0.1 + 4 \times 0.1 + 6 \times 0.1 + 8 \times 0.1 + 10 \times 0.1 + 12 \times 0.1 + 14 \times 0.1 + 16 \times 0.1 + 18 \times 0.1 + 20 \times 0.1$$

$$= 11$$

$$Var(X) = E(X^{2}) - (E(X))^{2}$$

$$E(X^{2}) = \sum x^{2}P(X = x)$$

$$E(X^{2}) = \sum x^{2}P(X = x)$$

$$= 2^{2} \times 0.1 + 4^{2} \times 0.1 + 6^{2} \times 0.1 + 8^{2} \times 0.1 + 10^{2} \times 0.1 + 12^{2} \times 0.1 + 14^{2}$$

$$\times 0.1 + 16^{2} \times 0.1 + 18^{2} \times 0.1 + 20^{2} \times 0.1$$

$$= 154$$

$$Var(X) = 154 - (11)^{2}$$

$$= 154 - 121$$

$$= 33$$

Alternatively. Note that if you consider the set of numbers from 1 to 10 inclusive, this sequence is double that.

Taking
$$X \sim U(10)$$

$$E(2X) = 2 \times \frac{10+1}{2}$$

$$= 11$$

$$Var(2X) = 2^{2} \times Var(X)$$

$$= 2^{2} \times \frac{(10+1)(10-1)}{12}$$

$$= 33$$

Statistics 1 Solution Bank

- **5** A discrete uniform distribution is not likely to be a good a model for this distribution. The game depends on the skills of the player. The points are likely to cluster around the middle.
- 6 a A discrete uniform distribution.
 - **b** For a discrete uniform distribution

$$E(X) = \frac{n+1}{2}$$

$$= \frac{8+1}{2}$$

$$= 4.5$$
c $Var(X) = \frac{(n+1)(n-1)}{12}$

c
$$\operatorname{Var}(X) = \frac{(n+1)(n-1)}{12}$$

= $\frac{(8+1)(8-1)}{12}$
= 5.25

d The expected winnings are less than the 5 cents stake.