INTERNATIONAL A LEVEL

Statistics 1 Solution Bank

Exercise 6E

1 a The probability distribution for *Y* where Y = 2X - 3 is:

у	-1	1	3	5
P(Y=y)	0.1	0.3	0.2	0.4

b
$$E(Y) = \sum y P(Y = y)$$

= $-1 \times 0.1 + 1 \times 0.3 + 3 \times 0.2 + 5 \times 0.4$
= $-0.1 + 0.3 + 0.6 + 2$
= 2.8

- c $E(X) = \sum x P(X = x)$ = 1×0.1+2×0.3+3×0.2+4×0.4 = 0.1+0.6+0.6+1.6 = 2.9 E(2X-3) = E(Y) = 2.8 $2E(X)-3 = 2 \times 2.9 - 3 = 5.8 - 3 = 2.8$ So E(2X-3) = 2E(X) - 3
- **2** a The probability distribution for *Y* where $Y = X^3$ is:

у	-8	-1	0	1	8
$\mathbf{P}(Y=y)$	0.1	0.1	0.2	0.4	0.2

b
$$E(Y) = \sum y P(Y = y)$$

= $-8 \times 0.1 + (-1) \times 0.1 + 0 \times 0.2 + 1 \times 0.4 + 8 \times 0.2$
= $-0.8 - 0.1 + 0 + 0.4 + 1.6$
= 1.1

- **3 a** E(8X) = 8E(X) = 8
 - **b** E(X + 3) = E(X) + 3 = 1 + 3 = 4
 - c $\operatorname{Var}(X+3) = \operatorname{Var}(X) = 2$
 - **d** $\operatorname{Var}(3X) = 3^{2}\operatorname{Var}(X) = 3^{2} \times 2 = 9 \times 2 = 18$
 - e $Var(1-2X) = (-2)^2 Var(X) = 4 \times 2 = 8$
 - f $\operatorname{Var}(X) = \operatorname{E}(X^2) (\operatorname{E}(X))^2$ So $2 = \operatorname{E}(X^2) - 1^2$ $\Rightarrow \operatorname{E}(X^2) = 3$
- **4 a** $E(2X) = 2E(X) = 2 \times 3 = 6$
 - **b** $E(3-4X) = 3-4E(X) = 3-4 \times 3 = -9$

Statistics 1 Solution Bank

- 4 c $E(X^2 4X) = E(X^2) E(4X)$ = $E(X^2) - 4E(X)$ = $10 - 4 \times 3 = -2$
 - **d** $\operatorname{Var}(X) = \operatorname{E}(X^2) (\operatorname{E}(X))^2 = 10 3^2 = 1$
 - e $Var(3X + 2) = 3^2 Var(X) = 9 Var(X) = 1$
- **5** a $E(4X) = 4E(X) = 4\mu$
 - **b** $E(2X+2) = 2E(X) + 2 = 2\mu + 2$
 - **c** $E(2X-2) = 2E(X) 2 = 2\mu 2$
 - **d** The standard deviation of a random variable is the square root of its variance. So if the standard deviation is σ , the variance is σ^2 .

 $\operatorname{Var}(2X+2) = 2^2 \operatorname{Var}(X) = 4\sigma^2$

- e $Var(2X-2) = 2^2 Var(X) = 4\sigma^2$
- **6** a $E(X) = \frac{1}{6}(1+2+3+4+5+6) = \frac{21}{6} = 3.5$
 - **b** Y = 200 + 100X
 - c E(Y) = E(200 + 100X) = 200 + 100E(X)= 200 + 100 × 3.5 = 200 + 350 = 550
- 7 Assume the pizzas are cylindrical and that the amount of pizza dough is given by the volume of the cylinder. The volume of a cylinder is $\pi r^2 h$. The volumes of the different sizes of pizza are then:

Size	Small	Medium	Large	
Radius (cm)	10	15	20	
Volume (cm ³)	$\pi \times 10^2 \times 1 = 100\pi$	$\pi \times 15^2 \times 1 = 225\pi$	$\pi \times 20^2 \times 1 = 400\pi$	

Let the amount of pizza dough be the discrete random variable V. The probability distribution for V is:

Size	Small Medium		Large	
v	100π	225π	400π	
P(V=v)	$\frac{3}{10}$	$\frac{9}{20}$	$\frac{5}{20}$	

 $\mathbf{E}(V) = \sum v \mathbf{P}(V = v)$

- $= 100\pi \times \frac{3}{10} + 225\pi \times \frac{9}{20} + 400\pi \times \frac{5}{20}$
- $= (30 + 101.25 + 100)\pi = 231.25\pi$
- $= 726.5 \text{ cm}^3 (1 \text{ d.p.})$

Statistics 1 Solution Bank

8 a This sample space diagram shows the 16 possible outcomes:

Difference between scores	1	2	3	4
1	0	1	2	3
2	1	0	1	2
3	2	1	0	1
4	3	2	1	0

Use the table to construct the probability distribution of *X*:

x	0	1	2	3
$\mathbf{P}(X=x)$	$\frac{4}{16}$	$\frac{6}{16}$	$\frac{4}{16}$	$\frac{2}{16}$

$$E(X) = \sum x P(X = x)$$

= $0 \times \frac{4}{16} + 1 \times \frac{6}{16} + 2 \times \frac{4}{16} + 3 \times \frac{2}{16} = \frac{20}{16} = \frac{5}{4} = 1.25$
 $E(X^2) = \sum x^2 P(X = x)$
= $0^2 \times \frac{4}{16} + 1^2 \times \frac{6}{16} + 2^2 \times \frac{4}{16} + 3^2 \times \frac{2}{16} = \frac{40}{16} = \frac{5}{2} = 2.5$
 $Var(X) = E(X^2) - (E(X))^2$
= $2.5 - (1.25)^2 = 2.5 - 1.5625 = 0.9375$

b The probability distribution for *Y* where $Y = 2^X$ is:

x	0	1	2	3
у	1	2	4	8
$\mathbf{P}(Y=y)$	$\frac{1}{4}$	$\frac{3}{8}$	$\frac{1}{4}$	$\frac{1}{8}$

 $E(Y) = \sum y P(Y = y)$

 $= 1 \times \frac{1}{4} + 2 \times \frac{3}{8} + 4 \times \frac{1}{4} + 8 \times \frac{1}{8} = \frac{24}{8} = 3$ The probability distribution for Z where $Z = \frac{4X+1}{2}$ is:

x	0	1	2	3
z	0.5	2.5	4.5	6.5
$\mathbf{P}(\boldsymbol{Z}=\boldsymbol{z})$	$\frac{1}{4}$	$\frac{3}{8}$	$\frac{1}{4}$	$\frac{1}{8}$

$$E(Z) = \sum z P(Z = z)$$

= 0.5×\frac{1}{4} + 2.5×\frac{3}{8} + 4.5×\frac{1}{4} + 6.5×\frac{1}{8}
= 0.125 + 0.9375 + 1.125 + 0.8125 = 3

So
$$E(Y) = E(Z) = 0.3$$

Statistics 1 Solution Bank

8 c
$$E(Z^2) = \sum z^2 P(Z = z)$$

= $(0.5)^2 \times \frac{1}{4} + (2.5)^2 \times \frac{3}{8} + (4.5)^2 \times \frac{1}{4} + (6.5)^2 \times \frac{1}{8}$
= $0.0625 + 2.34375 + 5.0625 + 5.28125 = 12.75$

$$Var(Z) = E(Z^2) - (E(Z))^2 = 12.75 - 3^2 = 3.75$$

Alternatively:

$$Z = \frac{4X+1}{2} \implies Z = 2X+0.5$$

Var(Z) = 2²Var(X) = 4Var(X) = 4 × 0.9375 = 3.75

Challenge

LHS =
$$E((X - E(X))^2)$$

= $E(X^2 - 2XE(X) + (E(X))^2)$
= $E(X^2) - E(2XE(X)) + E((E(X))^2)$

so $E(2XE(X)) = 2E(X)E(X) = 2(E(X))^2$ and $E((E(X))^2) = (E(X))^2$

Substituting back into the equation above gives $LHS = E(X^{2}) - E(2XE(X)) + E((E(X))^{2})$ $= E(X^{2}) - 2(E(X))^{2} + (E(X))^{2}$ $= E(X^{2}) - (E(X))^{2}$ = RHS