

Exercise 6C

1 a The probability distribution for X^2 is:

x	2	4	6	8
P(X=x)	0.3	0.3	0.2	0.2
<i>x</i> ²	4	16	36	64
$P(X^2 = x^2)$	0.3	0.3	0.2	0.2

Note that for this variable $P(X = x) = P(X^2 = x^2)$ as X only takes positive values.

$$E(X) = \sum x P(X = x)$$

= 2×0.3+4×0.3+6×0.2+8×0.2 = 4.6

$$E(X^{2}) = \sum x^{2} P(X = x)$$

= 4 × 0.3 + 16 × 0.3 + 36 × 0.2 + 64 × 0.2 = 26

b The probability distribution for *X* is:

x	-2	-1	1	2
P(X=x)	0.1	0.4	0.1	0.4
<i>x</i> ²	4	1	1	4

In this case, X can take negative values, so calculate the values of $P(X^2 = x^2)$. $P(X^2 = 1) = P(X = -1) + P(X = 1) = 0.4 + 0.1 = 0.5$ $P(X^2 = 4) = P(X = -2) + P(X = 2) = 0.1 + 0.4 = 0.5$

The probability distribution for X^2 is:

<i>x</i> ²	1	4
$\mathbf{P}(X^2 = x^2)$	0.5	0.5

$$E(X) = \sum x P(X = x)$$

= -2 × 0.1 + (-1) × 0.4 + 1 × 0.1 + 2 × 0.8
= 0.3

$$E(X^{2}) = \sum x^{2} P(X = x)$$

= 4 \times 0.1 + 1 \times 0.4 + 1 \times 0.1 + 4 \times 0.4
= 2.5

Using the X^2 distribution to calculate $E(X^2)$ gives the same result $E(X^2) = \sum x^2 P(X^2 = x^2) = 1 \times 0.5 + 4 \times 0.5 = 2.5$

$$=18.2$$

3 a The probability distribution for X is:

x	2	3	6
P(X=x)	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{6}$

The probability distribution for X^2 is:

<i>x</i> ²	4	9	36
$\mathbf{P}(X^2 = x^2)$	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{6}$

b $E(X) = \sum x P(X = x)$

$$= 2 \times \frac{1}{2} + 3 \times \frac{1}{3} + 6 \times \frac{1}{6}$$

= 1 + 1 + 1
= 3

$$E(X^{2}) = \sum x^{2}P(X = x)$$

= $4 \times \frac{1}{2} + 9 \times \frac{1}{3} + 36 \times \frac{1}{6}$
= 11

c $(E(X))^2 = 3^2 = 9$ and $E(X^2) = 11$ from part **b** So $(E(X))^2$ does not equal $E(X^2)$ Pearson

4 a The probability distribution for *X* is:

x	1	2	3	4	5
P(X=x)	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{16}$	$\frac{1}{16}$

b
$$E(X) = \sum x P(X = x)$$

= $1 \times \frac{1}{2} + 2 \times \frac{1}{4} + 3 \times \frac{1}{8} + 4 \times \frac{1}{16} + 5 \times \frac{1}{16}$
= $\frac{1}{2} + \frac{1}{2} + \frac{6}{16} + \frac{9}{16} = \frac{31}{16}$
= 1.9375

$$E(X^{2}) = \sum x^{2}P(X = x)$$

= 1² × $\frac{1}{2}$ + 2² × $\frac{1}{4}$ + 3² × $\frac{1}{8}$ + 4² × $\frac{1}{16}$ + 5² × $\frac{1}{16}$
= 1× $\frac{1}{2}$ + 4× $\frac{1}{4}$ + 9× $\frac{1}{8}$ + 16× $\frac{1}{16}$ + 25× $\frac{1}{16}$
= $\frac{83}{16}$
= 5.1875

- c $(E(X))^2 = (1.9375)^2 = 3.7539 (4 d.p.)$ So $(E(X))^2$ does not equal $E(X^2)$
- 5 The probabilities add up to 1, so

$$0.1 + a + b + 0.2 + 0.1 = 1$$

$$a + b = 0.6$$
 (1)

$$E(X) = \sum xP(X = x) = 2.9, \text{ so}$$

$$(1 \times 0.1) + (2 \times a) + (3 \times b) + (4 \times 0.2) + (5 \times 0.1) = 2.9$$

$$0.1 + 2a + 3b + 0.8 + 0.5 = 2.9$$

$$2a + 3b = 1.5$$
(2)

Multiply (1) by 2 2a + 2b = 1.2 (3)

Subtract equation (3) from (1) to give b = 0.3

Substitute the value of b in equation (3) to obtain 2a + 0.6 = 1.2 $\Rightarrow a = 0.3$

6 The probability distribution for *X* is:

x	-2	-1	0	5
P(X=x)	3 <i>a</i>	2a	а	b

$$E(X) = \sum x P(X = x) = 1.2, \text{ so}$$

$$1.2 = -2 \times 3a - 1 \times 2a + 0 \times a + 5 \times b$$

$$1.2 = -6a - 2a + 5b$$

$$1.2 = -8a + 5b$$
 (1)

$$\sum P(X = x) = 1, \text{ so}$$

$$1 = 3a + 2a + a + b$$

$$1 = 6a + b$$
(2)

$$(2) \times 5 \quad \Rightarrow \quad 5 = 30a + 5b \qquad (3)$$

$$(\mathbf{3}) - (\mathbf{1}) \implies 3.8 = 38a \implies a = 0.1$$

Substituting for *a* in equation (2) gives b = 1 - 6a = 1 - 0.6 = 0.4

So the full solution is a = 0.1, b = 0.4

7 Suppose the probability distribution for X is:

x	1	2	3	4	5	6
P(X=x)	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	а	b

$$E(X) = \sum x P(X = x) = 4.1, \text{ so}$$

$$4.1 = 1 \times \frac{1}{8} + 2 \times \frac{1}{8} + 3 \times \frac{1}{8} + 4 \times \frac{1}{8} + 5 \times a + 6 \times b$$

$$4.1 = \frac{10}{8} + 5a + 6b$$

$$2.85 = 5a + 6b$$
(1)

$$\sum_{k=1}^{n} P(X = x) = 1, \text{ so}$$

$$1 = \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + a + b$$

$$0.5 = a + b$$
(2)

$$(2) \times 5 \implies 2.5 = 5a + 5b$$
 (3)

$$(\mathbf{1}) - (\mathbf{3}) \implies 0.35 = b$$

Substituting for *b* in equation (2) gives $0.5 = a + 0.35 \Rightarrow a = 0.15$

So the full solution is $a = 0.15 = \frac{3}{20}, b = 0.35 = \frac{7}{20}$

So the full probability distribution for X is:

x	1	2	3	4	5	6
P(X = x)	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{3}{20}$	$\frac{7}{20}$

8 P(faulty) = 0.02 Profit on working phone cover is \$3. Loss on faulty phone cover is \$8. Profit per phone = $\frac{49 \times 3 - 1 \times 8}{50} = 2.78

Challenge

When three dice are thrown there are $6 \times 6 \times 6 = 216$ outcomes.

There is only one way of the number 1 being the highest score on the three dice and that is 1, 1, 1.

To achieve the highest score of 2, each dice must be either 1 or 2. So there are $2 \times 2 \times 2 = 8$ ways for the highest score on three dice to be no more than 2. But one of those is 1, 1, 1, which gives a highest score of 1 so this needs to be subtracted to leave 7 possible ways for a highest score of 2.

To achieve the highest score of 3, each dice must be either 1 or 2 or 3. So there are $3 \times 3 \times 3 = 27$ ways for the highest score on three dice to be no more than 3. But one of those is 1, 1, 1, which gives a highest score of 1 and there are 7 possible ways for a highest score of 2 so these both need to be subtracted to give 19 ways of getting a highest score of 3.

Highest score on the three dice	Working	Number of ways
1	1, 1, 1	1
2	$2 \times 2 \times 2 - 1$	7
3	$3 \times 3 \times 3 - 7 - 1$	19
4	$4 \times 4 \times 4 - 19 - 7 - 1$	37
5	5×5×5-37-19-7-1	61
6	6×6×6-61-37-19-7-1	91

Using this approach, this is the number of ways of getting each highest score:

Converting the number of ways into probabilities gives:

x	1	2	3	4	5	6
P(X=x)	$\frac{1}{216}$	$\frac{7}{216}$	$\frac{19}{216}$	$\frac{37}{216}$	$\frac{61}{216}$	<u>91</u> 216

 $E(X) = \sum x P(X = x)$

 $= 1 \times \frac{1}{216} + 2 \times \frac{7}{216} + 3 \times \frac{19}{216} + 4 \times \frac{37}{216} + 5 \times \frac{61}{216} + 6 \times \frac{91}{216}$ $= \frac{1071}{216} = \frac{119}{24} = 4.9583 \text{ (4 d.p.)}$