Solution Bank

1

Exercise 6A

- 1 a This is not a discrete random variable, since height is a continuous quantity.
 - **b** This is a discrete random variable, since it is takes whole number values at random.
 - **c** This is not a discrete random variable, since the number of days in a given week is always 7; the result is predetermined and so not random.
- **2** {0, 1, 2, 3, 4}
- **3 a** (2, 2), (2, 3), (3, 2), (3, 3)
 - b i

x	4	5	6
P(X=x)	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$

ii

$$P(X = x) = \begin{cases} \frac{1}{4}, & \text{if } x = 4, 6\\ \frac{1}{2}, & \text{if } x = 5\\ 0, & \text{otherwise} \end{cases}$$

4
$$\frac{1}{3} + \frac{1}{3} + k + \frac{1}{4} = 1$$

 $k = 1 - (\frac{1}{3} + \frac{1}{3} + \frac{1}{4}) = 1 - \frac{11}{12} = \frac{1}{12}$

5

x	1	2	3	4
P(X=x)	k	2 <i>k</i>	3 <i>k</i>	4 <i>k</i>

$$k + 2k + 3k + 4k = 1$$
$$10k = 1$$
$$k = \frac{1}{10}$$

6 a

x	1	2	3	4
P(X=x)	k	k	3 <i>k</i>	3 <i>k</i>

Using the fact that the probabilities add up to 1:

$$k + k + 3k + 3k = 1$$
$$8k = 1$$
$$k = \frac{1}{8}$$

Solution Bank

6 b The probability distribution is:

x	1	2	3	4
P(X=x)	0.125	0.125	0.375	0.375

$$P(X > 1) = 0.125 + 0.375 + 0.375 = 0.875$$

7 a

x	-2	-1	0	1	2
P(X=x)	0.1	0.1	β	β	0.2

The probabilities add up to 1.

$$0.1 + 0.1 + \beta + \beta + 0.2 = 1$$

 $2 \beta = 1 - 0.4 = 0.6$
 $\beta = 0.3$

b

x	-2	-1	0	1	2
P(X=x)	0.1	0.1	0.3	0.3	0.2

c
$$P(-1 \le X < 2) = 0.1 + 0.3 + 0.3 = 0.7$$

8
$$\frac{1}{4} - a + a + \frac{1}{2} + a = 1$$

 $\frac{3}{4} + a = 1$
 $a = \frac{1}{4}$

9 **a**
$$P(X=1) = \frac{1}{50}$$

since each of the 50 individual outcomes is equally likely.

b
$$P(X \ge 28) = 1 - \frac{27}{50} = \frac{23}{50}$$

c
$$P(13 < X < 42) = P(14 \le X \le 41) = \frac{28}{50} = \frac{14}{25}$$

10 a
$$P(1 < X \le 3) = P(X = 2) + P(X = 3) = \frac{1}{2} + \frac{1}{8} = \frac{5}{8}$$

b
$$P(X < 2) = P(X = 0) + P(X = 1) = \frac{1}{8} + \frac{1}{4} = \frac{3}{8}$$

c
$$P(X > 3) = 0$$

Solution Bank

3

11 a

S	1	2	3	4
P(S=s)	<u>2</u> 3	$\frac{1}{3} \times \frac{2}{3} = \frac{2}{9}$	$\frac{1}{3} \times \frac{1}{3} \times \frac{2}{3} = \frac{2}{27}$	$\frac{1}{3} \times \frac{1}{3} \times \frac{1}{3} \times \frac{2}{3} + \frac{1}{3} \times \frac{1}{3} \times \frac{1}{3} \times \frac{1}{3} \times \frac{1}{3} = \frac{1}{27}$

b
$$P(S > 2) = \frac{2}{27} + \frac{1}{27} = \frac{1}{9}$$

12 a

x	0	1	2	3	4	5
P(S=s)	$0.6^5 =$	$0.4 \times 0.6^{4} \times$	$0.4^2 \times 0.6^3 \times$	$0.4^{3} \times 0.6^{2} \times$	$0.4^{4} \times 0.6 \times$	$0.4^5 =$
	0.07776	5 = 0.2592	10 = 0.3456	10 = 0.2304	5 = 0.0768	0.01024

b

y	0	1	2	3	4	5
P(Y=y)	$0.8^5 = 0.32768$		$0.2^2 \times 0.8^3 \times 10 = 0.2048$	$0.2^3 \times 0.8^2 \times 10 = 0.0512$		$0.2^5 = 0.00032$

c

Z	1	2	3	4	5
P(Z=z)	0.4	$0.4 \times 0.6 =$	$0.4 \times 0.6^2 =$	$0.4 \times 0.6^3 =$	$0.4 \times 0.6^4 + 0.6^5$
		0.24	0.144	0.0864	=0.1296

13 a

X	2	3	4
P(X=x)	$\frac{1}{2}$	<u>2</u>	$\frac{1}{8}$

$$\frac{1}{2} + \frac{2}{9} + \frac{1}{8} = \frac{61}{72}$$

The sum of the probabilities is not 1.

b

x	2	3	4
P(X=x)	$\frac{k}{4}$	$\frac{k}{9}$	$\frac{k}{16}$

$$\frac{k}{4} + \frac{k}{9} + \frac{k}{16} = 1$$
$$\frac{61k}{144} = 1$$
$$k = \frac{144}{61}$$

Solution Bank

Challenge

x	1	2	3	4	5	6	7	8
P(X=x)	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8

У	2	3	6
P(Y=y)	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{6}$

$$P(X > Y) = P(X > 2 \text{ and } Y = 2) + P(X > 3 \text{ and } Y = 3) + P(X > 6 \text{ and } Y = 6)$$

= $\frac{6}{8} \times \frac{1}{2} + \frac{5}{8} \times \frac{1}{3} + \frac{2}{8} \times \frac{1}{6} = \frac{5}{8}$