

Exercise 4D

- **1 a** This is the set of anything not in set *B* but in set *A*. So the shaded region consists of the part of *A* which does not intersect with *B*, i.e. $A \cap B'$.
	- **b** The shaded region includes all of B and the region outside of A and B, i.e. $B \cup A'$.
	- **c** There are two regions to describe. The first is the intersection of *A* and *B*, i.e. $A \cap B$ and the second is everything that is not in either *A* or *B*, i.e. $A' \cap B'$. Therefore the shaded region is $(A \cap B) \cup (A' \cap B')$.
	- **d** The shaded region is anything that is in *A* and *B* and *C*, i.e. $A \cap B \cap C$.
	- **e** The shaded region is anything that is either in *A* or *B* or *C*, i.e. $A \cup B \cup C$.
	- **f** The shaded region is anything that is either in *A* or *B* but is not in *C*. So the shaded region consists of the part of $A \cup B$ which does not intersect with *C*, i.e. $(A \cup B) \cap C'$.
- **2 a** Shade set *A*. The set *B* consists of the region outside of *A* and *B* and the region inside *A* that does not intersect B. Therefore $A \cup B'$ is the region consisting of both these regions.

b Since this is an intersection, the region must satisfy both conditions. The first is to be in *A*^{\prime}. This consists of two regions: one inside *B* and not in $A \cap B$; and one outside of *A* and *B*. The second condition is to be in *B'*. Again, this consists of two regions: one inside *A* and not in $A \cap B$; and one outside of *A* and *B*. Therefore $A' \cap B'$ is the region outside of *A* and *B* (since this region was in both A' and B'). One way to help picture this is to shade the regions A' and B' differently (either with different colours or using a different pattern for each). The intersection is then the region that includes both colours or patterns.

c In order to describe $(A \cap B)'$ it is sensible to first describe $A \cap B$. This is the single region which is included in both *A* and *B*. The complement is then everything *except* this region.

3 a The set $(A \cap B) \cup C$ is the union of the sets $A \cap B$ and *C*. On the blank diagram, the set $A \cap B$ consists of the two regions that are both contained within *A* and *B*. The remaining regions within set *C* can then be shaded in.

b First describe $A' \cup B'$. The set $A' \cup B'$ is everything apart from $A \cap B$. So the intersection of $A' \cup B'$ and *C* is everything in *C* apart from that part of *C* that intersects $A \cap B$.

c First describe $A \cap B \cap C'$. Brackets have not been included since for any sets *X*, *Y* and *Z* $(X \cap Y) \cap Z = X \cap (Y \cap Z)$. The intersection of $A \cap B$ and C' is the region within $A \cap B$ that does not intersect *C*. Therefore $(A \cap B \cap C')'$ is everything *except* this region.

4 a *K* is the event 'the card chosen is a king'.

$$
P(K) = \frac{4}{52} = \frac{1}{13}
$$

b *C* is the event 'the card chosen is a club'.

$$
P(C) = \frac{1}{4}
$$

c $C \cap K$ is the event 'the card chosen is the king of clubs'.

$$
P(C \cap K) = \frac{1}{52}
$$

d $C \cup K$ is the event 'the card chosen is a club or a king or both'.

$$
P(C \cup K) = \frac{16}{52} = \frac{4}{13}
$$

INTERNATIONAL A LEVEL

Statistics 1 Solution Bank

- **4 e** *C* is the event 'the card chosen is a not a club'. $P(C') = \frac{3}{4}$ 4
	- **f** $K' \cap C$ is the event 'the card chosen is not a king and is a club'.

$$
P(K' \cap C) = \frac{12}{52} = \frac{3}{13}
$$

5 Use the information in the question to draw a Venn diagram that will help in answering each part.

- **a** $A \cup B$ is the region contained by sets *A* and *B*. So $P(A \cup B) = 0.4 + 0.1 + 0.1 = 0.6$
- **b** *B* is the region that is not in set *B*. $P(B') = 0.8$
- **c** $A \cap B'$ is the region inside set *A* but outside set *B*. $P(A \cap B') = 0.4$
- **d** $A \cup B'$ is the region inside set *A* and the region outside set *B*, i.e. everything but the region inside set *B* that is not also in set *A*. $P(A \cup B') = 0.4 + 0.1 + 0.4 = 0.9$
- **6** Use the information in the question to draw a Venn diagram that will help in answering each part.

- **a** $C' \cap D$ is the region inside set *D* but outside set *C*. $P(C' \cap D) = 0.25$
- **b** $C \cap D'$ is the region inside set *C* but outside set *D*. $P(C \cap D') = 0.5$
- **c** $P(C) = 0.65$
- **d** $C' \cup D'$ is the region outside set *C* and the region outside set *D*, i.e. everything but the region that is in both sets *C* and *D*. $P(C' \cup D') = 0.85$

INTERNATIONAL A LEVEL

Statistics 1

7 a

Solution Bank

- **b i** $P(H \cup C)$ means that either one of $H \cap C'$, $H \cap C$ or $H' \cap C$ occurs. Alternatively, $P(H \cup C) = P(H) + P(C) - P(H \cap C) = 0.5 + 0.4 - 0.25 = 0.65$
	- **ii** $H' \cap C$ is the region inside set *C* but outside set *H*. $P(H' \cap C) = 0.15$
	- **iii** $H \cup C'$ is the region inside set *H* and the region outside set *C*, i.e. everything but the region inside set *C* that is not also in set *H*. $P(H\cup C') = 0.25 + 0.25 + 0.35 = 0.85$
- **8 a** Only the possible outcomes of the two events need to considered, and so the Venn diagram should consist of two circles, one labelled '*R*' for red and one labelled '*E*' for even. They should intersect.

- **b** i Note that $n(R \cup E) = n(R) + n(E) n(R \cap E)$ $n(R \cap E) = n(R) + n(E) - n(R \cup E)$ \Rightarrow *n*(*R* \cap *E*) = 17 + 30 - 40 = 7
	- **ii** The region $R' \cap E'$ lies outside of both *R* and *E*. Since there are 50 counters, $n(R' \cap E') = 50 - n(R \cup E) = 50 - 40 = 10$

So
$$
P(R' \cap E') = \frac{10}{50} = \frac{1}{5} = 0.2
$$

iii From part **b i** $n(R \cap E) = 7$, so $n(R \cap E)' = 50 - 7 = 43$

So
$$
P((R \cap E)') = \frac{43}{50} = 0.86
$$

9 a Since *A* and *B* are mutually exclusive, $P(A \cap B) = 0$ and they need no intersection on the Venn diagram. From the question, $P(A \cap C) = 0.2$ and so this can immediately be added to the diagram. Since *B* and *C* are independent, $P(B \cap C) = P(B) \times P(C) = 0.35 \times 0.4 = 0.14$ and this can also be added to the diagram. The remaining region in *B* must be $P(B) - P(B \cap C) = 0.35 - 0.14 = 0.21$, the remaining region for *A* must be $P(A) - P(A \cap C) = 0.55 - 0.2 = 0.35$ and the remaining region for *C* must be $P(C) - P(A \cap C) - P(B \cap C) = 0.4 - 0.2 - 0.14 = 0.06$. This means that the region outside of *A*, *B* and *C* must be $1 - 0.35 - 0.2 - 0.21 - 0.14 - 0.06 = 0.04$.

- **b** i The set $A' \cap B'$ must be outside of *A* and outside of *B*. These two regions are labelled 0.06 and 0.04. Therefore $P(A' \cap B') = 0.06 + 0.04 = 0.1$
	- **ii** The region $B \cap C'$ is the region inside set *B* but outside set *C*, it is labelled 0.21 on the Venn diagram and is disjoint from *A*. Therefore $P(A \cup (B \cap C')) = P(A) + 0.21 = 0.55 + 0.21 = 0.76$
	- **iii** Since $A \cap C$ consists of a single region, $(A \cap C)$ consists of everything in the diagram except for that region. But *B*^{\prime} includes the region $A \cap C$ and so $(A \cap C)' \cup B$ includes everything in the diagram, and so $P((A \cap C)' \cup B') = 1$
- **10 a** Start with a Venn diagram with all possible intersections. Then find the region $A \cap B \cap C$, which is at the centre of the diagram, and label it 0.1.

Now, since *A* and *B* are independent, $P(A \cap B) = P(A) \times P(B) = 0.25 \times 0.4 = 0.1$, and as *B* and *C* are independent $P(B \cap C) = P(B) \times P(C) = 0.4 \times 0.45 = 0.18$. Use these results to find values for the other intersections. $P(A \cap B \cap C') = P(A \cap B) - P(A \cap B \cap C) = 0.1 - 0.1 = 0$; $P(B \cap C \cap A') = P(B \cap C) - P(A \cap B \cap C) = 0.18 - 0.1 = 0.08$; and $P(A \cap C \cap B') = 0$ is given in the question.

 Now find values for the remaining parts of the diagram. For example, $P(A \cap B' \cap C') = P(A) - P(A \cap B \cap C') - P(A \cap C \cap B') - P(A \cap B \cap C) = 0.25 - 0 - 0 - 0.1 = 0.15$ Similarly, $P(B \cap A' \cap C') = 0.4 - 0.1 - 0.08 = 0.22$ and $P(C \cap A' \cap B') = 0.45 - 0.1 - 0.08 = 0.27$ Finally calculate the region outside sets *A*, *B* and *C*, $P(A \cup B \cup C)' = 1 - 0.15 - 0.1 - 0.22 - 0.08 - 0.27 = 0.18$

- **10 b i** There are several ways to work out the regions that comprise the set $A' \cap (B' \cup C)$. One way is to determine, for each region, whether it lies in A' and $B' \cup C$. Alternatively, find the regions within *A'* (there are four) and then note that only one of these does not lie in $B' \cup C$. Summing the three remaining probabilities yields $P(A' \cap (B' \cup C)) = 0.27 + 0.08 + 0.18 = 0.53$
	- **ii** The required region must be contained within *C*. Three of the four regions in C also lie in $A \cup B$, summing the probabilities yields $P((A \cup B) \cap C) = 0 + 0.1 + 0.08 = 0.18$
	- **c** $P(A') = 1 P(A) = 0.75$, $P(C) = 0.45$ and, from the Venn diagram, $P(A' \cap C) = 0.08 + 0.27 = 0.35$. Since $P(A') \times P(C) = 0.75 \times 0.45 = 0.3375 \neq 0.35$, the events *A'* and *C* are not independent.
- **11 a** Since $P(G \cap E) = 0$, it follows that $P(M \cap G \cap E) = 0$. So $P(M \cap G \cap E') = P(M \cap G) = 0.3$ and $P(G \cap M') = P(G) - P(G \cap M) = 0.4 - 0.3 = 0.1$. This only accounts for 40% of the book club, 60% is unaccounted for, but $P(E) = 0.6$, so this 60% read epic fiction. So all the remaining members who read murder mysteries must also read epic fiction. Therefore $P(M \cap E' \cap G') = 0$, $P(M \cap E \cap G') = P(M) - P(M \cap G) = 0.5 - 0.3 = 0.2$, and $P(E \cap M' \cap G') = 0.6 - 0.2 = 0.4$.

- **b i** $P(M \cup G) = P(M \cup G \cup E) P(E \cap M' \cap G') = 1 0.4 = 0.6$
	- **ii** In this case $P((M \cap G) \cup (M \cap E)) = P((M \cap G \cap E') \cup (M \cap G' \cap E))$ and so the required probability is $P(M \cap G \cap E') + P(M \cap G' \cap E) = 0.3 + 0.2 = 0.5$
- **c** $P(G') = 0.6$, $P(M) = 0.5$ and so $P(G') \times P(M) = 0.6 \times 0.5 = 0.3$. Since $P(G' \cap M) = 0.2$, the events are not independent.
- **12 a** Since *A* and *B* are independent, $P(A \cap B) = P(A) \times P(B) = x \times y = xy$
	- **b** $P(A \cup B) = P(A) + P(B) P(A \cap B) = x + y xy$
	- **c** $P(A \cup B') = P(A) + P(A' \cap B')$ and since $P(A' \cap B') = 1 - P(A \cup B) = 1 - (x + y - xy) = 1 - x - y + xy$ this means $P(A \cup B') = P(A) + 1 - x - y + xy = x + 1 - x - y + xy = 1 - y + xy$

Challenge

 a Use that the events are independent.

$$
P(A \cap B \cap C) = P((A \cap B) \cap C)
$$

= $P(A \cap B) \times P(C)$
= $P(A) \times P(B) \times P(C)$
= xyz

b Using similar logic to the identity $P(A \cup B) = P(A) + P(B) - P(A \cap B)$, build up to the correct expression. First, *x* represents one circle and its intersections with the other two circles being shaded. Then $x + y - xy$ represents two circles and their intersections with the third being shaded. Finally $x + y - xy + z - xz - yz$ represents all three circles shaded except for where all three intersect. From part **a**, the final expression is therefore $x + y - xy + z - xz - yz + xyz$.

An alternative approach is to start by considering $A \cup B$ $P(A \cup B) = P(A) + P(B) - P(A \cap B) = x + y - xy$

Now find the union of $A \cup B$ and C $P(A \cup B \cup C) = P(A \cup B) + P(C) - P((A \cup B) \cap C) = x + y + z - xy - P((A \cup B) \cap C)$ (1)

 $(A \cup B) \cap C$ consists of the intersections of *C* with just *A*, with just *B* and with both *A* and *B* So $(A \cup B) \cap C = (C \cap A \cap B') + (C \cap B \cap A') + (A \cap B \cap C)$

 Consider the probabilities of each of these three regions in turn $P(A \cap B \cap C) = xyz$ from part **a** $P(C \cap A \cap B') = P(C \cap A) - P(A \cap B \cap C) = xz - xyz$ $P(C \cap B \cap A') = P(C \cap B) - P(A \cap B \cap C) = yz - xyz$ So $P(A \cup B) \cap C = xz - xyz + yz - xyz + xyz = xz + yz - xyz$ (2)

Now substitute the result for $P(A \cup B) \cap C$ from equation (2) into equation (1). This gives $P(A \cup B \cup C) = x + y + z - xy - xz - yz + xyz$

Challenge

c First understand the region on a Venn diagram. The set $A \cup B'$ corresponds to the shaded regions:

Therefore the set $(A \cup B') \cap C$ corresponds to the shaded regions:

The unshaded part of C is the region $C \cap B \cap A'$ $P(C \cap B \cap A') = P(C \cap B) - P(A \cap B \cap C) = yz - xyz$ So $P((A \cup B') \cap C) = P(C) - P(C \cap B \cap A') = z - yz + xyz$