Note: "(3 sfs)" means "answer which rounds to ... to 3 sfs". If correct ans seen to \geq 3sfs, ISW for later rounding Penalise over-rounding only once in paper

iii S90. B1. I. Allow approximately, \$90. B1. I. Allow approximately, \$90. B1. I. Or levels of no grad = 0, grad not increase Allow line not rise, goes flat, plateaus, stops increasing, not increase, doesn't move allow line not rise, goes flat, plateaus, stops increasing, not increase, doesn't move allow line not rise, goes flat, plateaus, stops increasing, not increase, doesn't move allow line not rise, goes flat, plateaus, stops increasing, not increase, doesn't move allow line not rise, goes flat, plateaus, stops increasing, not increase, doesn't move allow line not rise, goes flat, plateaus, stops increasing, not increase, doesn't move allow line not rise, goes flat, plateaus, stops increasing, not increase, doesn't move allow line not rise, goes flat, plateaus, stops increasing, not increase, doesn't move allow line not rise, goes flat, plateaus, stops increasing, not increase, doesn't move allow line not rise, goes flat, plateaus, stops increasing, not increase, doesn't move allow line not rise, goes flat, plateaus, stops increasing, not increase, doesn't move sup flat, plateaus, stops increasing, not increase, doesn't move sup flat, plateaus, stops increasing, not increase, doesn't move sup flat, plateaus, stops increasing, not increase, doesn't move sup flat, plateaus, stops increasing, not increase, doesn't move sup flat, plateaus, stops increasing, not increase, doesn't move sup flat, plateaus, stops increasing, not increase, allow increase flatow increase flatow increase flatow within range, no working, MIMAI allow vorking, se B1 V LQ = 25.5-26.5 or UQ = 34-35.5 M1 M1 M1 M2 be implied by ans Answer within range, no working, MIMAI Allow vorking, se B1 V LQ = 25.5-26.5 or UQ = 34-35.5 or MI Answer within range, no working, MIMAI Allow vorking, se B1 M1 M2 per lead at C = 000 prove se mithin range, no working, MIMAI Allow vorking, se B1 M1 M2 per lead at C = 000 prover expectation or no working or leavest dept or no working or reversed, or beacturers with no working within range, no working dept	Penalise over	er-rounding only once in paper.		
iii Graph horiz (for ≥ 55 mks) oe BI I of levels off, or grad = 0, grad not increase Allow line not rise, goes flat, plateaus, stops increasing, not increase, doesn't move BI I iv Attempt read cf at 26 or 27 MI ouble & attempt read x MI was C = 29 to 31.5 MI way be implied by ans Answer within range, no working, MIMIA1 32, without working, se BI MI for one correct quartile or no working (German) more spread BIf 1 MI for one correct quartile or no working (German) more spread BIf 3 or levels consistent, less uniform, less similar, more variable, greater variance, more spaced apart, further apart fit their IQR; must be consistent with IQR Correct comment with no working: MOA0B1 Total 9 or reversed, or backwards, or inverse or as one increases the other decreases $r_r = -1$ and $r_s = -\frac{6.5 L^2}{3(3^2 - 1)}$ and $r_s = -\frac{1}{2}$ oc AI 3 or levels off, or indep) $r_s = -\frac{1}{3}$ or levels off, or grad = 0, grad not increase Allow use wrong table for MIM1 Allow use MIM1 Allow use wrong table for MIM1 Allow use MIM1 Allow use wrong tab	1i	590	B1 1	Allow approximately 590
iii 39 to 41 iv Attempt read cf at 26 or 27 Double & attempt read x MI Max C = 29 to 31.5 V LQ = 25.5-26.5 or UQ = 34-35.5 IQR = 8-10 (German) more spread B1ft 3 Opposite orders or ranks or scores or results or marks $r_s = -1$ B1 1 Attempt Σd^a Total iii Attempt Σd^a 1iii Attempt Σd^a 1iiii Attempt Σd^a 1iii Attempt Σd^a 1iiii Attempt	ii	Graph horiz (for \geq 55 mks) oe		
iii 39 to 41 iv Attempt read of at 26 or 27 Double & attempt read x M1 V LQ = 25.5-26.5 or UQ = 34-35.5 IQR = 8-10 German) more spread B1ft 3 or less consistent, less uniform, less similar, more varied, more variable, greater variance, more spaced apart, further apart fit their IQR; must be consistent with IQR Total 2i Opposite orders or ranks or scores or results or marks $r_s = -1$ B1 1 Attempt Σd^t 1 Attempt Σd^t 1 Attempt Σd^t 1 Attempt Σd^t 1 Attempt Σd^t 1 Attempt Σd^t 1 + their '6' 1 + their '6' 1 + their '6' 1 + their '6' 3i If x is contr (or indep) or y depend't, use y on x If neither variable contr'd (or indep) AND want est y from x: use y on x Iii S _∞ = 510000 − $\frac{1800^2}{9}$ (= 150000) S _∞ = 4080 − $\frac{1800^2}{9}$ (= 150000) S _∞ = 4080 − $\frac{1800^2}{9}$ (= 10008x (+ 0) At 4 At 5 Attempt S $\frac{1}{2}$ (= 0) M1 At 5 Attempt S $\frac{1}{2}$ (= 10008x (+ 0) M1 At 5 Attempt S $\frac{1}{2}$ (= 0008x (+ 0) M1 Attempt S $\frac{1}{2}$ (= 10008x (+ 0) M1 Attempt S $\frac{1}{2}$ (= 10000 (+ 10008x (+ 0)) M1 Attempt S $\frac{1}{2}$ (= 10008x (+ 0) M1 Attempt S $\frac{1}{2}$ (=		· · · · ·		
iii 39 to 41 Iv Attempt read cf at 26 or 27 Double & attempt read x MI Nax C = 29 to 31.5 V LQ = 25.5-26.5 or UQ = 34-35.5 IQR = 8-10 (German) more spread Bift 3 Opposite orders or ranks or scores or results or marks $r_s = -1$ II Attempt Σ d^s II Attempt Σ d^s II Attempt d^s II Attempt d^s II Attempt d^s III Attempt d^s II				
iv Attempt read cf at 26 or 27 Double & attempt read x MI $\frac{\text{eg 26 mks} \rightarrow 150^{\text{h}}}{27 \text{ mks}} \rightarrow 180^{\text{h}}}{180^{\text{h}}}$ MI $\frac{\text{eg 26 mks}}{180^{\text{h}}} = 27 \text{ mks} \rightarrow 180^{\text{h}}}{27 \text{ mks}} \rightarrow 180^{\text{h}}}$ MI $\frac{\text{eg 26 mks}}{180^{\text{h}}} = 27 \text{ mks} \rightarrow 180^{\text{h}}}{27 \text{ mks}} \rightarrow 180^{\text{h}}}$ MI $\frac{\text{max C}}{180^{\text{h}}} = 29 \text{ to } 31.5$ A1 $\frac{3}{32}$ without working, so B1 $\frac{3}{32}$ without working so more varied, more varied	iii	39 to 41	R1 1	
Double & attempt read x $Max C = 29 \text{ to } 31.5$ $Nax C = 29 \text{ to } 31.5$ $V LQ = 25.5 \cdot 26.5 \text{ or } UQ = 34 \cdot 35.5$ $IQR = 8 \cdot 10$ $(German) \text{ more spread}$ $(German) more $				$ag 26 \text{ m/s} \rightarrow 150^{\text{th}}$ 27 m/s $\rightarrow 180^{\text{th}}$
Max C = 29 to 31.5 Nax C = 29 to 31.5 Nax C = 29 to 31.5 V LQ = 25.5-26.5 or UQ = 34-35.5 IQR = 8-10 (German) more spread B1ft 3 Namer within range, no working, M1M1A1 32 without working, se B1 M1 for one correct quartile or no working dep ≥ 1 correct quartile or no working or less consistent, less uniform, less similar, more varied, more variable, greater variance, more spaced apart, further apart ft their IQR; must be consistent with IQR Correct comment with no working: M0A0B1 Total Opposite orders or ranks or scores or results or marks $r_x = -1$ B1 1 Attempt Σd^2 Opposite orders or ranks or scores or results or marks $r_x = -1$ B1 1 Attempt Σd^2 Opposite orders or ranks or scores or results or marks $r_x = -1$ B1 1 Attempt Σd^2 Opposite orders or ranks or scores or results or marks $r_x = -1$ B1 1 Attempt Σd^2 Opposite orders or ranks or scores or results or marks $r_x = -1$ B1 1 Attempt Σd^2 Opposite orders or ranks or scores or results or marks $r_x = -1$ B1 1 Attempt Σd^2 Allow use wrong table for M1M1 Allow use wrong table Allow use wrong table for M1M1 Allow use wrong table Allow use wrong table for M1M1 Allow use wrong table Allow use wrong table for M1M1 Allow use wrong table Allow use wrong table for M1M1 Allow use wrong	1 V			
		Double & attempt read x	IVII	_
v LQ = 25.5-26.5 or UQ = 34-35.5 M1 M1 for one correct quartile $dep \ge 1$ correct quartile of $dep \ge 1$ or reversed, or backwards, or inverse or as one increases the other decreases Needs reason AND value 11		Mar. C. 2045 21 5	11 2	7 7
v LQ = 25.5-26.5 or UQ = 34-35.5 M1 A1 M1 for one correct quartile dep ≥ 1 correct quartile or no working or less consistent, less uniform, less similar, more varied, more variable, greater variance, more spaced apart, further apart ft their IQR; must be consistent with IQR Correct comment with no working: M0A0B1 Total 9 Opposite orders or ranks or scores or results or marks $r_s = -1$ M1 Carrect comment with no working: M0A0B1 iii Attempt Σd^b (= 6) M1 dep 1°s M1 Allow use wrong table for M1M1 Allow use you for $\frac{1}{2} \times \frac{1}{2} \times 1 \times $		Max $C = 29 \text{ to } 31.5$	A1 3	
IQR = 8-10 A1 dep \geq 1 correct quartile or no working				
(German) more spread (Figure 1 QR; must be consistent, less uniform, less similar, more variable, greater variance, more spaced apart, further apart for their 1QR: (German) more spread (German) more spread (Figure 1 QR; must be consistent, less uniform, less similar, more variable, greater variance, more spaced apart, further apart for their 1QR: (Correct comment with no working: M0A0B1 (Application of packwards, or inverse or as one increases the other decreases Needs reason AND value (Application of packwards, or inverse or as one increases the other decreases Needs reason AND value (Application of packwards, or inverse or as one increases the other decreases Needs reason AND value (Application of packwards, or inverse or as one increases the other decreases Needs reason AND value (Application of packwards, or inverse or as one increases the other decreases Needs reason AND value (Application of packwards, or inverse or as one increases the other decreases Needs reason AND value (Application of packwards, or inverse or as one increases the other decreases Needs reason AND value (Application of packwards, or inverse or as one increases the other decreases Needs reason AND value (Application of packwards, or inverse or as one increases the other decreases Needs reason AND value (Application of packwards, or inverse or as one increases the other decreases Needs reason AND value (Application of packwards, or inver	V			•
more varied, more variable, greater variance, more spaced apart, further apart ft their IQR; must be consistent with IQR Total 2i Opposite orders or ranks or scores or results or marks $r_s = -1$ ii Attempt Σd^2 (= 6) $1 - \frac{6w \Sigma d^2}{3(3^2 - 1)}$ and $\frac{1}{3} + \frac{1}{3} + 1$		IQR = 8-10	A1	$dep \ge 1$ correct quartile or no working
more varied, more variable, greater variance, more spaced apart, further apart ft their IQR; must be consistent with IQR Total 2i Opposite orders or ranks or scores or results or marks $r_s = -1$ ii Attempt Σd^2 (= 6) $1 - \frac{6w \Sigma d^2}{3(3^2 - 1)}$ and $\frac{1}{3} + \frac{1}{3} + 1$				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		(German) more spread	B1ft 3	or less consistent, less uniform, less similar,
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				more varied, more variable, greater variance,
TotalCorrect comment with no working: M0A0B1Total9Correct comment with no working: M0A0B12iOpposite orders or ranks or scores or results or marks $r_s = -1$ or reversed, or backwards, or inverse or as one increases the other decreases Needs reason AND valueiiAttempt Σd^2 (= 6)M1 $1 - \frac{6 \times 2 d^2}{3(3^2 - 1)}$ M1dep 1st M1 $= -\frac{1}{2}$ oeA13iii3! or 3P_3 or 6M1r attempt list possible orders of 1,2,3 (≥3 orders) $\frac{1}{6}$ oe eg $\frac{5}{36}$ A13Total73iIf x is contr (or indep) or y depend't, use y on xB1Allow x increases constantly, is predetermined, you choose x, you set x, x is fixed, x is chosenIf neither variable contr'd (or indep) AND want est y from x: use y on xB1Allow y not controlled AND want est y from xiia $S_{xx} = 510000 - \frac{1800^2}{9}$ (= 150000) $S_{xy} = 4080 - \frac{1800 \times 14.4}{9}$ (= 1200)or $\frac{510000}{9} - 200^2$ (= 16666.7)or $\frac{4080}{9} - 200 \times 1.6$ (= 133.33)M1 for either S $b = \frac{1200^{\circ}}{150000^{\circ}}$ (= 0.008)M1 $b = \frac{133.33^{\circ}}{16666.7^{\circ}}$ dep correct expressions both S's $y - \frac{14.4}{9} = 0.008(x - \frac{1800}{9})$ M1or $a = \frac{14.4}{9} - 0.008 \times \frac{1800}{9}$ (= 0)Must be all correct for M1CAOiib312.5 or 313B1ft 1 ft their equn in (iia)				more spaced apart, further apart
TotalCorrect comment with no working: M0A0B1Total9Correct comment with no working: M0A0B12iOpposite orders or ranks or scores or results or marks $r_s = -1$ or reversed, or backwards, or inverse or as one increases the other decreases Needs reason AND valueiiAttempt Σd^2 (= 6)M1 $1 - \frac{6 \times 2 d^2}{3(3^2 - 1)}$ M1dep 1st M1 $= -\frac{1}{2}$ oeA13iii3! or 3P_3 or 6M1r attempt list possible orders of 1,2,3 (≥3 orders) $\frac{1}{6}$ oe eg $\frac{5}{36}$ A13Total73iIf x is contr (or indep) or y depend't, use y on xB1Allow x increases constantly, is predetermined, you choose x, you set x, x is fixed, x is chosenIf neither variable contr'd (or indep) AND want est y from x: use y on xB1Allow y not controlled AND want est y from xiia $S_{xx} = 510000 - \frac{1800^2}{9}$ (= 150000) $S_{xy} = 4080 - \frac{1800 \times 14.4}{9}$ (= 1200)or $\frac{510000}{9} - 200^2$ (= 16666.7)or $\frac{4080}{9} - 200 \times 1.6$ (= 133.33)M1 for either S $b = \frac{1200^{\circ}}{150000^{\circ}}$ (= 0.008)M1 $b = \frac{133.33^{\circ}}{16666.7^{\circ}}$ dep correct expressions both S's $y - \frac{14.4}{9} = 0.008(x - \frac{1800}{9})$ M1or $a = \frac{14.4}{9} - 0.008 \times \frac{1800}{9}$ (= 0)Must be all correct for M1CAOiib312.5 or 313B1ft 1 ft their equn in (iia)				
Total9or reversed, or backwards, or inverse or as one increases the other decreases $r_s = -1$ iiAttempt Σd^2 (= 6) M1 $1 - \frac{6e \times d^2}{3(3^3 - 1)}$				
Total9or reversed, or backwards, or inverse or as one increases the other decreases $r_s = -1$ iiAttempt Σd^2 (= 6) M1 $1 - \frac{6e \times d^2}{3(3^3 - 1)}$				Correct comment with no working: M0A0B1
2i Opposite orders or ranks or scores or results or marks $r_s = -1$	Total		9	
or results or marks $r_s = -1$		Opposite orders or ranks or scores		or reversed, or backwards, or inverse
Iii Attempt Σ d^2 (= 6) M1 $1 - \frac{6v2d^2}{3(3^2-1)}$ $1 - \frac{6v2d^2}{3(3^2-1)}$ $1 - \frac{1}{2}$ Oe A1 $1 - \frac{3}{2}$ $1 - \frac{1}{2}$ Oe A1 $1 - \frac{1}{2}$ $1 - \frac{1}$				
ii Attempt Σ d^2 (= 6) M1 $1 - \frac{6 \times X d^2}{3(3^2 - 1)}$ M1 $= -\frac{1}{2}$ oe M1 iii 3! or 3P_3 or 6			R1 1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$r_s = 1$	DI I	Treeds reason first value
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ii	Attempt $\sum d^2$ (-6)	M1	
= $-\frac{1}{2}$ oe	11		1/11	
= $-\frac{1}{2}$ oe		$1 - \frac{6 \times 2d^2}{2(2^2 + 1)}$	М1	don 1st M1
iii 3! or ${}^{3}P_{3}$ or 6		, , ,	IVII	*
iii 3! or ${}^{3}P_{3}$ or 6		$=-\frac{1}{2}$ oe	A 1 2	Allow use wrong table for Willwil
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$:::	21 au 3D au 6		m attempt list massible andons of 1.2.2 (>2 andons)
Total A1 3 or $\frac{1}{3} \times \frac{1}{2}(\times 1)$: M1M1 3i If x is contr (or indep) or y depend't, use y on x B1 Allow x increases constantly, is predetermined, you choose x, you set x, x is fixed, x is chosen If neither variable contr'd (or indep) AND want est y from x: use y on x B1 Allow x increases constantly, is predetermined, you choose x, you set x, x is fixed, x is chosen iii $S_{xx} = 510000 - \frac{1800^2}{9}$ (= 150000) B1 Z Ignore incorrect comments or $\frac{510000}{9} - 200^2$ (= 16666.7) or $\frac{4080}{9} - 200 \times 1.6$ (= 133.33) M1 for either S b = $\frac{1200^{\circ}}{150000^{\circ}}$ (= 0.008) M1 b = $\frac{133.33^{\circ}}{16666.7^{\circ}}$ dep correct expressions both S's y - $\frac{14.4}{9} = 0.008(x - \frac{1800}{9})$ M1 or $a = \frac{14.4}{9} - 0.008 \times \frac{1800}{9}$ (= 0) Must be all correct for M1 CAO iib 312.5 or 313 B1ft 1 ft their equn in (iia)	111			2 nd M1 for fully as most mostle deputy
Total 7 3i If x is contr (or indep) or y depend't, use y on x B1 Allow x increases constantly, is predetermined, you choose x, you set x, x is fixed, x is chosen If neither variable contr'd (or indep) AND want est y from x: use y on x B1 Allow x increases constantly, is predetermined, you choose x, you set x, x is fixed, x is chosen iia $S_{xx} = 510000 - \frac{1800^2}{9}$ (= 150000) $S_{xy} = 4080 - \frac{1800 \times 14.4}{9}$ (= 1200) or $\frac{510000}{9} - 200^2$ (= 16666.7) $S_{xy} = 4080 - \frac{1800 \times 14.4}{9}$ (= 1200) or $\frac{4080}{9} - 200 \times 1.6$ (= 133.33) M1 for either S $S_{xy} = \frac{12200^{y}}{150000^{y}}$ (= 0.008) M1 $S_{xy} = \frac{14.4}{9} = 0.008(x - \frac{1800}{9})$ (= 0.008) M1 $S_{xy} = \frac{14.4}{9} = 0.008(x - \frac{1800}{9})$ (= 0.008) M1 $S_{xy} = \frac{14.4}{9} = 0.008(x - \frac{1800}{9})$ (= 0.008) M1 $S_{xy} = \frac{14.4}{9} = 0.008(x - \frac{1800}{9})$ (= 0.008) M1 $S_{xy} = \frac{14.4}{9} = 0.008(x - \frac{1800}{9})$ (= 0.008) M1 $S_{xy} = \frac{14.4}{9} = 0.008(x - \frac{1800}{9})$ (= 0.008) M1 $S_{xy} = \frac{14.4}{9} = 0.008(x - \frac{1800}{9})$ (= 0.008) M1 $S_{xy} = \frac{14.4}{9} = 0.008(x - \frac{1800}{9})$ (= 0.008) M1 $S_{xy} = \frac{14.4}{9} = 0.008(x - \frac{1800}{9})$ (= 0.008) $S_{xy} = 16.0$		1 ÷ their '6'	MI	
Total 7 3i If x is contr (or indep) or y depend't, use y on x B1 Allow x increases constantly, is predetermined, you choose x, you set x, x is fixed, x is chosen If neither variable contr'd (or indep) AND want est y from x: use y on x B1 2 iiia $S_{xx} = 510000 - \frac{1800^2}{9}$ (= 150000) $S_{xy} = 4080 - \frac{1800 \times 14.4}{9}$ (= 1200) Image: Sign of the control of the		1 6		or $\frac{1}{3} \times \frac{1}{2} (\times 1) : M1M1$
3i If x is contr (or indep) or y depend't, use y on x B1 Allow x increases constantly, is predetermined, you choose x, you set x, x is fixed, x is chosen If neither variable contr'd (or indep) AND want est y from x: use y on x B1 2 iia $S_{xx} = 510000 - \frac{1800^2}{9}$ (= 150000) $S_{xy} = 4080 - \frac{1800 \times 14.4}{9}$ (= 1200) In a square of the controlled AND want est y from x and the controlled		$\frac{1}{6}$ oe eg $\frac{3}{36}$	A1 3	
use y on x B1 you choose x, you set x, x is fixed, x is chosen	Total		7	
use y on x B1 you choose x, you set x, x is fixed, x is chosen	3i	If x is contr (or inden) or y depend't		Allow x increases constantly is predetermined
If neither variable contr'd (or indep) AND want est y from x: use y on x iia $S_{xx} = 510000 - \frac{1800^2}{9} (=150000)$ $S_{xy} = 4080 - \frac{1800 \times 14.4}{9} (=1200)$ $b = \frac{1200'}{150000'} (=0.008)$ $y - \frac{14.4}{9} = 0.008(x - \frac{1800}{9})$ $y = 0.008x (+ 0)$ iib 312.5 or 313 Allow y not controlled AND want est y from x Allow y not controlled And y for the part of the part of the			R1	* *
AND want est y from x: use y on x B1 2 Ignore incorrect comments iia $S_{xx} = 510000 - \frac{1800^2}{9}$ (= 150000) $S_{xy} = 4080 - \frac{1800 \times 14.4}{9}$ (= 1200) M1 or $\frac{4080}{9} - 200 \times 1.6$ (= 133.33) M1 for either S $b = \frac{1200'}{150000'}$ (= 0.008) M1 $b = \frac{133.33'}{16666.7'}$ dep correct expressions both S's $y - \frac{14.4}{9} = 0.008(x - \frac{1800}{9})$ M1 or $a = \frac{14.4}{9} - 0.008 \times \frac{1800}{9}$ (= 0) Must be all correct for M1 CAO iib 312.5 or 313 B1ft 1 ft their equn in (iia)		abe y on x	ועו	jou choose x, you set x, x is fixed, x is choself
AND want est y from x: use y on x B1 2 Ignore incorrect comments iia $S_{xx} = 510000 - \frac{1800^2}{9}$ (= 150000) $S_{xy} = 4080 - \frac{1800 \times 14.4}{9}$ (= 1200) M1 or $\frac{4080}{9} - 200 \times 1.6$ (= 133.33) M1 for either S $b = \frac{1200'}{150000'}$ (= 0.008) M1 $b = \frac{133.33'}{16666.7'}$ dep correct expressions both S's $y - \frac{14.4}{9} = 0.008(x - \frac{1800}{9})$ M1 or $a = \frac{14.4}{9} - 0.008 \times \frac{1800}{9}$ (= 0) Must be all correct for M1 CAO iib 312.5 or 313 B1ft 1 ft their equn in (iia)		If neither variable contr'd (or inden)		Allow v not controlled AND want set v from v
Ignore incorrect comments Ignore incorrect Ignore incorrect comments Ignore incorrect comments Ignore incorrect Ignore incorrect comments Ignore incorrect Ignore Ignore incorrect Ignore incorrect Ignore Ignore incorrect Ignore Ign		` 1	R1 2	Thiow y not controlled AND want est y Holli x
iia $S_{xx} = 510000 - \frac{1800^2}{9}$ (= 150000) $S_{xy} = 4080 - \frac{1800 \times 14.4}{9}$ (= 1200) M1 or $\frac{4080}{9} - 200^2$ (= 16666.7) or $\frac{4080}{9} - 200 \times 1.6$ (= 133.33) M1 for either S $b = \frac{1200}{150000}$ (= 0.008) M1 $b = \frac{133.33}{16666.7}$ dep correct expressions both S 's $y - \frac{14.4}{9} = 0.008(x - \frac{1800}{9})$ M1 or $a = \frac{14.4}{9} - 0.008 \times \frac{1800}{9}$ (= 0) Must be all correct for M1 CAO iib 312.5 or 313 B1ft 1 ft their equn in (iia)		This want est y nom x. use y on x	שו ב	Ignore incorrect comments
$S_{xy} = 310000 - \frac{1800 \times 14.4}{9} (= 1200)$ $S_{xy} = 4080 - \frac{1800 \times 14.4}{9} (= 1200)$ $M1 \text{or } \frac{4080}{9} - 200 \times 1.6 (= 133.33)$ $M1 \text{ for either } S$ $b = \frac{1200}{150000} (= 0.008)$ $M1 b = \frac{133.33}{16666.7} \text{dep correct expressions both } S \text{ is } S$ $y - \frac{14.4}{9} = 0.008(x - \frac{1800}{9})$ $y = 0.008x (= 0.008)$ $M1 \text{or } a = \frac{14.4}{9} - 0.008 \times \frac{1800}{9} (= 0)$ $\text{Must be all correct for M1}$ CAO $\text{iib} 312.5 \text{ or } 313$ $\text{B1ft 1} \text{ft their equn in (iia)}$	iio	1002		
$b = \frac{1200'}{150000'} \qquad (= 0.008) \qquad \text{M1} \qquad b = \frac{133.33'}{16666.7'} \text{dep correct expressions both } S's$ $y - \frac{14.4}{9} = 0.008(x - \frac{1800}{9}) \qquad \text{M1} \qquad \text{or } a = \frac{14.4}{9} - 0.008 \times \frac{1800}{9} (= 0)$ $y = 0.008x (+ 0) \qquad \text{A1} \qquad 4 \qquad \text{CAO}$ $\text{iib} \qquad 312.5 \text{ or } 313 \qquad \qquad \text{B1ft } 1 \text{ft their equn in (iia)}$	11a	$S_{xx} = 510000 - \frac{1800^2}{9}$ (= 150000)		or $\frac{520000}{9} - 200^{2}$ (= 16666.7)
$b = \frac{1200'}{150000'} \qquad (= 0.008) \qquad \text{M1} \qquad b = \frac{133.33'}{16666.7'} \text{dep correct expressions both } S's$ $y - \frac{14.4}{9} = 0.008(x - \frac{1800}{9}) \qquad \text{M1} \qquad \text{or } a = \frac{14.4}{9} - 0.008 \times \frac{1800}{9} (= 0)$ $y = 0.008x (+ 0) \qquad \text{A1} \qquad 4 \qquad \text{CAO}$ $\text{iib} \qquad 312.5 \text{ or } 313 \qquad \qquad \text{B1ft } 1 \text{ft their equn in (iia)}$		$c = 4080 1800 \times 14.4 (= 1200)$	M1	or $\frac{4080}{9}$ - 200×1.6 (= 133.33)
$b = \frac{1200'}{150000'} \qquad (= 0.008) \qquad M1 \qquad b = \frac{133.33'}{16666.7'} \qquad \text{dep correct expressions both S's}$ $y - \frac{14.4}{9} = 0.008(x - \frac{1800}{9}) \qquad \qquad M1 \qquad \text{or } a = \frac{14.4}{9} - 0.008 \times \frac{1800}{9} (= 0)$ $y = 0.008x (+ 0) \qquad \qquad A1 4 \qquad CAO$ $\text{iib} \qquad 312.5 \text{ or } 313 \qquad \qquad \text{B1ft 1} \qquad \text{ft their equn in (iia)}$		$S_{xy} = 4000 - \frac{1200}{9}$ (= 1200)	1/11	2
$y - \frac{14.4}{9} = 0.008(x - \frac{1800}{9})$ $y = 0.008x (+ 0)$ iib $312.5 \text{ or } 313$ $M1$ $or \ a = \frac{14.4}{9} - 0.008 \times \frac{1800}{9} \ (= 0)$ $Must \ be \ all \ correct \ for \ M1$ CAO $B1ft \ 1 ft \ their \ equn \ in \ (iia)$				IVI I for eitner S
$y - \frac{14.4}{9} = 0.008(x - \frac{1800}{9})$ $y = 0.008x (+ 0)$ iib $312.5 \text{ or } 313$ $M1$ $or \ a = \frac{14.4}{9} - 0.008 \times \frac{1800}{9} \ (= 0)$ $Must \ be \ all \ correct \ for \ M1$ CAO $B1ft \ 1 ft \ their \ equn \ in \ (iia)$		h = '1200' (0.000)	M1	b = 133.33' den sommet evenussions both C'
y = 0.008x (+ 0) $y = 0.008x (+ 0)$ $A1$		$b = \frac{1200}{150000'} \qquad (= 0.008)$	IVII	$v = \frac{1}{16666.7}$ dep correct expressions both 3 s
y = 0.008x (+ 0) $y = 0.008x (+ 0)$ $A1$				
y = 0.008x (+ 0) $y = 0.008x (+ 0)$ $A1$		14.4 - 0.008 (* 1800)	M1	or $a = \frac{14.4}{2} - 0.008 \times \frac{1800}{5}$ (= 0)
y = 0.008x (+ 0) A1 4 CAO iib 312.5 or 313 B1ft 1 ft their equn in (iia)		$y - {9} = 0.008(x - {9})$	1411	,
iib 312.5 or 313 B1ft 1 ft their equn in (iia)		0.000 (0)		
		y = 0.008x (+ 0)	A1 4	CAU
iic -0.4 B1ft 1 ft their egun in (iia)	iib	312.5 or 313	B1ft 1	ft their equn in (iia)
	iic	-0.4	B1ft 1	ft their equn in (iia)

4732		Mark S	cheme June 201
iid	Contraction oe	B1(ft)	or length decreased, shorter, pushed in, shrunk, smaller
	Unreliable because extrapolated oe	B1 2	or not in the range of x or not in range of previous results
Total		10	
4ia	0.299 (3 sf)	B1 1	
ib	0.2991 - 0.1040 = 0.195 (3 sf) or $\frac{1280}{6561}$ oe	M1 A1 2	Must subtract correct pair from table
iia	$^{15}\text{C}_4 \times (1-0.22)^{11} \times 0.22^4$ = 0.208 (3 sf)	M1 A1 2	Allow M1 for ${}^{15}C_4 \times 0.88^{11} \times 0.22^4$
iib	$(15 \times 0.22 =) 3.3$ $15 \times 0.22 \times (1-0.22)$ or '3.3'×(1-0.22) = 2.57 (3 sf)	B1 M1 A1 3	Allow M1 for $15 \times 0.22 \times 0.88$
Total		8	
5i	$\frac{1}{2} \times \frac{1}{3} \text{ or } \frac{2}{4} \times \frac{1}{3} \text{ or } \frac{1}{{}^{4}C_{2}} \text{ or } \frac{2}{12}$ $(=\frac{1}{6} \mathbf{AG})$	B1	or 1 out of 6 or 2 out of 12 or $\frac{2!}{4!} \times 2$
	$\frac{1}{4} \times \frac{2}{3}$ or $2 \times \frac{1}{4} \times \frac{1}{3}$ or $\frac{1}{2} \times \frac{1}{3}$ or $\frac{2}{4} \times \frac{1}{3}$	B1	or $\frac{2}{12}$ or $\frac{1}{6}$ or $\frac{1}{3!}$ or $\frac{1}{{}^{4}C_{2}}$ or $\frac{2!}{4!} \times 2$
	Add two of these or double one $(=\frac{1}{3} \mathbf{AG})$	B1 3	or $\frac{2}{^{4}C_{2}}$ or $4 \times \frac{1}{4} \times \frac{1}{3}$ or $\frac{2}{4} \times \frac{2}{3}$ or $\frac{4}{12}$ or $\frac{2!}{4!} \times 4$ B1B1 or $\frac{2}{6}$ or $2 \times \frac{1}{6}$ or $\frac{2}{3!}$ or $\frac{2!}{3!}$ B1B1
ii	X = 3, 4, 5, 6 only, stated or used	B1	Allow repetitions Allow other values with zero probabilities.
	P(X = 5) wking as for P(X = 4) above or $1 - (\frac{1}{6}^{n} + \frac{1}{3} + \frac{1}{6})$ or $\frac{1}{3}$	M1	Timow outer values with zero procuomition
	P(X = 3) wking as for P(X = 6) above or $1 - (\frac{1}{3} + \frac{1}{3} + \frac{1}{6})$ or $\frac{1}{6}$	M1	or M1 for total of their probs = 1, dep B1
	3 4 5 6		or $P(X = 3) = \frac{1}{6}$, $P(X = 4) = \frac{1}{3}$, $P(X = 5) = \frac{1}{3}$, $P(X = 6) = \frac{1}{6}$
	$\frac{1}{6} \frac{1}{3} \frac{1}{3} \frac{1}{6}$ oe	A1 4	Complete list of values linked to probs
iii	$\sum xp = 4\frac{1}{2}$	M1 A1	≥ 2 terms correct ft
	$\sum x^2 p \qquad (= 21 \frac{1}{6})$ $- 4 \frac{1}{2}$	M1 M1	\geq 2 terms correct ft Independent except dependent on +ve result
	$=\frac{11}{12}$ or 0.917 (3 sf)	A1 5	

physicsandmathstutor.com

4732	Mark Sc		cheme June 2010
6	$m = (9 \times 6 + 3) \div 10$	M1	or ((Sum of any 9 nos totalling 54) + 3) \div 10
	= 5.7	A1	
	$2 = \frac{\Sigma x^2}{9} - 6^2$	M1	or $\frac{\Sigma(x-6)^2}{9} = 2$ M1
	$\Sigma x^2 = 2 \times 9 + 6^2 \times 9 \text{ or } 342$	A1	or $\Sigma x^2 = 18 + 12 \times 54 - 36 \times 9$ or 342 A1
	$v = \frac{('342' + 3^2)}{10} - '5.7'^2$	M1	dep Σx^2 attempted, eg $(\Sigma x)^2$ (= 3249) or just state ' Σx^2 '; allow $$
	= 2.61 oe	A1 6	CAO
Total		6	
7i	$^{4}\text{C}_{2} \times ^{6}\text{C}_{3} \times ^{5}\text{C}_{4} \text{ or } 6 \times 20 \times 5$	M1M1	M1 for any 2 correct combs seen, even if added
	= 600	A1 3	
ii	$\frac{2}{4}$ or $\frac{{}^{3}C_{1}}{{}^{4}C_{2}}$ or $\frac{{}^{3}C_{1} \times {}^{6}C_{3} \times {}^{5}C_{4}}{{}^{4}C_{2} \times {}^{6}C_{3} \times {}^{5}C_{4}}$ or	M1	or $\frac{1}{4} \times 1 + \frac{3}{4} \times \frac{1}{3}$ or $\frac{1}{4} \times 2$ or $\frac{1}{4} + \frac{1}{4}$
	$\frac{{}^{3}C_{1}\times^{6}C_{3}\times^{5}C_{4}}{{}^{6}00'}$		
	$=\frac{1}{2}$ oe	A1 2	
iii	${}^{3}C_{1} \times {}^{6}C_{3} \times {}^{4}C_{4} + {}^{3}C_{2} \times {}^{6}C_{3} \times {}^{5}C_{4}$	M1M1	M1 either product seen, even if \times or \div by something
	360	A1 3	
Total		8	

8			
8ia	Geo(0.3) stated or implied	M1	by $0.7^{n} \times 0.3$
	$0.7^3 \times 0.3$	M1	
	= 0.103 (3 sf)	A1 3	
b	0.7^3 or 0.343	M1	0.7^3 must be alone, ie not $0.7^3 \times 0.3$ or similar
	$1 - 0.7^3$	M1	allow $1 - 0.7^4$ or 0.7599 or 0.76 for M1 only
			or $0.3 + 0.7 \times 0.3 + 0.7^2 \times 0.3$: M1M1
			1 term wrong or omitted or extra M1
			or $1 - (0.3 + 0.7 \times 0.3 + 0.7^2 \times 0.3)$ or 0.343 : M1
	= 0.657	A1 3	
iia	State or imply one viewer in 1 st four	M1	or B(4, 0.3) stated, or ${}^{4}C_{1}$ used, or YNNNY
	$^{4}C_{1} \times 0.7^{3} \times 0.3$ (= 0.412)	M1	
	$\times 0.3$	M1	dep 1st M1
	= 0.123 (3 sf)	A1 4	
b	$0.7^5 + {}^5C_1 \times 0.7^4 \times 0.3$	M1	or $1 - (0.3^2 + 2 \times 0.3^2 \times 0.7 + 3 \times 0.3^2 \times 0.7^2 + 4 \times 0.3^2 \times 0.7)$
	= 0.528 (3 sf)	A1 2	
			Not ISW, eg 1 – 0.528: M1A0
Total		12	

Total 72 marks