

ADVANCED SUBSIDIARY GCE MATHEMATICS

4732

Candidates answer on the Answer Booklet

OCR Supplied Materials:

Probability & Statistics 1

- 8 page Answer Booklet
- List of Formulae (MF1)

Other Materials Required: None

Monday 15 June 2009 Afternoon

Duration: 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name clearly in capital letters, your Centre Number and Candidate Number in the spaces provided on the Answer Booklet.
- Use black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure that you know what you have to do before starting your answer.
- Answer all the questions.
- Do **not** write in the bar codes.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphical calculator in this paper.

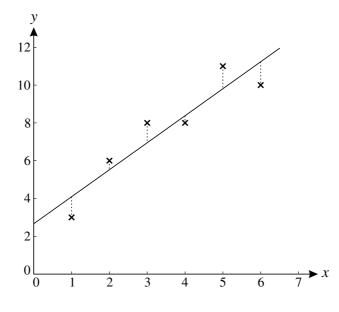
INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You are reminded of the need for clear presentation in your answers.
- The total number of marks for this paper is 72.
- This document consists of 4 pages. Any blank pages are indicated.

2

1 20% of packets of a certain kind of cereal contain a free gift. Jane buys one packet a week for 8 weeks. The number of free gifts that Jane receives is denoted by *X*. Assuming that Jane's 8 packets can be regarded as a random sample, find

(i) $P(X = 3)$,	[3]
(ii) $P(X \ge 3)$,	[2]


[2]

[2]

- (iii) E(X).
- 2 Two judges placed 7 dancers in rank order. Both judges placed dancers A and B in the first two places, but in opposite orders. The judges agreed about the ranks for all the other 5 dancers. Calculate the value of Spearman's rank correlation coefficient. [4]
- 3 In an agricultural experiment, the relationship between the amount of water supplied, x units, and the yield, y units, was investigated. Six values of x were chosen and for each value of x the corresponding value of y was measured. The results are shown in the table.

x	1	2	3	4	5	6
у	3	6	8	8	11	10

These results, together with the regression line of *y* on *x*, are plotted on the graph.

- (i) Give a reason why the regression line of x on y is not suitable in this context. [1]
- (ii) Explain the significance, for the regression line of *y* on *x*, of the distances shown by the vertical dotted lines in the diagram.
- (iii) Calculate the value of the product moment correlation coefficient, *r*. [3]
- (iv) Comment on your value of r in relation to the diagram.

physicsandmathstutor.com

3

4 30% of people own a Talk-2 phone. People are selected at random, one at a time, and asked whether they own a Talk-2 phone. The number of people questioned, up to and including the first person who owns a Talk-2 phone, is denoted by *X*. Find

(i) $P(X = 4)$,	[3]
(ii) $P(X > 4)$,	[2]

5 The diameters of 100 pebbles were measured. The measurements rounded to the nearest millimetre, x, are summarised in the table.

x	$10 \leq x \leq 19$	$20 \leqslant x \leqslant 24$	$25 \leq x \leq 29$	$30 \leq x \leq 49$
Number of stones	25	22	29	24

These data are to be presented on a statistical diagram.

(iii) P(X < 6).

- (i) For a histogram, find the frequency density of the $10 \le x \le 19$ class. [2]
- (ii) For a cumulative frequency graph, state the coordinates of the first two points that should be plotted.
- (iii) Why is it not possible to draw an exact box-and-whisker plot to illustrate the data? [1]
- **6** Last year Eleanor played 11 rounds of golf. Her scores were as follows:

79, 71, 80, 67, 67, 74, 66, 65, 71, 66, 64.

- (i) Calculate the mean of these scores and show that the standard deviation is 5.31, correct to 3 significant figures. [4]
- (ii) Find the median and interquartile range of the scores. [4]

This year, Eleanor also played 11 rounds of golf. The standard deviation of her scores was 4.23, correct to 3 significant figures, and the interquartile range was the same as last year.

(iii) Give a possible reason why the standard deviation of her scores was lower than last year although her interquartile range was unchanged. [1]

In golf, smaller scores mean a better standard of play than larger scores. Ken suggests that since the standard deviation was smaller this year, Eleanor's overall standard has improved.

(iv)	Explain why Ken is wrong.	[1]

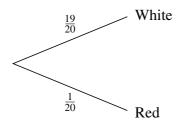
(v) State what the smaller standard deviation does show about Eleanor's play. [1]

[Questions 7, 8 and 9 are printed overleaf.]

[3]

4

7 Three letters are selected at random from the 8 letters of the word COMPUTER, without regard to order.


(i) Find the number of possible selections of 3 letters.	[2]
--	-----

(ii) Find the probability that the letter P is included in the selection. [3]

Three letters are now selected at random, one at a time, from the 8 letters of the word COMPUTER, and are placed in order in a line.

- (iii) Find the probability that the 3 letters form the word TOP. [3]
- 8 A game at a charity event uses a bag containing 19 white counters and 1 red counter. To play the game once a player takes counters at random from the bag, one at a time, without replacement. If the red counter is taken, the player wins a prize and the game ends. If not, the game ends when 3 white counters have been taken. Niko plays the game once.
 - (i) (a) Copy and complete the tree diagram showing the probabilities for Niko. [4]

First counter

	(b) Find the probability that Niko will win a prize.	[3]	
(ii)	The number of counters that Niko takes is denoted by X .		
	(a) Find $P(X = 3)$.	[2]	

- (b) Find E(X). [4]
- **9** Repeated independent trials of a certain experiment are carried out. On each trial the probability of success is 0.12.
 - (i) Find the smallest value of n such that the probability of at least one success in n trials is more than 0.95.
 - (ii) Find the probability that the 3rd success occurs on the 7th trial. [5]

Copyright Information

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity. For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1PB.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations, is given to all schools that receive assessment material and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.