

Mathematics

Advanced GCE

Unit 4732: Probability and Statistics 1

Mark Scheme for January 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2011

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

Mark Scheme

January 2011

Note: "(3 sfs)" means "answer which rounds to to 3 sfs". If correct ans seen to \geq 3sfs, ISW for later round	ing
Penalise over-rounding only once in <u>paper</u> .	

1i	38 61	B1 B1 2	Reversed: B1B0	
ii	Paper 2	B1 2 B1	Indep of reason	Ans "Paper 1", ignore reason: B0B0 unless reversed in (i)
	Higher median or curve is to right	B1dep 2	or similar Higher average or mean or midpoint Paper 2: half ≤ 61 , cf paper 1: half ≤ 38 Paper 1: more students scored lower marks (or lower than eg 40)	More scored higher mks Highest & lowest mks are higher For each cf, the corresponding mark is higher in p2. None get 0-10 Some get 100 Eg 25 scored > 69 in p1, cf 65 scored > 69 in p2 NOT Marks are higher NOT marks seem higher NOT everyone gets higher mks NOT Curve steeper Ignore irrelevant or incorrect
iii	55, 25 73, 46 Paper 1 IQR = 30 Paper 2 IQR = 27 Suggestion correct or p2 less varied	M1 A1 A1 B1f indep 4	M1 one pair of quartiles p2 more consistent or less spread out Allow "p2 has smaller range (or smaller variance") if IQRs found "It" is less varied: assume p2: B1	SC: If reversed in (i): (ii) p1 because median higher B1B1ftAllow 55±1, 25±1Not necessarily subtracted73±1, 46±130±127±127±1p1 more varied or more spread out or less consistentLittle difference or similarly variedNOT p2 IQR smaller than p1 unless also says less varied oeIf quartiles found but not IQRs: max M1A0A0B1If no quartiles calculated can still score B1Steeper curve aloneM0A0A0B0If IQRs wrong, with p1 < p2, ft "suggestion wrong": B1f

4732		Mark Scheme	January 201	11
iv	37 (± 3)	B2 2	B1 for 163 (± 3)	Not necessarily integer. B1 for 78-80 mks for min grade A on p2 SC: ans 105 – 110: B1 (from p1 10 mks hier instead of lower)
V	37.5 28.2	B1 B1 2	cao or sd the same	NOT eg 37.51 Ignore all working
Total		12		
2				SC:Consistent use of incorrect $(1 - 0.2)$ score M-marks only SC:Consistent 0.8 insted of 0.2, no A-marks: max M0M2M2M2 "Consistent" means in every part attempted
2i	$\begin{array}{r} 0.8^2 \times 0.2 \\ = \frac{16}{125} \text{ or } 0.128 \end{array}$	M1 A1 2		
ii	$0.8^{2} \times 0.2 + 0.8^{3} \times 0.2 + 0.8^{4} \times 0.2$ = $\frac{976}{3125}$ or 0.312 (3 sfs)	M2 A1 3	1 term omitted or wrong or extra: M1	Using P($X \le 5$) & P($X \le 2$); three methods: $1 - 0.8^5 - (1 - 0.8^2)$ or $0.672 - 0.36$: M2 Allow M1 for $1 - 0.8^5 - (1 - 0.8^3)$ or $0.672 - 0.488$ or $1 - 0.8^4 - (1 - 0.8^2)$ or $0.5904 - 0.36$ $0.8^2 - 0.8^5$: M2 Allow M1 for $0.8^3 - 0.8^5$ or $0.8^2 - 0.8^4$ $0.2 + 0.8 \times 0.2 + 0.8^2 \times 0.2 + 0.8^3 \times 0.2 + 0.8^4 \times 0.2 - (0.2 + 0.8 \times 0.2)$: M2 One term omitted or wrong or extra: M1 But NB If include $0.8^{-1} \times 0.2$ in both P($X \le 5$) & P($X \le 2$), get correct ans but M1M0A0 M0 for eg $1 - 0.8^5 - 0.8^2$ or $0.672 - 0.64$
iii	0.8^4 $= \frac{256}{625} \text{ or } 0.4096 \text{ or } 0.410 \text{ (3 sfs)}$	M2 A1 3	$\begin{array}{l} 1-(0.2+0.8\times0.2+0.8^{2}\times0.2+0.8^{3}\times0.2)\\ 1 \text{ term omitted or wrong or extra: M1}\\ 1-0.8^{4} \text{ or } 0.590 \qquad \qquad \text{M1}\\ \text{ or } 0.8^{3} \text{ or } 0.512 \text{ or } 0.8^{5} \text{ or } 0.328\text{: M1}\\ \end{array}$ Allow 0.41	$\frac{1}{1 - (0.2 + 0.8 \times 0.2 + 0.8^{2} \times 0.2 + 0.8^{3} \times 0.2) \text{ M2}}{0.2 \times 0.8^{4} \text{ M0}} \qquad 1 - 0.8^{n} (n \neq 4) \text{ M0}$

4732	Mark S	Scheme	January 20	011
iv	$ \begin{bmatrix} 0.2 \times 0.8 \times 0.2 \\ \times 2 \end{bmatrix} $	M1 M1	or $0.2 \times 0.8^{\circ} \times 0.8 \times 0.2$ or $0.2 \times 0.8 \times 0.2 + 0.8 \times 0.2 \times 0.2$	or 0.032 NOT $n \times 0.2^2 \times 0.8$ except $n = 2$ Fully correct method except allow M0M1 for $(0.2+0.8\times0.2) \times 2$, must see method
	$= 0.064 \text{ or }^{8}/_{125}$	A1 3		Attempt 0,3 and/or 3,0, as well as 2,1and/or 1,2; max M1M0A0
				Careful: $0.2 \times 0.8 \times 0.2 + 0.2 \times 0.8^{-1} \times 0.128 = 0.064$ M1M0A0Careful: $0.8 \times 0.8 \times 0.2 \div 2 = 0.064$: (ie P(X = 3) $\div 2$)M0M0A0
Total		11		
3i	$\frac{7351.12 \cdot \frac{86.6 \times 943.8}{12}}{\sqrt{(658.76 \cdot \frac{86.6^2}{12})(83663 - \frac{943.8^2}{12})}} \text{ or } \frac{540.03}{\sqrt{33.80 \times 9433}}$	M1 M1		1^{st} M1 for correct subst in any correct <i>S</i> formula 2^{nd} M1 for all correct subst'n in any correct <i>r</i> formula
	= 0.9564 or 0.956 or 0.96	A1 3	Must see at least 2 sfs	0.96 or correct better, no working: M1M1A1
				eg $0.958 \rightarrow 0.96$ with correct working M1M1A0 without working: M0M0A0
ii	Strong (or high or good or close etc) relationship (or corr'n or link) between amount spent on advert & profit	B1 1	Allow Almost complete relationship or Very positive corr'n or Very reliable relationship	Must state or imply "strong" or "good" or equiv & in context but NOT Strong <i>agreement</i> between etc
	uniount spont on udvort co pront	21 1	or Near perfect relationship	NOT High spend on ads produces high profits
			between spend on advert & profit	NOT The more spent on adverts, the higher the profit
			r i i i i r i i r	NOT Positive corr'n between spend on ads & profits
			oe, in context	NOT There is a relationship between spend on ads & profit
				NOT There is a great relationship between etc
				NOT ans involving "proportion(al)"
				Ignore irrelevant or incorrect
				If incorrect $r (< 0.9)$ in (i), no ft for ans "weak rel'nship" here; but correct ans here scores B1 even if inconsistent with their r

physicsandmathstutor.com 4732 Mark Scheme January 2011 Allow without context iii Can't extrapolate Relationship may not continue Examples: **B**1 Can't predict future; Things can change Any indication that pattern may not Economic situation may change May be recession ahead; Cost of advertising may increase continue If spend too much on ads, profit may be reduced as a result Advertising may not be as successful in the future Must state or imply referring to future Item may go out of fashion NOT Spending on adverts may not bring high profits NOT Spending more on adverts may not bring higher profits (Since these just restate the question) NOT More money spent on ads will not affect profit Corr'n not imply causation Increase in profit may not be due to Both variables may be affected by a third B1 2 increase in spend on advertising. Other factors may affect profits Advertising not the sole factor affecting profits Variables may be increasing separately Two different categories of reason needed, as given above. Two reasons which both fall under the same category: only B1 NOT Because corr'n not equal to 1 or $\frac{S_{xy}}{Sxx}$ $b = \frac{7351.12 - \frac{86.6 \times 943.8}{12}}{12}$ iv ft values of S_{xy} & S_{xx} if clearly shown in (i) M1 658.76-86.62 A1 = 15.9788 or 16.0 $y - \frac{943.8}{12} = "16.0"(x - \frac{86.6}{12})$ M1 or $a = \frac{943.8}{12} - 16.0$ × $\frac{86.6}{12}$ Coeffs not nec'y rounded, but would round to 16 & 37 A1 4 (y = 15.9788x - 36.664)v = 16x - 37 or better These marks can be earned in (v) if not contradicted in (iv) If x on y line found: M-marks only (x = 2.71 + 0.0572y)

81.4 thousand to 81.7 thousand: M1A1

A1f 2 but 81.4 to 81.7 alone:

M1

12

"16" × 7400 – "37": M0A0

ft their (iv)

M1A0

"16" × 7.4 – "37"

81400 to 81750

v

Total

4732	Mark S	Scheme	January 201	11
4i	$ \begin{array}{r} 0.4 \times 0.7 \\ 0.6 + 0.4 \times 0.7 \\ = 0.88 \end{array} $	M1 M1 A1 3	or $0.6 + \text{prod of } 2 \text{ probs}$ Condone $0.6 \times 0.7 + 0.6 \times 0.3 + 0.4 \times 0.7$ or $0.6 \times 0.6 + 0.6 \times 0.4 + 0.4 \times 0.7$	$ \begin{array}{ccc} 1- \mbox{ prod of } 2 \mbox{ P's } & \mbox{ or } 0.4 \times 0.3 \\ 1-0.4 \times 0.3 \end{array} $
ii	$p + (1 - p) \times p = 0.51 \text{ or } 2p - p^2 = 0.51$ $p^2 - 2p + 0.51 = 0$ $(p - 0.3)(p - 1.7) = 0 \text{ or } p = \frac{2 \pm \sqrt{4 - 4 \times 0.51}}{2} \text{ oe}$ $p = 0.3$	M1 A1 M1 A1 4	or $p^2 + p \times (1 - p) + (1 - p) \times p$ Correct QE = 0 Condone omission of "= 0" Correct method for their 3-term QE	Condone $p + p \times 1 - p$ M1, but $p + qp = 0.51$ M0 or $(1 - p)^2 = 0.49$ M1A1 $1 - p = \pm 0.7$ M1 must have \pm Correct ans from correct but reduced wking or T & I or verification or no wking: 4 mks Ans $p = 0.3$ or 1.7 from correct but reduced wking or T & I or no wking: M1M1M1A0 Ans $p = 0.3$ following correct wking except other solution incorrect: BOD 4 mks (eg $p = \frac{2\pm\sqrt{4-4\times0.51}}{2}$ so $p = 0.3$ or -1.3 so $p = 0.3$: 4 mks)) p = 0.3 from wrong wking but correct verification: BOD 4 mks p = 0.3 from wrong wking alone: M0A0M0A0
Total		7		

4732	Ma	rk Scheme	January 20	11
5			Consistent use of $\frac{1}{3}$ or MR of 30% (eg (i) B1B0B1B1	0.2): ("Consistent" as in Qu 2)
			(i) BIBOBIBI (iia) B0	
			(iib) 0.7901–0.460	09 or ${}^{5}C_{2}(\frac{2}{3})^{3}(\frac{1}{3})^{2}$ M1; = 0.329 (3 sf) A1
				M1; ${}^{7}C_{3}(1 - "0.3292")^{4}("0.3292")^{3}$ M1; $= 0.253$ (3 sf) A1
5i	Binomial or B	B1		Allow mis-spellings but NOT "Biometric"
	(5, 0.3)	B1		Condone B~(5, 0.3) or B(0.3, 5): B1B1 but B($X = 0.3, n = 5$): B1B0
	Prob of gift same for all pkts	B1	Prob of gift is constant or fixed or consistent or same oe	NOT: prob of success const; NOT prob stays same each go
	Whether pkt contains gift is indep of other pkts	B1 4	Obtaining a gift is indep Each time receive a gift is indep	One box doesn't affect another. Pkts indep. Gifts indep She buys packets separately Prob of a gift is indep
			Context needed for 3 rd & 4 th B-mks	
				Prob of gift indep of one another & const: B1B1
				NOT: Each week is indep
				NOT: Number of gifts received is indep
				NOT: Events indep
				If Geo(0.3) stated, can score max B0B0B1B1
				If Geo(5, 0.3) stated, can score max B0B1B1B1
iia	0.8369	B1 1	or 0.837	
b	$\begin{array}{l} 0.8369 - 0.5282 \text{or } {}^{5}\text{C}_{2}(0.7)^{3}(0.3)^{2} \\ = 0.3087 \text{ or } 0.309 \text{ (3 sf)} \end{array}$	M1 A1 2		
iii	p = "0.3087" (0.509" (3.81))	M1 2	(iib) used in a calc'n eg " 0.3087 " $\times 3$	or B(7, "0.3087") stated
				or $1 - "0.3087"$ used instead of "0.3087"
	$^{7}C_{3}(1 - "0.3087")^{4}("0.3087")^{3}$	M1		
	= 0.235 (3 sf)	A1 3		$n = 35 \text{ or } 15: \max \text{ M1M0A0}$
Total		10		n = 55 of 15. Iliax WITWOAU

4732	Mark S	cheme	January 201	11
6i	7! ÷ 3! 7! ÷ 2!	M1	But NOT ${}^{7}P_{4}$ or 7!/(7-4)! if seen	$\frac{7!}{3!+2!}$: M1M0
	÷ 2! ÷ 3!	M1dep		$\frac{7!}{3 \times n!}$ any <i>n</i> : M1M0
	= 420	A1 3		
iia	${}^{5}C_{3} \text{ or } {}^{10}C_{4} \text{ seen}$ ${}^{5}C_{3} \times {}^{10}C_{4}$	M1 M1	or 10 or 210	$\frac{{}^{5}\mathrm{C}_{3} \times {}^{10}\mathrm{C}_{4}}{\mathrm{anything}} \mathrm{M1M1A0}$
	= 2100	A1 3		${}^{5}P_{3} \times {}^{10}P_{4} \text{ or } 60 \times 5040 \text{ or } 302400: \text{ SC B1}$
b	${}^{4}C_{2} \times {}^{9}C_{4} \text{ or } {}^{4}C_{3} \times {}^{9}C_{3} $ or 756 or 336	M1	$\frac{3}{5}$ or $\frac{4}{10}$ oe	Not from incorrect wking
	${}^{4}C_{2} \times {}^{9}C_{4} + {}^{4}C_{3} \times {}^{9}C_{3}$ or 1092		$\frac{3}{5} \times (1 - \frac{4}{10})$ or $(1 - \frac{3}{5}) \times \frac{4}{10}$	SC $\frac{1}{5} \times \frac{9}{10}$ or $\frac{4}{5} \times \frac{1}{10}$ M1
	\div 2100 or \div (iia) dep \ge one M1 scored	M1dep	$\frac{3}{5} \times (1 - \frac{4}{10}) + (1 - \frac{3}{5}) \times \frac{4}{10}$	$\frac{1}{5} \times \frac{9}{10} + \frac{4}{5} \times \frac{1}{10}$ M1
	$=\frac{13}{25}$ or 0.52	A1 4	$=\frac{13}{25}$	$(=\frac{13}{50}$ A0)
			$\frac{3}{5}$ or $\frac{4}{10}$ oe M1	Not from incorrect wking
	"2100" – (${}^{4}C_{3} \times {}^{9}C_{4}$ or ${}^{4}C_{2} \times {}^{9}C_{3}$)		$\frac{3}{5} + \frac{4}{10} - \frac{3}{5} \times \frac{4}{10} $ M1	ie P(WA or GA or both) Must be correct figures
	or "2100" – (504 or 504) M1 "2100" – (${}^{4}C_{3} \times {}^{9}C_{4} + {}^{4}C_{2} \times {}^{9}C_{3}$) M1		$\frac{3}{5} + \frac{4}{10} - \frac{3}{5} \times \frac{4}{10} - \frac{3}{5} \times \frac{4}{10} \qquad M1$	ie P(WA or GA but not both) Must be correct figures
	$\div ``2100'' \text{ or (iia) } dep \ge M1 \qquad M1$		$=\frac{13}{25}$ A1	
				SC ${}^{:4}P_2 \times {}^9P_4 + {}^4P_3 \times {}^9P_3$: M1 \div (iia) M1dep
				Careful: 336 or 756 can be obtained by incorrect methods.
Total		10		

4732	Mark	Scheme	January 20 ⁴	11
7i	$(0 \times a) + 2 \times (1 - a)$ = 2 - 2a or 2(1 - a) oe	M1 A1 2	or $2(1-a)$ Not ISW	Condone $2 \times 1 - a$ NB $2 \times (1 - a) \div 2$: M0A0 Eg E(X) = $2 - 2a$; $2 - 2a = 1$; $a = 0.5$: M1A0
ii	$(0 \times a) + 2^2 \times (1 - a)$	M1	or $4 - 4a$ oe	Condone $2^2 \times 1 - a$
	$- "(2 - 2a)"^{2}$ = 4 - 4a - 4 + 8a - 4a ² = 4a - 4a ² (= 4a(1 - a)) AG	M1 A1 3	- (i) ² dep contains <i>a</i> ; ISW; Indep mk or $4(1-a) - 4(1-a)^2$ 4(1-a)(1-(1-a))	$4 - 4a - 4 \pm 8a \pm 4a^{2} \text{ or } 4 - 4a - 4 \pm 4a^{2} \text{ or equiv M1M1A0}$ $4 - 4a - 2(1 - a)^{2} \text{ M1M1A0}$ Must see this line, correctly obtained Careful: $4 - 4a - (2 - 2a)^{2} = 4 - 4a - (4 - 4a^{2}) = -4a + 4a^{2} = 4a(1 - a)$
	$\begin{array}{ c c c c c c }\hline -2 + 2a & 2a & \\\hline a & 1-a & M1 \\ \hline Var(X) = a(-2+2a)^2 + 4a^2(1-a) & M1 \\ 4a^3 - 8a^2 + 4a + 4a^2 - 4a^3 & \\\hline 4a - 4a^2 & A1 \end{array}$		Correct table oe	M1M1A0 only
Total		5		
8i	EDCBA	B1 1	A 5 B 4 C 3 D 2 E 1	NOT just 5, 4, 3, 2, 1
iia	$1 - \frac{6\Sigma d^2}{5(5^2 - 1)} = 0.9$ $1 - \frac{6\times\Sigma d^2}{5\times 24} = 0.9 \text{ or } 0.1 = \frac{6\times\Sigma d^2}{5\times 24}$ $(\Sigma d^2 = 2 \text{ AG})$	M1 A1 2	One correct step or better & nothing incorrect for A1	$1 - \frac{6 \times 2}{5(5^2 - 1)}$ = $1 - \frac{6 \times 2}{5 \times 24}$ or $1 - \frac{12}{5 \times (5^2 - 1)}$ One correct step or better & nothing incorrect for A1 (= 0.9 AG)
b	d^2 : 0, 0, 0, 1, 1 any order	M1	or d: 0, 0, 0, 1, -1 any order	May not be seen
	BACDE or similar	A1 2	Any two adjacent dogs interchanged	If clearly comparing second race with third; DECBA or similar: B1, but must be clear
Total		5		

Total 72 marks

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

