Mark Scheme

4732 Probability & Statistics 1

Note: "(3 sfs)" means "answer which rounds to ... to 3 sfs". If correct ans seen to \geq 3sfs, ISW for later rounding Penalise over-rounding only once in paper.

	-rounding only once in <u>paper</u> .	1	
1 (i)	attempts at threading indep	B1	in context
	prob of succeeding in threading const	B1 2	in context
(ii) (a)	$0.7^4 \times 0.3$	M1	
(II) (U)	= 0.0720 (3sf)	A1 2	Condone 0.072
(b)	0.7^{5}	M2	or $1-(0.3+0.7\times0.3+0.7^2\times0.3+0.7^3\times0.3)$
			$+0.7^{4} \times 0.3)$
			M1 for one term omitted or extra or
			wrong or 1-0.7 ⁵ or($0.3++0.7^4\times0.3$) or
	= 0.168 (3 sfs)	A1 3	$0.3, 0.7$ muddle or 0.7^4 or 0.7^6 alone.
	- 0.100 (5 515)	111 5	0.6 not 0.7 M0 in (a) M1 in (b)
			1/3,2/3 used M1in (a) M1 in (b)
(iii)	likely to improve with practice	B1	or thread strands gradually separate
			1 st B1 must be in context.
	hence independence unlikely		hence independence unlikely
	or prob will increase each time	B1 2	or prob will decrease each time
	or proo will increase each time	DI 2	
			or similar
			Allow 'change'
Total		[9]	
2 (i) (a)	Use of correct midpts	B1	11,14,18,25.5
	$\Sigma lf \div \Sigma f \qquad (= 706 \div 40)$	M1	<i>l</i> within class, \geq three <i>lf</i> seen
	= 17.65	A1	[17.575,17.7]
	- 17.05		
	Σ_{12}^{12} (12050 5)	N/1	$1 \frac{1}{2}$
	$\Sigma l^2 f$ (= 13050.5)	M1	\geq three $l^2 f$ seen
	$\sqrt{\frac{"13050.5"}{40} - "17.65"^2} (= \sqrt{14.74})$,
	$\sqrt{\frac{15050.5}{40}} - "17.65"^2$ (= $\sqrt{14.74}$)	M1	\div 40,-mean ² , $\sqrt{.}$ Dep>0.
	• • •		$\sum (1-17.65)^2 f$, at least 3 M1, $\div 40$, $$
	= 3.84 (3 sfs)	A1 6	M1,3.84 A1.
			$\div 4 \Rightarrow \max B1M0A0M1M0A0$
(h)	unid ato mond on doto promond	+	
(b)	mid pts used or data grouped		not "orig values were guesses"
	or exact values unknown oe	B1 1	
(ii)	$20 \div 5$	M1	condone $20 \div [4,5]$ or ans 5
	= 4	A1 2	
(iii)	20.5 th value requ'd <u>and</u>		condone 20 th
()	1^{st} two classes contain 14 values	M1	oe
/• ` · · ·	16-20		or third class oe
(iv) (a)	increase	B1 1	
(b)	decrease	B1 1	
Total		[13]	
3 (i)	$S_{hm} = 0.2412$		Allow x or $\div 5$
- (-)	$S_{hh} = 0.10992$		
	$S_{hh} = 0.10992$ $S_{mm} = 27.212$	B1	any one S correct
			any one S correct
	$r = \underline{S_{hm}}$	M1	ft their Ss
	$\sqrt{(S_{hh}S_{mm})}$		
	= 0.139 (3 sfs)	A1 3	
(ii)	Small, low or not close to 1 or close	B1 ft	1^{st} B1 about value of <i>r</i>
()	to 0 oe		2 nd B1 about diag
		D1	
/***	pts not close to line oe	B1	
(iii)	none or unchanged or "0.139" oe	B1 1	
(iv)	Larger oe	B1 1	
Total		[7]	
-	•		

physicsandmathstutor.com

4732

Mark Scheme

January 2010

4 (i)				
- (I)	$(0 \times \frac{1}{2}) + 1 \times \frac{1}{4} + 2 \times \frac{1}{8} + 3 \times \frac{1}{8}$	M1		\geq 2 non-zero terms seen
	$=\frac{7}{8}$ or 0.875 oe	A1		If $\div 3 \text{ or } 4 \text{ M0M0M1(poss)}$
	$(0 \times \frac{1}{2}) + 1 \times \frac{1}{4} + 2^2 \times \frac{1}{8} + 3^2 \times \frac{1}{8}$ (=	M1		\geq 2 non-zero terms seen
	$1\frac{7}{8}$)	2.01		
	$-("\frac{7}{8}")^2$	M1		dep +ve result M1 all4 (x-0.875) ² terms seen.
	$=\frac{71}{64}$ or 1.11 (3 sfs) oe	A1	5	M1 mult $p, \sum A1 1.11$
(ii)				Eg table or $\frac{1}{4}^n \times \frac{3}{4}^m$ (<i>n</i> + <i>m</i> =10,n,m≠1)
	Bin stated or implied 0.922 (3 sfs)	M1 A1	2	or10C4
	0.922 (3 818)	ЛІ		or 5(or 4 or 6) terms correct
(iii)	$n = 10 \& p = \frac{1}{8}$ stated or implied	M1		
	$^{10}C_4 \times \frac{7}{8}^6 \times \frac{1}{8}^4$	M1		
	= 0.0230 (3 sfs)	A 1	2	condone 0.023
Total		A1 [10]		
5 (i)	$\frac{6}{14} \times \frac{5}{13} \times \frac{3}{12}$	M1	1	${}^{6}C_{1} \times {}^{5}C_{1} \times {}^{3}C_{1}$
	$\times 3!$ oe	M1		\div ¹⁴ C ₃
	$=\frac{45}{182}$ or 0.247 (3 sfs)oe			With repl M0M1A0
(10)		Al	3	69.59.39
(ii)	$\frac{6}{14} \times \frac{5}{13} \times \frac{4}{12} + \frac{5}{14} \times \frac{4}{13} \times \frac{3}{12} + \frac{3}{14} \times \frac{2}{13} \times \frac{1}{12}$	M2		${}^{6}C_{3} + {}^{5}C_{3} + {}^{3}C_{3}$ M1 for any one (\div ${}^{14}C_{3}$)M1 all 9 numerators correct.
	$=\frac{31}{364}$ or 0.0852 (3 sf)	A1	3	With repl $M1(6/14)^3+(5/14)^3+(3/14)^3$
Total	504	[6]		r (r) (r) (r)
6 (a)	A: diag or explanation showing pts	B1		
· (u)				
U (u)	close to st line,			
U (U)	close to st line, always increasing	B1		Diag or expl based on
	close to st line, always increasing B:Diag or expl based on	B1		Diag or expl based on $r(s) \neq 1 => pts$ not on st line
	close to st line, always increasing	B1 B1	3	Diag or expl based on r(s)≠ 1=>pts not on st line =>r≠ 1
	close to st line, always increasing B:Diag or expl based on r=1=>pts on st line		3	$r(s) \neq 1 \Rightarrow pts not on st line$ $\Rightarrow r \neq 1$ $r = 1 \Rightarrow pts on st line & r(s) \neq 1 \Rightarrow pts not$
	close to st line, always increasing B:Diag or expl based on r=1=>pts on st line		3	$r(s) \neq 1 => pts not on st line$ => $r \neq 1$ $r=1=> pts on st line &r(s) \neq 1 => pts noton st line B1B1$
	close to st line, always increasing B:Diag or expl based on r=1=>pts on st line		3	$r(s) \neq 1 \Rightarrow pts not on st line$ $\Rightarrow r \neq 1$ $r = 1 \Rightarrow pts on st line & r(s) \neq 1 \Rightarrow pts not$
(b)	close to st line, always increasing B:Diag or expl based on r=1=>pts on st line		3	$r(s) \neq 1 => pts not on st line$ => $r \neq 1$ $r=1=> pts on st line &r(s) \neq 1 => pts noton st line B1B1$
	close to st line, always increasing B:Diag or expl based on r=1=>pts on st line =>r(s)=1	B1 5 M1 A1	3	r(s)≠ 1=>pts not on st line =>r≠ 1 r=1=>pts on st line&r(s)≠ 1=>pts not on st line B1B1 r=1=>r(s)=1 B2 Attempt to sub expression for y x=0.96x+1.48-c oe
	close to st line, always increasing B:Diag or expl based on r=1=>pts on st line =>r(s)=1 $\overline{y} = 2.4 \times 4.5 + 3.7$ = 14.5 $4.5 = 0.4 \times "14.5"- c$	B1 M1 A1 M1		r(s)≠ 1=>pts not on st line =>r≠ 1 r=1=>pts on st line&r(s)≠ 1=>pts not on st line B1B1 r=1=>r(s)=1 B2 Attempt to sub expression for y x=0.96x+1.48-c oe sub x=4.5 and solve
	close to st line, always increasing B:Diag or expl based on r=1=>pts on st line =>r(s)=1 $\overline{y} = 2.4 \times 4.5 + 3.7$ = 14.5	B1 M1 A1 M1	3	r(s)≠ 1=>pts not on st line =>r≠ 1 r=1=>pts on st line&r(s)≠ 1=>pts not on st line B1B1 r=1=>r(s)=1 B2 Attempt to sub expression for y x=0.96x+1.48-c oe
	close to st line, always increasing B:Diag or expl based on r=1=>pts on st line =>r(s)=1 $\overline{y} = 2.4 \times 4.5 + 3.7$ = 14.5 $4.5 = 0.4 \times "14.5"$ - c c = 1.3	B1 M1 A1 M1		r(s)≠ 1=>pts not on st line =>r≠ 1 r=1=>pts on st line&r(s)≠ 1=>pts not on st line B1B1 r=1=>r(s)=1 B2 Attempt to sub expression for y x=0.96x+1.48-c oe sub x=4.5 and solve c=1.3
	close to st line, always increasing B:Diag or expl based on r=1=>pts on st line =>r(s)=1 $\overline{y} = 2.4 \times 4.5 + 3.7$ = 14.5 $4.5 = 0.4 \times "14.5"- c$	B1 M1 A1 M1		r(s)≠ 1=>pts not on st line =>r≠ 1 r=1=>pts on st line&r(s)≠ 1=>pts not on st line B1B1 r=1=>r(s)=1 B2 Attempt to sub expression for y x=0.96x+1.48-c oe sub x=4.5 and solve
	close to st line, always increasing B:Diag or expl based on r=1=>pts on st line =>r(s)=1 $\overline{y} = 2.4 \times 4.5 + 3.7$ = 14.5 $4.5 = 0.4 \times "14.5" - c$ c = 1.3 a'=x-b'y:-14.5 M1A1; then $a'=4.5-0.4x14.5=-1.3$ M1A1	B1 M1 A1 M1 A1	4	r(s)≠ 1=>pts not on st line =>r≠ 1 r=1=>pts on st line&r(s)≠ 1=>pts not on st line B1B1 r=1=>r(s)=1 B2 Attempt to sub expression for y x=0.96x+1.48-c oe sub x=4.5 and solve c=1.3 14.5 M1A1.(y-3.7)/2.4=0.4y-c and sub14.5 M1 c=1.3 A1
(b) <u>Total</u> 7 (i)	close to st line, always increasing B:Diag or expl based on r=1=>pts on st line =>r(s)=1 $\overline{y} = 2.4 \times 4.5 + 3.7$ = 14.5 $4.5 = 0.4 \times "14.5" - c$ c = 1.3 a'=x-b'y:-14.5 M1A1; then $a'=4.5-0.4 \times 14.5=-1.3$ M1A1	B1 M1 A1 M1 A1 [7] B2	4	r(s)≠ 1=>pts not on st line =>r≠ 1 r=1=>pts on st line&r(s)≠ 1=>pts not on st line B1B1 r=1=>r(s)=1 B2 Attempt to sub expression for y x=0.96x+1.48-c oe sub x=4.5 and solve c=1.3 14.5 M1A1.(y-3.7)/2.4=0.4y-c and
(b) Total	close to st line, always increasing B:Diag or expl based on r=1=>pts on st line =>r(s)=1 $\overline{y} = 2.4 \times 4.5 + 3.7$ = 14.5 $4.5 = 0.4 \times "14.5" - c$ c = 1.3 a'=x-b'y:-14.5 M1A1; then $a'=4.5-0.4x14.5=-1.3$ M1A1	B1 M1 A1 M1 A1	4	r(s)≠ 1=>pts not on st line =>r≠ 1 r=1=>pts on st line&r(s)≠ 1=>pts not on st line B1B1 r=1=>r(s)=1 B2 Attempt to sub expression for y x=0.96x+1.48-c oe sub x=4.5 and solve c=1.3 14.5 M1A1.(y-3.7)/2.4=0.4y-c and sub14.5 M1 c=1.3 A1
(b) <u>Total</u> 7 (i)	close to st line, always increasing B:Diag or expl based on r=1=>pts on st line =>r(s)=1 $\overline{y} = 2.4 \times 4.5 + 3.7$ = 14.5 $4.5 = 0.4 \times "14.5" - c$ c = 1.3 a'=x-b'y:-14.5 M1A1; then $a'=4.5-0.4 \times 14.5=-1.3$ M1A1	B1 M1 A1 M1 A1 [7] B2	4	r(s)≠ 1=>pts not on st line =>r≠ 1 r=1=>pts on st line&r(s)≠ 1=>pts not on st line B1B1 r=1=>r(s)=1 B2 Attempt to sub expression for y x=0.96x+1.48-c oe sub x=4.5 and solve c=1.3 14.5 M1A1.(y-3.7)/2.4=0.4y-c and sub14.5 M1 c=1.3 A1
(b) <u>Total</u> 7 (i)	close to st line, always increasing B:Diag or expl based on r=1=>pts on st line =>r(s)=1 $\overline{y} = 2.4 \times 4.5 + 3.7$ = 14.5 $4.5 = 0.4 \times "14.5" - c$ c = 1.3 a'=x-b'y:-14.5 M1A1; then a'=4.5-0.4x14.5=-1.3 M1A1 $\frac{25}{37}$ $\frac{15}{23}$ seen or implied $\times \frac{39}{59}$ seen or implied	B1 M1 A1 M1 A1 E2 M1 M2	4	r(s)≠ 1=>pts not on st line =>r≠ 1 r=1=>pts on st line&r(s)≠ 1=>pts not on st line B1B1 r=1=>r(s)=1 B2 Attempt to sub expression for y x=0.96x+1.48-c oe sub x=4.5 and solve c=1.3 14.5 M1A1.(y-3.7)/2.4=0.4y-c and sub14.5 M1 c=1.3 A1 B1 num, B1 denom 25/37xp B1
(b) <u>Total</u> 7 (i)	close to st line, always increasing B:Diag or expl based on r=1=>pts on st line =>r(s)=1 $\overline{y} = 2.4 \times 4.5 + 3.7$ = 14.5 $4.5 = 0.4 \times "14.5" - c$ c = 1.3 a'=x-b'y:-14.5 M1A1; then $a'=4.5-0.4 \times 14.5=-1.3$ M1A1 $\frac{25}{37}$ $\frac{15}{23}$ seen or implied	B1 M1 A1 M1 A1 [7] B2 M1	4	r(s)≠ 1=>pts not on st line =>r≠ 1 r=1=>pts on st line&r(s)≠ 1=>pts not on st line B1B1 r=1=>r(s)=1 B2 Attempt to sub expression for y x=0.96x+1.48-c oe sub x=4.5 and solve c=1.3 14.5 M1A1.(y-3.7)/2.4=0.4y-c and sub14.5 M1 c=1.3 A1 B1 num, B1 denom 25/37xp B1 M1 num, M1 denom

Mark Scheme

8 (i)	^{5!} / ₂	M1	Allow 5P3
	= 60	A1 2	
(ii)	4!	M1	Allow 2×4!
	= 24	A1 2	
(iii)	$^{2}/_{5} \times ^{3}/_{4} \text{ or } 3/5 \times 2/4$	M1	allow M1 for $^{2}/_{5} \times ^{3}/_{5} \times 2$ or $^{12}/_{25}$
	$\times 2$	M1	or $(6 \times 3!) \div (\mathbf{i})$ M2 or
	$= {}^{3}/_{5}$ oe	A1 3	$3! \div (i), 6 \div (i), (6+6) \div (i), 6k \div (i) \text{ or } 6 \times 6 \text{ or}$
			36 or 1-correct answer M1
			(k,integer \leq 5)
Total		[7]	
9 (i)	p^2	B1 1	
(ii)	$(q^2p)^2$ oe =AG	B1 1	
(iii)	r=q ²	B1	May be implied
	a/(1-r) used	M1	With $a=p^2$ and $r=q^2$ or q^4
	p^2		
	$(S_{\infty} =) \frac{p^2}{1-a^2}$	A1	
	1-q		
		M1	Attempt to simplify using p+q=1
			correctly. Dep on $r = q^2$ or q^4
	p^2		$(1-q)^2$
	$= \frac{p^2}{1 - (1 - p)^2}$		$\frac{(1-q)^2}{(1-q)(1+q)}$ or p ² /p(1+q)
	p/(2-p) AG		
	P'(2-P) AO	A1 5	Correctly obtain given answer showing
			at least one intermediate step.
P2Total		[7]	

Total 72 marks