OCR Maths S1

Mark Scheme Pack

2005 - 2014

PhysicsAndMathsTutor.com

rounding			
1 (i) Σd^2	M1		Subtr & squ 5 pairs & add
= 14	A1		
$6 \times their 14$			
$1 - \frac{6 \times their 14}{5 \times (25 - 1)}$	M1		dep 1 st M1
	A1	4	-
= 0.3			$S_{xy} = 48 - \frac{15x15}{5} \} \{ = 3 \}$ $S_{xx} = 55 - \frac{15^2}{5} \} \{ = 10 \}$ $S_{yy} = 55 - \frac{15^2}{5} \} M1 \{ = 10 \}$ $S_{yy} = 55 - \frac{15^2}{5} \} \{ = 10 \}$
			$5 \} \{ \}$
			$S = 55 - 15^2$ } $\{= 10\}$
			$5 \qquad M1 \qquad \Delta 1$
			$S = 55 + 15^2$) (-10)
			$S_{yy} = 55 - \frac{15}{5}$ } { - 10 }
			5 } { }
			their C Milder 0.2 Al
			their $\underline{S_{xy}}_{\sqrt{(S_{xx}S_{yy})}}$ M1dep = 0.3 A1
(ii) Reverse rankings attempted	M1		3 correct
2 5 3 4 1	A1	2	T & I to make $\Sigma d^2 = 40$: 2 mks or 0 mks
	6		
2 (i) (a) Geo(0.14) stated in (a) or (b)	B1		or 0.86^{n} x 0.14 or 0.14^{n} x 0.86 in (a) or \ge M1 in (b)
			or Geo(0.86) stated in (a) or (b)
$(0.86)^4 \ge 0.14$	M1		
= 0.0766 (3 sfs)	A1	3	No wking: 0.077: B1M1A0
- 0.0700 (5 515)		5	No wring. 0.077. Diminio
(b) $1 - 0.86^7$	M2		$1 - 0.86^8$: M1
or $0.14 + 0.86 \times 0.14 \dots + 0.86^{6} \times 0.14$	1012		$+8^{\text{th}}$ term (r = 7 or 0) or 1 missing term: M1
	A 1	3	+8 term $(7 - 7 \text{ or } 0)$ or 1 missing term. Wit
= 0.652 (3 sfs)	A1	3	
(ii) 1/0.14	M1	-	
$=\frac{50}{7}$ or 7.14 (3 sfs)	A1	2	
	8		
3 (i) (a) $B(16, 0.35)$ stated	B1		Or implied by use of tables or
			$0.35^{a} \times 0.65^{b}$ (<i>a</i> + <i>b</i> = 16) in (a) or (b)
1 - 0.8406	M1		Allow 1 – 0.9329 or 0.0671
			Or complete method using formula,
			P(r = 8-16 or 9-16) or 1-P(r = 0-7 or 0-8)
= 0.159 (3 sfs)	A1	3	
(b) 0.9771 – 0.1339	M1		Allow 0.9771 – 0.2892
			Or complete method using formula $(r = 4-9)$
= 0.843 (3 sfs)	A1	2	······································
(ii) ${}^{16}C_6(0.38)^6(0.62)^{10}$	M2		Absent or incorr coeff : M1
$(1) C_0(0.50) (0.02)$	1012		or ${}^{16}C_6(0.38){}^{10}(0.62){}^6$: M1
= 0.202 (3 sfs)	A1	3	$o_1 = c_0(0.50) (0.02)$. With
- 0.202 (3 515)	A1 8	3	
A (i) Connect substin > true C. Connector			A man a anna at ananai an
4 (i) Correct subst in \geq two <i>S</i> formulae	M1		Any correct version
$14464.1 - \frac{265 \times 274.6}{5}$			or
5			$14464.1 - 5 \times 53 \times 54.92$
$\sqrt{\left(14176.54 - \frac{265^2}{5}\right)\left(15162.22 - \frac{274.6^2}{5}\right)}$	M1		$\overline{\sqrt{(14176.54 - 5 \times 53^2)(15162.22 - 5 \times 54.92^2)}}$
$1 14176.54 - \frac{205}{5} 15162.22 - \frac{274.0}{5} $			
			or fully correct method with $(x - \overline{x})^2$ etc
	A1		
= -0.868 (3 sfs)		3	
(ii) No difference oe	B1	1	Or slightly diff or more acc because of rounding
		-	errors when mult by 2.54 oe
			errors when mult by 2.5+00
			Not just "more accurate"
(iii)Choose y on x stated	B1ind		or implied, eg by S_{xy}/S_{xx} or $y = ax + b$
(in/enouse y on x stated	Dimu	l	or implied, eg by $S_{xy} S_{xx}$ or $y = ux + b$

Note: "(3 sfs)" means "answer which rounds to ... to 3 sfs". If correct ans seen to \geq 3sfs, ISW for later rounding

$\frac{\frac{14464.1 - \frac{265 \times 274.6}{5}}{14176.54 - \frac{265^2}{5}} \text{or} - 0.682$ $y - \frac{274.6}{5} = (\text{their} - 0.682)(x - \frac{265}{5})$ $y = 91(.1) - 0.68(2) x$ $49.9 \text{ (3sfs) or 50}$ $5 \text{(i) Read at 300 or 300.25 and 900 or 900.75}$ $44.5 \text{ to } 45.5 \text{ and } 69 \text{ to } 69.9$ $IQR 23.5 \text{ to } 25.4$ $(\text{ii) } 0.6 \text{ or } 60\%$ $CF 720$ $63 \text{ to } 64$ $(\text{iii) } 1200 - 860$	M1 M1ind A1 A1 M1 A1 A1 M1 M1 A1 M1 M1 M1	5	or their $\frac{-89.7}{131.54}$ seen or $\frac{14464.1-5\times53\times54.92}{14176.54-5\times53^2}$ or correct subst into a correct formula \underline{S}_{xy} S_{xx} or $a = \frac{274.6}{5}$ - (their -0.682) x $\frac{265}{5}$ Simplif to 3 terms. Coeffs to ≥ 2 sfs cao Use of x on y: equiv M mks as above or 44-46 and 68-70 incl. dep A1 Must look back, see method. No wking, ans in range: M1A1A1 Seen or implied Seen or implied Seen or implied Seen or implied Seen or implied Seen or implied Allow 1200 - (850 to 890)
= 340 (iv) 340/1200 0.283 ⁵ = 0.00183	A1 M1 M1dep A1	2 3	310 to 350 their (iii)/1200 [their (iii)/1200] ⁵ exactly
(v) Incorrect reason or ambiguity: B0B0. Otherwise: Too low, or should be 26 or 27 or 2 or 3 higher	B2	2	eg IQR = $55-35 = 20$ or IQR = value >27 or new info' implies straight line: B1 or originally, majority in range $35 - 55$ are at top of this range: B1
6 (i) $a = \frac{4}{5}, b = \frac{1}{5}$ $c = \frac{1}{4}, d = \frac{3}{4}$ $e = \frac{3}{4}, f = \frac{1}{4}$	B1 B1B1 B1	4	Or: B1 $\{$ ie: a, b : B1B1 $\{$ another pair: B1B1B1B1 $\{$ third pair: B1
(ii) ${}^{1}/_{2}x {}^{4}/_{5}x {}^{1}/_{2} + {}^{1}/_{2}x {}^{1}/_{5}x {}^{1}/_{4} + {}^{1}/_{2}x {}^{3}/_{5}x {}^{3}/_{4}$ = $\frac{9}{20}$ (AG) with no errors seen	M2 A1	3	M1: one correct product (M2 needs +) ft their values for M mks only
(iii) $1/10 + 9/20 + k + 1/5 = 1$ oe or $1/2x^{1/5}x^{3/4} + 1/2x^{3/5}x^{1/4} + 1/2x^{2/5}x^{1/2}$ k = 1/4 oe (iv) $\Sigma xp(x)$ $= 1\frac{3}{4}$ oe $\Sigma x^{2}p(x) [= 3\frac{17}{20}]$ $\Sigma x^{2}p(x) - (their \mu)^{2}$ 63/80 or 0.788 (3 sfs)	M1 A1 A1 M1 M1 M1 A1	2 5	ft their values for M mk only Allow omit 1st term only. Not ISW, eg ÷ 4 cao Allow omit 1st term only. Not ISW, eg ÷ 4 Subtract (their μ) ² , if result +ve Follow their <i>k</i> for M mks only $\Sigma(x - \mu)^2 p(x)$: Single consistent pair: M1 Rest correct : M1
	14		

4732

7 (i) ${}^{18}C_7$ or ${}^{18!}/_{(11! \times 7!)}$	M1		
= 31824	A1	2	
(ii) ${}^{5}C_{2} \times {}^{6}C_{2} \times {}^{7}C_{3}$ or 5250 ÷ 31824	M2 M1		M1: 1 correct ${}^{n}C_{r}$ or mult any three ${}^{n}C_{r}$ s Divide by their (i). Indep
= 875/5304 or 5250/31824 oe or 0.165 (3 sfs)	A1	4	If cancelled, must be clear have ÷ 31824
			$\frac{5 \times 4 \times 6 \times 5 \times 7 \times 6 \times 5 \times 7!}{18 \times 17 \times 16 \times 15 \times 14 \times 13 \times 12 \times 2!^2 \times 3!}$
			Correct 7 fractions mult: M1
			x7!: M1} \div (2! ² x3!): M1}both dep any 7 fracts mult
(iii) 5 from W & 2 from (G + H) ${}^{7}C_{5} \times {}^{11}C_{2}$ or 1155	M1 M1		Seen or implied, eg by combs or list
÷ 31824 = 385/10608 or 1155/31824 oe	M1	4	Divide by their (i). Indep
or 0.0363 (3 sfs)	A1	·	······································
			<u>7 x 6 x 5 x 4 x 3 x 11 x 10 x 7!</u> 18x17x16 x 15 x14 x 13 x 12 x 5! x 2!
			Correct 7 fractions mult: M1 x 7! : M1}
(iv) (2, 2, 3) or (2, 3, 2) or (3, 2, 2)	M1		÷ (5! x 2!): M1} both dep any 7 fracts mult Any one. Seen or implied eg by combs
${}^{5}C_{2} \times {}^{6}C_{2} \times {}^{7}C_{3} + {}^{5}C_{2} \times {}^{6}C_{3} \times {}^{7}C_{2}$			M1: one correct product.
$+{}^{5}C_{3}^{6}C_{2}^{7}C_{2}$	M2		NOT ${}^5C_2 \times {}^6C_2 \times {}^7C_2$
(÷ 31824)			(No mk for ÷ 31824)
= 175/442 or 12600/31824 oe or 0.396 (3 sfs)	A1	4	
			Equiv method; ((ii) + etc) can imply M mks
			$\frac{5 \times 4 \times 6 \times 5 \times 7 \times 6 \times 7!}{18 \times 17 \times 16 \times 15 \times 14 \times 13 \times 2!^2 \times 3!}$
			Correct 6 fractions mult: M1 x 7! : M1}
			\div (2! ² x 3!) : M1}both dep any 6 fracts mult
			Complement method:
			Triple with total 7, incl at least one 0 or 1 or (0, 7) or (1, 6) seen or implied: M1
			One correct prod seen, eg ${}^{5}C_{0}x^{6}C_{2}x^{7}C_{5}$ M1
			Full correct method, incl "1 – " M1
	14		

1(i)	${}^{2/_{3}+\text{prod of 2 P's or 1- prod of 2 P's}}_{{}^{2/_{3}+1/_{3}}x^{3/_{4}}} \text{ or } 1 - {}^{1/_{3}x^{1/_{4}}}_{{}^{1/_{4}}}$ = {}^{11/_{12}} \text{ or } 0.917 (3 sfs)	M1 M1 A1	3	or $\frac{1}{3} \times \frac{3}{4}$ or $\frac{1}{3} \times \frac{1}{4}$
(ii)	$\int_{2/3}^{1/3} x p$ $\int_{3/3}^{2/3} + \frac{1}{3} x p = \frac{5}{6}$ oe $p = \frac{1}{2}$	M1 M1 A1	3	or $\frac{1}{3}(1-p)$ or $\frac{1}{3}(1-p) = 1 - \frac{5}{6}$ SW: $\frac{1}{2} \times \frac{1}{3} = \frac{1}{6}$ M2A0, unless clear this is a check
Total		6		
2(i)	124.5, 4.8	B1B1	2	for 4.8 allow "same"
(ii)	mean smaller or generally smaller or means similar or hts similar oe More widely spread or varied oe	B1f B1f	2	Assume 2 nd referred to unless clear 1 st or less consistent or gter dispersion or further from mean, gter variance Not "range" greater Allow opposite if ft (i)
(iii)	("124.5" + 2 x 123)/3 = 123.5	M1 A1	2	or (50 x "124.5" + 100 x 123)/150 cao
Total		6		
3(i)	${}^{3}_{5} x {}^{2}_{4} x {}^{1}_{3} \text{ or } {}^{2}_{5} x {}^{3}_{4} x {}^{1}_{3}$ x 2 or + ${}^{3}_{5} x {}^{2}_{4} x {}^{1}_{3} + {}^{2}_{5} x {}^{3}_{4} x {}^{1}_{3}$ = ${}^{1}_{5} AG$	M1 M1 M1 A1	4	or ${}^{1}/{}_{10}$ from tree add 2 equal products of 3 probs all correct Must see correct working NB incorrect methods eg ${}^{3}/{}_{5}x^{2}/{}_{4}x^{2}/{}_{3}$
(ii)	Σxp = 4 $\Sigma x^2 p (= 17)$ - μ^2 = 1	M1 A1 M1 M1 A1	5	≥ 3 terms added. Allow arith errors. ≥ 3 terms added. Allow arith errors Indep if +ve result $\Sigma(\mathbf{x}-\mu)^2 p$ M2; 3 terms: M1 dep +ve result $\Sigma \mathbf{x} p \& \Sigma x^2 p$, if ÷ eg 4: M0A0 (- $\mu^2 \text{ poss M1}$)
Total		9		

4(i)(a)	Total area = 60 sqs Recog that total area reps 300 8 x 300/60 = 40	M1 M1 A1	4	Attempt total area, eg 15000 or 15 cm ² eg 1 squ = 5 or 15000 \div (300 or 50) or 2000/50 cao
(b)	Splitting classes 1.2x4x5 or 0.8x6x5 oe	M1 M1		or 0.3x16x5 <u>or</u> 0.4x12x5 or 24
				NB other correct eg $2x4x5 + \frac{4}{5}x2x5$
	48	A1	3	Alt method: estimate: 46-50 SC B1
(ii)(a) (b)	Box & whisker Cum freq diag	B1	1 1	
Total 5(i)(a)	$(^{3}/_{5})^{4} \times ^{2}/_{5}$	9 M1		Allow index 3 or 5
	$= 0.0518 (3sfs) \text{ or }^{162}/_{3125} \text{ oe}$		2	
(b)	$\binom{3}{5}^{4}$ 1 - $\binom{3}{5}^{4}$ = 0.870 (3 sfs) or ⁵⁴⁴ / ₆₂₅ oe	M1 M1 A1	3	$^{2/_{5}}$ + $^{3/_{5}}x^{2/_{5}}$ + $(^{3/_{5}})^{2}x^{2/_{5}}$ + $(^{3/_{5}})^{3}x^{2/_{5}}$: M2 (1extra or omit or wrong: M1) Allow 1 - $(^{3/_{5}})^{3}$ or 1 - $(^{3/_{5}})^{5}$
(ii)(a)	B(5, ${}^{2}/_{5}$) stated 5 x ${}^{2}/_{5}$ x $({}^{3}/_{5})^{4}$ or 0.3370 – 0.0778 = 0.259 (3 sfs) or ${}^{162}/_{625}$ oe	M1 M1 A1	3	or $({}^{5}C_{a} \text{ or } {}^{5}C_{b})x({}^{2}/{}_{5})^{a}x({}^{3}/{}_{5})^{b}$ & $a + b = 5$
(b)	"0.259" x $^{2}/_{5}$ = 0.104 (3 sfs) or $^{324}/_{3125}$ oe	M1 A1f	2	eg ft: (a) $0.0518 \rightarrow 0.0207$ (a) $0.922 \rightarrow 0.369$
Total		10		
6(i)	${}^{4}C_{3} \times {}^{7}C_{4}$ = 140	M1M1 A1	3	M1 either comb. 140/330: M1M1
(ii)	${}^{3}C_{2} \times {}^{6}C_{4}$ or $\frac{{}^{3}C_{2}}{{}^{4}C_{3}}$ or $\frac{{}^{6}C_{4}}{{}^{7}C_{4}}$	M1	- · -	or ${}^{3}C_{2}(x)/{}^{"}140"$ or $(x){}^{6}C_{4}/{}^{"}140"$ or $({}^{3}C_{2}+{}^{6}C_{4})/{}^{"}140"$ or $(3+15)/{}^{"}140"$ or ${}^{3}/_{4}$ or $1-{}^{4}/_{7}$ seen
	$\frac{{}^{3}C_{2} \times {}^{6}C_{4}}{{}^{"140"}} \text{ or } {}^{3}_{4} \times (1 - {}^{4}_{7})$ = ${}^{9}_{28}$ oe or 0.321 (3 sfs)	M1 <u>A1</u>	<u>3</u>	all correct
(iii)	${}^{3}C_{2}x {}^{6}C_{4}$ (or i x ii) or $({}^{3}C_{3}x){}^{7}C_{4}$ or 45 or 35 or ${}^{1}\!/_{4}x{}^{4}C_{3}x{}^{7}C_{4}$ or ${}^{3}\!/_{4}x {}^{4}C_{3}x{}^{6}C_{4}$	M1		1 correct prod or "140"– any prod
	${}^{3}C_{2}x^{6}C_{4} + ({}^{3}C_{3}x)^{7}C_{4} \text{ or } "140" - {}^{3}C_{2}x^{6}C_{3}$ = 80	M1 A1ft	3	or ${}^{1}\!/_{4}x^{4}C_{3}x^{7}C_{4} + {}^{3}\!/_{4}x^{4}C_{3}x^{6}C_{4}$ ft only "140"
Total		9		

7(i)	Binomial $n = 10, p = 0.9$	B1 B1	Both requ'd. Ignore $q = 0.1$
	Each seed equally likely germ or P(germ) same for all seeds oe Seeds independent oe	B1 B1	or seeds grown in same conditions Context nec'y for each B1
(ii)	0.0702 (3 sfs)	B2 2	0.07 or 0.2639: B1 Σ or 1- Σ : 1 term extra or omit or wrong: M1
(iii)	1 - "0.0702" $0.9298^{20} + {}^{20}C_1 \times 0.0702 \times 0.9298^{19}$ = 0.585 (3 sfs)	M1 M1M1 A1 4	Or 0.9298 or 0.93(0) seen M1 each term cao eg ft (ii) 0.2639 → (iii) 0.0178 from correct wking: M3A0
			$0.0702^{20}+{}^{20}C_1x0.9298x0.0702^{19}$ (=2.25x10 ⁻²¹): SC M1M1 NB ft (ii) for all M mks. But if 0.1, 0.9 used, must be clear using (ii) rounded
Total		10	

8(i)(a) Ranks 1 2 3 4 5 6 7 8 9 9 8 7 6 5 4 3 2 1 M1 Attempt ranks, s 3 2 1 5 4 7 8 6 9 7 8 9 5 6 3 2 4 1 A1 Correct ranks	ame dir'n
Σd^2 (= 16) M1dep Dep ranks attem	pted
$r_{\rm s} = 1 - \frac{6 \text{ x their 16}}{9 \text{ x (9^2-1)}}$ M1dep Correct formula	with $n = 9$, dep M1M1
$= 0.867 (3 \text{ sfs}) \text{ or } {}^{13}\!/_{15} \text{ oe} \qquad \qquad \text{A1} \qquad 5$	
Not "Gd agree't	country & cap pops" country & cap pops" ip country & cap pops"
(ii) $\frac{1533.76 - (337.5 \times 28.3)/9}{\sqrt{((18959.11 - 337.5^2/9)(161.65 - 28.3^2/9))}}$ M1 (= 472.51/\/(630) Or correct subst	2.86x72.66)) t in 2 "S" formulae, any version
	40A0; 0.70: M1A0
$\begin{array}{c c} - (iii) - & \text{Increase} \\ (iv)(a) & \text{r on } v \end{array}$	
or x dep on y or	n or given or <i>x</i> unknown e
0,	use r (or r_s) high: B1 cause r (or r_s) not hi: B1 B0
Total 13	

Total 72 marks

	2 sfs only once in paper.	1		<u>г</u>
1(i)	Negative, because (grad or coeff of x in 1^{st}			Neg because x incr & y decr
	equn or x-value or reg coeff or B or -0.6) is			
	negative	B1	1	
(ii)	$x = -1.6 \ge 7.0 + 21$	M1		Sub $y=7.0$ in 2^{nd} eqn. Allow 1 sign error
(11)	x = 9.8	1011		If sub in both must choose 2nd
	$\lambda = 9.0$	A 1	•	II SUD III DOUII IIIUSI CHOOSE 2110
		A1	2	
(iii)	y = -0.6(-1.6y + 21) + 13 or similar	M1		Obtain correct eqn in 1 variable.
				Allow 1 num'l error
	$\overline{x} = 5, \ \overline{y} = 10$	A1A1	3	Allow without bars
Total		6		
IUtai	In	, v	oft	us prohobilitios"
Q (1)	In qus 2 & 3 "prod" means			vo prodadinues
2(i)	$^{4}/_{7}$ or 0.571 (3 sfs)	B1	1	
(ii)	$\frac{5}{8} \times \frac{4}{7} + \frac{3}{8} \times \frac{5}{8}$	M1M1		M1: one correct prod or add any two prods
Ň				M1: all correct
	$=\frac{265}{448}$ or 0.592 (3 sfs)	A1	3	
			-	
(iii)	$^{3}/_{8} \times ^{5}/_{8} + ^{5}/_{8} \times ^{3}/_{7}$	M1M1		M1: one correct prod or add any two prods
(111)	/8 A /8 T /8 A /7			M1: all correct
	$\frac{225}{225}$ or 0.502 (2 of r)	A 1	2	WIT: all contect
	= ²²⁵ / ₄₄₈ or 0.502 (3 sfs)	A1	3	
Total		7		
3(i)	7!	M1M1		M1: 7!/(a factorial); or $ \div (3! \ge 2(!))$
	3! x 2(!)			M1: all correct
	= 420	A1	3	
(ii)	<u></u>	M1		M1: 5! seen (not part of a C) or 5 x 4!
(11)	$\frac{3!}{2(!)}$	1411		or 120 seen or $\dots \div 2(!)$ alone
		A 1	2	of 120 seen of $\dots \div 2(:)$ atome
	= 60	A1	2	
	4, 3, 4, 4, 7, 4, 4, 7, 7, 4, 4, 7, 7, 7, 1, 4, 7, 7, 7, 1, 4, 7, 7, 7, 1, 4, 7, 7, 7, 1, 4, 7, 7, 7, 1, 4, 7, 7, 7, 1, 4, 7, 7, 7, 1, 4, 7, 7, 7, 1, 4, 7, 1, 7, 1, 4, 7, 1, 7, 1, 4, 7, 1, 7, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			
(iii)	$1 - \frac{4}{7} \frac{x^3}{6}$ or $1 - \frac{4}{C_2} \frac{7}{C_2}$ or $1 - \frac{4}{P_2} \frac{7}{P_2}$	M1M1		M1:1– prod or 1/ $^{7}C_{2}$ or 1– $^{4}C_{2}$ / (or Ps)
	or $\frac{3}{7} \times \frac{2}{6} + \frac{3}{7} \times \frac{4}{6} + \frac{4}{7} \times \frac{3}{6}$ oe			or add 3 prods or add 2 correct prods
	or ${}^{3}C_{2} / {}^{7}C_{2} + {}^{3}C_{1}x^{4}C_{1} / {}^{7}C_{2}$			or ${}^{3}C_{2} / {}^{7}C_{2}$ or ${}^{3}C_{1}x^{4}C_{1} / {}^{7}C_{2}$
				or add \geq 5 out of 7 correct prods
				M1: all correct
	$=\frac{5}{7}$ or 0.714 (3 sfs)	A1	3	
Total	.,	8	•	
I Utal		0		
1				

Note: "(3 sfs)" means "answer which rounds to ... to 3 sfs". If correct ans seen to \geq 3sfs, ISW for later rounding Penalise 2 sfs only once in paper.

4(i)	0.4207 or 0.42	21 (3 sfs)	B1		or 1 – 0.6167 or 0.3833 (3 sfs)
	or $0.8^{25}+25x0.8^{24}x0.2+^{25}C_4x0.4^{21}x0.2^4$		D1	2	or 1- (6 correct terms, 0 to 5)
	0.579(3)		B1	2	
(ii)	$^{10}C_3 \ge (1-0.27)^7 \ge 0.000$	$\times 0.27^3$	M1		
	= 0.261 (3 sfs)		A1	2	
(iii)		Allow "=" thro'out	1		or $1 - {}^{n}C_{0} \ge 0.27^{0} \ge 0.73^{n} > 0.95$ oe
	0.70%	$1 - 0.73^n > 0.95$			allow incorrect sign M1
		or $0.73^n < 0.05$	M1		must be correct
	$0.73^{10} = 0.043$	$n\log 0.73 < \log 0.05$ oe	M1		ft ($1 - 0.27$) from (ii) for M1M1
					10 with incorrect sign in wking: SCB2 10 with just $0.73^9 = 0.059$: M1M1A1
	<i>n</i> =	10	A1	3	10 with Just 0.75 = 0.039. WIWIAI
Total	<i>n</i> –	10	7	5	
5(i)	$\frac{1}{3} + \frac{1}{4} + p + q =$	1 oe	B1		
		$2p + 3q = 1^{1}/_{4}$ oe	B1		
	equalize coeffs e	eg mult eqn (i) by 2 or 3	M1		allow one error. ft their equns
		ubject of (i) or (ii)			subst or subtr not nec'y
	$p = \frac{1}{4}, q = \frac{1}{6}$		A1A1	5	
(ii)	$\Sigma x^2 p$ (not /4 or	r /3 etc) $(=2^{3}/_{4})$	M1		\geq 2 non-zero terms correct. dep +ve result
(11)	$-(1^{1}/_{4})^{2}$	(-2/4)	M1 M1		≥ 2 non-zero terms correct. dep +ve result indep if +ve result
	(* '4)				or $x-1^{1}/4^{2}p$
					$(\geq 2 \text{ (non-0) terms correct}): M2$
					ft (i) $(0 \le p, q \le 1)$ or letters p, q both M1s
	$= 1.1875$ or $1^{3}/$	₁₆ oe	A1		cao
	$sd = \sqrt{(their 1.187)}$	(75) = 1.09 (3 sfs)	B1f	4	dep 1st M1 &/(+ve no.) eg $\sqrt{2.75} = 1.66$
Total			9		

6(i)(a)	Ranks: 2 4 7 5 3 1 6 6 4 1 3 5 7 2	M1		\geq 5 ranks correct in each set
- () ()	7 1 6 3 2 5 4 1 7 2 5 6 3 4	A1		all correct
	Σd^2	M1		dep ranks attempted even if opp orders,
	(= 60)			allow arith errors
	$r_{\rm s} = 1 - \frac{6 \times 60}{7 \times 48}$	M1		Correct formula with $n = 7$, dep 2^{nd} M1
	$r_{\rm s} = 1 - \frac{1}{7 \times 48}$			-
				calc <i>r</i> for ranks:
				$S_{xx} = S_{yy} = 140 - 28^2/7.$ $S_{xy} = 110 - 28^2/7$
				(= 28) (= -2)
				corr subst in one corr S (any version):M1
				corr subst in $r = S_{xy} / \sqrt{(S_{xx}S_{yy})}$:M1
	$= -\frac{1}{14}$ or -0.071 (3 dps)	A1	5	
				-0.07 without wking: M1A1M2A0
				No mks unless $ r_s \leq 1$
(b)	Little (or no) connection (agreement,			ft their r_s
	rel'nship) between dist and commission			Must refer to context.
	Allow disagreement			Not "little corr'n between dist and
		B1ft	1	com"
				not "strong disagreement"
				Ignore other comment
(c)	Unchanged. No change in rank	B1B1	2	Ignore other comment
	1			
(ii)(a)	= -1	B1	1	indep
(b)	Close to -1 or, eg ≈ -0.9	B1		cao
				not referring to "corr'n" rather than r
				allow "neg", not neg corr'n or neg skew
Total		10		

(iv)	$\begin{array}{c c} 1 - \frac{19}{27} & (1 - 0.7037) \text{ or } 0.2963 \\ (\frac{8}{27})^2 x \frac{19}{27} & 0.2963^2 x 0.7037 \end{array}$	M1 M1		ft (b) for M1M1 n Allow figs rounde		
(iii)	3	B1f	1	or ¹ / _{"p} "		
	= ¹⁹ / ₂₇ or 0.704 (3sfs)	A1	3	or 3 correct terms or " p " + " qp " + " q or 1 - sum of 3 co	+ 1 extra $q^2 p$ "	M1 M1 M1
(b)	$\binom{2}{3}^{3}$ 1 - $\binom{2}{3}^{3}$	M1 M1		not $({}^{2}/_{3})^{3}$ x or ${}^{1}/_{3} + {}^{2}/_{3}$ x ${}^{1}/_{3} + ({}^{2}/_{3})^{4}$ $1 - ({}^{2}/_{3})^{4}$ or $1 - ({}^{4})^{6}$ or 3 terms, with 2	$(q^{"})^4$	M2 M1 M1
(ii)(a)	$\frac{\binom{2}{3}^{3} x^{1}}{= \frac{8}{81} \text{ or } 0.0988 \text{ (3 sfs)}}$	M2 A1	3	$(^{2}/_{3})^{2}x^{1}/_{3}$ or $(^{2}/_{3})^{4}x^{2}$ allow other num		<p<1):m1< td=""></p<1):m1<>
8(i)	Geometric. Each attempt (or result or try) indep	B1 B1	2	In context. Not "event extra	s,. trials, outcome	s" . Ignore
Total		1	.3			
(c)	No change	B1	1			
(iii)(a) (b)	Increase	B1 B1	1 1	Ignore "	probably" etc	
	Subtract IQR = 23 or 24 or 25 Increase	M1 A1 B1	4	dep B1or M1 integer. dep M2		
	Graph:Interp:Attempt 25(.25) th valueLQ = 3.0 to 4.3 Attempt 75(.75) th valueUQ = 27 to 29	M1		both nec'y		
(ii)	= 40.5 to 41.1 (3 sfs) Recog LQ in 1 st class $\underline{\&}$ UQ in 3 rd class	B1		40.82 allow class widths	40.96	nly
	$\sum f$ fully corr method, not \sqrt{neg}	M1 A1	6	27.2 240702.25	27.25 242050	
	$\sum_{x} x^2 f \text{or} \sum_{x} x - \overline{x})^2 f \ge 2 \text{ terms}$ $\sqrt{(\sum_{x} x^2 f / 100 - \overline{x}^2)} \text{ or } \sqrt{((\sum_{x} - \overline{x})^2 f / 100)} \text{ or}$	M1				& poss As
	x within class, not class width $Mean = 27.2 (to 3 sfs) (not 27.25)$ $art 27.2 from fully correct wking$	A1		2720.5/100	2725/100	Allow Ms
7(i)	Midpoints attempted ≥ 2 classes $\sum xf / 100$ or $\sum xf / \sum f$ attempted ≥ 2 terms	M1 M1		<u>Correct (149.5)</u>	<u>With 150</u>	$\frac{\text{Tot} =}{2000}$

Total 72 marks

	r-rounding only once in paper, except qu 8(ii).		
1i	$\begin{bmatrix} 1 - \binom{3}{10} + \frac{1}{5} + \frac{2}{5} \end{bmatrix}$	M1 A1 2	or $({}^{3}/_{10} + {}^{1}/_{5} + {}^{2}/_{5}) + p = 1$
ii	$\frac{3}{10} + 2 x^{1/5} + 3 x^{2/5}$ $\frac{3}{10} + 2 x^{1/5} + 3 x^{2/5}$	M1 A1 2	$\div 4 \text{or6} \Rightarrow \text{M0A0}$
Total		4	
2i	$x = 20; y = 11; x^2 = 96; y^2 = 31; xy$		
	=52) $S_{xx} = 16$ or 3.2 $S_{yy} = 6.8$ or 1.36 $S_{xy} = 8$ or 1.6 $r = \frac{8}{\sqrt{(16x6.8)}}$ or $\frac{1.6}{\sqrt{(3.2x1.36)}}$ = 0.767 (3 sfs)	B1 B1 B1 M1 A1 5	dep $-1 \le r \le 1$ ft their <i>S</i> 's ($S_{xx} & S_{yy}$ +ve) for M1 only
ii	Small sample oe	B1f 1	
Total	120	<u>6</u>	
3i	120	B1 1	not just 5!
iia	$3 \times 4!$ or 72 (÷ 5!)	M1	72 .
	³ / ₅ oe	A1 2	
b	Starts 1 or 21 (both) $\frac{1}{5} + \frac{1}{5} \times \frac{1}{4}$	M1 M1	12,13,14,15, $(\geq 2 \text{ of these incl } 21, \text{ or allow } 1 \text{ extra})$ can be implied by wking or 5x 3! or 4! + 3! (\div 5!)
	$= \frac{1}{4}$ oe	A1 3	complement: full equiv steps for Ms
Total		6	
4ia		B1 1	
	W&Y oe		
b	X oe	B1 1	
ii	Geo probs always decrease or Geo has no upper limit to x or $x \neq 0$	B1 1	Geo not fixed no. of values diags have fixed no of trials not Geo has +ve skew
iii		B1	indep
	W	B1dep	allow Bin probs rise then fall
	Bin probs cannot fall then rise or bimodal	2	
Total		5	
5i	$\frac{\frac{2685 - \frac{140 \times 106.8}{8}}{3500 - \frac{140^2}{8}} \text{ or } \frac{2685 - \frac{140^2}{8}}{3500 - \frac{140^2}{8}} \text{ or } \frac{2685 - \frac{140 \times 106.8}{2500 - 8 \times 175}}{3500 - \frac{140^2}{8}}$	M1	Correct sub in any correct formula for b (incl. $(x - \overline{x})$ etc)
	= ¹³⁶ / ₁₇₅ or 0.777 (3 sfs)	A1	
	$y - \frac{106.8}{8} = 0.777(x - \frac{140}{8})$ y=0.78x -0.25 or better or $y = \frac{136}{175}x - \frac{1}{4}$	M1 A1 4	or $a = \frac{106.8}{8} - 0.777 x^{140} = 0.000 \text{ ft } b$ for M1 $\geq 2 \text{ sfs sufficient for coeffs}$
ii	0.78 x 12 – 0.25	M1	M1: ft their equn
	= 9.1 (2 sfs)	Alf 2	A1: dep const term in equn
iiia	Reliable	B1	Just "reliable" for both: B1
b	Unreliable because extrapolating oe	B1 2	
Total		8	
1000	1		

Note: "3 sfs" means an answer which is equal to, or rounds to, the given answer. If such an answer is seen and then later rounded, apply ISW. Penalize over-rounding only once in paper, except qu 8(ii).

6i	$Geo(^{2}/_{3})$ stated $\binom{1}{3}^{3} x^{2}/_{3}$	M1 M1		or implied by $(^{1}/_{3})^{n} \times ^{2}/_{3}$
	$=\frac{2}{81}$ or 0.0247 (3 sfs)	A1	3	

ii	$(1/3)^3$	M1		or $\frac{2}{3} + \frac{1}{3}x^{2}/_{3} + \frac{1}{3}x^{2}/_{3} + \frac{1}{3}x^{2}/_{3}$: M2
	$1 - (1/3)^3$	M1		one term omitted or extra or wrong: M1 1 - $\binom{1}{3}^4$ or 1- $\binom{2}{3} + \frac{1}{3}x^2/3 + \binom{1}{3}x^2/3$):M1
	²⁶ / ₂₇ or 0.963 (3 sfs)	A1	3	
iii	1 / 2/3	M1 A1	 ດ	
Total	= 3/2 oe	8 AI	2	
7i	$^{2}/_{9}$ or $^{7}/_{9}$ oe seen	B1		
	$^{3}/_{9}$ or $^{6}/_{9}$ oe seen	B1		
	$^{1}/_{8}$ or $^{7}/_{8}$ oe seen	B1		
	Correct structure	B1		ie 8 correct branches only,
				ignore probs & values
	All correct	B1	5	including probs and values,
				but headings not req'd
ii	$\frac{3}{10} x^{7/9} + \frac{7}{10} x^{3/9} + \frac{7}{10} x^{6/9}$	M2		or $\frac{3}{10}x^{7}/9 + \frac{7}{10}$ or $1 - \frac{3}{10}x^{2}/9$
	14		0	M1: one correct prod or any prod $+\frac{7}{10}$
	$\frac{{}^{14}/_{15} \text{ or } 0.933 \text{ oe}}{{}^{3}/_{10} x {}^{2}/_{9} x {}^{7}/_{8} + {}^{7}/_{10} x {}^{6}/_{9}}$	Al	3	or $3/10 \text{ x}^{2}/9$
iii	$3_{10} \times 2_{9} \times 1_{8} + 1_{10} \times 3_{9}$	M2		M1: one correct prod
	$^{21}/_{40}$ or 0.525 oe	A1	3	cao
	No ft from diag except: with replacement:	(i) st	ructu	re: B1 (ii) $^{91}/_{100}$: B2 (iii) 0.553: B2
Total		11	l	
8i	Med = 2	B1		cao
	LQ = 1 or $UQ = 4$	M1		or if treat as cont data:
				read cf curve or interp at 25 & 75
	IQR = 3	A1	3	cao
ii	Assume last value = 7 (or eg 7.5 or 8 or 8.5)	B1		stated, & not contradicted in wking
		3.61		eg 7-9 or 7,8,9 Not just in wking
	xf attempted ≥ 5 terms	M1		allow "midpts" in xf or x^2f
	2.6 or 3 sf ans that rounds to 2.6	A1		
	$x^2 f$ or $(x-m)^2 f \ge 5$ terms	M1		
	$\sqrt{(x^2 f / 100 - m^2)}$ or			
	$\sqrt{(x-m)^2 f}/100$ fully correct but ft m	M1		
	1.6 or 1.7 or 3 sf ans that rounds to 1.6 or 1.7	A1		dep M3
			6	penalize > 3 sfs only once
iii	Median less affected by extremes or	B1	1	or median is an integer or mean not int.
	outliers etc (NOT anomalies)			or not affected by open-ended interval
				general comment acceptable
iv	Small change in var'n leads to lge change in IQR			
	UQ for W only just 4, hence IQR exaggerated	D1	1	for Old Moat LQ only just 1 & UQ only just 3
	orig data shows variations are similar	B1	1	oe specific comment essential
V	OM % (or y) decr (as x incr) oe Old Most	B1	2	ranks reversed in OM or not rev in W
T-4 1	Old Moat	B1	2	NIS
Total		13)	

9i	$^{11}C_5 x (^{1}/_4)^6 x (^{3}/_4)^5$	M1	-	or 462 x $(^{1}/_{4})^{6}$ x $(^{3}/_{4})^{5}$
	0.0268 (3 sfs)	A1 2	2	
ii	$q^{11} = 0.05$ or $(1-p)^{11} = 0.05$	M1		$(any letter except p)^{11} = 0.05$ oe
	$\sqrt[11]{0.05}$	M1		oe or invlog $(\frac{\log 0.05}{11})$
	q = 0.762 or 0.7616	A1		11
	p = 0.238 (3 sfs)	Alf 4	1	ft dep M2
iii	$11 \ge p \ge (1-p) = 1.76$ oe	M1	7	not $11pq = 1.76$
	$11p - 11p^2 = 1.76$ or $p - p^2 = 0.16$	A1		any correct equn after mult out
	$11p^2 - 11p + 1.76 = 0$ or $p^2 - p + 0.16 = 0$	A1		or equiv with $= 0$
	$(25p^2 - 25p + 4 = 0)$			
	(5p-1)(5p-4) = 0			or correct fact'n or subst'n for their quad
	or $p = \frac{11 - \sqrt{(11^2 - 4x11x1.76)}}{11 - \sqrt{(11^2 - 4x11x1.76)}}$	M1		equ'n eg $p = \underline{1 \pm /(1 - 4x0.16)}$
	2 x 11			2
	p = 0.2 or 0.8	A1 .	5	
Total		11		
	Total 72 marks			

Note: "3 sfs" means an answer which is equal to, or rounds to, the given answer. If such an answer is seen and then later rounded, apply ISW.

Note: "3 sfs"	' means an answer which is equal to, or rounds to, the given a	answer. If such	
1	$(0 \times 0.1) + 1 \times 0.2 + 2 \times 0.3 + 3 \times 0.4$	M1	≥ 2 non-zero terms correct eg $\div 4$: M0
1	= 2(.0)	A1	
1	$(0^2 \times 0.1) + 1 \times 0.2 + 2^2 \times 0.3 + 3^2 \times 0.4 $ (= 5)	M1	≥ 2 non-zero terms correct $\div 4$: M0
1	-2^2	M1	Indep, ft their μ . Dep +ve result
1	= 1	A1	
1	-	5	$(-2)^2 \times 0.1 + (-1)^2 \times 0.2 + 0^2 \times 0.3 + 1^2 \times 0.4$:M2
1		5	$\geq 2 \text{ non-0 correct: } M1 \qquad \div 4: M0$
Total		5	≥ 2 non-0 context. With \div 4. With
2	UK Fr Ru Po Ca	5	
2		141	Consistent attempt rank RCFUP
1	1 2 3 4 5 or 5 4 3 2 1	M1	attempt tank 35214 31452
1	4 3 1 5 2 2 3 5 1 4	A1	other judge 12345 54321
1	Σd^2	M1	
1	(= 24)		
1	$r_{\rm s} = 1 - 6 \times "24"$	M1	All 5 d^2 attempted & added. Dep ranks
1	$r_s = 1 - \frac{6 \times 24}{5 \times 5^{2}-1}$		att'd
1	$=-\frac{1}{5}$ or -0.2	A1	
1	,, 01 0.2	5	Dep 2^{nd} M1 $\frac{43 - 15^2/5}{\sqrt{((55 - 15^2/5)(55 - 15^2/5))}}$
1		5	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
1			All correct: M1
Totol		5	
Total	$^{15}C_7 \text{ or } ^{15!}/_{7!8!}$	-	
3i		M1	
1	6435	A1	
		2	15
ii	${}^{6}C_{3} \times {}^{9}C_{4} \text{ or } {}^{6!}/_{3!3!} \times {}^{9!}/_{4!5!}$	M1	Alone except allow \div ¹⁵ C ₇
1			Or ${}^{6}P_{3} \times {}^{9}P_{4}$ or ${}^{6!}/_{3!} \times {}^{9!}/_{5!}$ Allow $\div {}^{15}P_{7}$
1			NB not ${}^{6!}/_{3!} \times {}^{9!}/_{4!}$
1	2520	A1	362880
l		2	
Total	-	4	
4ia	¹ / ₃ oe	B1 1	
1	5		B↔W MR: max (a)B0(b)M1M1(c)B1M1
b	P(BB) + P(WB) attempted	M1	Or $\frac{4}{10} \times \frac{3}{9}$ OR $\frac{6}{10} \times \frac{4}{9}$ correct
-	$= \frac{4}{10} \times \frac{3}{9} + \frac{6}{10} \times \frac{4}{9} \text{ or } \frac{2}{15} + \frac{4}{15}$	M1	
1	$= \frac{1}{10} \times \frac{1}{10} \times \frac{1}{10} \times \frac{1}{10} \times \frac{1}{10} = \frac{1}{10} \times \frac{1}{10} \times \frac{1}{10} \times \frac{1}{10} = \frac{1}{10} \times \frac{1}{10$	A1	NB $\frac{4}{10} \times \frac{4}{10} + \frac{6}{10} \times \frac{4}{10} = \frac{2}{5}$: M1M0A0
1	, , 00	3	$10 \times 10 \times 10 + 10 \times 10 - 15$. WITHINGAU
с	Denoms 9 & 8 seen or implied	B1	$Or^{2}/_{15}$ as numerator
C		ы M1	2
1	$^{3}/_{9} \times ^{2}/_{8} + ^{6}/_{9} \times ^{3}/_{8}$	1111	Or $\frac{\frac{2}{15}}{\frac{4}{10}}$ Or $\frac{\frac{4}{10} \mathbf{x}^{6} / \mathbf{y} \mathbf{x}^{3} / \mathbf{g} + \frac{4}{10} \mathbf{x}^{3} / \mathbf{y} \mathbf{x}^{2} / \mathbf{g}}{\mathbf{above} + \frac{6}{10} \mathbf{x}^{5} / \mathbf{y} \mathbf{x}^{4} / \mathbf{g} + \frac{6}{10} / \mathbf{y} \mathbf{x}^{4} / \mathbf{x}^{3} / \mathbf{g}}$
1			$\frac{\frac{1}{4}}{10} \text{Or} \frac{1}{200} \frac{1}{200}$
l	$= \frac{1}{3}$ oe	A1	May not see wking
	= ¹ / ₃ oe	A1 3	
ii	$= \frac{1}{3}$ oe P(Blue) not constant or discs not indep,		May not see wking Prob changes as discs removed
ii			
ii	P(Blue) not constant or discs not indep,	3	Prob changes as discs removed
ii	P(Blue) not constant or discs not indep,	3	Prob changes as discs removed Limit to no. of discs. Fixed no. of discs Discs will run out
ii	P(Blue) not constant or discs not indep,	3	Prob changes as discs removed Limit to no. of discs. Fixed no. of discs Discs will run out Context essential: "disc" or "blue"
ii	P(Blue) not constant or discs not indep,	3	Prob changes as discs removed Limit to no. of discs. Fixed no. of discs Discs will run out Context essential: "disc" or "blue" NOT fixed no. of trials
ii Total	P(Blue) not constant or discs not indep,	3	Prob changes as discs removed Limit to no. of discs. Fixed no. of discs Discs will run out Context essential: "disc" or "blue"

Total		10	
			Ignore extra
	% younger mothers less oe}	B1 3	NOT mean gter
	% older mothers greater oe}	B1	Or 1991 steeper so more younger: B2
	Median (or ave) greater }		Any two
b	Older	B1	Or 1991 younger
		5	
	23 to 26.3%	A1	Rnded to 1 dp or integer 73.7 to 77% : SC1
	140 to 155	M1	$\times 1000$, but allow without
	= 7.5 to 9.5	A1	NOT from incorrect wking
	Quartiles 33 to 34, 24.5 to 26	M1	Or one correct quartile and subtr
iia	Median = 29 to 29.9	B1	
		2	
	100 000 to 110 000	B1 ind	Allow digits100 to 110
5i	1991	B1 ind	Or fewer in 2001

6ia	Correct subst in \geq two <i>S</i> formulae	M1		Any version
	$\frac{767 - \frac{60 \times 72}{8} \text{or} \frac{227}{\sqrt{698}\sqrt{162}}}{\sqrt{(1148 - \frac{60^2}{8})(810 - \frac{72^2}{8})}}$	M1		All correct. Or <u>767-8x7.5x9</u> $\sqrt{((1148-8x7.5^2)(810-8x9^2))}$ or correct substn in any correct formula for <i>r</i>
	= 0.675 (3 sfs)	A1	3	
b	1 y always increases with x or ranks same oe	B1 B1	2	+ve grad thro'out. Increase in steps. Same order. Both ascending order Perfect RANK corr'n Ignore extra NOT Increasing proportionately
iia	Closer to 1, or increases because nearer to st line	B1 B1	2	Corr'n stronger. Fewer outliers. "They" are outliers Ignore extra
b	None, or remains at 1 Because y still increasing with x oe	B1 B1	2	Σd^2 still 0. Still same order. Ignore extra NOT differences still the same. NOT ft (i)(b)
iii	13.8 to 14.0	B1	1	
iv	(iii) or graph or diag or my estTakes account of curve	B1 B1	2	Must be clear which est. Can be implied. "This est" probably \Rightarrow using equn of line Straight line is not good fit. Not linear. Corr'n not strong.
Total		12	2	
7i	P(contains voucher) constant oe Packets indep oe	B1 B1	2	Context essential NOT vouchers indep
ii	0.9857 or 0.986 (3 sfs)	B2	2	B1 for 0.9456 or 0.946 or 0.997(2) or for 7 terms correct, allow one omit or extra NOT $1 - 0.9857 = 0.0143$ (see (iii))
iii	(1 - 0.9857) = 0.014(3) (2 sfs)	B1ft 1		Allow 1- their (ii) correctly calc'd
iv	B(11, 0.25) or 6 in 11 wks stated or impl ${}^{11}C_6 \times 075^5 \times 0.25^6$ (= 0.0267663) P(6 from 11) × 0.25 = 0.00669 or 6.69 x 10 ⁻³ (3 sfs)	B1 M1 M1 A1	4	or $0.75^a \times 0.25^b$ (a + b = 11) or ${}^{11}C_6$ dep B1
Total		9		

		T	1
8i	$\sqrt{0.04} (= 0.2)$	M1	
	$(1 - \text{their} / 0.04)^2$	M1	
	= 0.64	A1 3	
ii	1-p seen M1 for either	B1	
	2p(1-p) = 0.42 or $p(1-p) = 0.21$ oe	M1	2pq=0.42 or $pq=0.21$ Allow $pq=0.42$
	$2p^2 - 2p + 0.42(=0)$ or $p^2 - p + 0.21(=0)$	M1	or opp signs, correct terms any order $(= 0)$
	$\frac{2p}{2\pm\sqrt{((-2)^2 - 4\times0.42)}} \text{ or } \frac{p}{1\pm\sqrt{((-1)^2 - 4\times0.21)}}$		or opp signs, concer terms any order (= 0)
	$\frac{2\pm y((-2) - 4 \times 0.42)}{2 \times 2} \text{ or } \frac{1\pm y((-1) - 4 \times 0.21)}{2 \times 1}$		oe Correct
		1/1	
	or $(p-0.7)(p-0.3)=0$ or $(10p-7)(10p-3)=0$	M1	Dep B1M1M1 Any corr subst'n or fact'n
	p = 0.7 or 0.3	A1 5	e i e e end eu e e e e e e e e e e
			Omit 2 in 2 nd line: max B1M1M0M0A0
			One corr ans with no or inadeq wking: SC1
			eg $0.6 \times 0.7 = 0.42 \Longrightarrow p = 0.7$ or 0.6
			$p^2 + 2pq + q^2 = 1 \qquad B1$
			$p^{2} + q^{2} = 0.58$ }
			$p = 0.21/q$ }
			$p^{4} - 0.58p^{2} + 0.0441 = 0$ M1
			p = 0.38p + 0.0441 = 0 M1 corr subst'n or fact'n M1
			1 m coom D1
			1-p seen B1
			2p(1-p) = 0.42 or $p(1-p) = 0.21$ M1
			$p_{2}^{2} - p = -0.21$
			$p^2 - p + 0.25 = -0.21 + 0.25$ oe } M1
			OR $(p - 0.5)^2 - 0.25 = -0.21$ oe }
			$(p-0.5)^2 = 0.04$ M1
			$(p-0.5) = \pm 0.02$
			p = 0.3 or 0.7 A1
Total		8	
~ •		0	
9ia	$1 / \frac{1}{5}$	M1	
9ia	5	M1	
	= 5	M1 A1 2	
9ia b	$= 5 \frac{1}{(4/5)^3 \times 1/5}$	M1 A1 2 M1	
b	$= 5$ $\frac{(^{4}/_{5})^{3} \times ^{1}/_{5}}{= {}^{64}/_{625} \text{ or } 0.102 \text{ (3 sfs)}}$	M1 A1 2 M1 A1 2	or 1- $(\frac{1}{\epsilon} + \frac{4}{\epsilon} \times \frac{1}{\epsilon} + (\frac{4}{\epsilon})^2 \times \frac{1}{\epsilon} + (\frac{4}{\epsilon})^3 \times \frac{1}{\epsilon})$
	$= 5 \frac{1}{(4/5)^3 \times 1/5}$	M1 A1 2 M1	or 1- $(^{1}/_{5} + ^{4}/_{5} \times ^{1}/_{5} + (^{4}/_{5})^{2} \times ^{1}/_{5} + (^{4}/_{5})^{3} \times ^{1}/_{5})$ NOT 1 - $(^{4}/_{5})^{4}$
b	$= 5$ $(\frac{4}{5})^{3} \times \frac{1}{5}$ $= \frac{64}{625} \text{ or } 0.102 (3 \text{ sfs})$ $(\frac{4}{5})^{4}$	M1 A1 2 M1 A1 2 M1	or 1- $(\frac{1}{5} + \frac{4}{5} \times \frac{1}{5} + \frac{4}{5})^2 \times \frac{1}{5} + \frac{4}{5}^3 \times \frac{1}{5}$ NOT 1 - $(\frac{4}{5})^4$
b 	$= 5$ $\frac{(^{4}/_{5})^{3} \times {}^{1}/_{5}}{= {}^{64}/_{625} \text{ or } 0.102 (3 \text{ sfs})}$ $\frac{(^{4}/_{5})^{4}}{= {}^{256}/_{625} \text{ or } a.r.t \ 0.410 (3 \text{ sfs}) \text{ or } 0.41$	M1 A1 2 M1 A1 2	NOT 1 - $(\frac{4}{5})^4$
b	$= 5$ $(\frac{4}{5})^{3} \times \frac{1}{5}$ $= \frac{64}{625} \text{ or } 0.102 (3 \text{ sfs})$ $(\frac{4}{5})^{4}$	M1 A1 2 M1 A1 2 M1	NOT 1 - $(\frac{4}{5})^4$ P(Y=1)+P(Y=3)+P(Y=5)= p + $q^2p + q^4p$
b 	$= 5$ $\frac{(^{4}/_{5})^{3} \times {}^{1}/_{5}}{= {}^{64}/_{625} \text{ or } 0.102 (3 \text{ sfs})}$ $\frac{(^{4}/_{5})^{4}}{= {}^{256}/_{625} \text{ or } a.r.t \ 0.410 (3 \text{ sfs}) \text{ or } 0.41$	M1 A1 2 M1 A1 2 M1	NOT 1 - $(\frac{4}{5})^4$ P(Y=1)+P(Y=3)+P(Y=5)= p + $q^2p + q^4p$
b 	$= 5$ $\frac{(^{4}/_{5})^{3} \times {}^{1}/_{5}}{= {}^{64}/_{625} \text{ or } 0.102 (3 \text{ sfs})}$ $\frac{(^{4}/_{5})^{4}}{= {}^{256}/_{625} \text{ or } a.r.t \ 0.410 (3 \text{ sfs}) \text{ or } 0.41$	M1 A1 2 M1 A1 2 M1	NOT 1 - $(\frac{4}{5})^4$ $P(Y=1)+P(Y=3)+P(Y=5)=p+q^2p+q^4p$ $p, p(1-p)^2, p(1-p)^4$ $q^{1-1}, q^{3-1}, q^{5-1}$
b 	$= 5$ $\frac{(^{4}/_{5})^{3} \times {}^{1}/_{5}}{= {}^{64}/_{625} \text{ or } 0.102 (3 \text{ sfs})}$ $\frac{(^{4}/_{5})^{4}}{= {}^{256}/_{625} \text{ or } a.r.t \ 0.410 (3 \text{ sfs}) \text{ or } 0.41$	M1 A1 2 M1 A1 2 M1	NOT $1 - {\binom{4}{5}}^4$ $P(Y=1)+P(Y=3)+P(Y=5)=p+q^2p+q^4p$ $p, p(1-p)^2, p(1-p)^4$ $q^{1-1}, q^{3-1}, q^{5-1}$ or any of these with $1-p$ instead of q
b 	$= 5$ $\frac{(^{4}/_{5})^{3} \times {}^{1}/_{5}}{= {}^{64}/_{625} \text{ or } 0.102 (3 \text{ sfs})}$ $\frac{(^{4}/_{5})^{4}}{= {}^{256}/_{625} \text{ or } a.r.t \ 0.410 (3 \text{ sfs}) \text{ or } 0.41$	M1 A1 2 M1 A1 2 M1	NOT $1 - (\frac{4}{5})^4$ $P(Y=1)+P(Y=3)+P(Y=5)=p+q^2p+q^4p$ $p, p(1-p)^2, p(1-p)^4$ $q^{1-1}, q^{3-1}, q^{5-1}$ or any of these with $1-p$ instead of q "Always q to even power $\times p$ "
b 	$= 5$ $\frac{(^{4}/_{5})^{3} \times {}^{1}/_{5}}{= {}^{64}/_{625} \text{ or } 0.102 (3 \text{ sfs})}$ $\frac{(^{4}/_{5})^{4}}{= {}^{256}/_{625} \text{ or } a.r.t \ 0.410 (3 \text{ sfs}) \text{ or } 0.41$	M1 A1 2 M1 A1 2 M1 A1 2	NOT $1 - {\binom{4}{5}}^4$ $P(Y=1)+P(Y=3)+P(Y=5)=p+q^2p+q^4p$ $p, p(1-p)^2, p(1-p)^4$ $q^{1-1}, q^{3-1}, q^{5-1}$ or any of these with $1-p$ instead of q "Always q to even power $\times p$ " Either associate each term with relevant prob
b 	$= 5$ $\frac{(^{4}/_{5})^{3} \times {}^{1}/_{5}}{= {}^{64}/_{625} \text{ or } 0.102 (3 \text{ sfs})}$ $\frac{(^{4}/_{5})^{4}}{= {}^{256}/_{625} \text{ or } a.r.t \ 0.410 (3 \text{ sfs}) \text{ or } 0.41$	M1 A1 2 M1 A1 2 M1	NOT $1 - {\binom{4}{5}}^4$ $P(Y=1)+P(Y=3)+P(Y=5)=p+q^2p+q^4p$ $p, p(1-p)^2, p(1-p)^4$ $q^{1-1}, q^{3-1}, q^{5-1}$ or any of these with $1-p$ instead of q "Always q to even power $\times p$ " Either associate each term with relevant prob Or give indication of how terms derived
b c iia	$= 5$ $\frac{(^{4}/_{5})^{3} \times ^{1}/_{5}}{= ^{64}/_{625} \text{ or } 0.102 (3 \text{ sfs})}$ $\frac{(^{4}/_{5})^{4}}{(^{4}/_{5})^{4}}$ $= \frac{^{256}}/_{625} \text{ or } a.r.t \ 0.410 (3 \text{ sfs}) \text{ or } 0.41$ $P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p$	M1 A1 2 M1 A1 2 M1 A1 2 B1 1	NOT $1 - {\binom{4}{5}}^4$ $P(Y=1)+P(Y=3)+P(Y=5)=p+q^2p+q^4p$ $p, p(1-p)^2, p(1-p)^4$ $q^{1-1}, q^{3-1}, q^{5-1}$ or any of these with $1-p$ instead of q "Always q to even power $\times p$ " Either associate each term with relevant prob Or give indication of how terms derived \geq two terms
b c	$= 5$ $\frac{(^{4}/_{5})^{3} \times {}^{1}/_{5}}{= {}^{64}/_{625} \text{ or } 0.102 (3 \text{ sfs})}$ $\frac{(^{4}/_{5})^{4}}{= {}^{256}/_{625} \text{ or } a.r.t \ 0.410 (3 \text{ sfs}) \text{ or } 0.41$	M1 A1 2 M1 A1 2 M1 A1 2	NOT $1 - {\binom{4}{5}}^4$ $P(Y=1)+P(Y=3)+P(Y=5)=p+q^2p+q^4p$ $p, p(1-p)^2, p(1-p)^4$ $q^{1-1}, q^{3-1}, q^{5-1}$ or any of these with $1-p$ instead of q "Always q to even power $\times p$ " Either associate each term with relevant prob Or give indication of how terms derived
b c iia	$= 5$ $(\frac{4}{5})^{3} \times \frac{1}{5}$ $= \frac{64}{625} \text{ or } 0.102 \text{ (3 sfs)}$ $(\frac{4}{5})^{4}$ $= \frac{256}{625} \text{ or } a.r.t 0.410 \text{ (3 sfs)} \text{ or } 0.41$ $P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p$ Recog that c.r. = q^{2} or $(1-p)^{2}$	M1 A1 2 M1 A1 2 M1 A1 2 B1 1 M1	NOT $1 - {\binom{4}{5}}^4$ $P(Y=1)+P(Y=3)+P(Y=5)=p+q^2p+q^4p$ $p, p(1-p)^2, p(1-p)^4$ $q^{1-1}, q^{3-1}, q^{5-1}$ or any of these with $1-p$ instead of q "Always q to even power $\times p$ " Either associate each term with relevant prob Or give indication of how terms derived \geq two terms
b c iia	$= 5$ $(\frac{4}{5})^{3} \times \frac{1}{5}$ $= \frac{64}{625} \text{ or } 0.102 \text{ (3 sfs)}$ $(\frac{4}{5})^{4}$ $= \frac{256}{625} \text{ or } a.r.t 0.410 \text{ (3 sfs)} \text{ or } 0.41$ $P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p$ Recog that c.r. = q^{2} or $(1-p)^{2}$	M1 A1 2 M1 A1 2 M1 A1 2 B1 1	NOT $1 - {\binom{4}{5}}^4$ $P(Y=1)+P(Y=3)+P(Y=5)=p+q^2p+q^4p$ $p, p(1-p)^2, p(1-p)^4$ $q^{1-1}, q^{3-1}, q^{5-1}$ or any of these with $1-p$ instead of q "Always q to even power $\times p$ " Either associate each term with relevant prob Or give indication of how terms derived \geq two terms
b c iia	$= 5$ $(\frac{4}{5})^{3} \times \frac{1}{5} = \frac{64}{625} \text{ or } 0.102 \text{ (3 sfs)} = \frac{64}{625} \text{ or } 0.102 \text{ (3 sfs)} = \frac{64}{625} \text{ or } 0.102 \text{ (3 sfs)} = \frac{64}{625} \text{ or } 0.41 \text{ (3 sfs)} = \frac{64}{7} \text{ or } 0.41 \text{ (3 sfs)} = \frac{64}{7} \text{ or } 0.41 \text{ (3 sfs)} = \frac{64}{7} \text{ (4/5)}^{4}$ $= \frac{256}{625} \text{ or } a.r.t 0.410 \text{ (3 sfs)} \text{ or } 0.41 \text{ (3 sfs)} = \frac{64}{7} \text{ (4/5)}^{4}$ $= \frac{256}{625} \text{ or } a.r.t 0.410 \text{ (3 sfs)} \text{ or } 0.41 \text{ (3 sfs)} = \frac{64}{7} \text{ (4/5)}^{4}$ $= \frac{256}{625} \text{ or } a.r.t 0.410 \text{ (3 sfs)} \text{ or } 0.41 \text{ (4/5)}^{4}$ $= \frac{256}{625} \text{ or } a.r.t 0.410 \text{ (3 sfs)} \text{ or } 0.41 \text{ (4/5)}^{4}$ $= \frac{256}{625} \text{ or } a.r.t 0.410 \text{ (3 sfs)} \text{ or } 0.41 \text{ (4/5)}^{4}$ $= \frac{256}{625} \text{ or } a.r.t 0.410 \text{ (3 sfs)} \text{ or } 0.41 \text{ (4/5)}^{4}$ $= \frac{256}{625} \text{ or } a.r.t 0.410 \text{ (3 sfs)} \text{ or } 0.41 \text{ (4/5)}^{4}$ $= \frac{256}{625} \text{ or } a.r.t 0.410 \text{ (3 sfs)} \text{ or } 0.41 \text{ (4/5)}^{4}$ $= \frac{256}{625} \text{ or } a.r.t 0.410 \text{ (3 sfs)} \text{ or } 0.41 \text{ (4/5)}^{4}$ $= \frac{256}{625} \text{ or } a.r.t 0.410 \text{ (3 sfs)} \text{ or } 0.41 \text{ (4/5)}^{4}$ $= \frac{256}{625} \text{ or } a.r.t 0.410 \text{ (3 sfs)} \text{ or } 0.41 \text{ (4/5)}^{4}$ $= \frac{256}{625} \text{ or } 0.41 \text{ (4/5)}^{4}$ $= \frac{2}{62} \text{ (4/5)}^{2} \text{ or } 0.41 \text{ (4/5)}^{2}$ $= \frac{2}{6} \text{ (4/5)}^{2} \text{ (4/5)}^{2}$	M1 A1 2 M1 A1 2 M1 A1 2 B1 1 M1	NOT $1 - {\binom{4}{5}}^4$ $P(Y=1)+P(Y=3)+P(Y=5)=p+q^2p+q^4p$ $p, p(1-p)^2, p(1-p)^4$ $q^{1-1}, q^{3-1}, q^{5-1}$ or any of these with $1-p$ instead of q "Always q to even power $\times p$ " Either associate each term with relevant prob Or give indication of how terms derived \geq two terms
b c iia	$= 5$ $(\frac{4}{5})^{3} \times \frac{1}{5} = \frac{64}{625} \text{ or } 0.102 \text{ (3 sfs)} = \frac{64}{625} \text{ or } 0.102 \text{ (3 sfs)} = \frac{64}{625} \text{ or } 0.102 \text{ (3 sfs)} = \frac{64}{625} \text{ or } 0.41 \text{ (3 sfs)} = \frac{64}{7} \text{ or } 0.41 \text{ (3 sfs)} = \frac{64}{7} \text{ or } 0.41 \text{ (3 sfs)} = \frac{64}{7} \text{ (4/5)}^{4}$ $= \frac{256}{625} \text{ or } a.r.t 0.410 \text{ (3 sfs)} \text{ or } 0.41 \text{ (3 sfs)} = \frac{64}{7} \text{ (4/5)}^{4}$ $= \frac{256}{625} \text{ or } a.r.t 0.410 \text{ (3 sfs)} \text{ or } 0.41 \text{ (3 sfs)} = \frac{64}{7} \text{ (4/5)}^{4}$ $= \frac{256}{625} \text{ or } a.r.t 0.410 \text{ (3 sfs)} \text{ or } 0.41 \text{ (4/5)}^{4}$ $= \frac{256}{625} \text{ or } a.r.t 0.410 \text{ (3 sfs)} \text{ or } 0.41 \text{ (4/5)}^{4}$ $= \frac{256}{625} \text{ or } a.r.t 0.410 \text{ (3 sfs)} \text{ or } 0.41 \text{ (4/5)}^{4}$ $= \frac{256}{625} \text{ or } a.r.t 0.410 \text{ (3 sfs)} \text{ or } 0.41 \text{ (4/5)}^{4}$ $= \frac{256}{625} \text{ or } a.r.t 0.410 \text{ (3 sfs)} \text{ or } 0.41 \text{ (4/5)}^{4}$ $= \frac{256}{625} \text{ or } a.r.t 0.410 \text{ (3 sfs)} \text{ or } 0.41 \text{ (4/5)}^{4}$ $= \frac{256}{625} \text{ or } a.r.t 0.410 \text{ (3 sfs)} \text{ or } 0.41 \text{ (4/5)}^{4}$ $= \frac{256}{625} \text{ or } a.r.t 0.410 \text{ (3 sfs)} \text{ or } 0.41 \text{ (4/5)}^{4}$ $= \frac{256}{625} \text{ or } a.r.t 0.410 \text{ (3 sfs)} \text{ or } 0.41 \text{ (4/5)}^{4}$ $= \frac{256}{625} \text{ or } 0.41 \text{ (4/5)}^{4}$ $= \frac{2}{62} \text{ (4/5)}^{2} \text{ or } 0.41 \text{ (4/5)}^{2}$ $= \frac{2}{6} \text{ (4/5)}^{2} \text{ (4/5)}^{2}$	M1 A1 2 M1 A1 2 M1 A1 2 B1 1 M1	NOT $1 - {\binom{4}{5}}^4$ $P(Y=1)+P(Y=3)+P(Y=5)=p+q^2p+q^4p$ $p, p(1-p)^2, p(1-p)^4$ $q^{1-1}, q^{3-1}, q^{5-1}$ or any of these with $1-p$ instead of q "Always q to even power $\times p$ " Either associate each term with relevant prob Or give indication of how terms derived \geq two terms or eg $r = q^2 p/p$
b c iia	$= 5$ $(\frac{4}{5})^{3} \times \frac{1}{5}$ $= \frac{64}{625} \text{ or } 0.102 \text{ (3 sfs)}$ $(\frac{4}{5})^{4}$ $= \frac{256}{625} \text{ or } a.r.t 0.410 \text{ (3 sfs)} \text{ or } 0.41$ $P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p$ Recog that c.r. = q^{2} or $(1-p)^{2}$	M1 A1 2 M1 A1 2 M1 A1 2 B1 1 M1 M1	NOT $1 - {\binom{4}{5}}^4$ $P(Y=1)+P(Y=3)+P(Y=5)=p+q^2p+q^4p$ $p, p(1-p)^2, p(1-p)^4$ $q^{1-1}, q^{3-1}, q^{5-1}$ or any of these with $1-p$ instead of q "Always q to even power $\times p$ " Either associate each term with relevant prob Or give indication of how terms derived \geq two terms
b c iia	$= 5$ $\frac{(^{4}/_{5})^{3} \times ^{1}/_{5}}{= ^{64}/_{625} \text{ or } 0.102 (3 \text{ sfs})}$ $\frac{(^{4}/_{5})^{4}}{(^{4}/_{5})^{4}}$ $= \frac{2^{56}}/_{625} \text{ or } a.r.t \ 0.410 \ (3 \text{ sfs}) \text{ or } 0.41$ $P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p$ $P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p$ $Recog \text{ that } c.r. = q^{2} \text{ or } (1-p)^{2}$ $S_{\infty} = \frac{p}{1-q^{2}} \text{ or } \frac{p}{1-(1-p)^{2}}$ $P(\text{odd}) = \frac{1-q}{1-q^{2}}$	M1 A1 2 M1 A1 2 M1 A1 2 M1 A1 2 B1 1 M1 M1 M1	NOT $1 - (\frac{4}{5})^4$ $P(Y=1)+P(Y=3)+P(Y=5)=p+q^2p+q^4p$ $p, p(1-p)^2, p(1-p)^4$ $q^{1-1}, q^{3-1}, q^{5-1}$ or any of these with $1-p$ instead of q "Always q to even power $\times p$ " Either associate each term with relevant prob Or give indication of how terms derived \geq two terms or eg $r = q^2 p/p$ $\left(= \frac{p}{2p-p^2} \right) = \frac{p}{p(2-p)}$
b c iia	$= 5$ $\frac{(^{4}/_{5})^{3} \times ^{1}/_{5}}{= ^{64}/_{625} \text{ or } 0.102 (3 \text{ sfs})}$ $\frac{(^{4}/_{5})^{4}}{(^{4}/_{5})^{4}}$ $= \frac{2^{56}}/_{625} \text{ or } a.r.t \ 0.410 \ (3 \text{ sfs}) \text{ or } 0.41$ $P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p$ $P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p$ $Recog \text{ that } c.r. = q^{2} \text{ or } (1-p)^{2}$ $S_{\infty} = \frac{p}{1-q^{2}} \text{ or } \frac{p}{1-(1-p)^{2}}$ $P(\text{odd}) = \frac{1-q}{1-q^{2}}$	M1 A1 2 M1 A1 2 M1 A1 2 M1 A1 2 B1 1 M1 M1 M1	NOT $1 - (\frac{4}{5})^4$ $P(Y=1)+P(Y=3)+P(Y=5)=p+q^2p+q^4p$ $p, p(1-p)^2, p(1-p)^4$ $q^{1-1}, q^{3-1}, q^{5-1}$ or any of these with $1-p$ instead of q "Always q to even power $\times p$ " Either associate each term with relevant prob Or give indication of how terms derived \geq two terms or eg $r = q^2 p/p$ $\left(= \frac{p}{2p-p^2} \right) = \frac{p}{p(2-p)}$
b c iia	$= 5$ $(\frac{4}{5})^{3} \times \frac{1}{5} = \frac{64}{625} \text{ or } 0.102 \text{ (3 sfs)} \text{ or } 0.41$ $= \frac{256}{625} \text{ or } a.r.t \ 0.410 \ (3 \text{ sfs)} \text{ or } 0.41$ $P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p$ $Recog \text{ that } c.r. = q^{2} \text{ or } (1-p)^{2}$ $S_{\infty} = \frac{p}{1-q^{2}} \text{ or } \frac{p}{1-(1-p)^{2}}$ $P(\text{odd}) = \frac{1-q}{1-q^{2}}$ $= \frac{1-q}{(1-q)(1+q)} \text{ Must see this step for A1}$	M1 A1 2 M1 A1 2 M1 A1 2 M1 A1 2 B1 1 M1 M1 M1	NOT $1 - (\frac{4}{5})^4$ $P(Y=1)+P(Y=3)+P(Y=5)=p+q^2p+q^4p$ $p, p(1-p)^2, p(1-p)^4$ $q^{1-1}, q^{3-1}, q^{5-1}$ or any of these with $1-p$ instead of q "Always q to even power $\times p$ " Either associate each term with relevant prob Or give indication of how terms derived \geq two terms or eg $r = q^2 p/p$ $\left(= \frac{p}{2p-p^2} \right) = \frac{p}{p(2-p)}$
b c iia	$= 5$ $(\frac{4}{5})^{3} \times \frac{1}{5} = \frac{64}{625} \text{ or } 0.102 \text{ (3 sfs)} \text{ or } 0.41$ $= \frac{256}{625} \text{ or } a.r.t \ 0.410 \ (3 \text{ sfs)} \text{ or } 0.41$ $P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p$ $Recog \text{ that } c.r. = q^{2} \text{ or } (1-p)^{2}$ $S_{\infty} = \frac{p}{1-q^{2}} \text{ or } \frac{p}{1-(1-p)^{2}}$ $P(\text{odd}) = \frac{1-q}{1-q^{2}}$ $= \frac{1-q}{(1-q)(1+q)} \text{ Must see this step for A1}$	M1 A1 2 M1 A1 2 M1 A1 2 M1 A1 2 B1 1 M1 M1 M1	NOT $1 - {\binom{4}{5}}^4$ $P(Y=1)+P(Y=3)+P(Y=5)=p+q^2p+q^4p$ $p, p(1-p)^2, p(1-p)^4$ $q^{1-1}, q^{3-1}, q^{5-1}$ or any of these with $1-p$ instead of q "Always q to even power $\times p$ " Either associate each term with relevant prob Or give indication of how terms derived \geq two terms or eg $r = q^2 p/p$
b c iia	$= 5$ $\frac{(^{4}/_{5})^{3} \times ^{1}/_{5}}{= ^{64}/_{625} \text{ or } 0.102 (3 \text{ sfs})}$ $\frac{(^{4}/_{5})^{4}}{(^{4}/_{5})^{4}}$ $= \frac{2^{56}}/_{625} \text{ or } a.r.t \ 0.410 \ (3 \text{ sfs}) \text{ or } 0.41$ $P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p$ $P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p$ $Recog \text{ that } c.r. = q^{2} \text{ or } (1-p)^{2}$ $S_{\infty} = \frac{p}{1-q^{2}} \text{ or } \frac{p}{1-(1-p)^{2}}$ $P(\text{odd}) = \frac{1-q}{1-q^{2}}$	M1 A1 2 M1 A1 2 M1 A1 2 M1 A1 2 B1 1 M1 M1 M1	NOT $1 - (\frac{4}{5})^4$ $P(Y=1)+P(Y=3)+P(Y=5)=p+q^2p+q^4p$ $p, p(1-p)^2, p(1-p)^4$ $q^{1-1}, q^{3-1}, q^{5-1}$ or any of these with $1-p$ instead of q "Always q to even power $\times p$ " Either associate each term with relevant prob Or give indication of how terms derived \geq two terms or eg $r = q^2 p/p$ $\left(= \frac{p}{2p-p^2} \right) = \frac{p}{p(2-p)}$

Total	= 0.219 (3 sfs)	A1 3	
ii	$^{15}C_4 \ge 0.3^4 \ge 0.7^{11}$	M2	$^{15}C_4 \ge 0.3^{11} \ge 0.7^4 \ge M1$
	= 0.442 (3 sfs)	A1 3	or 1–0.7946 or 0.205 or 1-0.6774 or 0.323 or 1-0.3907 or 0.609 or add 9 terms or 1-(add 2 or 4 terms): M1
b	0.5583 seen 1 - 0.5583	M1 M1	add 10 corr terms or 1-(add 3 corr terms): M2
	Binomial stated or implied 0.9806	B1 2	
Total 5ia	Pinomial stated or implied	4 B1	by use of tables or $0.2^a \ge 0.8^b$, $a+b = 12$
Tatal	0.28 or 28% oe	Alft 2	
ii	0.4 x (1 – their 0.3) oe eg $\frac{40}{100} \times \frac{28}{40}$	M1	or 0.4 – 0.12 or 0.28 or 28 seen Not 0.4×0.88 unless ans to (i) is 0.12
4i	0.4 x $p = 0.12$ or ${}^{0.12}/_{0.4}$ or ${}^{12}/_{40}$ oe $p = 0.3$ oe	M1 A1 2	
Total	0.12 12	6	
	$r = 0.855$ $r_s = 0.7$	B1 B1 2	or "unchanged": B1B1 Interchanged: B1
	Definition of r_s is PMCC for ranks r = 0.855	B1 2 B1	dep 1 st B1
ii	$\frac{1}{R = 0.7 \text{ or (B)}} \frac{1}{5} \frac{1}{5} \frac{1}{5}$	B1	B1 for correct subst in any <i>S</i> (A) and (B) true: B0B0
	$r = \frac{212 - \frac{24 \times 39}{5}}{\sqrt{(130 - \frac{24^2}{5})(361 - \frac{39^2}{5})}}$	B2 2	B2 for correct subst in <i>r</i>
3i	$212 - \frac{24 \times 39}{5}$		$\frac{24.8}{\sqrt{14.8\times56.8}} \text{ or } \frac{24.8}{\sqrt{840.64}} \text{ or } \frac{24.8}{3.85\times7.54} \text{ or } \frac{24.8}{29}$
Total		5	
iii	5	B1 1	
	$= \frac{256}{625} \text{ or } 0.410 (3 \text{ sfs})$	A1 2	or "correct" extra Allow 0.41
ii	$ \begin{array}{c} ({}^{4}/{}_{5})^{4} \text{ alone} \\ \text{ or } 1 - ({}^{1}/{}_{5} + {}^{4}/{}_{5}x^{1}/{}_{5} + ({}^{4}/{}_{5})^{2}x^{1}/{}_{5} + ({}^{4}/{}_{5})^{3}x^{1}/{}_{5}) \end{array} $	M1	Allow $({}^{4}/{}_{5})^{3}$ or $({}^{4}/{}_{5})^{5}$; not 1 - $({}^{4}/{}_{5})^{4}$ Allow one term omitted or wrong
2i	$\binom{4}{5}^{3} \times \binom{1}{5}$ oe = ${}^{64}_{625}$ or 0.102 (3 sfs)	M1 A1 2	Allow M1 for $(^{4}/_{5})^{4} x (^{1}/_{5})$
Total		7	
11	$/C_2 \text{ or } /_5 \times \frac{1}{4} \times 2 \text{ or } 0.4 \times 0.25 \text{ or } /_{5P2}$ = $\frac{1}{10}$	M1 A1 2	Allow M1 for ${}^{5}C_{2}$ or ${}^{1}/_{5} \times {}^{1}/_{4}$ or ${}^{1}/_{20}$ or ${}^{1}/_{5} \times {}^{1}/_{5} \times 2$ or ${}^{2}/_{25}$ oe
ii	$\frac{48}{1/5} C_2 \text{ or } \frac{1}{5} \times \frac{1}{4} \times 2 \text{ or } 0.4 \times 0.25 \text{ or } \frac{2}{5} + \frac{1}{5} + \frac{1}{5} \times $	A1 3	
b	4! or ${}^{4}P_{4}$ seen 4! $\times 2$	M1 M1dep	or $2 \times 3!$ or $2! \times 3!$ or $2! \times {}^{3}P_{3}$ $2 \times 3! \times 4$
11u	= 120	A1 2	
1ia	over-rounding only once in <u>paper</u> . 5! or ${}^{5}P_{5}$	M1	

Note: "(3 sfs)" means "answer which rounds to ... to 3 sfs". If correct ans seen to \geq 3sfs, ISW for later rounding Penalise over-rounding only once in paper.

6i	Σур	M1	> 2 terms added \div 3 or \div 6 etc: M0
01	=2.3	A1	≥ 2 terms added $\div 3$ or $\div 0$ etc. Wo
			2 terms added 1 2 cm + C + t + MO
	$\sum y^2 p \qquad (=5.9)$	M1	≥ 2 terms added $\div 3$ or $\div 6$ etc: M0
	$-(\Sigma yp)^2$	M1	dep +ve result
	= 0.61 oe	A1 5	
			$(-1.3)^2 \times 0.2 + (-0.3)^2 \times 0.3 + 0.7^2 \times 0.5$: M2
			one term correct: M1
			Use of Z: MR, lose last A1 (2.55, 0.4475)
ii	0.2x0.25 + 0.3x0.1 or $0.05 + 0.03$ alone	M2	M1 for one product eg correct×2: M1
			or clearly ident (1,2), (2,1): M1
	= 0.08 oe	A1 3	
iii	$0.3 \times 0.1 + 0.3 \times 0.25 + 0.3 \times 0.65$		
	$+0.25 \times 0.2 + 0.25 \times 0.5$ alone		M1 : any 3, 4 of these prods alone
	or 0.03 + 0.075 + 0.195 + 0.05 + 0.125	M2	or these 5 prods plus 1 extra or repeat
			or (ii) + prod
			or $0.3 + \text{prod}$ or $0.25 + \text{prod}$
			or clearly identify
			(1,2)(3,2)(2,2)(2,1)(2,3)
	$= 0.475$ or $^{19}/_{40}$ oe	A1 3	
			M2 for $0.3 + (0.2 + 0.5) \times 0.25$
			or $0.25 + (0.1 + 0.65) \times 0.3$
			or $0.3 + 0.25 - 0.3 \times 0.25$
			or $1 - (0.2 + 0.5)(0.1 + 0.65)$
			011 (0.2+0.5)(0.1+0.05)
			M1 for (0.2+ 0.5)(0.1+0.65)
Total		11	
7ia	Results or matches are indep	B1	allow "wins" indep; not "trials" indep
,	Prob of winning is constant		not "success"
ib	No of wins (or losses)	B1 2 B1 1	
ii	110 01 WIII5 (01 105505)		or $(1-p)$ for q & allow omit bracket
11	$^{21}C_{10}p^{10}q^{11} = ^{21}C_9p^9q^{12}$	M1	or $352716p^{10}q^{11} = 293930p^9q^{12}$
		M1M1 M1M1	M1 for ${}^{12}/_{10}$ or ${}^{6}/_{5}$ or 1.2 or ${}^{5}/_{6}$ or 0.833
	$\frac{12}{10}p = q \text{ or } \frac{12}{10}p(1-p)^{-1} = 1 \text{ or similar}$	10111011	
			M1 for $p \& q$ cancelled correctly
	12n - 1 $n = 0.02 n - 0.022(1 m)$	M1	or aquiv agun in n or a (appealled)
	1.2p = 1 - p oe eg $p = 0.833(1-p)$	1011	or equiv equin in p or q (cancelled)
	or 352716 <i>p</i> = 293930(1- <i>p</i>)		nos not nec'y cancelled; not alg denom
	$p = \frac{5}{11}$ or 0.455 (3 sfs) oe	A 1 5	
Tatal	$p = 7_{11}$ or 0.455 (5 sis) of	A1 5	
Total		ð	

0.	06.5			D1	
8i	m = 26.5	1	1	B1	
	LQ = 22	or 21.5	or 21.75		
	UQ = 39	40	39.5	M1	M1 for either LQ or UQ
	IQR = 17	18.5	17.75	A1 3	A1 must be consistent LQ, UQ & IQR
ii	Ave or overall	l or med or "it" sin	nılar	B1f	or F med (or ave) higher or F mean less
					or M & F both have most in 20s
	Male spread greater or M more varied oe			B1f 2	or male range greater
	Maie spicad g			DII 2	
					or more younger F or more older M
iii	Med less (or n	ot) affected by ext	reme(s) or	B1 1	oe; not "anomalies"
	Mean (more) a	affected by extrem	e(s)		ignore eg "less accurate"
iv					must consistently decode last or first
1 V	D 114				must consistently decode last of first
	Decode last				
	245/49			M1	
	= 5			A1	
	mean = 205			B1f	200 + "5"
	$\sqrt{(9849/49 - (^2))^2}$	245 (245) (2)			
				M1	dep √+ve
	= 13.3 (3sfs) o			A1	
	sd = 13.3 or 4	√11		B1f 6	dep M1 or ans 176; award if not +200
				_	
	Dece la finat				
	Decode first				
	$245 + 200 \times 49$	or 10045	B1		
	$10045/_{49}$		M1		allow $^{445}/_{49}$ or 9.08 seen
	= 205		A1		
		00 10045 40 400			
	$\Sigma x^{-} = 9849 + 40$	00×10045-49×400			
		or 206784	9 B1		
	<u></u>				
	$\sqrt{\frac{\Sigma x^2}{49}} - \overline{x}^2$		M1		dep √+ve
	V 49				
					Σx^2 must be: attempt at Σx^2
					>9849
					not involve 9849 ²
					not $(\Sigma x)^2$ eg10045 ² , 445 ²
	1				\overline{x} must be decoded attempt, eg 9.08
	$= 13.3 \text{ or } 4\sqrt{11}$	1	A1		
Total				12	
9i	Because grow	th may depend on	nH oe	B1 1	In context. Not x is controlled or indep
<i>></i> 1		stigating if y dependent		21 1	in content. From is controlled of macp
ii		– 66.5 x 1935/8 (=			
	$S_{xx} = 558.75 -$	$66.5^{2}/8$ (= 5	.96875)		
	$b = S_{xy}/S_{xx}$			M1	Correct sub into any correct <i>b</i> formula
	= 167 (3 sfs)			A1	
	107 (0.010)				
	1025/0 //				
		(167)(x - 66.5/8)		M1	or <i>a</i> =1935/8 – "167" x 66.5/8
	y = -1150 + 16	57 <i>x</i>		A1 4	cao NB 3 sfs
iii	y = -1150 + 16	67 x 7		M1	ft their eqn for M1 only
	= 19 to 23			A1 2	
		1.1.1.1	1		1 11 2
iv	No (or little) r	elationship or corr	elation	B1 1	or weak or small corr'n.
					Not "agreement"
va	Reliable as r h	nigh	oe	B1 1	Allow without "interpolation" oe,
, vu					
					but must include <i>r</i> high
b	Unreliable as	extrapolation	oe	B1 1	or unreliable as gives a neg value
vi	Unreliable (or	No) because r nea	ur 0	B1 1	or No because Q values vary widely
		ttle (or no or small			for pH = 8.5
	or because II				101 p11 – 0.5
		(0	or rel'n)		
Total				11	
		-			

Total 72 marks

Penalise	over-rounding only once in paper.		-
1(i)	(a) -1	B1	allow \approx -1 or close to -1
			not "strong corr'n", not -0.99
	(b) 0	B1 2	allow ≈ 0 or close to 0
			not "no corr'n"
(ii)	4 3 2 1 or 1 2 3 4	M1	Ranks attempted, even if opp
. ,	1 3 4 2 4 2 1 3	A1	
	Σd^2 (= 14)	M1	Dep M1 or $S_{xy} = 23^{-100}/_4$ or $S_{xx} = S_{yy} = 30^{-100}/_4$
	$1 - \underline{6\Sigma d^2}$	M1	Dep 2^{nd} M1 $S_{xy}/\sqrt{(S_{xx}S_{yy})}$
	$\frac{1}{4(4^2-1)}$		1 0 1 1 1 0 0
	= -0.4 oe	A1 5	
Total		7	
2(i)	$\frac{7}{2}$ C ₂ x $\frac{8}{2}$ C ₂	M1	$^{7}C_{2} \times {}^{8}C_{3}$ or 1176 : M1
2 (1)	$\frac{{}^{7}\underline{C}_{2}\underline{x}}{{}^{15}C_{5}}\underline{K}_{5}^{2}$	M1	$(\text{Any C or P})^{15}\text{C}_5$: M1 (dep < 1)
	05	IVI I	$(\operatorname{Airy} C \operatorname{Or} 1)/(C_5) = \operatorname{Airr}(\operatorname{dep} < 1)$
			7 6 8 7 6 0 0 202 141
			or $\frac{7}{15} \times \frac{6}{14} \times \frac{8}{13} \times \frac{7}{12} \times \frac{6}{11}$ or 0.0392: M1
			$\times^{5}C_{2}$ or $\times 10$: M1 (dep \geq 4 probs mult)
	$= \frac{56}{143}$ or $\frac{1176}{3003}$ or 0.392 (3sfs)	A1 3	
	-7_{143} or 7_{3003} or 0.372 (3818)		if $2\leftrightarrow 3$, treat as MR max M1M1
(ii)	3! x 2! or ${}^{3}P_{3}$ x ${}^{2}P_{2}$ not in denom	 M1	BABAB seen: M1
<u>, -</u> ,	= 12	A1 2	120-12: M1A0
			NB $^{4!}/_{2!} = 12$: M0A0
Total		5	
3(i)(a)	0.9368 or 0.937	B1 1	
$\frac{\mathbf{b}(\mathbf{a})(\mathbf{a})}{(\mathbf{b})}$	$0.7799 - 0.5230$ or ${}^{8}C_{5} \ge 0.45^{3} \ge 0.55^{5}$	<u>M1</u>	Allow 0.9368 – 0.7799
(0)	= 0.2569 or 0.2568 or 0.257	A1 2	7 mow 0.9500 0.7799
(c)	0.7799 seen	M1 2	¹ ⁸ C ₅ x0.45 ³ x0.55 ⁵ + ⁸ C ₄ x0.45 ⁴ x0.55 ⁴ + ⁸ C ₃ x 0.45 ⁵ x 0.55 ³ : M
(U)	-0.0885 (not 1 - 0.0885)	M1	1 term omitted or wrong or extra: M1
	= 0.691 (3 sfs)	A1 3	C
(ii)(a)	$\frac{10}{10}C_2 x (7/12)^8 x (5/12)^2 \text{ seen}$	M1 5	or 0.105 seen, but not ISW for A1
$(\mathbf{II})(\mathbf{a})$	= 0.105 (3 sfs)	A1 2	of 0.105 seen, but not is w for Al
(b)	$2^{31}/_{72}$ or $2^{175}/_{72}$ or 2.43 (3 sfs)	B1 1	NB $^{12}/_5 = 2.4$: B0
Total	2 / 72 01 $7 / 72 $ 01 $2.43 (3 $ 515)	<u> </u>	$1ND /_5 - 2.4. BO$
	1/		
4(i)	$\frac{1}{20} \times \frac{1}{10} \text{ or } \frac{1}{200} \text{ or } 0.005$	M1	
		M1dep	
	$= \frac{1}{100} \text{ or } 0.01$	A1 3	20 2 20 50 25 00
(ii)	$E(X) = 0+50x^{1}/_{10}+500x^{1}/_{20} \text{ or} \\ 0+0.5x^{1}/_{10}+5x^{1}/_{20}$	M1	or eg 20 goes: $2 \times \text{\pounds}0.50 + \text{\pounds}5.00$
	$= 30p$ = £0.30 or $^{3}/_{10}$	A1	$= \pounds 6.00$
	$\begin{array}{c} -50p & -20.50 \text{ of } 7_{10} \\ \text{Charge "30p"} + 20p & \text{or } 0.3 + 0.2 \end{array}$	M1	$(``\pounds 6.00'' + 20 \times \pounds 0.20) \div 20$
	Charge $50p + 20p$ of $0.5 + 0.2$		condone muddled units eg $0.3 + 20$
	-50n or 0.50 or 0.5	A1 4	
	= 50p or 0.50 or 0.5		x = 20, 70, 520 : M1A1
			$20 \times {}^{17}\!/_{20} + 70 \times {}^{1}\!/_{10} + 520 \times {}^{1}\!/_{20}$: M1
			= 50 A1
			x, (x - 50), (x - 500) : M1A1
			$x \times \frac{17}{20} + (x - 50) \times \frac{1}{10} + (x - 500) \times \frac{1}{20} = 20$:
			M1
			x = 50 : A1
			Ignore "£" or "p"
Total		7	

Note: "(3 sfs)" means "answer which rounds to ... to 3 sfs". If correct ans seen to \geq 3sfs, ISW for later rounding Penalise over-rounding only once in paper.

5(i)	$\frac{12}{22} \mathbf{x}^{11} / \frac{11}{21}$	M1		or ${}^{12}C_2 / {}^{22}C_2$
	$=^{2}/_{7}$ oe or 0.286 (3 sfs)	A1	2	
(ii)	$\frac{7}{15} \times \frac{7}{14} \times \frac{8}{13} = \frac{1000}{1000} \times \frac{1000}{100$	M1		Numerators any order $C_2 \times {}^8C_1$:M1
	$\times 3$ oe	M1	2	3 x prod any 3 probs (any C or P) $^{15}C_3$:M1
	$={}^{24}/_{65}$ or 0.369 (3 sfs)	A1	3	(dep <1)
				$1 \cdot ({^8/_{15}x^{7}/_{14}x^{6}/_{13}} + 3 \times {^8/_{15}x^{7}/_{14}x^{7}/_{13}} + {^7/_{15}x^{6}/_{14}x^{5}/_{13}})$: M2
				one prod omitted or wrong: M1
(iii)	$\frac{x}{45} \times \frac{x-1}{44} = \frac{1}{15}$ oe	M1		not $\frac{x}{45} \times \frac{x}{44} = \frac{1}{15}$ or $\frac{x}{45} \times \frac{x}{45} = \frac{1}{15}$ or $\frac{x}{45} \times \frac{x-1}{45} = \frac{1}{15}$
	$x^{2} - x - 132 = 0$ or $x(x - 1) = 132$	A1		oe
	(x - 12)(x + 11) = 0 or $x = \frac{1 \pm \sqrt{(1^2 - 4 \times (-132))}}{2}$	M1		ft 3-term QE for M1 condone signs interchanged allow one sign error
	No. of $Ys = 12^{2}$	A1	4	Not $x = 12$ or -11 ans 12 from less wking, eg $12 \times 11 = 132$ or T & I: full mks
				Some incorrect methods:
				$\frac{x}{45} \times \frac{x-1}{44} = \frac{1}{15} \text{ oe } M1$ $x^{2} + x = 132 \qquad A0$ $x = 11 \qquad M1A0$
				$12 \times 11 = 132$ M1A1M1 x = 12 and (or "or") 11 A0
				NB 12 from eg 12.3 rounded, check method
Total		9		

Total		10		
	= 52.6 (3 sfs)	A1	-	
(iii)	102 x 51 + 26 x 59 $\div 128$	M1 M1de	en	or 5202 + 1534 or 6736
(:::)	can calc mean from hist $102 \times 51 + 26 \times 50$		2	allow adv of hist as disadv of B&W
	shows distribution better		•	
	hist shows modal class (allow mode) hist			not hist shows total
	hist shows freqs or fds			not hist shows all the results
	hist shows more info			not hist shows freq for each mark
	B&W not show mode B&W: outlier can give false impression			
	B&W not show freqs			
	B&W shows less info'			not B&W does not show mean
	B&W loses info'			not B&W does not give indiv (or raw) data
	Disadvantage:			
				not be weasier to calculate of easier to fead
				not B&W shows spread not B&W easier to calculate or easier to read
				not B&W shows mean
	or hiest & lowest or key values	B1		not B&W easier to compare data sets
	B&W shows med or Qs or IQR or range			not B&W shows info at a glance
(c)	Advantage:			not B&W shows skewness
	M evenly spread or F skewed	B1	2	condone F +ve skew
	or more spread or less consistent			
	M wide(r) range or gter IQR or gter variation or gter variance			
	F more compact M wide(r) range or gter IOP			not M have hiest and lowest mks
	F IQR is above M IQR	B1		
	F generally higher or median higher F higher on average or F better mks			not F higher mean
	E generally higher or modion higher			not E higher mean
				Examples:
				must be comparison, not just figures
				must be overall, not indiv mks
				or about skewness.
				1 mk about spread (or range or IQR)
				on F's IQR being "higher"
(b)				range 1 mk about overall standard, based on median or
(ii)(a)	B&W does not show frequencies oe	B1	1	or B&W shows spread or shows mks or M lger
(••) ()	Denv lass and 1		1	not "Y13 may be larger"
	or size of pie chart may differ			not "no. of F may be less"
	or Y13 may be smaller or similar			or no. of students per degree may differ
(b)	Total unknown or totals poss diff	B1	1	pie chart shows only proportions oe
				ie if correct seen, ignore extras
				(i)(b) & (ii)(abc): ISW

Total	= 0.3087 or 0.309 (3 sfs)	A1 3	
1 otal 8 (i)	88×164		-11.8
0(1)	$168.6 - \frac{88 \times 16.4}{8}$		$(=\frac{-11.8}{\sqrt{168 \times 0.9}})$
	$\frac{0}{164}$	M2	M1: correct subst in any correct S formula
	$\sqrt{(1136 - \frac{88^2}{8})(34.52 - \frac{16.4^2}{8})}$		M2: correct substr in any correct r formula
	V = -0.960 (3 sfs)	A1 3	allow -0.96, if no incorrect wking seen
(ii)	must refer to, or imply,		not x is not random
	external constraint on x		not x affects y
	e.g x is controlled		not <i>x</i> not affected by <i>y</i>
	or values of x fixed or chosen allow x is fixed	B1 1	not <i>x</i> goes up same amount each time not charge affects no. of vehicles
			not x not being measured
(iii)	$\frac{\frac{168.6 - \frac{88 \times 16.4}{8}}{1136 - \frac{88^2}{8}}}{\frac{1136 - \frac{88^2}{8}}{8}}$		
	<u>8</u>	M1	ft their S _m and S _m
	$1136 - \frac{88^2}{3}$		ft their S_{xy} and S_{xx} incl ${}^{168.6}/_{1136}$ if used in (i)
	0	A1	or -0.07 if no incorrect wking
	= -0.0702 (3 sfs) or $-\frac{59}{840}$ or $-\frac{11.8}{168}$	AI	
	$y - \frac{16.4}{8} = $ "-0.0702"($x - \frac{88}{8}$)	M1	or $a = {}^{16.4}/_{8} - ("-0.0702") \times {}^{88}/_{8}$ or ${}^{2371}/_{840}$ oe eg $y = {}^{-59}/_{840} \times {}^{2371}/_{840}$
	y = -0.07x + 2.8 or better	A1 4	$\log \log y = - /_{840}x + /_{840}$
(iv)(a)	"-0.07" x 20 + "2.8" = 1.4(2) million (2 sfs)	M1 A1 2	no ft
(b)	r close to -1 or corr'n is high	B1	or good corr'n or pts close to line
			but not if "close to -1, hence unreliable"
			if r low in (i), ft: " r low" or "poor corr'n" etc
	just outside given data, so reliable	B1 2	or outside given data so unreliable
			not "reliable as follows trend"
			not "reliable as follows average"
			no ft from (iv)(a)
(v)	y on <i>x</i>	B1	
	x is indep	B1 2	or x controlled or y depends on x
			or y not indep
			dep on not "x on y"
			<i>r</i> close to -1 so makes little difference: B2

Note: "(3 sfs)" means "answer which rounds to ... to 3 sfs". If correct ans seen to \geq 3sfs, ISW for later rounding. Penalise over-rounding only once in paper.

1 (i)	$0.2^2 + 0.7 \times 0.1 \times 2$	M2	$0.2^2 \text{ or } 0.7 \times 0.1$: M1
- (*)			
	= 0.18 AG	A1 3	
(ii)	$0.28 + 2 \times 0.18 + 3 \times 0.04 + 4 \times 0.01$	M1	≥ 2 terms correct (excl 0×0.49)
	= 0.8 oe	A1	\div 5 (or 4 or 10 etc): M0
	-0.8 6e $0.28 + 2^2 \times 0.18 + 3^2 \times 0.04 + 4^2 \times 0.01$	M1	\geq 2 terms correct (excl 0 ² ×0.49)
	- "0.8" ²	M1	dep +ve result
	= 0.88 oe	A1 5	A
			$\Sigma(x-\mu)^2$: 2 terms: M1; 5 terms M2
			$0.8^2 \times 0.49 + 0.2^2 \times 0.28 + 1.2^2 \times 0.18 + 2.2^2 \times 0.04 + 3.2^2 \times 0.01$
Total		P	SC Use original table, 0.4:B1 0.44: B1
Total 2(i)(a)	202 × 245 3	8	correct sub in any correct formula for <i>b</i>
	$8736.9 - \frac{202 \times 245.3}{7}$ 1658.24	M1	236 8921
	$\frac{7}{7300 - \frac{202^2}{7}} \text{ or } \frac{1658.24}{1470.86}$		$eg \frac{233321}{210.1249}$
	$7300 - \frac{202}{7}$		
	= 1.127 (= 1.13 AG)	A1 2	must see 1.127; 1.127 alone: M1A1
(b)	$y - \frac{245.3}{7} = 1.13(x - \frac{202}{7})$	M1	or $a = \frac{245.3}{7} - 1.13 \times \frac{202}{7}$
(0)	y = 77 = 1.13(x - 77) y = 1.1x + 2.5 (or 2.4) or $y = 1.13x + 2.43$	A1 2	
	y = 1.137 + 2.10 (or 2.1.) or $y = 1.1577 + 2.15$		(exact: $y = 1.127399x + 2.50934$)
(ii)(a)	$(1.1() \times 30 + 2.5()) = 35.5$ to 36.5	B1f 1	
(b)	$(1.1() \times 100 + 2.5()) = 112.4$ to 115.6	B1f 1	
(iii)	(a) Reliable	B1	Both reliable: B1(a) more reliable than (b) B1
			because (a) within data
	(b) Unreliable because extrapolated	B1 2	Ignore extras or (b) outside data B1
Total		8	
3(i)(a)	Geo stated	M1	or impl. by $(^{7}/_{8})^{n}(^{1}/_{8})$ or $(^{1}/_{8})^{n}(^{7}/_{8})$ alone
	$(^{7}/_{8})^{2}(^{1}/_{8})$	M1	
	$\frac{49}{512}$ or 0.0957 (3 sfs)	A1 3	
(b)	$(^{7}/_{8})^{3}$ alone	M2	or $1 - (\frac{1}{8} + \frac{7}{8} \times \frac{1}{8} + (\frac{7}{8})^2 \times \frac{1}{8})$: M2
			one term incorrect, omit or extra: M1 $1 - (^{7}/_{8})^{3}$ or $(^{7}/_{8})^{2}$ alone: M1
	$^{343}/_{512}$ or 0.670 (3 sfs) allow 0.67	A1 3	
(ii)	8	B1 1	
(iii)	Binomial stated or implied	M1	eg by $(^{7}/_{8})^{a}(^{1}/_{8})^{b}$ (<i>a</i> + <i>b</i> = 15, <i>a</i> , <i>b</i> \neq 1), not just ^{<i>n</i>} C _{<i>r</i>}
	$^{15}C_2(^{7}/_8)^{13}(^{1}/_8)^2$	M1	
	= 0.289 (3 sfs)	A1 3	
Total	1 2 2 4 5	10 M1	ottomat vonka
4 (i)	1 2 3 4 5 or 5 4 3 2 1 3 5 4 1 2 3 1 2 5 3	M1 A1	attempt ranks correct ranks
	$\Sigma d^2 (= 32)$	M1der	
	$\frac{2a}{1-\frac{6\times 32}{5(25-1)}}$	M1der	
	= - 0.6	A1 5	

(ii)	1 & 3	B1ind	ft if $-1 < (i) < -0.9$, ans 1 & 2
	Largest neg r_s or large neg r_s or strong neg corr'n or close(st) to -1	Dite	NOT: furthest from 0 or closest to ±1 little corr'n most disagreement
	or lowest r_s	B1dep	
		2	
Total		7	
5 (i)	68	B1	
	75 – 59	M1	attempt 6 th & 18 th or 58-60, 74-76 & subtr
	= 16	A1 3	must be from 75 – 59
(ii)	Unaffected by outliers or extremes	B1 1	NOT: by anomalies or freaks
	(allow less affected by outliers)		easier to calculate

Total		8	i i	
T ()				68.1 or 68.087 & 9.7 or 9.73 B1 only
(iv)	m = 68.1NOT by restart $sd = 9.7$ (or same)NOT by restart	B1 B1	2	Restart mean or mean & sd:
()	can see how many data items can find (or easier to read) mode or modal class can find (or easier to read) frequs can find mean Harder to read med (or Qs or IQR) Doesn't show med (or Qs or IQR) B&W shows med (or Qs or IQR) B&W easier to compare meds	B1 B1	2	shows results more clearly B&W does not show freqs NOT: B&W easier to compare B&W shows spread or variance or skew B&W shows highest & lowest Assume in order: Adv, Disadv, unless told Allow disadv of B&W for adv of S&L & vice versa Ignore extras
(ii) (iii)	Unaffected by outliers or extremes (allow less affected by outliers) sd can be skewed by one value Shows each data item, retains orig data	B1	1	NOT: by anomalies or freaks easier to calculate NOT: shows freqs
(**)		D 1	1	NOT. 1

6 (i) (a)	8!	M1	Allow ${}^{4}P_{4} \& {}^{3}P_{3}$ instead of
	= 40320	A1 2	3! & 4! thro'out Q6
(b)	$\frac{4}{8} \times \frac{4}{7} \times \frac{3}{6} \times \frac{3}{5} \times \frac{2}{4} \times \frac{2}{3} \times \frac{1}{2}$	M1	$4! \times 4! \div 8! \qquad \qquad 4! \times 4! + 4! \times 4!$
	$\times 2$	M1dep	$\times 2$ $\div 8!$
			allow 1 – above for M1 only
	$= \frac{1}{35}$ or 0.0286 (3 sfs)	A1 3	oe, eg $\frac{1152}{40320}$
(ii)(a)	4!×4!	M1	allow $4! \times 4! \times 2$: M1
	= 576	A1 2	
(b)	$^{1}/_{16}$ or 0.0625	B1 1	
(c)	Separated by 5 or 6 qus stated or illus	M1	allow 5 only or 6 only or (4, 5 or 6)
			can be impl by next M2 or M1
	$^{1}/_{4} \times ^{1}/_{4} \times 3 \text{ or } ^{1}/_{16} \times 3$	M2	$3! \times 3! \times 3$
	$({}^{1}/_{4} \times {}^{1}/_{4} \text{ or } {}^{1}/_{16} \text{ alone or } \times (2 \text{ or } 6):$		$(3! \times 3!$ alone or $\times (2 \text{ or } 6)$; or $(3! + 3!) \times 3$: M1)
	M1)		(÷ 576)
		A1 4	
	$^{3}/_{16}$ or 0.1875 or 0.188		correct ans, but clearly B, J sep by 4: M0M2A0
			1- P(sep by 0, 1, 2, 3, (4)) M1
			$1 - (\frac{1}{4} + \frac{1}{4} + \frac{1}{4} \times \frac{3}{4} + \frac{1}{4} \times \frac{1}{4})$
			or $1 - (\frac{1}{4} \times \frac{1}{4} + \frac{1}{2} \times \frac{1}{4} + \frac{3}{4} \times \frac{1}{4} + 1 \times \frac{1}{4} + \frac{3}{4} \times \frac{1}{4})$ M2
			(one omit: M1)
Total		12	
	r	1	
7 (i)	Binomial	B1	
	n = 12, p = 0.1	B1	B(12, 0.1) : B2
	Plates (or seconds) independent oe	B1	NOT: batches indep
	Prob of fault same for each plate oe	B1 4	Comments must be in context
			Ignore incorrect or irrelevant
	12		
(ii)(a)	$0.9744 - 0.8891$ or ${}^{12}C_3 \times 0.9^9 \times 0.1^3$	M1	
	= 0.0852 or 0.0853 (3 sfs)	A1 2	
(b)	$1 - 0.2824$ or $1 - 0.9^{12}$	M1	allow $1 - 0.6590$ or $1 - 0.9^{11}$
	=0.718 (3 sfs)	A1 2	
(iii)	"0.718" and 1 – "0.718" used	B1	ft (b) for B1M1M1
	$(1-0.718)^4 + 4(1-0.718)^3 \times 0.718$		
	$+ {}^{4}C_{2}(1-0.718)^{2} \times 0.718^{2}$	M2	M1 for any one term correct
			(eg opp tail or no coeffs)
		1	1 $D(2 - \pi A) = 11 - \pi A^{2} + 11 -$
			1 - P(3 or 4) follow similar scheme M2 or M1
			1 - P(3 or 4) follow similar scheme M2 of M1 1 - correct wking (= 0.623) B1M2
	= 0.317 (3 sfs)	A1 4	

8 (i)	$(1/6 + 3 \times (1/6)^2)$	M2		or $3 \times (\frac{1}{6})^2$ or $\frac{1}{6} + (\frac{1}{6})^2$ or $\frac{1}{6} + 2(\frac{1}{6})^2$
				or $\frac{1}{6} + 4(\frac{1}{6})^2$ M1
	$= \frac{1}{4}$	A1	3	
(ii)	1/ ₃	B1	1	
(iii)	3 routes clearly implied	M1		
	out of 18 possible (equiprobable) routes	M1		or ${}^{1}\!/_{3} \times {}^{1}\!/_{6} \times 3$ M2
				or $\frac{1}{3} \times \frac{1}{6}$ or $\frac{1}{6} \times \frac{1}{6} \times 3$ or $\frac{1}{3} \times \frac{1}{3} \times 3$ or $\frac{1}{4} - \frac{1}{6}$ M1
				but $\frac{1}{6} \times \frac{1}{6} \times 2$ M0
				$\frac{(\frac{1}{6})^2 \times 3}{\frac{1}{2}} \text{ or } \frac{\frac{1}{4} - \frac{1}{6}}{\frac{1}{2}} \text{ or } \frac{\frac{1}{2} \times \frac{1}{6}}{\frac{1}{2}} \text{ oe } M2$
				or $\frac{P(4\&twice)}{P(twice)}$ stated or $\frac{\text{prob}}{\frac{1}{2}}$ M1
				Whatever 1 st , only one possibility on 2 nd M2
				¹ / ₆ , no wking M1M1A1
	¹ / ₆			$1/_{12}$, no wking M0
	· 0	A1	3	
Total		7		

Total 72 marks

1			Q1: if consistent "0.8" incorrect or $\frac{1}{8}$, $\frac{7}{8}$ or 0.02 allow M marks in ii , iii & 1 st M1 in i
i	Binomial stated	M1	or implied by use of tables or ${}^{8}C_{3}$ or $0.2^{a} \times 0.8^{b}$ $(a+b=8)$
	0.9437 - 0.7969 or ${}^{8}C_{3} \times 0.2^{3} \times 0.8^{5}$ = 0.147 (3 sfs)	M1 A1 3	01 0.2 / 0.0 (((+) = 0))
ii	1-0.7969	M1	allow 1– 0.9437 or 0.056(3) or equiv using formula
	= 0.203 (3 sf)	A1 2	
iii	8×0.2 oe 1.6	M1 A1 2	$8 \times 0.2 = 2$ M1A0 1.6 ÷ 8 or $^{1}/_{1.6}$ M0A0
Total		7	
2	first two d's = ± 1 Σd^2 attempted (= 2) $1 - \frac{6 \times "2"}{7(7^2 - 1)}$	B1 M1 M1dep	$S_{xx} \text{ or } S_{yy} = 28 \text{B1}$ $S_{xy} = 27 \text{B1}$ $S_{xy} / \sqrt{(S_{xx}S_{yy})} \text{M1 dep B1}$
	$\frac{7(7-1)}{28} = \frac{27}{28}$ or 0.964 (3 sfs)	A1	1234567 & 1276543 (ans $^{2}/_{7}$): MR, lose A1
Total		4	
3 i	<i>x</i> independent or controlled or changed Value of <i>y</i> was measured for each <i>x</i> <i>x</i> not dependent	B1 1	Allow Water affects yield, or yield is dependent or yield not control water supply Not just y is dependent Not x goes up in equal intervals Not x is fixed
ii	(line given by) minimum sum of squs	B1 B1 2	B1 for "minimum" or "least squares" with inadequate or no explanation
iii	$S_{xx} = 17.5 or 2.92 S_{yy} = 41.3 or 6.89 S_{xy} = 25 or 4.17 r = S_{xy} \frac{S_{xy}}{\sqrt{S_{xy}}} = 5$	B1 M1	or $91 - 21^{2}/_{6}$ or $394 - 46^{2}/_{6}$ B1 for any one or $186 - {}^{21\times46}/_{6}$ dep B1
	$\sqrt{(S_{xx}S_{yy})}$ = 0.930 (3 sf)	A1 3	0.929 or 0.93 with or without wking B1M1A0 SC incorrect <i>n</i> : max B1M1A0
iv	Near 1 or lg, high, strong, good corr'n or relnship oe	B1ft	<i>r</i> small: allow little (or no) corr'n oe
	Close to st line or line good fit	B1 2	Not line accurate. Not fits trend
Total		8	

4			Q4: if consistent "0.7" incorrect or $1/3$, $2/3$ or 0.03 allow M marks in ii , iii & 1 st M1 in i
i	Geo stated $0.7^3 \times 0.3$ alone $1029/_{10000}$ or 0.103 (3 sf)	M1 M1 A1 3	or implied by $q^n \times p$ alone $(n > 1)$ $0.7^3 - 0.7^4$
	/10000 01 0.103 (5 \$1)	AI 5	
ii	0.7^4 alone	M1	$\frac{1 - (0.3 + 0.7 \times 0.3 + 0.7^2 \times 0.3 + 0.7^3 \times 0.3)}{\text{NB } 1 - 0.7^4 : \text{M0}}$
	= ²⁴⁰¹ / ₁₀₀₀₀ or 0.240 (3 sf)	A1 2	
iii	$1 - 0.7^5$	M2	or $0.3 + 0.7 \times 0.3 + + \dots + 0.7^4 \times 0.3$ M2 M1 for one term extra or omitted or wrong or for 1– (above) M1 for 1– 0.7^6 or 0.7^5
	= 0.832 (3 sfs)	A1 3	NB Beware: $1 - 0.7^6 = 0.882$
		8	
5i	25/10 = 2.5	M1 A1 2	Allow $^{25}/_{(9to10)}$ or 2.78: M1
ii	(19.5, 25)	B1	
	(9.5, 0)	B1 2	Allow (24.5, 47)
			Both reversed: SC B1
			If three given, ignore (24.5, 47)
iii	Don't know exact or specific values of <i>x</i> (or min or max or quartiles or median or		Exact data not known
	whiskers). oe Can only estimate (min or max or quartiles or median or whiskers) oe Can't work out () oe		Allow because data is rounded
	Data is grouped oe	B1 1	
Total		5	

6i	$\Sigma x \div 11$		M1			
01	70		Al			
	Σx^2 attempted		M1	Σ	-,2	
				\geq 5 terms, or $\sum (x-1)$	$(x)^{-}$	
	$\sqrt{\frac{\sum x^2}{11}} - \overline{x}^2 = \sqrt{(54210)}$	(-70^2) or $\sqrt{28.18}$ or		$\sum (x - \overline{x})^2$	10	
	1 11 $x = 1$		A1	or $\sqrt{\frac{\sum(x-\overline{x})^2}{11}} = \sqrt{3}$	$^{10}/_{11}$ or $\sqrt{28.18}$	
	5.309		111	Y II		
				ie correct substn or re	esult	
	(= 5.31) AG		4	$If \times {}^{11}/{}_{10}: M1A1M1A$	0	
			•			
ii	Attempt arrange in ord	er	M1			
	med = 67		A1			
	74 and 66		M1	or (72.5 – 76.5) – (65	5.5 - 66.5) incl	
					,	
	IQR = 8		A1 4	must be from $74 - 66$	5	
				iii, iv & v: ignore ext	ras	
iii	no (or fewer) extremes	this year oe	B1 1	fewer high &/or low	scores	
	sd takes account of all	values		highest score(s) less	than last year	
	sd affected by extreme	S				
	less spread tho' middle			Not less spread or mo	ore consistent	
	less spread tho' 3 rd & 9	th same or same gap		Not range less		
iv	sd measures spread or	variation or	B1 1	sd less means spread is less oe		
	consistency oe			or marks are closer to	ogether oe	
v	more consistent, more		B1 1	allow less variance		
	closer together, nearer	to mean				
	less spread			Not range less		
				Not highest & lowest	closer	
T (1			11			
Total	⁸ C		11 M1			
7i	${}^{8}C_{3} = 56$		M1			
	= 30		A1 2			
ii	$^{7}C_{2}$ or or $^{7}P_{2} / {}^{8}P_{3}$	$\frac{1}{8}$ not from incorrect	M1	${}^{8}C_{1}+{}^{7}C_{1}+{}^{6}C_{1} \text{ or } 21$	$^{7}/_{8} \times ^{6}/_{7} \times ^{5}/_{6}$	
			1411	or $8 \times 7 \times 6$	18 11 1 16	
		\times 3 only		$or''_8 \times ''_7 \times ''_6$		
	\div (⁸ C ₃ or "56") only	or	M1	01/8/////6	1 – prod 3 probs	
	$= \frac{3}{8}$	$\frac{1}{2}$	A1 3	indep, dep ans < 1	· prod 5 proo5	
	18	6	111 5			
iii	⁸ P ₃ or $8 \times 7 \times 6$ or ⁸ C	$_{1}\times^{7}C_{1}\times^{6}C_{1}$ or 336	M1	$\frac{1}{8} \times \frac{1}{7} \times \frac{1}{6}$ only M	I2 If \times or \div : M1	
	_				$(1/8)^3$ M1	
	$1 \div {}^{8}P_{3}$ only		M1			
	$= \frac{1}{336}$ or 0.00298 (3 s	sf)	A1 3			
Total			8			
h	•			•		

Total		13		
			But NB ans 2.85(25)	M1A0M1A0
b			Original scheme	
iia			$({}^{19}/_{20})^2$ or $({}^{19}/_{20})^2 \times {}^{1}/_{20} + 0$	
ib			$/_{20} + /_{20} \times /_{20} + (/_{20})$ or $1 - (^{19}/_{20})^2$	M1
ia ib			Original scheme $\frac{1}{20} + \frac{19}{20} \times \frac{1}{20} + \frac{19}{20}$	2 = 1/
			With replacement:	
	$= /_{20}$ or 2.85	A1 4	NB: $^{19}/_{20} \times 3 = 2.85$ no m	ks
	$\sum xp_{=57/20}$ or 2.85	M1	≥ 2 terms, ft their <i>p</i> 's if 2	$\Sigma p = 1$
	$\binom{20 \times 19}{= \frac{1}{20}}$	A1		of ¹ / ₂₀ M1A1
b	$(\mathbf{P}(X=1) = {}^{1}/_{20})$	M1	or $1 - (\frac{1}{20} + \frac{9}{10})$	
na	$ ^{/20}_{=9}/^{19}_{10}$ oe	A1 2	/ 20 ^ / 19 ^ / 18 + / 20 ^ / 1	19^{-18} / 18 OI / 20 $^{-120}$ / 20
iia	$\frac{19}{20} \times \frac{18}{19}$	M1	$\frac{19}{20} \times \frac{18}{19} \times \frac{1}{18} + \frac{19}{20} \times \frac{18}{18}$	1^{17} or $1/11^{17}$
	$= \frac{3}{20}$	A1 3		
U	/ 20 T / 20 ^ / 19 T / 20 ^ / 19 ^ / 18	1412	terms added	$1 - \frac{19}{20} \times \frac{19}{19} \times \frac{18}{19} \times \frac{17}{18}$
b	$\frac{1}{20} + \frac{19}{20} \times \frac{1}{19} + \frac{19}{20} \times \frac{18}{19} \times \frac{1}{18}$	M2	M1 any 2 correct	$\frac{19}{20} \times \frac{18}{19} \times \frac{17}{18}$
	all correct incl. probs and W & R	B1 4		,
	structure correct ie 6 branches	B1	regardless of probs & lat (or 14 branches with cor	
	$^{17}/_{18}$ or $^{17}_{18}$ seen	B1	us soudlass of unable of tot	h al a
8ia	$\frac{18}{17}$ or $\frac{1}{19}$ or $\frac{1}{19}$ seen	B1		

9i	$(1 - 0.12)^n$	or $0.88^{23} = 0.052$	M1	Can be implied by 2^{nd} M1 allow $n-1$
	<u>log 0.05</u> log 0.88	or $0.88^{24} = 0.052$ or $0.88^{24} = 0.046$	M1	or $\log_{0.88} 0.05$ or 23.4()
	<i>n</i> = 24		A1 3	Ignore incorrect inequ or equals signs
ii	${}^{6}C_{2} \times 0.88^{4} \times 0.12^{2}$ × 0.12 = 0.0155	(= 0.1295)	M3 M1 A1 5	or $0.88^4 \times 0.12^2$ M2 or ${}^6C_2 \times 0.88^4 \times 0.12^2$ + extra M2 or 2 successes in 6 trials implied or 6C_2 M1 dep \ge M1 $0.88^4 \times 0.12^2 \times 0.12$: M2M1 $0.88^4 \times 0.12^3$ M0M0A0 unless clear P(2 success in 6 trials) $\times 0.12$ in which case M2M1A0
Total			8	

Total 72 marks

Note: "(3 sfs)" means "answer which rounds to ... to 3 sfs". If correct ans seen to \geq 3sfs, ISW for later rounding Penalise over-rounding only once in paper.

1 (i) attempts at threading indep prob of succeeding in threading const B1 in context (ii) (a) $0.7^2 \times 0.3$ M1 (iii) (b) $0.7^2 \times 0.3$ M1 (b) $0.7^2 \times 0.3$ M1 Condone 0.072 (b) $0.7^2 \times 0.3$ M1 Condone 0.072 (b) $0.7^2 \times 0.3$ M1 Condone 0.072 (c) $0.7 \times 0.3 + 0.7 \times 0.3 + 0.7^2 \times 0.3 + $	Penalise over-	rounding only once in paper.		
(ii) (a) 0.7 ² × 0.3 = 0.0720 (3sf) MI A1 2.2 or 1-(0.2+0.7×0.3+0.7*×0.3+0.7*×0.3+0.7*×0.3) or 1-(0.2+0.7×0.3+0.7*×0.3+0.7*×0.3) or 1-(0.2+0.7×0.3+0.7*×0.3) or 1-(0.2+0.7×0.3+0.7*×0.3+0.7*×0.3) or 1-(0.2+0.7×0.3+0.7*×0.3+0.1**0.7*×0.3+0.1**0.7*×0.3+0.1**0.7*×0.3+0.1**0.7*×0.3+0.1**0.7*×0.3+0.1**0.7*×0.3+0.1**0.7*×0.3+0.1**0.7*×0.3+0.1**0.7*×0.3+0.1**0.7*×0.3+0.1**0.7*×0.3+0.1**0.7*×0.3+0.1**0.7**0.3+0.1**0.0**0.5**0.1**0.0**0.0**0.0**0.0**	1 (i)	attempts at threading indep	B1	in context
(ii) (a) 0.7 ² × 0.3 = 0.0720 (3sf) MI A1 2.2 or 1-(0.2+0.7×0.3+0.7*×0.3+0.7*×0.3+0.7*×0.3) or 1-(0.2+0.7×0.3+0.7*×0.3+0.7*×0.3) or 1-(0.2+0.7×0.3+0.7*×0.3) or 1-(0.2+0.7×0.3+0.7*×0.3+0.7*×0.3) or 1-(0.2+0.7×0.3+0.7*×0.3+0.1**0.7*×0.3+0.1**0.7*×0.3+0.1**0.7*×0.3+0.1**0.7*×0.3+0.1**0.7*×0.3+0.1**0.7*×0.3+0.1**0.7*×0.3+0.1**0.7*×0.3+0.1**0.7*×0.3+0.1**0.7*×0.3+0.1**0.7*×0.3+0.1**0.7*×0.3+0.1**0.7**0.3+0.1**0.0**0.5**0.1**0.0**0.0**0.0**0.0**		prob of succeeding in threading const	B1 2	in context
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(ii) (a)			
(b) 0.7^5 M2 or $1-(0.3+0.7\times 0.3+0.7^5\times 0.$	(1) (1)			Condone 0.072
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(b)	0.7	M2	+0.7 ⁴ ×0.3)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				M1 for one term omitted or extra or
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				wrong or 1-0.7 ⁵ or($0.3++0.7^4\times0.3$) or
(iii)likely to improve with practice hence independence unlikely or prob will increase each timeB10.6 not 0.7 M0 in (a) M1 in (b) 1/3,2/3 used M1 in (3) M1 in (b) or thread strands gradually separate 1 st B1 must be in context. hence independence unlikely or prob will increase each time2 (i)(a)Use of correct midpts $\Sigma U_f + \Sigma f$ = 17.65B111,14,18,25.5 I within class, \geq three I' seen [17.575,17.7]2 (i)(a)Use of correct midpts $\Sigma U_f + \Sigma f$ = 17.65B1 (= 13050.5)11,14,18,25.5 I within class, \geq three I' seen [17.575,17.7]2 $L^2 f$ $\sqrt{\frac{13050.5''}{40}} = (= 13050.5)$ $\sqrt{\frac{13050.5''}{40}} = (= 1,47.4)$ $= 3.84$ (3 sfs)M1 $= 2$ three I^2 seen $= 4$ (ii)20 \div 5 $= 4$ M1 $A1$ $A1$ \in three I'_2 ne $V = max B1M0A0M1M0A0not "orig values were guesses"or or exact values unknown ocB11(iii)20 \div 5= 4M1A1A1condone 20 \ddagger [4,5] or ans 5A1A1(iii)2_{0.5}^{m} value requi d and1^{st} two classes contain 14 valuesA1A1M1A1A1(b)decreaseA1B1A1(iii)S_{bm} = 0.2412S_{bm} = 0.10992S_{bm} = 0.10992S_{bm} = 0.10992S_{bm} = 0.10992S_{bm} = 0.10992S_{bm} = 0.139 (3 sfs)A1A1(iii)Small, low or not close to 1 or closeto 0 oepts tot close to 1 or closeto 0 oepts tot close to 1 or closeot proveB1B1A1(iii)Conce to line oepts tot close to 1 or closeto 0 oepts tot close to 1 in coloseto 0 oe$		= 0.168 (3 sfs)	A1 3	
(iii) $1/3,2/3$ used M1 in (a) M1 in (b)(iii)likely to improve with practiceB1 $1/3,2/3$ used M1 in (a) M1 in (b)(iii)likely to improve with practiceB1af B1 must be in context. hence independence unlikely or prob will decrease each timeTotal[9]2 (i)(a)Use of correct midpts $\Sigma lf = \Sigma f$ 40 [9]2 (i)(a)Use of correct midpts $\Sigma lf = \Sigma f$ 40 [11,14,18,25.5] M1 $2/f^2 f$ $\sqrt{140}$ (= 706 ± 40) $= 17.65$ M1 $2/f^2 f$ $\sqrt{140}$ (= 13050.5)M1 (b) (= 13050.5)M1				
(iii)likely to improve with practice hence independence unlikely or prob will increase each timeB1or thread strands gradually separate 1" B1 must be in context. hence independence unlikely or prob will decrease each timeTotal[9]2 (i) (a)Use of correct midpts $\Sigma lf \neq \Sigma f$ $= 17.65$ [8] $11,14,18,25.5$ $I within class, \geq three lf seenA1[17,575,17.7]\Sigma l^2 f= 3.84 (3 sfs)(= 13050.5)\sqrt{\frac{113050.5^{n}}{40}}M1= 3.84 (3 sfs)11,14,18,25.5A1= 3.84 (3 sfs)(ii)20 \div 5^{n}= 4(= \sqrt{14.74})A1M1\pm 40,-mean2, \sqrt{Dep>0}.\Sigma (-17.65)2, f at least 3 M1, \pm 40, A1 = 6(iii)20 \div 5^{n}= 4B1 111(iii)20 \div 5^{n}= 4B1 11(iii)20 \div 5^{n}= 4B1 11(iii)20 \div 5^{n} value requ'd and16 \div 20[13]B1 1(iii)20.5^{nh} value requ'd and16 \div 20[13](iii)20.5^{nh} value requ'd and16 \div 20[13]3 (i)S_{lim} = 0.2412S_{lim} = 0.10992S_{min} = 0.139 (3 sfs)A1 3(iii)0.2412S_{lim} = 0.10992S_{min} = 0.139 (3 sfs)A1 3(iii)0.345A1 3(iii)0.345A1 3(iii)0.345A1 3(iii)0.139 (3 sfs)A1 3(iii)0.1422S mal, low or not close to 1 or closeto 0 \cdot 0pls not close to 1 line 0(iii)0.16 = 0B1 1(iv)1.32$				
Image: Independence unlikely or prob will increase each time 1^{41} B1 must be in context. hence independence unlikely or prob will decrease each timeTotalImage: Image: Image	·····	111 1 /	D 1	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	(iii)	likely to improve with practice	BI	
or prob will increase each timeB12or prob will decrease each time or similar Allow 'change'Total[9]2 (i) (a)Use of correct midpts $\Sigma lf \div \Sigma f$ = 17.65B111,14,18,25.5 $l within class, \geq three lf seen[17.575,17.7]\Sigma l^2 \div f\sqrt{\frac{113050.5"}{40}} = "17.65"^2(= 13050.5)(= \sqrt{14.74})M1\geq three l^2 f seen\Sigma (l-17.65)^{4}, at least 3 M1,÷40,A1 6(b)mid pts used or data groupedor exact values unknown oeB11(ii)20.5^{th} value requ'd and1^{tt} two classes contain 14 values16 - 20M1(iii)20.5^{th} value requ'd and1^{tt} two classes contain 14 valuesB1 1condone 20^{th} (l, 51 or ans 5(iii)50.2^{th} = 0.2412S_{hm} = 0.2412S_{hm} = 27.212B1B1B1 13 (i)S_{mm} = 0.2412S_{mm} = 27.212S_{mm} = 27.312Allow x or \div 5S_{mm} = 20.39 (3 sfs)(ii)Small, low or not close to 1 or closeto 0 oepts not close to 1 or closeto 0 oeot 0 oeB1 1(iii)Small, low or not close to 1 or closeto 0 oepts not close to line oemot or unchanged or "0.139" oeB1 1(iv)Larger oeB1 1$				
Total or similar Allow 'change' 2 (i) (a) Use of correct midpts $\sum lf \div \Sigma f$ (= 706 ÷ 40) $= 17.65$ BI 11,14,18,25.5 l within class, \geq three lf seen $ 17.575,17.7 $ 2 $l^2 f$ (= 13050.5) $\sqrt{\frac{113050.5''}{40}} = 17.65''^2$ (= $\sqrt{14.74}$) $= 3.84$ (3 sfs) M1 \geq three $l^2 f$ seen $(-17.65)^2 f$, at least 3 M1, $\div 40, \sqrt{A1}$ (b) mid pts used or data grouped or exact values unknown oe BI 1 (ii) $20 \div 5$ M1 condone $20 \div [4,5]$ or ans 5 (iii) $20 \div 5$ M1 condone $20 \div [4,5]$ or ans 5 (iii) 20.5^{th} value requ'd and 1^{st} two classes contain 14 values $16 - 20$. M1 condone 20^{th} oe (iv) (a) $5_{lim} = 0.2412$ M1 allow x or $\div 5$ $S_{lim} = 0.2412$ $S_{lim} = 0.2412$ M1 ft her Ss $\sqrt{S_{lin}S_{lim}}$ $0 \times 10 colose to 1 or close to 1 or close to 0 o e pts not close to 1 or close to 1 or close to 0 o e pts not close to 1 or close to 1 or close to 0 o e pts not close to 1 or close to 1 or close to 0 o e pts not close to 1 or close to 1 or close to 0 = 10 + 10 + 10 + 10 + 10 + 10 + 10 + $		hence independence unlikely		hence independence unlikely
TotalImage: Notation of the second structure2 (i) (a)Use of correct midptsB111,14,18,25.5 $\Sigma l'f - \Sigma f$ (= 706 ÷ 40)M1i within class, \geq three l' seen 17.65 $11,16,18,25.5$ $11,14,18,25.5$ $\Sigma l^2 f$ (= 13050.5)M1 \geq three $l^2 f$ seen $\sqrt{\frac{113050.5^n}{40} - n!7.65^{n/2}}$ (= $\sqrt{14.74}$)M1 $= 3.84$ (3 sfs) $11,14,18,25.5$ $\Sigma (-17.65)^{n/2}$, at least 3 M1,÷40, $\sqrt{1.3.84 A1}$.(ii) $20 \div 5$ M1 $\div 4 \Rightarrow$ max B1M0A0M1M0A0(b)mid pts used or data grouped or exact values unknown oeB1 11 $20,5^{th}$ value requ'd and 1^{th} two classes contain 14 values $16 - 20$ M1(iii) $20,5^{th}$ value requ'd and 1^{th} two classes contain 14 values $B1 = 1$ or third class oe(iv)(a)increaseB1(b)decreaseB11(c) $5_{hm} = 0.1292$ Allow x or $\div 5$ $S_{hm} = 0.139, (3, sfs)$ A13(ii)Small, low or not close to 1 or close to 0 oe pt snot close to line oeB11(iii)more or unchanged or "0.139" oeB11(iv)Larger oeB11		or prob will increase each time	B1 2	or prob will decrease each time
TotalImage: Notation of the second structure2 (i) (a)Use of correct midptsB111,14,18,25.5 $\Sigma l'f - \Sigma f$ (= 706 ÷ 40)M1i within class, \geq three l' seen 17.65 $11,16,18,25.5$ $11,14,18,25.5$ $\Sigma l^2 f$ (= 13050.5)M1 \geq three $l^2 f$ seen $\sqrt{\frac{113050.5^n}{40} - n!7.65^{n/2}}$ (= $\sqrt{14.74}$)M1 $= 3.84$ (3 sfs) $11,14,18,25.5$ $\Sigma (-17.65)^{n/2}$, at least 3 M1,÷40, $\sqrt{1.3.84 A1}$.(ii) $20 \div 5$ M1 $\div 4 \Rightarrow$ max B1M0A0M1M0A0(b)mid pts used or data grouped or exact values unknown oeB1 11 $20,5^{th}$ value requ'd and 1^{th} two classes contain 14 values $16 - 20$ M1(iii) $20,5^{th}$ value requ'd and 1^{th} two classes contain 14 values $B1 = 1$ or third class oe(iv)(a)increaseB1(b)decreaseB11(c) $5_{hm} = 0.1292$ Allow x or $\div 5$ $S_{hm} = 0.139, (3, sfs)$ A13(ii)Small, low or not close to 1 or close to 0 oe pt snot close to line oeB11(iii)more or unchanged or "0.139" oeB11(iv)Larger oeB11		-		or similar
Total [9] 2 (i) (a) Use of correct midpts $\Sigma lf \div \Sigma f$ (= 706 ÷ 40) = 17.65 B1 ΛI 11,14,18,25.5 l within class, \geq three lf seen [17.575,17.7] $\Sigma l^2 f$ (= 13050.5) M1 ΛI \geq three l ² f seen $\sqrt{\frac{1'13050.5''}{40} - "17.65"^2}$ (= 14.74) $= 3.84 (3 \text{ sfs})$ (= $\sqrt{14.74}$) M1 $= 3.84 (3 \text{ sfs})$ \geq three l ² f seen $(17.65)^{2} f, at least 3 M1, \div 40, \sqrt{M1, 3.84 A1}, \div 4 \Rightarrow max B1M0A0M1M0A0$ (b) mid pts used or data grouped or exact values unknown oe 16 - 20 m1 $20 \div 5$ condone $20 \div [4,5]$ or ans 5 (ii) $20 \div 5$ M1 1^{4} two classes contain 14 values 16 - 20 M1 0^{4} condone 20^{4h} 0^{4} (iii) 0.5^{4h} walue requ'd and 1^{4} two classes contain 14 values 16 - 20 M1 0^{4} condone 20^{4h} 0^{4} (iii) $S_{hm} = 0.2412$ $S_{m} = 0.10992$ $S_{m} = 27.212$ B1 1 Allow x or $\div 5$ $S_{hm} = 0.10992$ $S_{m} = 27.212$ B1 $r = \frac{S_{hm}}{\sqrt{S_{hh}S_{mm}}}$ = 0.139 (3 sfs) A1 3 (iii) Small, low or not close to 1 or close to 0 oe pts not close to 1 in close to 0 oe B1 ft 1^{4} B1 about value of r 2^{nd} B1 about diag (iv) Larger oe B1 1 I				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Total		[0]	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Use of correct midnts		11 14 18 25 5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 (1) (a)	^		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		= 17.65	Al	[17.575,17.7]
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		2		2
V40 = 3.84 (3 sfs) $\sum (1-17.65)^2 f$, at least 3 M1,÷40, $\sqrt{M1,3.84 A1.}$ ÷ 4 \Rightarrow max B1M0A0M1M0A0(b)mid pts used or data grouped or exact values unknown oeB11(ii)20 ÷ 5 = 4M1 A1 2condone 20 ÷ [4,5] or ans 5(iii)20.5th value requ'd and 1st two classes contain 14 valuesM1 B1 2condone 20 th(iii)20.5th value requ'd and 1st two classes contain 14 valuesM1 B1 2condone 20th oe(iv)(a)increaseB1 1(b)decreaseB1 1Total[13]3(i) $S_{hm} = 0.2412$ $S_{hm} = 0.10992$ $S_{mm} = 27.212$ $r = \frac{S_{hm}}{\sqrt{(S_{hb}S_{mm})}}$ $= 0.139 (3 sfs)$ A1 3(ii)Small, low or not close to 1 or close to 0 oeA1 3(iii)none or unchanged or "0.139" oeB1 1(iv)Larger oeB1 1			M1	\geq three $l^2 f$ seen
V40 = 3.84 (3 sfs) $\sum (1-17.65)^2 f$, at least 3 M1,÷40, $\sqrt{M1,3.84 A1.}$ ÷ 4 \Rightarrow max B1M0A0M1M0A0(b)mid pts used or data grouped or exact values unknown oeB11(ii)20 ÷ 5 = 4M1 A1 2condone 20 ÷ [4,5] or ans 5(iii)20.5th value requ'd and 1st two classes contain 14 valuesM1 B1 2condone 20 th(iii)20.5th value requ'd and 1st two classes contain 14 valuesM1 B1 2condone 20th oe(iv)(a)increaseB1 1(b)decreaseB1 1Total[13]3(i) $S_{hm} = 0.2412$ $S_{hm} = 0.10992$ $S_{mm} = 27.212$ $r = \frac{S_{hm}}{\sqrt{(S_{hb}S_{mm})}}$ $= 0.139 (3 sfs)$ A1 3(ii)Small, low or not close to 1 or close to 0 oeA1 3(iii)none or unchanged or "0.139" oeB1 1(iv)Larger oeB1 1		["13050.5"		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\sqrt{-40}$ -"17.65" ² (= $\sqrt{14.74}$)	M1	\div 40,-mean ² , $\sqrt{.Dep}$ >0.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				$\sum (1-17.65)^2 f$, at least 3 M1,÷40, $$
(b)mid pts used or data grouped or exact values unknown oe $\div 4 \Rightarrow \max B1M0A0M1M0A0$ (ii) $20 \div 5$ $= 4$ M1 A1 2not "orig values were guesses"(iii) $20 \div 5$ $= 4$ M1 A1 2condone $20 \div [4,5]$ or ans 5(iii) 20.5^{th} value requ'd and 1^{st} two classes contain 14 values $16 - 20$ M1 B1 2condone 20^{th} 		= 3.84 (3 sfs)	A1 6	
(b)mid pts used or data grouped or exact values unknown oenot "orig values were guesses"(ii) $20 \div 5$ $= 4$ M1 A1 2condone $20 \div [4,5]$ or ans 5(iii) 20.5^{th} value requ'd and 1^{st} two classes contain 14 values $16 - 20$ mot "orig values were guesses"(iv)(a)increase $16 - 20$ B1 2condone 20^{th} oe or third class oe(iv)(a)increase $16 - 20$ B1 2or third class oe(ii) $S_{hm} = 0.2412$ $S_{mn} = 27.212$ B1 $\sqrt{(S_{hh}S_{mn})}$ $= 0.139$ (3 sfs)Allow x or $\div 5$ $M1$ (ii)Small, low or not close to 1 or close to 0 oe pts not close to line oeB1 1(iii)none or unchanged or "0.139" oeB1 1(iv)Larger oeB1 1				
or exact values unknown oeB11(ii) $20 \div 5$ M1condone $20 \div [4,5]$ or ans 5 $= 4$ A12(iii) 20.5^{th} value requ'd and 1^{st} two classes contain 14 valuesM1oe $16 - 20$ B12or third class oe(iv)(a)increaseB11(b)decreaseB11Total[13]3(i) $S_{hm} = 0.2412$ $S_{hh} = 0.10992$ $S_{mm} = 27.212$ B1 $N_{1m} = 0.139(3 \text{ sfs})$ All ow x or $\div 5$ any one S correct ft their Ss(ii)Small, low or not close to 1 or close to 0 oe pts not close to line oeB11(iii)none or unchanged or "0.139" oeB1 B11	(h)	mid nts used or data grouped	+	
(ii) $20 \div 5$ $= 4$ M1 A1condone $20 \div [4,5]$ or ans 5(iii) 20.5^{th} value requ'd and 1^{st} two classes contain 14 values $16 - 20$ m1 B1condone 20^{th} oe(iv) (a)increaseB12(b)decreaseB11(b)decreaseB11Total[13]3(i) $S_{hm} = 0.2412$ $S_{hh} = 0.10992$ $S_{mm} = 27.212$ Allow x or $\div 5$ any one S correct ft their Ss(ii)Small, low or not close to 1 or close to 0 oe pts not close to line oeB1(iii)none or unchanged or "0.139" oeB1(iii)none or unchanged or "0.139" oeB1(iii)Larger oeB11	(0)		D 1 1	not ong values were guesses
$= 4$ A1 2(iii) 20.5^{th} value requ'd and 1^{st} two classes contain 14 valuesM1 M1 oecondone 20^{th} oe(iv) (a)increaseB1 2or third class oe(iv) (a)increaseB1 1(b)decreaseB1 1Total[13]3 (i) $S_{hm} = 0.2412$ $S_{hh} = 0.10992$ $S_{mm} = 27.212$ Allow x or $\div 5$ any one S correct $r = \frac{S_{hm}}{\sqrt{(S_{hh}S_{mm})}}$ $= 0.139$ (3 sfs)A1 3(ii)Small, low or not close to 1 or close to 0 oeB1 ft 1^{st} B1 about value of r 2^{nd} B1 about diag(iii)none or unchanged or "0.139" oe(iii)Larger oeB1 1	(**)			
(iii) 20.5^{th} value requ'd and 1^{st} two classes contain 14 values $16 - 20$ M1 B1 2 condone 20^{th} oe or third class oe(iv)(a)increase decreaseB1 1 ITotal[13]3 (i) $S_{hm} = 0.2412$ $S_{hh} = 0.10992$ $S_{mm} = 27.212$ $r = \frac{S_{hm}}{\sqrt{(S_{hh}S_{mm})}}$ $= 0.139$ (3 sfs)Allow x or $\div 5$ $A1 = 3$ (ii)Small, low or not close to 1 or close to 0 oe pts not close to line oeB1 B1 B11^{\text{st}} B1 about value of r $2^{\text{nd}} B1 about diag(iii)none or unchanged or "0.139" oeB1B11$	(11)			
1^{st} two classes contain 14 valuesM1oe $16 - 20$ B12or third class oe(iv) (a)increaseB11(b)decreaseB11Total[13]3 (i) $S_{hm} = 0.2412$ $S_{hh} = 0.10992$ $S_{mm} = 27.212$ Allow x or $\div 5$ $mm = 27.212$ B1 $\sqrt{(S_{hh}S_{mm})}$ $= 0.139$ (3 sfs)A1any one S correct ft their Ssft their Ss(ii)Small, low or not close to 1 or close to 0 oe pts not close to line oeB1(iii)none or unchanged or "0.139" oeB1(iv)Larger oeB11			AI 2	
$16-20$ B1<2	(iii)			condone 20 th
(iv) (a)increaseB1 1(b)decreaseB1 1Total[13]3 (i) $S_{hm} = 0.2412$ $S_{hh} = 0.10992$ $S_{mm} = 27.212$ $r = \frac{S_{hm}}{\sqrt{(S_{hh}S_{mm})}}$ $= 0.139$ (3 sfs)Allow x or $\div 5$ any one S correct M1(ii)Small, low or not close to 1 or close to 0 oe pts not close to line oeB1 ft(iii)Image of the second or "0.139" of the second of the seco			M1	
(iv) (a)increaseB1 1(b)decreaseB1 1Total[13]3 (i) $S_{hm} = 0.2412$ $S_{hh} = 0.10992$ $S_{mm} = 27.212$ $r = \frac{S_{hm}}{\sqrt{(S_{hh}S_{mm})}}$ $= 0.139$ (3 sfs)Allow x or $\div 5$ any one S correct M1(ii)Small, low or not close to 1 or close to 0 oe pts not close to line oeB1 ft(iii)Image of the second or "0.139" of the second of the seco		16 – 20	B1 2	or third class oe
(b)decreaseB1 1Total[13]3 (i) $S_{hm} = 0.2412$ $S_{hh} = 0.10992$ $S_{mm} = 27.212$ Allow x or $\div 5$ any one S correct $r = \underline{S_{hm}}$ $\sqrt{(S_{hh}S_{mm})}$ $= 0.139$ (3 sfs)M1ft their Ss(ii)Small, low or not close to 1 or close to 0 oe pts not close to line oeB11(iii)none or unchanged or "0.139" oeB1 1(iv)Larger oeB1 1	(iv) (a)		B1 1	
Total[13]3 (i) $S_{hm} = 0.2412$ $S_{hh} = 0.10992$ $S_{mm} = 27.212$ $r = \frac{S_{hm}}{\sqrt{(S_{hh}S_{mm})}}$ Allow x or $\div 5$ any one S correct minimum field for their SsB1 minimum field for their Ss(ii)Small, low or not close to 1 or close to 0 oe pts not close to line oeB1 B1 minimum field for the system(iii)none or unchanged or "0.139" oeB1 B1(iv)Larger oeB1				
3 (i) $S_{hm} = 0.2412$ $S_{hh} = 0.10992$ $S_{mm} = 27.212$ $r = S_{hm}$ $\sqrt{(S_{hh}S_{mm})}$ $= 0.139$ (3 sfs)Allow x or $\div 5$ any one S correct ft their Ss(ii)Small, low or not close to 1 or close to 0 oe pts not close to line oeB1 ft B1 1^{st} B1 about value of r 2^{nd} B1 about diag(iii)none or unchanged or "0.139" oeB1 1				
$S_{hh} = 0.10992$ B1any one S correct $S_{nm} = 27.212$ B1any one S correct $r = \underline{S_{hm}}$ M1ft their Ss $\sqrt{(S_{hh}S_{mm})}$ A13(ii)Small, low or not close to 1 or closeB1 ftto 0 oepts not close to line oeB1(iii)none or unchanged or "0.139" oeB1(iv)Larger oeB1		$S_{1} = 0.2412$		Allow x or $\div 5$
$S_{mm} = 27.212$ B1any one S correct $r = \underline{S_{hm}}{\sqrt{(S_{hh}S_{mm})}}$ $H1$ ft their Ss $= 0.139 (3 \text{ sfs})$ $A1 3$ (ii)Small, low or not close to 1 or close to 0 oe pts not close to line oe $B1 \text{ ft}$ (iii)none or unchanged or "0.139" oe $B1 1$ (iv)Larger oe $B1 1$	5 (1)			
$r = \underline{S_{hm}}$ $\sqrt{(S_{hh}S_{mm})}$ $= 0.139 (3 sfs)$ M1 A1 3ft their Ss(ii)Small, low or not close to 1 or close to 0 oe pts not close to line oeB1 ft B1 B11st B1 about value of r 2^{nd} B1 about diag(iii)none or unchanged or "0.139" oeB1 1(iv)Larger oeB1 1			D1	
$\overline{\sqrt{(S_{hh}S_{mm})}}$ A13(ii)Small, low or not close to 1 or close to 0 oe pts not close to line oeB1 ft 1^{st} B1 about value of r 2^{nd} B1 about diag(iii)none or unchanged or "0.139" oeB11(iv)Larger oeB11				•
$= 0.139 (3 \text{ sfs})$ A1 3(ii)Small, low or not close to 1 or close to 0 oe pts not close to line oeB1 ft 1^{st} B1 about value of r 2^{nd} B1 about diag(iii)none or unchanged or "0.139" oeB1 1(iv)Larger oeB1 1			Ml	It their Ss
(ii)Small, low or not close to 1 or close to 0 oe pts not close to line oeB1 ft 1^{st} B1 about value of r 2^{nd} B1 about diag(iii)none or unchanged or "0.139" oeB1 1(iv)Larger oeB1 1				
to 0 oe pts not close to line oe2nd B1 about diag(iii)none or unchanged or "0.139" oeB1(iv)Larger oeB1		= 0.139 (3 sfs)	A1 3	
to 0 oe pts not close to line oe2nd B1 about diag(iii)none or unchanged or "0.139" oeB1(iv)Larger oeB1	(ii)	Small, low or not close to 1 or close	B1 ft	1^{st} B1 about value of <i>r</i>
pts not close to line oeB1(iii)none or unchanged or "0.139" oeB1(iv)Larger oeB1				2 nd B1 about diag
(iii) none or unchanged or "0.139" oe B1 1 (iv) Larger oe B1 1			B1	
(iv) Larger oe B1 1	(iii)	- ^		
1 OTAI [7]	· · /			
	Total		[7]	

4	(i)	$(0 \times \frac{1}{2}) + 1 \times \frac{1}{4} + 2 \times \frac{1}{8} + 3 \times \frac{1}{8}$	M1		≥ 2 non-zero terms seen
		$=\frac{7}{8}$ or 0.875 oe	A1		If ÷3 or 4 M0M0M1(poss)
		$(0 \times \frac{1}{2}) + 1 \times \frac{1}{4} + 2^2 \times \frac{1}{8} + 3^2 \times \frac{1}{8}$ (=	M1		\geq 2 non-zero terms seen
		$1\frac{7}{8}$)	N/1		
		$-(\frac{7}{8})^{2}$	M1		dep +ve result M1 all4 (x-0.875) ² terms seen.
		$=\frac{71}{64}$ or 1.11 (3 sfs) oe	A1	5	M1 mult p,∑ A1 1.11
	(ii)	Pin stated or implied	M1		Eg table or $\frac{1}{4}^n \times \frac{3}{4}^m$ (<i>n</i> + <i>m</i> =10,n,m \neq 1)
		Bin stated or implied 0.922 (3 sfs)	A1	2	or10C4
	(•••		N/1		or 5(or 4 or 6) terms correct
	(iii)	$n = 10 \& p = \frac{1}{8}$ stated or implied	M1		
		$^{10}C_4 \times \frac{7}{8}^6 \times \frac{1}{8}^4$	M1		
		= 0.0230 (3 sfs)	A1	3	condone 0.023
	Total		[1		
5	(i)	$\frac{6}{14} \times \frac{5}{13} \times \frac{3}{12}$	M1		${}^{6}C_{1} \times {}^{5}C_{1} \times {}^{3}C_{1}$
		$ \begin{array}{c} 14 \\ \times 3! \\ \text{oe} \end{array} $	M1		\div ¹⁴ C ₃
		$=\frac{45}{182}$ or 0.247 (3 sfs)oe	A 1	2	With repl M0M1A0
	(ii)		A1 M2		${}^{6}C_{3} + {}^{5}C_{3} + {}^{3}C_{3}$ M1 for any one
	(11)	$\frac{6}{14} \times \frac{5}{13} \times \frac{4}{12} + \frac{5}{14} \times \frac{4}{13} \times \frac{3}{12} + \frac{3}{14} \times \frac{2}{13} \times \frac{1}{12}$	1012		$(\div^{14}C_3)M1$ all 9 numerators correct.
		$=\frac{31}{364}$ or 0.0852 (3 sf)	A1	3	With repl M1($6/14$) ³ +($5/14$) ³ +($3/14$) ³
	Total		[6]	
6	(a)	A: diag or explanation showing pts close to st line,	B1		
		always increasing			
		B:Diag or expl based on	B1		Diag or expl based on
		r=1=>pts on st line =>r(s)=1	B1	3	$r(s) \neq 1 => pts not on st line$ => $r \neq 1$
		->1(5)-1	DI	5	$r=1=>pts on st line&r(s) \neq 1=>pts not$
					on st line B1B1
					r=1=>r(s)=1 B2
	(b)	$\overline{y} = 2.4 \times 4.5 + 3.7$	M1		Attempt to sub expression for y
		= 14.5	A1		x=0.96x+1.48-c oe
		$4.5 = 0.4 \times $ "14.5"- <i>c</i>	M1	4	sub $x=4.5$ and solve
		<i>c</i> = 1.3	A1	4	c=1.3
		a'=x-b'y :-14.5 M1A1;			14.5 M1A1.(y-3.7)/2.4=0.4y-c and
		then a'=4.5-0.4x14.5=-1.3 M1A1			sub14.5 M1 c=1.3 A1
-	Total	257	[7	-	D1 num D1 denom 25/27 D1
. <u>7</u>	(i) (ii)	$\frac{25}{37}$	B2 M1		B1 num, B1 denom 25/37xp B1
	(**)	$\frac{15}{23}$ seen or implied	1411		
1		$\times \frac{39}{59}$ seen or implied	M2		M1 num, M1 denom
		$=\frac{585}{1357}$ or 0.431 (3 sfs) oe		Δ	Allow M1 for 39/59x or + wrong p
	Total	57	A1 [6	4	Allow M1 for 39/59x or + wrong p

8 (i)	^{5!} / ₂	M1	Allow 5P3
	= 60	A1 2	
(ii)	4!	M1	Allow 2×4!
	= 24	A1 2	
(iii)	$^{2}/_{5} \times ^{3}/_{4} \text{ or } 3/5 \times 2/4$	M1	allow M1 for $\frac{2}{5} \times \frac{3}{5} \times 2$ or $\frac{12}{25}$
	$\times 2$	M1	or $(6 \times 3!) \div (i)$ M2 or
	$= {}^{3}/_{5}$ oe	A1 3	3!÷(i),6÷(i),(6+6)÷(i),6k÷(i) or 6×6 or
			36 or 1-correct answer M1
			(k,integer ≤ 5)
Total		[7]	
9 (i)	p^2	B1 1	
(ii)	$(q^2p)^2$ oe =AG	B1 1	
(iii)	r=q ²	B1	May be implied
	a/(1-r) used	M1	With a=p ² and r=q ² or q ⁴
	$(S_{\infty} =) \frac{p^2}{1-q^2}$	A1	
		M1	Attempt to simplify using $p+q=1$ correctly. Dep on $r = q^2$ or q^4
	$= \frac{p^2}{1 - (1 - p)^2}$		$\frac{(1-q)^2}{(1-q)(1+q)} \text{or } p^2/p(1+q)$
	p/(2-p) AG	A1 5	Correctly obtain given answer showing at least one intermediate step.
P2Total		[7]	

Total 72 marks

Note: "(3 sfs)" means "answer which rounds to ... to 3 sfs". If correct ans seen to \geq 3sfs, ISW for later rounding Penalise over-rounding only once in <u>paper</u>.

	er-rounding only once in <u>paper</u> .		
1i	590	B1 1	Allow approximately 590
ii	Graph horiz (for ≥ 55 mks) oe	B1 1	or levels off, or $grad = 0$, $grad$ not increase
	-		Allow line not rise, goes flat, plateaus, stops
			increasing, not increase, doesn't move
	20 - 41	D1 1	
iii	39 to 41	B1 1	
iv	Attempt read cf at 26 or 27	M1	eg 26 mks $\rightarrow 150^{\text{th}}$ 27 mks $\rightarrow 180^{\text{th}}$
	Double & attempt read x	M1	eg read at $cf = 300$ or 360 Indep of first M1
			May be implied by ans
	Max C = 29 to 31.5	A1 3	Answer within range, no working, M1M1A1
			32 without working, sc B1
v	LQ = 25.5-26.5 or UQ = 34-35.5	M1	M1 for one correct quartile
•		A1	-
	IQR = 8-10	AI	dep \geq 1 correct quartile or no working
	(German) more spread	B1ft 3	or less consistent, less uniform, less similar,
			more varied, more variable, greater variance,
			more spaced apart, further apart
			ft their IQR; must be consistent with IQR
			Correct comment with no working: M0A0B1
Total		9	
2i	Opposite orders or ranks or scores	-	or reversed or backwards or inverse
∠1	Opposite orders or ranks or scores		or reversed, or backwards, or inverse
	or results or marks		or as one increases the other decreases
	$r_{s} = -1$	B1 1	Needs reason AND value
ii	Attempt Σd^2 (= 6)	M1	
11		1411	
	$1 - \frac{6 \times \Sigma d^2}{3(3^2 - 1)}$		s of the second s
	$3(3^2-1)$	M1	dep 1 st M1
	$=-\frac{1}{2}$ oe		Allow use wrong table for M1M1
	$=-\frac{1}{2}$ be	A1 3	C
iii	3! or ${}^{3}P_{3}$ or 6	M1	r attempt list possible orders of 1,2,3 (≥3 orders)
111			
	$1 \div$ their '6'	M1	2 nd M1 for fully correct method only
			or $\frac{1}{3} \times \frac{1}{2} (\times 1)$: M1M1
	$\frac{1}{6}$ oe eg $\frac{6}{36}$	A1 3	
	6		
Total		7	
3i	If <i>x</i> is contr (or indep) or <i>y</i> depend't,		Allow <i>x</i> increases constantly, is predetermined,
	use y on x	B1	you choose x, you set x, x is fixed, x is chosen
		-	
	If noithor variable contrid (or inder)		Allow y not controlled AND went out y from a
	If neither variable contr'd (or indep)		Allow <i>y</i> not controlled AND want est <i>y</i> from <i>x</i>
	AND want est y from x : use y on x	B1 2	
			Ignore incorrect comments
iia	$r = 10000 - \frac{1800^2}{10000} + 150000$		or $\frac{510000}{9} - 200^2$ (= 16666.7)
	$S_{xx} = 510000 - \frac{1800^2}{9} \qquad (= 150000)$		5
	$S_{xy} = 4080 - \frac{1800 \times 14.4}{9}$ (= 1200)	M1	or $\frac{4080}{9}$ - 200×1.6 (= 133.33)
	$S_{xy} = 4080 - \frac{1800 \times 14.4}{9} (= 1200)$	1111	,
			M1 for either S
	1 1200'		1 '133 33' 1
	$b = \frac{1200'}{150000'} \qquad (= 0.008)$	M1	$b = \frac{133.33'}{16666.7'}$ dep correct expressions both S's
	14.4 0.000 1200	N/1	or $a = \frac{14.4}{1000} = 0.008 \times \frac{1800}{1000} (-0)$
	$y - \frac{14.4}{9} = 0.008(x - \frac{1800}{9})$	M1	or $a = \frac{14.4}{9} - 0.008 \times \frac{1800}{9}$ (= 0)
	7 7		Must be all correct for M1
	y = 0.008x (+ 0)		CAO
		A1 4	
iib	312.5 or 313	B1ft 1	ft their equn in (iia)
iic	-0.4	B1ft 1	ft their equn in (iia)
11C	-0.4	RIII I	11 uneir equn in (11a)

4732		Mai	rk S	cheme June 201
iid	Contraction oe	B1(1	ft)	or length decreased, shorter, pushed in, shrunk, smaller
	Unreliable because extrapolated oe	B1	2	or not in the range of x or not in range of previous results
Total		1	0	
4ia	0.299 (3 sf)	B1	1	
ib	$\begin{array}{l} 0.2991 - 0.1040 \\ = 0.195 \ (3 \text{ sf}) \text{or } \frac{1280}{6561} \text{ oe} \end{array}$	M1 A1	2	Must subtract correct pair from table
iia	$ \overset{^{15}}{=} C_4 \times (1-0.22)^{11} \times 0.22^4 $ = 0.208 (3 sf)	M1 A1	2	Allow M1 for ${}^{15}C_4 \times 0.88^{11} \times 0.22^4$
iib	$(15 \times 0.22 =) 3.3$ $15 \times 0.22 \times (1-0.22)$ or '3.3'×(1-0.22) = 2.57 (3 sf)	B1 M1 A1	3	Allow M1 for $15 \times 0.22 \times 0.88$
Total		8	}	
5i	$\frac{\frac{1}{2} \times \frac{1}{3} \text{ or } \frac{2}{4} \times \frac{1}{3} \text{ or } \frac{1}{\frac{4}{C_2}} \text{ or } \frac{2}{12}}{(=\frac{1}{6} \text{ AG})}$	B1		or 1 out of 6 or 2 out of 12 or $\frac{2!}{4!} \times 2$
	$\frac{1}{4} \times \frac{2}{3} \text{ or } 2 \times \frac{1}{4} \times \frac{1}{3} \text{ or } \frac{1}{2} \times \frac{1}{3} \text{ or } \frac{2}{4} \times \frac{1}{3}$	B1		or $\frac{2}{12}$ or $\frac{1}{6}$ or $\frac{1}{3!}$ or $\frac{1}{4}C_2$ or $\frac{2!}{4!} \times 2$
	Add two of these or double one $(=\frac{1}{3} \mathbf{AG})$	B1	3	or $\frac{2}{{}^{4}C_{2}}$ or $4 \times \frac{1}{4} \times \frac{1}{3}$ or $\frac{2}{4} \times \frac{2}{3}$ or $\frac{4}{12}$ or $\frac{2!}{4!} \times 4$ B1B1
				or $\frac{2}{6}$ or $2 \times \frac{1}{6}$ or $\frac{2}{3!}$ or $\frac{2!}{3!}$ B1B1
ii	X = 3, 4, 5, 6 only, stated or used	B1		Allow repetitions Allow other values with zero probabilities.
	P(X = 5) wking as for P(X = 4) above or $1 - (\frac{1}{6} + \frac{1}{3} + \frac{1}{6})$ or $\frac{1}{3}$	M1		
	P(X = 3) wking as for P(X = 6) above or $1 - (\frac{1}{3} + \frac{1}{3} + \frac{1}{6})$ or $\frac{1}{6}$	M1		or M1 for total of their probs = 1, dep B1
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A 1	4	or $P(X=3)=\frac{1}{6}$, $P(X=4)=\frac{1}{3}$, $P(X=5)=\frac{1}{3}$, $P(X=6)=\frac{1}{6}$ Complete list of values linked to probs
	$\frac{6}{\Sigma xp}$	A1 M1		
iii	$=4\frac{1}{2}$	A1		≥ 2 terms correct ft
	$\sum x^2 p \qquad (= 21 \frac{1}{6}) \\ - 4 \frac{1}{2}^{2}$	M1 M1		\geq 2 terms correct ft Independent except dependent on +ve result
	$=\frac{11}{12}$ or 0.917 (3 sf)	A1	5	
Total		12	2	

4732		Mark S	cheme June 2010
6	$m = (9 \times 6 + 3) \div 10$	M1	or ((Sum of any 9 nos totalling 54) + 3) \div 10
	= 5.7	A1	
	$2 = \frac{\Sigma x^2}{9} - 6^2$	M1	or $\frac{\Sigma(x-6)^2}{9} = 2$ M1
	$\Sigma x^2 = 2 \times 9 + 6^2 \times 9 \text{ or } 342$	A1	or $\Sigma x^2 = 18 + 12 \times 54 - 36 \times 9$ or 342 A1
	$v = \frac{('342'+3^2)}{10} - '5.7'^2$	M1	dep Σx^2 attempted, eg $(\Sigma x)^2$ (= 3249) or just state ' Σx^2 '; allow $$
	= 2.61 oe	A1 6	CAO
Total		6	
7i	${}^{4}C_{2} \times {}^{6}C_{3} \times {}^{5}C_{4} \text{ or } 6 \times 20 \times 5$	M1M1	M1 for any 2 correct combs seen, even if added
ii	$= 600$ $\frac{2}{4} \text{ or } \frac{{}^{3}C_{1}}{{}^{4}C_{2}} \text{ or } \frac{{}^{3}C_{1} \times {}^{6}C_{3} \times {}^{5}C_{4}}{{}^{4}C_{2} \times {}^{6}C_{3} \times {}^{5}C_{4}} \text{ or }$	A1 3 M1	or $\frac{1}{4} \times 1 + \frac{3}{4} \times \frac{1}{3}$ or $\frac{1}{4} \times 2$ or $\frac{1}{4} + \frac{1}{4}$
	$\frac{{}^{3}C_{1} \times {}^{6}C_{3} \times {}^{5}C_{4}}{{}^{6}00'}$		
	$=\frac{1}{2}$ oe	A1 2	
iii	${}^{3}C_{1} \times {}^{6}C_{3} (\times {}^{4}C_{4}) + {}^{3}C_{2} \times {}^{6}C_{3} \times {}^{5}C_{4}$	M1M1	M1 either product seen, even if \times or \div by something
	360	A1 3	
Total		8	

8			
8ia	Geo(0.3) stated or implied	M1	by $0.7^{n} \times 0.3$
	$0.7^3 \times 0.3$	M1	
	= 0.103 (3 sf)	A1 3	
b	0.7^3 or 0.343	M1	0.7^3 must be alone, ie not $0.7^3 \times 0.3$ or similar
	$1 - 0.7^3$	M1	allow $1 - 0.7^4$ or 0.7599 or 0.76 for M1 only
			or $0.3 + 0.7 \times 0.3 + 0.7^2 \times 0.3$: M1M1
			1 term wrong or omitted or extra M1
			or $1 - (0.3 + 0.7 \times 0.3 + 0.7^2 \times 0.3)$ or 0.343: M1
	= 0.657	A1 3	
iia	State or imply one viewer in 1 st four	M1	or B(4, 0.3) stated, or ${}^{4}C_{1}$ used, or YNNNY
	${}^{4}C_{1} \times 0.7^{3} \times 0.3$ (= 0.412)	M1	
	$\times 0.3$	M1	dep 1st M1
	= 0.123 (3 sf)	A1 4	
b	$0.7^5 + {}^5C_1 \times 0.7^4 \times 0.3$	M1	or $1 - (0.3^2 + 2 \times 0.3^2 \times 0.7 + 3 \times 0.3^2 \times 0.7^2 + 4 \times 0.3^2 \times 0.7)$
	= 0.528 (3 sf)	A1 2	
			Not ISW, eg 1 – 0.528: M1A0
Total		12	

Total 72 marks

Note: "(3 sfs)" means "answer which rounds to to 3 sfs". If correct ans seen to \geq 3sfs, I	ISW for later rounding
Penalise over-rounding only once in paper.	

1i	38	B1	Reversed: B1B0	
ii	61 Banar 2	B1 2	Indep of reason	Ans "Paper 1", ignore reason: B0B0 unless reversed in (i)
	Paper 2 Higher median or curve is to right	B1 B1dep 2	or similar Higher average or mean or midpoint Paper 2: half ≤ 61 , cf paper 1: half ≤ 38 Paper 1: more students scored lower marks (or lower than eg 40)	More scored higher mks Highest & lowest mks are higher For each cf, the corresponding mark is higher in p2. None get 0-10 Some get 100 Eg 25 scored > 69 in p1, cf 65 scored > 69 in p2 NOT Marks are higher NOT marks seem higher NOT everyone gets higher mks NOT Curve steeper Ignore irrelevant or incorrect
iii	55, 25 73, 46 Paper 1 IQR = 30 Paper 2 IQR = 27 Suggestion correct or p2 less varied	M1 A1 A1 B1f indep 4	M1 one pair of quartiles p2 more consistent or less spread out Allow "p2 has smaller range (or smaller variance") if IQRs found "It" is less varied: assume p2: B1	SC: If reversed in (i): (ii) p1 because median higher B1B1ftAllow 55±1, 25±1Not necessarily subtracted73±1, 46±130±130±127±1p1 more varied or more spread out or less consistentLittle difference or similarly variedNOT p2 IQR smaller than p1 unless also says less varied oeIf quartiles found but not IQRs: max M1A0A0B1If no quartiles calculated can still score B1Steeper curve aloneM0A0A0B0If IQRs wrong, with p1 < p2, ft "suggestion wrong": B1f

Mark Scheme

iv	37 (± 3)	B2 2	B1 for 163 (± 3)	Not necessarily integer. B1 for 78-80 mks for min grade A on p2 SC: ans 105 – 110: B1 (from p1 10 mks hier instead of lower)
V	37.5 28.2	B1 B1 2	cao or sd the same	NOT eg 37.51 Ignore all working
Total		12		
2				SC:Consistent use of incorrect $(1 - 0.2)$ score M-marks only SC:Consistent 0.8 insted of 0.2, no A-marks: max M0M2M2M2 "Consistent" means in every part attempted
2i	$\begin{array}{l} 0.8^2 \times 0.2 \\ = \frac{16}{125} \text{ or } 0.128 \end{array}$	M1 A1 2		
ii	$0.8^2 \times 0.2 + 0.8^3 \times 0.2 + 0.8^4 \times 0.2$	M2	1 term omitted or wrong or extra: M1	Using $P(X \le 5)$ & $P(X \le 2)$; three methods:
	$= \frac{976}{3125} \text{ or } 0.312 \ (3 \text{ sfs})$	A1 3		$\begin{array}{c} 1 - 0.8^{5} - (1 - 0.8^{2}) \text{ or } 0.672 - 0.36: \text{ M2} \\ \text{Allow M1 for } 1 - 0.8^{5} - (1 - 0.8^{3}) \text{ or } 0.672 - 0.488} \\ \text{ or } 1 - 0.8^{4} - (1 - 0.8^{2}) \text{ or } 0.5904 - 0.36 \\ \end{array}$ $\begin{array}{c} 0.8^{2} - 0.8^{5}: \text{ M2 Allow M1 for } 0.8^{3} - 0.8^{5} \text{ or } 0.8^{2} - 0.8^{4} \\ 0.2 + 0.8 \times 0.2 + 0.8^{2} \times 0.2 + 0.8^{3} \times 0.2 + 0.8^{4} \times 0.2 - (0.2 + 0.8 \times 0.2): \text{ M2} \\ \text{ One term omitted or wrong or extra: } \\ \text{ But NB If include } 0.8^{-1} \times 0.2 \text{ in both } P(X \leq 5) \& P(X \leq 2), \text{ get correct ans but M1M0A0} \\ \text{ M0 for eg } 1 - 0.8^{5} - 0.8^{2} \text{ or } 0.672 - 0.64 \\ \end{array}$
iii	0.84	M2	$\begin{array}{l} 1\text{-}(0.2 + 0.8 \times 0.2 + 0.8^2 \times 0.2 + 0.8^3 \times 0.2) \\ 1 \text{ term omitted or wrong or extra: } M1 \\ 1 - 0.8^4 \text{ or } 0.590 \\ \text{or } 0.8^3 \text{ or } 0.512 \text{ or } 0.8^5 \text{ or } 0.328: \\ M1 \end{array}$	$1 - (0.2 + 0.8 \times 0.2 + 0.8^{2} \times 0.2 + 0.8^{3} \times 0.2) M2$ $0.2 \times 0.8^{4} M0 \qquad 1 - 0.8^{n} (n \neq 4) M0$
	$= \frac{256}{625} \text{ or } 0.4096 \text{ or } 0.410 \text{ (3 sfs)}$	A1 3	Allow 0.41	

⁴⁷³²

iv	$ \begin{array}{l} 0.2 \times 0.8 \times 0.2 \\ \times 2 \\ = 0.064 \text{ or }^{8}/_{125} \end{array} $	M1 M1 A1 3	or $0.2 \times 0.8^{\circ} \times 0.8 \times 0.2$ or $0.2 \times 0.8 \times 0.2 + 0.8 \times 0.2 \times 0.2$	or 0.032 NOT $n \times 0.2^2 \times 0.8$ except $n = 2$ Fully correct method except allow M0M1 for $(0.2+0.8\times0.2) \times 2$, must see method Attempt 0,3 and/or 3,0, as well as 2,1and/or 1,2; max M1M0A0
				Careful: $0.2 \times 0.8 \times 0.2 + 0.2 \times 0.8^{-1} \times 0.128 = 0.064$ M1M0A0Careful: $0.8 \times 0.8 \times 0.2 \div 2 = 0.064$: (ie $P(X = 3) \div 2$)M0M0A0
Total		11		
3i	$\frac{\frac{7351.12 - \frac{86.6 \times 943.8}{12}}{\sqrt{(658.76 - \frac{86.6^2}{12})(83663 - \frac{943.8^2}{12})}} \text{ or } \frac{540.03}{\sqrt{33.80 \times 9433}}$	M1 M1 A1 3	Must see at least 2 sfs	1^{st} M1 for correct subst in any correct <i>S</i> formula 2^{nd} M1 for all correct subst'n in any correct <i>r</i> formula
	= 0.9564 or 0.956 or 0.96	AI 3		0.96 or correct better, no working: M1M1A1 eg 0.958 → 0.96 with correct working M1M1A0 without working: M0M0A0
ii	Strong (or high or good or close etc) relationship (or corr'n or link) between amount spent on advert & profit	B1 1	Allow Almost complete relationship or Very positive corr'n or Very reliable relationship or Near perfect relationship between spend on advert & profit oe, in context	Must state or imply "strong" or "good" or equiv & in context but NOT Strong <i>agreement</i> between etc NOT High spend on ads produces high profits NOT The more spent on adverts, the higher the profit NOT Positive corr'n between spend on ads & profits NOT There is a relationship between spend on ads & profit NOT There is a great relationship between etc NOT ans involving "proportion(al)"
		 		Ignore irrelevant or incorrect If incorrect $r (< 0.9)$ in (i), no ft for ans "weak rel'nship" here; but correct ans here scores B1 even if inconsistent with their r

iii				Allow without context
	Relationship may not continue Corr'n not imply causation	B1 2	Can't extrapolate Any indication that pattern may not continue Must state or imply referring to future Increase in profit may not be due to increase in spend on advertising. Variables may be increasing separately	Examples: Can't predict future; Things can change May be recession ahead; Economic situation may change Cost of advertising may increase If spend too much on ads, profit may be reduced as a result Advertising may not be as successful in the future Item may go out of fashion NOT Spending on adverts may not bring high profits NOT Spending more on adverts may not bring higher profits (Since these just restate the question) NOT More money spent on ads will not affect profit Both variables may be affected by a third Other factors may affect profits Advertising not the sole factor affecting profits Two different categories of reason needed, as given above. Two reasons which both fall under the same category: only B1 NOT Because corr'n not equal to 1
iv	$b = \frac{\frac{7351.12 - \frac{86.6 \times 943.8}{12}}{658.76 - \frac{86.6^2}{12}}$	M1	or $\frac{S_{XY}}{Sxx}$	ft values of S_{xy} & S_{xx} if clearly shown in (i)
	= 15.9788 or 16.0 $y - \frac{943.8}{12} = \text{``16.0''}(x - \frac{86.6}{12})$	A1 M1	or $a = \frac{943.8}{12} - \text{``16.0''} \times \frac{86.6}{12}$	
	y = 16x - 37 or better	A1 4	(y = 15.9788x - 36.664)	Coeffs not nec'y rounded, but would round to 16 & 37 These marks can be earned in (v) if not contradicted in (iv)
				If x on y line found: M-marks only $(x = 2.71 + 0.0572y)$
v	"16" × 7.4 – "37" 81400 to 81750	M1	81.4 thousand to 81.7 thousand: M1A1	"16" × 7400 – "37": M0A0
	01400 10 01730	Alf 2	but 81.4 to 81.7 alone: M1A1	ft their (iv)
Total		12		

4i	0.4 imes 0.7	M1	or $0.6 + \text{prod of } 2 \text{ probs}$	1– prod of 2 P's or 0.4×0.3
	$0.6 + 0.4 \times 0.7$	M1	Condone $0.6 \times 0.7 + 0.6 \times 0.3 + 0.4 \times 0.7$	$1 - 0.4 \times 0.3$
			or $0.6 \times 0.6 + 0.6 \times 0.4 + 0.4 \times 0.7$	
	= 0.88	A1 3		
ii	$p + (1-p) \times p = 0.51$ or $2p - p^2 = 0.51$	M1	or $p^2 + p \times (1 - p) + (1 - p) \times p$	Condone $p + p \times 1 - p$ M1, but $p + qp = 0.51$ M0
	$p^{2} - 2p + 0.51 = 0$ (p-0.3)(p-1.7) = 0 or $p = \frac{2 \pm \sqrt{4 - 4 \times 0.51}}{2}$ oe	A1	Correct $QE = 0$ Condone omission of "= 0"	or $(1-p)^2 = 0.49$ M1A1
	$(p-0.3)(p-1.7) = 0 \text{ or } p = \frac{2\pm\sqrt{4}-4\times0.51}{2} \text{ oe}$	M1	Correct method for their 3-term QE	$1 - p = \pm 0.7$ M1 must have \pm
	<i>p</i> = 0.3	A1 4	Not $p = 0.3$ or 1.7	Correct ans from correct but reduced wking or T & I or
				verification or no wking: 4 mks
				Ans $p = 0.3$ or 1.7 from correct but reduced wking or T & I or
				no wking: $M1M1M1A0$
				Ans $p = 0.3$ following correct wking except other solution
				incorrect: BOD 4 mks
				$(\text{eg } p = \frac{2 \pm \sqrt{4 - 4 \times 0.51}}{2} \text{ so } p = 0.3 \text{ or } -1.3 \text{ so } p = 0.3: 4 \text{ mks}))$
				p = 0.3 from wrong wking but correct verification: BOD 4 mks
				p = 0.3 from wrong wking alone: M0A0M0A0
Total		7		

5					
5			Consistent use of $\frac{1}{3}$ or MR of 30% (eg (0.2): ("Consistent" as in Qu 2)	
			(i) B1B0B1B1 (iia) B0		
			(iib) 0.7901–0.460	9 or ${}^{5}C_{2}(\frac{2}{3})^{3}(\frac{1}{3})^{2}$ M1; = 0.329 (3 sf) A1	
			(iii) $p = "0.3292"$	M1; ${}^{7}C_{3}(1 - "0.3292")^{4}("0.3292")^{3}$ M1; $= 0.253$ (3 sf)	
			A1		
			ie max 8/10		
5i	Binomial or B	B1		Allow mis-spellings but NOT "Biometric"	
	(5, 0.3)	B1		Condone B~(5, 0.3) or B(0.3, 5): B1B1	
				but $B(X = 0.3, n = 5)$: B1B0	
	Prob of gift same for all pkts	B1	Prob of gift is constant or fixed or	NOT: prob of success const; NOT prob stays same each go	
			consistent or same oe		
	Whether pkt contains gift is indep of		Obtaining a gift is indep	One box doesn't affect another. Pkts indep. Gifts indep	
	other pkts	B1 4	Each time receive a gift is indep	She buys packets separately	
		21 .		Prob of a gift is indep	
			Context needed for 3 rd & 4 th B-mks		
				Prob of gift indep of one another & const: B1B1	
				NOT: Each week is indep	
				NOT: Number of gifts received is indep	
				NOT: Events indep	
				If Geo(0.3) stated, can score max B0B0B1B1	
				If Geo(5, 0.3) stated, can score max B0B1B1B1	
iia	0.8369	B1 1	or 0.837		
b	$0.8369 - 0.5282$ or ${}^{5}C_{2}(0.7)^{3}(0.3)^{2}$	M1			
	= 0.3087 or 0.309 (3 sf)	A1 2			
iii	p = "0.3087"	M1	(iib) used in a calc'n eg " 0.3087 " $\times 3$	or B(7, "0.3087") stated	
	7 4 3			or 1 – "0.3087" used instead of "0.3087"	
	$^{7}C_{3}(1 - "0.3087")^{4}("0.3087")^{3}$	M1			
	= 0.235 (3 sf)	A1 3			
T -4 1		10		$n = 35 \text{ or } 15: \max \text{ M1M0A0}$	
Total		10			

бі	7! ÷ 3! 7! ÷ 2!	M1	But NOT $^{7}P_{4}$ or 7!/(7-4)! if seen	$\frac{7!}{3!+2!}$: M1M0
	÷ 2! ÷ 3!	M1dep		$\frac{7!}{3 \times n!}$ any <i>n</i> : M1M0
	= 420	A1 3		
iia	$ \begin{cases} {}^{5}C_{3} \text{ or } {}^{10}C_{4} \text{ seen} \\ {}^{5}C_{3} \times {}^{10}C_{4} \\ = 2100 \end{cases} $	M1 M1 A1 3	or 10 or 210	$\frac{{}^{5}C_{3} \times {}^{10}C_{4}}{\text{anything}} M1M1A0$
	4			${}^{5}P_{3} \times {}^{10}P_{4} \text{ or } 60 \times 5040 \text{ or } 302400: \text{ SC B1}$
b	${}^{4}C_{2} \times {}^{9}C_{4} \text{ or } {}^{4}C_{3} \times {}^{9}C_{3}$ or 756 or 336	M1	$\frac{\frac{3}{5} \text{ or } \frac{4}{10} \text{ oe}}{\frac{3}{5} \times (1 - \frac{4}{10}) \text{ or } (1 - \frac{3}{5}) \times \frac{4}{10}}$	Not from incorrect wking
	${}^{4}C_{2} \times {}^{9}C_{4} + {}^{4}C_{3} \times {}^{9}C_{3}$ or 1092	M1	5 10 5 10	SC $\frac{1}{5} \times \frac{9}{10}$ or $\frac{4}{5} \times \frac{1}{10}$ M1
	$C_2 \times C_4 + C_3 \times C_3$ of 1092	M1dep	$\frac{3}{5} \times (1 - \frac{4}{10}) + (1 - \frac{3}{5}) \times \frac{4}{10}$	$\frac{1}{5} \times \frac{9}{10} + \frac{4}{5} \times \frac{1}{10}$ M1
	\div 2100 or \div (iia) dep \ge one M1 scored			5 10 5 10
	$=\frac{13}{25}$ or 0.52	A1 4	$=\frac{13}{25}$	$(=\frac{13}{50}$ A0)
			$\frac{3}{5}$ or $\frac{4}{10}$ oe M1	Not from incorrect wking
	(17) An An An An An		$\frac{3}{5} + \frac{4}{10} - \frac{3}{5} \times \frac{4}{10}$ M1	ie P(WA or GA or both) Must be correct figures
	"2100" – (${}^{4}C_{3} \times {}^{9}C_{4} \text{ or } {}^{4}C_{2} \times {}^{9}C_{3}$) or "2100" – (504 or 504) M1		$\frac{3}{5} + \frac{4}{10} - \frac{3}{5} \times \frac{4}{10} - \frac{3}{5} \times \frac{4}{10} \qquad M1$	ie P(WA or GA but not both) Must be correct figures
	"2100" – (${}^{4}C_{3} \times {}^{9}C_{4} + {}^{4}C_{2} \times {}^{9}C_{3}$) M1		$=\frac{13}{25}$ A1	
	$\div ``2100'' \text{ or (iia) } dep \ge M1 \qquad M1$			$SC^{:4}P_2 \times {}^9P_4 + {}^4P_3 \times {}^9P_3$: M1
				\div (iia) M1dep
				Careful: 336 or 756 can be obtained by incorrect methods.
Total		10		

Mark Scheme

January 2011

7i	$(0 \times a) + 2 \times (1 - a)$	M1	or $2(1-a)$	Condone $2 \times 1 - a$ NB $2 \times (1 - a) \div 2$: M0A0
	= 2 - 2a or $2(1 - a)$ oe	A1 2		Eg E(X) = $2 - 2a$; $2 - 2a = 1$; $a = 0.5$: M1A0
ii	$(0 \times a) + 2^2 \times (1 - a)$	M1	or $4-4a$ oe	Condone $2^2 \times 1 - a$
	$- "(2 - 2a)"^{2}$ $= 4 - 4a - 4 + 8a - 4a^{2}$ $= 4a - 4a^{2}$ $(= 4a(1 - a)) AG$	M1 A1 3	- (i) ² dep contains <i>a</i> ; ISW; Indep mk or $4(1-a) - 4(1-a)^2$ 4(1-a)(1-(1-a))	$4-4a-4\pm 8a\pm 4a^2 \text{ or } 4-4a-4\pm 4a^2 \text{ or equiv M1M1A0}$ $4-4a-2(1-a)^2 \text{ M1M1A0}$ Must see this line, correctly obtained
	$\begin{array}{ c c c c }\hline -2+2a & 2a \\\hline a & 1-a \end{array} \qquad M1$		Correct table oe	Careful: $4 - 4a - (2 - 2a)^2 = 4 - 4a - (4 - 4a^2) = -4a + 4a^2 = 4a(1 - a)$ M1M1A0 only
	Var(X) = $a(-2+2a)^2 + 4a^2(1-a)$ M1 $4a^3 - 8a^2 + 4a + 4a^2 - 4a^3$ $4a - 4a^2$ A1			
Total		5		
8i	EDCBA	B1 1	A 5 B 4 C 3 D 2 E 1	NOT just 5, 4, 3, 2, 1
iia	$1 - \frac{6\Sigma d^2}{5(5^2 - 1)} = 0.9$ $1 - \frac{6\times\Sigma d^2}{5\times24} = 0.9 \text{ or } 0.1 = \frac{6\times\Sigma d^2}{5\times24}$ $(\Sigma d^2 = 2 \text{ AG})$	M1 A1 2	One correct step or better & nothing incorrect for A1	$1 - \frac{6 \times 2}{5(5^2 - 1)}$ = $1 - \frac{6 \times 2}{5 \times 24}$ or $1 - \frac{12}{5 \times (5^2 - 1)}$ One correct step or better & nothing incorrect for A1 (= 0.9 AG)
b	d^2 : 0, 0, 0, 1, 1 any order BACDE or similar	M1 A1 2	or <i>d</i> : 0, 0, 0, 1, -1 any order Any two adjacent dogs interchanged	May not be seen If clearly comparing second race with third; DECBA or similar: B1, but must be clear
Total		5		

Total 72 marks

Note: "(3 sfs)" means "answer which rounds to to 3 sfs". If correct ans seen to \geq 3sfs, ISW for later rounding
Penalise over-rounding only once in paper.

1ia	$\frac{3247 - \frac{251 \times 65}{5}}{3247 - \frac{251 \times 65}{5}} = 27 - \frac{-16}{5}$		M1 for correct subst in any correct <i>S</i> formula	
	$\frac{\frac{3247 - \frac{5}{5}}{\sqrt{(14323 - \frac{251^2}{5})(855 - \frac{65^2}{5})}}}{\sqrt{(14323 - \frac{251^2}{5})(855 - \frac{65^2}{5})}} \text{or } \frac{-16}{\sqrt{1722.8 \times 10}}$	M2	M2 for correct subst'n in any correct r formula	or $\frac{-80}{\sqrt{8614 \times 50}}$
	= -0.1219	A1 3	Must see at least 4 sfs	Allow -0.1218
b	Poor/no/little/weak/not strong corr'n or rel'nship or link between income & distance oe	B1 1	or slight neg/weak corr'n (oe) between income & distance In context, ie <u>any</u> comment on income & distance, even if incorrect	eg, Poor neg corr'n, so higher distance, lower income No rel'nship. Low income doesn't cause low distance NOT "Not proportional" NOT "negative corr'n" No recovery of this mark in (ii)
с	No effect or -0.122 oe	B1 1	eg "Nothing" or "None" oe	Ignore other NOT "Little effect" NOT "Not much effect"
ii	<i>r</i> close to 0, or small, or poor corr'n oe or $r = -0.122$	B1	or Weak/no corr'n or poor rel'nship oe or No evidence to link sales & distance	or because small sample Ignore other
	Unreliable	B1dep 2	Condone "innacurate" or "incorrect" or "less reliable" or "not that reliable" "The data is unreliable" Must have correct reason	Allow: "Unreliable because pts do not fit a st line" "Unreliable because pts are scattered" "Unreliable because not strong neg" "Unreliable because <i>r</i> not close to -1" "Unreliable because <i>r</i> smaller than (–)0.7"
Total		7		NOT "Unreliable because extrapolated": B0B0 but "Unreliable because extrapolated and poor corr'n": B1B1

2	Attempt ranks	M1	Ignore labels of rows or columns	
	4 1 2 3 or 1 2 3 4 or 1 2 3 4 oe 2 1 3 4 1 3 4 2 1 4 2 3			
	2134 1342 1423	A1	No ranks seen, $d = (0), \pm 1, \pm 1, \pm 2$, or $d^2 = (0), 1, 1, 4$ any order: M1A1	No wking, $\Sigma d^2 = 6$: M1A1M1
	Σd^2 attempted (or 6)	M1	NOT $(\Sigma d)^2$	No wking, $\Sigma d^2 = \text{eg } 14$: M0A0M0, but can gain 3^{rd} M1
	$1 - \frac{6\Sigma d^2}{4(4^2 - 1)}$			
		M1		No wking, ans $\frac{2}{5}$: Full mks
	$=\frac{2}{5}$ oe	A1 5		Allow both sets of ranks reversed
				NB incorrect method:
				2341
				2 1 3 4 OR $d = (0), \pm 2, \pm 1, \pm 3$ any order
				OR $d^2 = (0), 4, 1, 9$ any order
				(leading to $\Sigma d^2 = 14$ and $r_s = -\frac{2}{5}$):
				M0A0M1M1A0
Total	(1 0 55 55) 10 0 05 ¹¹ (1 0 05) 0 05 ¹²	5	$1 - (1 - 0.05)^{12} - \frac{12}{3} - 0.05^{10} (1 - 0.05)^{2}$	1 0.555
3ia	$(1 - 0.5565)$ or $12 \times 0.85^{11} \times (1 - 0.85) + 0.85^{12}$	M1	or $1 - ((1-0.85)^{12}^{12}C_{10} \times 0.85^{10}(1-0.85)^2)$ ie $1 - (all 11 correct binomial terms)$	or 1 – 0.557
				NB 1 – 0.4435 (oe): M0A0
	= 0.4435 or 0.443 or 0.444 (3 sf)	A1 2		
b	$0.5565 - 0.2642$ or ${}^{12}C_{10}(1 - 0.85)^2(0.85)^{10}$	M1		or 0.557 – 0.264
	= 0.2923 or 0.2924 or 0.292 (3 sf) 12 × 0.85 × (1–0.85)	A1 2 M1		
c	= 1.53 oe	A1 2		
ii	$\left(\frac{3}{4}\right)^2$ AND $\frac{3}{4} \times \frac{1}{4}$ seen (possibly \times 2)	M1	eg $(\frac{3}{4})^2 + \frac{3}{4} \times \frac{1}{4}$ or $2 \times (\frac{3}{4})^2 + 2 \times \frac{3}{4} \times \frac{1}{4}$	or $\frac{9}{16}$ and $\frac{3}{16}$ or $\frac{9}{16}$ and $\frac{3}{8}$ eg in table or list
	$\binom{4}{4}$ And $\binom{4}{4}$ seen (possibly $\times 2$)		or $0.5625 + 0.1875$ or $0.5625 + 0.375$	
			or 0.3023 ± 0.1873 or 0.3023 ± 0.373	
	$(\frac{3}{4})^2 \times 2 \times \frac{3}{4} \times \frac{1}{4}$ oe or $\frac{27}{128}$ or 0.211	M1	or eg 0.5625×0.375	Allow even if further incorrect wking
	$2 \times \left(\frac{3}{4}\right)^2 \times 2 \times \frac{3}{4} \times \frac{1}{4}$ oe	M1	Fully correct method	
	27 0.400 (2.5)	A 1 A		Ans 0.211: check wking but probably gets
	$=\frac{27}{64}$ or 0.422 (3 sfs)	A1 4		M1M1M0A0
				Use of 0.85 instead of $\frac{1}{4}$: MR max M1M1M1A0
Total		10		

4i	Method is either: Just $4 \div 3$ or $\frac{4}{3}$				
	or: Use of ratio of correct frequ	uencies	AN	ID ratio of widths (correct or 4 and 2)	
4i	$5.6 \times \frac{4}{28} \times \frac{5}{3}$ or $0.8 \times \frac{5}{3}$			M1 for $5.6 \times \frac{4}{28} \times \frac{4}{2}$ or $0.8 \times \frac{4}{2}$	Correct calc'n using 5.6, 28, 4, 5, 3 oe: M2 Correct calc'n using 5.6, 28, 4, 4, 2 oe: M1
	or $(5.6 \div \frac{28}{5}) \times \frac{4}{3}$ or $\frac{4}{3}$ or $4 \div 3$ oe	M2		or $(5.6 \div \frac{28}{4}) \times \frac{4}{2}$ or 0.8×2 oe (= 1.6)	ie fully correct method: M2
	$=1\frac{1}{3}$ or $\frac{4}{3}$ or 1.33 (3 sf) oe	A1	3	No wking, ans 1.3: M2A0	or: incorrect class widths, otherwise correct method: M1 $\frac{4}{3}$ correctly obtained (or no wking) then further incorrect:
				Ans 1.6: Check wking but probably M1M0A0	M1M0A0
					Use of ratio of widths OR freqs but not both: M0 eg $5.6 \times \frac{4}{28}$ (= 0.8) or $5.6 \times \frac{3}{5}$ (= 3.36): M0
					$\frac{4}{2} = 2$: M0M0A0
ii	25 or 26 or 25.5	B1		or 25 & 26	May be implied, eg by 21 or 22 or 21.5
	Med is 21^{st} (or 22^{nd} or 21.5^{th}) in 31-35 class or "25 - 4" Can be implied by calc'n	B1		or med in last ≈ 7 in class or $33 \approx 14^{\text{th}}$ in class or $33 \approx 18^{\text{th}}$ in whole set Can be implied by diagram	Calc'ns need not be correct but need to contain relevant figures for gaining B1B1
	Med > 33 or "more than"	B1 :	3	indep	The " \approx " sign means ± 2
					$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
					Ignore comment on skew
					NB Use EITHER the main method OR the <u>Alternative Method</u> (above), not a mixture of the two. Choose the method that gives most marks.

Mark Scheme

June 2011

iii	\geq 3 mid-pts attempted	M1	seen or implied	Not nec'y correct values (29, 33, 40.5, 53)
111	$\Sigma fx \div 50 \text{ attempted} (= \frac{1819}{50})$ = 36.38 or 36.4 (3 sf)		\geq 3 terms. or 36 with correct working	Allow on boundaries. Not class widths
	$\Sigma f x^2$ attempted (= 68055.5)	M1	\geq 3 terms.	Allow on boundaries. Not class widths (3364, 30492, 22963.5, 11236)
	$\sqrt{\frac{68055.5}{50} - (\frac{1819}{50})^2} \text{or } \sqrt{1361.11 - 36.38^2} \\ (= \sqrt{37.6056})$	M1	completely correct method except midpts & ft their mean, dep not $\sqrt{(neg)}$	Allow class widths for this mark only NB mark is not just for "– mean ² ", unlike q5(iii)
	= 6.13 (3 sfs)	A1 6		$\Sigma(fx)^2$: M0M0A0 If no wking for Σfx^2 , check using their <i>x</i> and <i>f</i>
	Alt for variance: $\Sigma f(x - \bar{x})^2$ (= 1880.28) M1 $\sqrt{\frac{1880.28}{50}}$ M1 = 6.13 (3 sf)			If no wking or unclear wking: full mks for each correct ans for incorrect ans: $35.8 \le \mu \le 36.9$ M0M1A0
<u>-</u>		5454		$6.0 \le sd \le 6.25$ M1M0A0
iv	(a) Decrease (b) Increase (c) Same (d) Same	B1B1 B1B1 4	Ignore other, eg "slightly" or "probably"	Ignore any comments or reasons, even if incorrect
Total		16		
5	If done with replacement, no marks in any pa	rt of this g		
5i	All correct probs correctly placed, matching labels, if any	B2 2	B1 for 4 correct probs anywhere	Allow B2 with missing labels but only if probs consistently placed, ie R above B throughout
ii	$\frac{4}{10} \times \frac{6}{9} + \frac{6}{10} \times \frac{4}{9} \times \frac{5}{8} + \frac{6}{10} \times \frac{5}{9} \times \frac{4}{8}$ or $\frac{4}{15} + \frac{1}{6} + \frac{1}{6}$		B1: two of these products (or their results) added (not multiplied)	
	$(=\frac{3}{5} \mathbf{AG})$	B2 2	or $1 - (\frac{6}{10} \times \frac{5}{9} \times \frac{4}{8} + \frac{6}{10} \times \frac{4}{9} \times \frac{3}{8} + \frac{4}{10} \times \frac{3}{9})$ or $1 - (\frac{1}{6} + \frac{1}{10} + \frac{2}{15})$	B1: 1 – two of these products (or results) added (not multiplied)
			0 10 13	NB incorrect methods can lead to correct ans AG so no wking no mks
			[No ft from tree in (i)

iii	$\Sigma xp \text{ attempted} = \frac{16}{15} \text{ oe or } 1.07 \text{ (3 sfs)}$	M1 A1	Both non-zero terms	\div 3 etc or $\frac{1}{\Sigma xp}$: M0	
	15				
	$\Sigma x^2 p$ attempted (= $\frac{23}{15}$ or 1.53)	M1	Both non-zero terms	\div 3 etc: or $\frac{1}{\Sigma x^2 p}$: M0	Not $\Sigma x p^2$
	$-\frac{16}{15}$ 2	M1	indep but dep +ve result	<i>P</i>	NB easier to gain than equiv mark in qu 4(iii)
	$=\frac{89}{225}$ oe or 0.395 or 0.396 (3 sfs)	A1 5	Ans 0.388: check wking from $\mu = 1.07$; prematur		not 0.395, but check for dot over 5 for recurring
	Alt for Var(X): $\Sigma(x-\bar{x})^2 p$ M2		$\frac{1}{6} \times \frac{16}{15}^2 + \frac{3}{5} \times \frac{1}{15}^2 + \frac{1}{15}^2$ all correct M2, 2 terms of	50 15	
Total		9			
6ia	5040	B1 1		r	
b	6! or 5!×6 or 720	M1		$^{1}/_{7}\times^{1}/_{6}$ M1*	NOT 6! in denom
	\div 7! or \div "5040" or 1440 or (5! or 6!) \times 2	M1	Any \div 7! or "5040" but NOT any \times 2	\times 6 or \times 2 M1 dep*	eg ${}^{6!}/_{5040}$ or ${}^{1}/_{7}$ or 0.143 or ${}^{1}/_{21}$ (3 sfs): M1M1A0
	$= \frac{2}{7}$ or 0.286 (3 sf)	A1 3		I	
iia	$3! \times 4!$ alone or 144	M1	$\frac{4}{7} \times \frac{3}{6} \times \frac{3}{5} \times \frac{2}{4} \times \frac{2}{3} \times \frac{1}{2}$ oe	or $7C3$ or $7C4$	Not $3! \times 4! \times \dots$ (eg not $3! \times 4! \times 5$) not $\frac{1}{3! \times 4!}$, not $\frac{1}{144}$
	(÷ 7! or "5040")				$\frac{101}{31\times 4!}$, $\frac{101}{144}$
	$= \frac{1}{35}$ oe or 0.0286 (3sf)	A1 2			NB no mark for ÷ 7! or "5040" in this part
b	5 seen or 5! seen	M1			or GGGBBBB, BGGGBBB, BBGGGBB, BBBGGGB, BBBBGGG
	$3! \times 4! \times 5$ or $5! \times 3!$ or 720 or 5×144	M1	or $5 \times \frac{3}{7} \times \frac{2}{6} \times \frac{1}{5} (\times \frac{4}{4} \times \frac{3}{6})$	$(_{3}\times^{2}/_{2})$ oe: M2	
			or $5 \times \frac{1}{7C3 \text{ or } 7C4}$:	M2	NB no mark for ÷ 7! or "5040" in this part
	(.71		or 5 × "(iia)":	M2	
	$(\div 7! \text{ or } ``5040")$ = ¹ / ₇ oe or 0.143 (3 sf)	A1 3			
		111 5			
Total		9			

7i	x	B1 1	Ignore explanations. "Neither" or "Both": B0	
ii	Diag showing vertical differences only	B1	Allow description instead of diag: "Distances from pts to line // to y-axis" oe	Allow \geq one line, from a point to the line
	State that sum of squares of these is min oe	B1 2	dep vert or horiz lines (not both) drawn or described	Must have Min, Squares, Distances & Sum
iii	-1	B1	Not approx –1	Allow eg:
	Ranks opposite or reversed	B1dep 2	As <i>x</i> increases, <i>y</i> decreases	-1 because neg corr'n so ranks must be reversed
	or <u>perfect</u> neg corr'n between <u>ranks</u> oe	2		Ignore other NOT neg corr'n or strong neg rel'nship oe NOT comment about "disagreement" or "agreement"
iv	"Negative"		eg "Strong neg"	Any implication of Negative, except
		D1	or any negative value > -1	NOT "Negative gradient" and
Total	or "Not –1"	B1 1	or "Close to –1"	NOT "–1" given as the value of <i>r</i>
		0		
8	Incorrect p (eg "cubical die means 18 sides h	ence $p = \frac{1}{1}$	$\frac{1}{8}$ "): can gain all B & M marks.	
8i	$\frac{25}{216}$ oe or 0.116 (3 sfs)	B1 1		
ii	$({}^{5}/_{6})^{7} \times {}^{1}/_{6}$ alone	M2	M1 for $({}^{5}/_{6})^{8} \times {}^{1}/_{6}$ alone	
	$= 0.0465 (3 \text{ sfs}) \text{ or } \frac{78125}{1679616}$	A1 3		
iii	$(5/6)^8$ oe alone	M1	$1 - P(X \le 8)$, with exactly 8 correct terms	NOT $1 - (\frac{5}{6})^8$, NOT $(\frac{5}{6})^8 \times \dots$
	$= 0.233$ (3 sfs) or $\frac{390625}{1679616}$	A1 2		6, , , , , , , , , , , , , , , , , , ,
iv	NB If more than 5 products are added (eg P($1 \le X \le 12$	i: no marks	
	$ \begin{pmatrix} (5/6)^9 \times 1/6 + (5/6)^{10} \times 1/6 + (5/6)^{11} \times 1/6 + (5/6)^{12} \times 1/6 \\ (= 0.0323 + 0.0268 + 0.0224 + 0.0187) \end{pmatrix} $	M3	M3 for all correct	$({}^{5}/_{6})^{9} - ({}^{5}/_{6})^{13}$ or $1 - ({}^{5}/_{6})^{13} - [1 - ({}^{5}/_{6})^{9}]$ M3
			or M2 for 3 of these added or these 4 plus 1 extra or 0.0817 or 0.0680 or 0.139 or 0.116	or $({}^{5}/_{6})^{8,9 \text{ or } 10} - ({}^{5}/_{6})^{12, 13 \text{ or } 14}$ or $1 - ({}^{5}/_{6})^{12, 13 \text{ or } 14} - [(1 - ({}^{5}/_{6})^{8, 9 \text{ or } 10}]$ M2
			or M1 for \geq 1 of these terms or values seen; ignore incorrect	or $\pm [(5/6)^9 - (1 - (5/6)^{13})]$ or $\pm [1 - (5/6)^9 - (5/6)^{13}]$ M1
	= 0.100 (3 sfs)	A1 4	Allow 0.1 with wking	
Total		10		

Total 72 marks

	Penalise over-rounding only once in paper. NB If marking by question and over-rounding is seen, must mark whole paper.							
C	uesti	on	Answer	Marks	Gui	dance		
1	(i)		0.1 + 0.3 + 2p + p = 1 oe	M1				
			p = 0.2	A1				
				[2]				
1	(ii)		Σxp	M1	\geq 2 terms correct, FT <i>p</i>	$eg \div 4: MOAO$		
			= 2.7 oe	A1f				
				[2]		NOT		
2	(i)		 x because values (or depths) are fixed (or controlled or chosen or predetermined or manipulated or given oe) because they can be changed or it is changed or because it is not measured ie not "read off" oe or because we change the values ourselves 	B1 [1]	Allow "because it goes up in intervals" or "because it is taken at set intervals"Ignore all elseNB "x is changed" B1, but "x changes" B0	NOT: x, as values are constant x, as y depends on x x as % sand depends on depth Depth, as not affected by % sand content x, as it is not dependent x, because y is measured x, because it changes y, which is the depth and this is controlled		
2	(ii)		$S_{xx} = 7344 - \frac{216^2}{9} \qquad (= 2160)$ $S_{yy} = 30595 - \frac{512.4^2}{9} \qquad (= 1422.36)$ $S_{xy} = 10674 - \frac{216\times512.4}{9} \qquad (= -1623.6)$ $r = \frac{"-1623.6"}{\sqrt{"2160"\times"1422.36"}}$ = -0.926 (3 sfs)	M1 M1 A1 [3]	correct subst in any <i>S</i> formula correct subst in all <i>S</i> s & in <i>r</i>			

Note: "(3 sf)" means "answer which rounds to ... to 3 sf". If correct ans seen to \geq 3sf, ISW for later rounding Penalise over-rounding only once in <u>paper</u>. NB If marking by question and over-rounding is seen, must mark whole paper.

Question		on	Answer	Marks	Gu	idance
2	(iii)	(a)	$b = \frac{"-1623.6"}{"2160"}$ or -0.75 or $-\frac{451}{600}$	M1	ft S_{xy} & S_{xx} from (ii)	If ans to (i) is y, & x on y found here: $x' = \frac{1}{2} \frac{1}{2$
			$y - \frac{512.4}{9} = "-0.75"(x - \frac{216}{9})$	M1	or $a = \frac{512.4}{9} - 0.75 \times (-\frac{216}{9})$ or $\frac{5623}{75}$	$b' = \frac{"-1623.6"}{"1422.36"}$ (= -1.14) M1 $x - \frac{216}{2} = "-1.14"(y - \frac{512.4}{2})$ M1
			y = -0.75x + 75(.0) (2 sf) or $y = -\frac{451}{600}x + \frac{5623}{75}$	A1	2 sf is enough Allow $y = -0.75x + (-75)$	$x - \frac{216}{9} = "-1.14"(y - \frac{512.4}{9}) \qquad M1$ $x = -1.14y + 89(.0) \qquad A1$
				[3]		If ans to (i) is x, but x on y found here: B1 only for $x = -1.14y + 89(.0)$
2	(iii)	(b)	<i>r</i> close to -1 (or high or strong), $ r $ close to 1	B1	Allow strong or good or high corr'n or rel'nship etc	or strong neg corr'n. Award this mark even if comment linked to 100 instead of linked to 25. BUT: " <i>r</i> close to -1, so unreliable": B0 Can still score next marks if mention "within" and "outside range"
			25 within range of data oe, so reliable 100 outside range of data oe, so unreliable	B1 B1	or so more reliable or so less reliable	or 100 gives neg % age
			Must give reasons Allow "accurate" instead of "reliable"	[3]	If (ii) $ r < 0.7$:poor corr'n oe25 unreliableB1f100 unreliableB1f	"Reliable because <i>r</i> near –1" B1B0B0 "Small sample so unreliable" B0B0B0 Ignore all else
3	(i)		$(1 - 0.12)^{13} \text{ or } 13 \times (1 - 0.12)^{12} \times 0.12$ (1 - 0.12)^{13} + 13 \times (1 - 0.12)^{12} \times 0.12 = 0.526 (3 sf)	M1 M1 A1[3]	Either seen Fully correct method	1 – correct terms: M1M0A0
3	(ii)		$ \overset{^{13}\text{C}_2 \times 0.12^2 \times (1 - 0.12)^{11}}{2 \times \text{``0.275275''} \times (1 - \text{``0.275275'')}} = 0.399 \text{ (3 sf)} $	M1 M1 A1 [3]	or 0.275() Correct method except allow omit "2 ×"	Allow if \times or + something NB unlike 2 nd M1 in (i) which is for fully correct method NB 2 \times 0.12 \times 0.88: M0M0A0

Q	uesti	on	Answer	Marks	Gui	dance
4	(a)	(a) $\begin{array}{cccccccccccccccccccccccccccccccccccc$		M1 A1	Attempt ranks for both variables Correct ranks May be implied by $\Sigma d^2 = 10$	If use alphabetical order for one or both sets of ranks, M0A0. eg if 1, 2, 3, 4, 5, seen or $\Sigma d^2 = 14$ or 16, check carefully. But can score 2 nd & 3 rd M1s. Also see example below
			Σd^2 attempted (= 10)	M1	S_{xx} or $S_{yy} = 55 - \frac{15^2}{5}$ (=10) or $S_{xy} = 50 - \frac{15^2}{5}$ (=5)	
			$r_s = 1 - \frac{6\Sigma d^2}{5(5^2 - 1)} \qquad \text{dep} \ge M1 \text{ gained}$ $= 0.5$	M1 A1 [5]	$\frac{5}{\sqrt{10\times10}}$	A = 1, B = 2 etc eg 2 4 1 5 3 4 2 3 5 1 Max M0A0M1M1A0
4	(b)		$n(n^2 - 1)$ greater or increases or becomes $(n+1)((n+1)^2 - 1)$	B1ind	or "denom increases" or "÷ by larger number"or "fraction decreases" or "value taken from 1 decreases" oe	Allow increases to 6×35 NOT just " <i>n</i> increases"
			Σd^2 unchanged (or not increase) Allow d^2 unchanged	Blind	or $d = 0$ or $d^2 = 0$ or the difference is 0	NOT $n(n^2 - 1)$ changes NOT "difference is unchanged"
			r _s greater	B1 [3]	dep \geq B1 or no explanation "Little diff between rankings so r_s same"	Use of incorrect formula can score max B1B1B0 (B0 for <i>r_s</i> greater) "Increases because more agreement"
				[5]	or "rankings unchanged" B0B0B0	B1 only
5	(i)	(a)	$\left(\frac{6}{3}=\right)2$	B1	$\left(\frac{6}{9}\times3=\right)2$	
				[1]		
5	(i)	(b)	$^{2}/_{6} \times 2$	M1	Allow $^{2}/_{5} \times 2$ or ans 0.8 for M1	Can be implied, eg $\frac{1}{3} = 0.3$, ans 0.6: M1A0
			$= \frac{2}{3}$ oe or 0.667 or 0.67 or 0.7	A1[2]		Allow 0.66 or 0.666

4732

0	Questi	on	Answer	Marks	Guidance	
5	(ii)		(3.5, 6) (0.5, 0) or (6.5, 15)	B1 B1 [2]	Ignore incorrect	(6, 3.5) AND (15, 6.5): B1
5	(iii)	(a)	$\frac{\sum xf}{21} = 5.43 (3 \text{ sf}) \qquad \text{or } \frac{114}{21} \text{ or } \frac{38}{7} \text{ oe}$	M1 A1	Allow x within classes, incl end pts then $\div 5$: M0A0	≥ 2 non-zero terms correct ft their x
			$\frac{\Sigma x^2 f}{21}$ or $\frac{817.5}{21}$ or 38.9	M1	Allow x within class, incl end pt $\div 5$: M0	≥ 2 non-zero terms correct ft their x
			- "5.43" ² or = 9.46 or 9.4592	M1	dep +ve result; done before $$; not $-(\overline{x}^2 \div)$	Calc 4 values of $(x - \bar{x})^2$ or $(x - \bar{x})^2 f$ or (11.8, 0.184, 6.61, 50) or (70.5, 1.65, 26.4, 100) or 199 M1 $\frac{\Sigma(x-\bar{x})^2 f}{21}$ fully correct method M1
			$(\sqrt{9.4592})$ = 3.08 (3 sfs)	A1 [5]		
5	(iii)	(b)	Actual values or exact hours unknown oe Don't have raw data. oe or measured to nearest hour oe	B1 [1]	or Data given in classes or grouped oe or Data evenly distributed in classes oe	Mid-points or medians or averages of class boundaries used oe

(Question	Answer	Marks	Guidance		
6	(i)	V because [probs or values or geometric or	B1	X because mode = 1 oe or Highest prob is $P(1)$ oe B2	For answer V the first B1 is indep, but not for other answers, ie: V with no reason or incorrect reason	
		etc] decreasing or halving or Highest prob is 1st Allow if word "decreasing" or "halving" or "sloping downwards" or any equivalent seen	B1	Z because $P(0) = 0$ or variable can't be 0 oe Allow "Geo distr'n cannot be zero" oe B2	scores B1B0, but Z or X or any other letter with no reason or incorrect reason scores B0B0.	
		NOT "Positive skew"	[2]	"None of them": Ignore any reason given. B2	In all cases, once mark(s) have been scored, ignore all other comments.	
6	(ii)	Y. Peaks at 2 Y. Like normal, peak at 2 Y. Highest prob is middle one (or is at 2) Y. $P(X = 2)$ is max Y. Increase to 2 then decr Y. 1 4 6 4 1 alone or with $0.5^4 \times$ Y. 0.0625, 0.25, 0.375, 0.25, 0.0625 Y. $P(1) = P(3)$ and $P(2)$ is greater/different			If values of <u>some</u> probs listed: 2 to 4 values: B1 Y: B1 For 3^{rd} B1 must link list with Y diag, eg "symmetrical" or "peak in middle" or "peak at 2" or " 1^{st} = last" or " 2^{nd} = 4 th " "same shape as Y diag". etc etc	
		or equiv of any of the above If none of the above applies: Any implication that values not all equal	B1B1B1	Ignore all else		
		eg: Not uniform or values increase (then decrease) or there is a peak	B1	${}^{4}C_{0}, {}^{4}C_{1}, {}^{4}C_{2}, etc$ indep		
		Symmetrical or mirror image oe or ${}^{4}C_{0} = {}^{4}C_{4}$ or 2nd = 4th or similar or mean = 2, or $E(X) = 2$, or 2 is hi'est prob, or peak at 2,	B1	indep		
		or peak is middle value	B1 B1	indep		
		Υ	[3]	··· r		

(Questio	n	Answer	Marks	Guidance		
7	(i)		Geo(0.6) or G(0.6) or Geo with $p = 0.6$	B1B1	Allow Geo(60%) B1B1	Bin(, 0.6) B0B1. Can still score comment marks	
			P(woman) const or chance of woman const Each voter has same prob	B1	or %age of women is constant	In context	
			Whether one voter is a woman is indep of whether any other is a woman	B1	Allow: "voter(s) independent", "Men & women are independent"	Allow "vote indep"	
				543	"P(woman) is indep" "Each woman is indep"	In context (EACH comment must be in context)	
				[4]		Ignore all else	
7	(ii)		$0.4^{3} \times 0.6$	M1	ft their $\text{Geo}(p)$ from (i)	Allow $0.3^3 \times 0.6$ (but no other $q^3 \times 0.6$)	
			= ²⁴ / ₆₂₅ or 0.0384	A1f [2]	ft their $\text{Geo}(p)$ from (i)	eg if $p = 0.4$, ans 0.0864 M1A1f	
7	(iii)		0.4 ³ alone, or $(0.4^4 + 0.4^3 \times 0.6)$ or $(0.4^4 + (ii))$	M1	$ \begin{array}{c} 1-(0.6 + 0.4 \times 0.6 + 0.4^2 \times 0.6) \\ (allow extra term \\ 0.4^3 \times 0.6) \\ \text{ft their Geo}(p) \text{ from (i)} \end{array} $	Allow M1 for 0.4^4 alone (= 0.0256) M0 for $0.4^r \times 0.6$ and for $1 - 0.4^3$	
			$= \frac{8}{125}$ or 0.064	A1f [2]	ft their $\text{Geo}(p)$ from (i)	eg if $p = 0.4$, ans 0.216 M1A1f	
8	(i)		Binomial stated	M1	or implied by $C \times 0.5^r$ or use of table	or $0.5^7 \times 0.5 + 0.5^8$ or $0.5^8 + 0.5^8$	
			1 - 0.9648	M1	or ${}^{8}C_{7} \times 0.5^{7} \times 0.5 + 0.5^{8}$ fully correct method	$1 - (0.5^8 + 8 \times 0.5^8 + {}^8C_2 0.5^8)$ all correct	
			$= 0.0352 (3 \text{ sfs}) \text{ or }^{9/256}$	A1 [3]			
8	(ii)	(a)	$^{22}C_{11} \times 0.5^{11} \times 0.5^{11}$	 M1	Fully correct method. Not ISW	eg 0.168^2 or 2×0.168 or 1–0.168: M0A0	
	(11)	(u)	= 0.168 (3 sfs)	A1			
				[2]			

Q	uestic	on	Answer	Marks	Guida	nce
8	(ii)	(b)	1 - "0.168"	M1	or $0.5^{22}(^{22}C_{12} + ^{22}C_{13} + ^{22}C_{14} + + 22 + 1)$ All 11 correct terms seen, or correct ans: M2	or $1 - ({}^{22}C_{12} + {}^{22}C_{13} + {}^{22}C_{14} + \dots + 22 + 1)$ 1 - all 12 correct terms M2
					or $P(X = 12, 13,, 21, 22)$ stated or implied with ≥ 2 terms shown or one extra term M1	or similar marks for $P(X = 10, 9, 80)$
			$^{1}/_{2}(1 - "0.168")$	M1		
			= 0.416 (3 sfs)	A1		
				[3]		
9	(i)	(a)	${}^{9}P_{4}$ or ${}^{9!}/_{5!}$ or ${}^{9}C_{4} \times 4!$	M1	alone	oe eg ${}^{9}C_{1} \times {}^{8}C_{1} \times {}^{7}C_{1} \times {}^{6}C_{1}$ or $9 \times 8 \times 7 \times 6$
			= 3024	A1 [2]		
9	(i)	(b)	⁸ P ₃ or $8 \times 7 \times 6$ oe or ⁸ C ₃ $\times 3!$	M1	Allow $\times \dots$ or $\div \dots$	
			$\times 5 (\text{or } {}^{5}\text{C}_{1})$	M1	Correct \times 5 or ${}^{8}C_{3} \times 5$ (or ${}^{5}C_{1}$)	or $({}^{9}P_{4} \text{ or "3024"}) \times {}^{5}/_{9} M2$
			= 1680	A1	Not ISW, eg ¹⁶⁸⁰ / ₃₀₂₄ : M1M1A0	
				[3]		
					SC: consistent use of with replacement in (i)	
					(or if only (a) or (b) attempted)	
					(ia) M0A0 (ib) $999 \times 5 \text{ or } 4995$ M1	
					(10) 999 × 5 01 4995 M11 M0A0	

Q	uestic	on	Answer	Marks	Guida	nce
9	(ii)	(a)	${}^{5}C_{3} \times {}^{4}C_{1} \text{ or } {}^{5}C_{4} \text{ oe}$ ${}^{5}C_{3} \times {}^{4}C_{1} + {}^{5}C_{4} \text{ oe}$ correct method so far (= 45)	M1 M1	${}^{5}C_{3} \times {}^{4}C_{1} \times 4!$ (or ${}^{5}P_{3} \times 4 \times 4$) or 5! (or ${}^{5}P_{4}$) 960 + 120 oe correct method so far	$ \begin{array}{c} {}^{5}\!/_{9} \times {}^{4}\!/_{8} \times {}^{3}\!/_{7} \times {}^{4}\!/_{6} \text{Allow} \times \text{or} + \dots \\ \times 4 \text{correct method so far} \end{array} $
			$\div {}^{9}C_{4}$ Allow anything $\div {}^{9}C_{4}$	M1	$\div {}^{9}P_{4}$ [must involve any P or any !] $\div {}^{9}P_{4}$	or:
			$= \frac{5}{14}$ or 0.357 (3 sfs) oe, eg $\frac{35}{98}$ or $\frac{45}{126}$	A1		
				[4]	Marks must come from one method, not mixture of two methods	NB ${}^{5}/_{9} \times {}^{4}/_{8} \times {}^{3}/_{7} \times 3 = {}^{5}/_{14}$ M0M0M0A0
9	(ii)	(b)	9, 8, 7, 4 or 9, 8, 6, 5 No mark yet			
			$ 2 ÷ {}^{9}C_{4} \text{ oe} \qquad \text{Must be } (1 \text{ or } 2 \text{ or } 4) \div {}^{9}C_{4} $	M1 M1	$ \begin{array}{c c} {}^{1}/_{9} \times {}^{1}/_{7} \times {}^{1}/_{6} \end{array} \begin{array}{c} {}^{4}/_{9} \times {}^{3}/_{8} \times {}^{2}/_{7} \times {}^{1}/_{6} & \text{Allow } \times \text{ or } + \dots \\ \times 4! \times 2 & \text{fully correct method} \end{array} $	$4! + 4! \text{ or } 2 \times 4! \text{ oe}$ $\div {}^{9}P_{4} \text{ or } \div (i)(a) \text{ oe}$ Must be (96 or 48 or 24) $\div {}^{9}P_{4}$
			$= \frac{1}{63}$ oe or 0.0159 (3 sfs)	A1 [3]	NB Marks from one method only, not mixed methods	$ \begin{array}{c} {}^{2}/_{9} \times {}^{2}/_{8} \times {}^{1}/_{7} \times {}^{1}/_{6} allow \times or + \dots M1 \\ \times 4!/4 \times 2 fully \ correct \ method \qquad M1 \end{array} $
					SC: consistent use of with replacement in (ii), (or if only (a) or (b) attempted) (iia) $\binom{5}{9}^4$ M1 $+ {}^4C_3(\frac{5}{9})^3(\frac{4}{9})$ (= 0.400) M1 M0A0 (iib) $\binom{1}{9}^4$ (=0.000152) M1 attempt find no of gps M1A0	$\frac{1 - ((\frac{4}{9})^4 + 4(\frac{4}{9})^3(\frac{5}{9}) + {}^4C_2(\frac{4}{9})^2(\frac{5}{9})^2)}{\text{One term missing or extra or wrong M1}} M2$

C	Question	Answer	Marks		Guidance	
1	(i)	$\Sigma x = 1366 \Sigma y = 17.6 \Sigma x^2 = 374460 \Sigma y^2 = 62.82$ $\Sigma xy = 4784.8$	B1	any three correct; may be implied by 2 S's	$\bar{x} = \frac{1366}{5}$ or 2	$x_x = \Sigma (x - \bar{x})^2$ etc: 273.2, $\bar{y} = \frac{17.6}{5}$ or 3.52, either:B1
		$S_{xx} = 374460 - \frac{1366^2}{5} \qquad \text{or } 1268.8$ $S_{yy} = 62.82 - \frac{17.6^2}{5} \qquad \text{or } 0.868$ $S_{xy} = 4784.8 - \frac{1366 \times 17.6}{5} \qquad \text{or } -23.52$	M1	correct sub in any correct <i>S</i> formula, ft Σ s, \overline{x} , \overline{y}	0.68 ² +0.18 ² +	$(-3.2)^{2} + (-9.2)^{2} + 16.8^{2} + 18.8^{2}$ + $(-0.32)^{2} + (-0.02)^{2} + (-0.52)^{2}$ $(-2)\times (-0.18 + (-9.2)\times (-0.32) + 16.8\times (-0.02)$
		$r = \frac{-23.52}{\sqrt{1268.8 \times 0.868}}$ or $\frac{-23.52}{33.186}$ oe = -0.709 (3 sfs)	M1 A1 [4]	corr sub into 3 <i>Ss</i> and <i>r</i> , ft Σ s, \overline{x} , \overline{y} CaO	If no workin -0.71: SC 3;	0
1	(ii)	$b = \frac{"-23.52"}{"1268.8"} \text{ or } -\frac{147}{7930} \text{ or } -0.0185 \text{ (3 sfs)}$ $y - \frac{"17.6"}{5} = "-0.0185"(x - \frac{"1366"}{5})$ $\Rightarrow y = -0.019x + 8.6 \text{ or better, ie 2 sfs enough}$ $(y = -0.019 \times 280 + 8.6 (= 3.39 \text{ to } 3.41))$ Est sales = £3390 to £3410 or 3.39 thousand to 3.41 thousand	 M1 M1 A1 A1ft [4]	ft their S_{xy} & S_{xx} & Σ s from (i) or $a = \frac{"17.6"}{5} - "(-0.0185)" \times$ if <i>a</i> incorrect, must see cao; must be " $y =$ " coeffs that round to -0.019 & ft their <i>y</i> ×1000, dep M1M1, dep sub 28 Allow "k" for thousand No working, ans in range: M1	1 <u>366"</u> method for M1 8.6 to 2 sfs 0 (not 280000)	use of x on y line: $b' = \frac{"-23.52"}{"0.868"}$ (or -27.1) M0 $x - \frac{"1366"}{5} = (-27.1)"(y - \frac{"17.6"}{5})$ or $a' = \frac{"1366"}{5} - (-27.1)" \times \frac{"17.6"}{5}$) M1 (if a' incorrect, must see method for M1) x = -27.1y + 369 cao A1 3277 or 3278 A0
1	(iii)	There may be other factors oe Correlation does not imply causation oe	B1 [1]	or any suggestion of another f could be involved, eg Depend the economy oe Must state or clearly imply: EITHER <u>corr'n</u> does not impl OR there could be <u>another fac</u> Ignore all else	ls on state of ly <u>causation</u>	NOT: Tourists & sales not nec'y linked Sales are not entirely dep on tourists Could be a coincidence Might be different other years More tourists wd incr sales -0.8 is not strong corr'n Only shows good neg corr'n Sample is small Could be affected by extremes Neg corr'n not nec'y imply <u>neg</u> relnship

G	Question	Answer	Marks	Guidance	
2		$\frac{\frac{1.4}{50}}{1.5 + \frac{1.4}{50}} \qquad (= 0.028)$	M1 M1	$\begin{array}{c} 1.4 + 50 \times 1.5 \qquad (= 76.4) \\ \frac{76.4'}{50} \end{array}$	eg <u>1.4+1.5</u> M0M0A0
		$= 1.528 \text{ or } \frac{191}{125} \text{ or } 1.53 (3 \text{ sf})$	dep M1		50
				$(\Sigma x^{2} - 2 \times 1.5 \times 76.4' + 50 \times 1.5^{2} = 0.05)$ (\Rightarrow \Sigma x^{2} = 116.75; no marks yet)	
		$\frac{0.05}{50} - (\frac{1.4}{50})^2$ or 0.000216 seen	M1	$\frac{0.05 + 2 \times 1.5 \times 76.4' - 50 \times 1.5^2}{50} - `1.528'^2 \text{ all correct}$	not $\frac{0.05}{50}$ - '1.528' ²
		$\sqrt{0.000216}$	M1	fully correct method, ie nothing added etc	
		= 0.0147 (3 sf)	A1 [6]	cao not isw	
3	(i)	23	B1 [1]	Allow 22.5	NOT 22 (ie 3.5^{th} no) Correct ans is the 4^{th} or 3.75^{th} no.
3	(ii)	0	B1	B1 for 30, 30	
		0	B1		
	<i>/···</i> >	20 40	[2]	D1.6 00 00	20. 20. 5. 20. D1D0
3	(iii)	38 or 40 39 40.75	D2	B1 for 38 or 39 seen	eg 38, 38.5, 39 (ie $UQ = {}^{3}/_{4} \times 14 = 10.5^{th}$ no.) B1B0
		39 40.75	B2	B2 for 38 & 39 seen alone, not in a range Mixture, eg 38, 40.75 B1B0 3/8 and 3/9 (both): B1B0	'Between 39 & 46' B1B0 $38 \le any letter < 40$ B1B0
				8 and 9(both): B1B0	SC 42, 42.5 only B1B0 (ie UQ = 11.5^{th} no.) Correct ans are the poss 11^{th} or 11.25^{th} nos
			[2]	40, 40.75: similar scheme as for 38, 39	

(Question	Answer		Guidance	
3	(iv)	Shows all the data or you can see all the values oe		any implication of <u>all</u> the data or the	NOT
		You can see the actual/exact/indiv		actual numbers/values/results or similar	Shows the spread/skew/trend
		numbers/values/results		eg Can compare each indiv result	Any comment on skew
		No data is lost oe		Easier to see the numbers	You can <u>see</u> the actual frequ's Easier to compare sets of data Shows more info or more data
		Shows the shape of the distribution oe			Easier to read off the data
				eg can <u>find</u> frequencies	Easier to read on the data
		Can perform calculations of your choice (eg mean)		eg can <u>mu</u> nequencies	Ignore all other
		Shows which group (or class, NOT value) has the	B1	No mks for ans to (v) given in (iv) unless	
		highest frequency (or is the mode) oe	[1]	labelled as (v)	
3	(v)	Shows the median or it's easier to see the median	[*]	eg Shows mean and quartiles B1	NOT
C		(or quartiles or IQR)	B1	Shows range and median B1	Shows the spread/skew/trend
		It can measure the middle 50% easily	[1]		Can see data in diag form
			r_1	No mks for ans to (v) given in (iv) unless	Shows max or min or range
				labelled as (v)	Easier to compare sets of data
					Not affected by outliers
				Ignore all other	Easy to see outliers
					Shows s.d. or shows mean Can see important data items/measures
4	(i)	Top: 2 branches $\frac{4}{5}$, $\frac{1}{5}$ & R, B shown	B1	consistent	
		Bottom:			
		1^{st} branch: prob = 1 or $\frac{5}{5}$, & R shown	B1	allow eg $\frac{4}{4}$	
		5		4	Any missing label(s) on first
		no 2 nd branch OR branch with prob = 0 or $\frac{0}{5}$	[2]		three branches, subtr B1 once
		5		ignore any 3 rd layer branches	No label needed on zero branch, if drawn.

C)uestic	n	Answer	Marks	Guidance	
4	(ii)		$\frac{5}{6} \times \frac{1}{5}$ or $\frac{1}{6} (\times 1)$ or $\frac{1}{6}$ seen	M1		or $1 - \frac{5}{6} \times \frac{4}{5}$ or $1 - \frac{2}{3}$ M2
			$\frac{5}{6} \times \frac{1}{5} + \frac{1}{6} (\times 1)$	M1	all correct	ft incorrect tree dep probs ≤ 1
			$=\frac{1}{3}$ oe	A1 [3]	cao	if 3^{rd} tree prob = 1, (ii)M1M1A0 if 3^{rd} tree prob \neq 1, (ii)M1M0A0
						NB!! $2 \times \frac{5}{6} \times \frac{1}{5} = \frac{1}{3}$ M1M0A0
4	(iii)		$\frac{4}{5} \times \frac{3}{4} + \frac{1}{5} (\times 1)$ or $1 - \frac{4}{5} \times \frac{1}{4}$ or $1 - 0.2$ all correct	M1	or $(\frac{5}{6} \times \frac{4}{5} \times \frac{3}{4} + \frac{5}{6} \times \frac{1}{5}) \div \frac{5}{6}$ all correct	but $\frac{5}{6} \times (\frac{4}{5} \times \frac{3}{4} + \frac{1}{5})$ M0
			$=\frac{4}{5}$ or 0.8 oe	A1 [2]	May be seen without working M1A1 cao	ft incorrect tree: (iii) M1A0
5	(i)	(a)	1	B1 [1]		NOT close to 1
5	(i)	(b)	-1	B1 [1]		NOT close to -1
5	(ii)		$\Sigma d^{2} \text{ attempted} \qquad (= 10)$ $1 - \frac{6 \times \Sigma d^{2}}{4(4^{2} - 1)}$ $= 0$	M1 M1 A1 [3]	if $\Sigma d^2 = 10$, may be implied by next line if $\Sigma d^2 \neq 10$, must see working dep M1 Use of $(\Sigma d)^2$ M0M0A0	$S_{xx} \text{ or } S_{yy} = 30 - \frac{100}{4} (= 5) \text{ or}$ $S_{xy} = 25 - \frac{100}{4} (= 0) \text{ M1}$ $\frac{0}{\sqrt{5 \times 5}} \text{ M1}$

⁴⁷³²

(Question	Answer	Marks	Guidance		
5	(iii)	No ft from (i)(a), (i)(b) & (ii) ia: Total (or perfect or max or complete)agreement They have the same opinions/ranks/numbers etc They were identical	B1	Identical opinions/views/marks/ranks/ decisions/results/numbers oe Agree on all the ranks	NOT: They agree or Strongly agree They agree most ranks Similar rankings As A's ranks increase so do B's Perfect relnship	
		ib: Opposite/reverse opinions/views/marks/ranks/ decisions/results oe	B1	Total (or max or complete or perfect) disagreement A's highest is B's lowest oe "Opposite" seen is sufficient	NOT: Don't agree any ranks Disagree or Strongly disagree Disagree on all ranks Perfect neg relnship	
		ii: For $r = 0$ must state or imply:			NOT:	
		either <u>NO</u> relationship or similar		No relationship/pattern/link/similarity between opinions/views/marks/ranks/ decisions/results oe opinions/etc not related scoring appears random	Different views Don't agree but some rel'nshp Ranks all different No corr'n betw judges' views Don't agree nothing in common at all not much in common	
		or indicate <u>BOTH</u> agreement & disagreement or <u>NEITHER</u> agree nor disagree		Neither agree nor disagree oe Both agree & disagree oe Agree for some, disagree for others oe mixed/varied opinions on the ranks	completely different orders opinions completely different half way between (a) and (b)	
		or <u>DIFFERENT</u> but <u>NOT OPPOSITE</u>	B1	All three parts: Must refer to (or imply) opinions/views/marks/ranks/scores or (dis)agreement, or relationship or pattern oe, NOT just corr'n	Ignore all other	

C	Questic	on	Answer	Marks	Guidance	
6			$(1 - 0.1) \div 5$ (= 0.18) 3×0.18 or 2×0.18 or 7×0.1 (or result of these)(poss × 100) (3 × 0.18 only scores if using £3, not score of 3. Similarly for 2 × 0.18).	M1 M1	can be implied, eg by 18 5×0.18 or 10×0.1(or result of these)(poss × 100)	or, using exp no. of 5's & 6's 18×5 or 10×10
			$4 \times 3 \times 0.18$ AND $2 \times 0.18 + 7 \times 0.1$ (poss × 100) (or 2.16 AND 1.06 or 216 AND 106)	M1	3 AND 5 × 0.18+10 × 0.1 (poss × 100) (or 3 AND 1.9 or 300 AND 190)	300 AND 18 × 5 + 10 ×10 (NB 300+ 100×0.18 +100×0.1 is insuff)
			'2.16' – '1.06' or '216' – '106' <u>must</u> be attempt gain on 1,2,3,4 – loss on 5,6	M1 dep any M1	3 - 1.9 or $300 - 190must be attempt receipt – payout on 5,6$	Eg: 300–100×(5×0.18+ <u>6</u> ×0.1)=150 M1M1M0M1A0
			$E(\text{profit for 100 rolls}) = (\pounds)110$	A1	$E(\text{profit for 100 rolls}) = (\pounds)110$	Mark one method only Must be matched pair
				[5]	NB 300–(0.1×300+0.18×300) = 300–84 =216 M1M1M0M0A0	eg 300–106 or 216–190: M1M1M0M0A0
7	(i)	(a)	⁷ P ₅ or $\frac{7!}{2!}$ or $7 \times 6 \times 5 \times 4 \times 3$ or ⁷ C ₅ $\times 5!$ alone = 2520	M1 A1 [2]	$^{7}P_{2} \text{ or } \frac{7!}{2!} \text{ M0A0}$	$^{7}C_{5} = 21 \text{ or } 5! = 120 \text{ M0A0}$ but see (i)(b)
7	(i)	(b)	${}^{6}P_{4} \text{ or } \frac{6!}{2!} \text{ or } 6 \times 5 \times 4 \times 3 \text{ or } {}^{6}C_{4} \times 4! \text{ or } 360$	M1	alone or ×2 only	or '2520' $-5 \times {}^{6}P_{4}$ M2
			$\times 2$ (see middle column)	M1	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	SC ONLY on ft from (i)(a): if (i)(a) 5! = 120, then (i)(b)4!×2=48 alone M1M0A0
					or '2520'× $\frac{2}{7}$ M2A0 (eg (ia)21 (ib) $21 \times \frac{2}{7} = 6$ M2A0	Other SC ${}^{5}P_{3} \times 2$ M2 (from a vowel at <u>each</u> end, ie treat as MR)
					but if ans is 6, must see wking)	NOT isw eg $\frac{720}{7520} = \frac{2}{7}$ M1M1A0
			= 720	A1 [3]	cao	2320 1
7	(ii)	(a)	21	B1 [1]		

Question		on	Answer	Marks	Guidance	
7	(ii)	(b)	${}^{5}C_{3} \text{ or } \frac{5!}{3!2!}$ or ${}^{5}C_{5} \text{ seen}$ or 10 seen in num	M1	$\frac{5}{7} \times \frac{4}{6}$ oe seen	Allow ${}^{5}C_{2}$ seen BOD
			$\frac{{}^{5}C_{3}}{{}^{5}C_{3}+{}^{5}C_{5}}$ oe	M1	$\frac{5}{7} \times \frac{4}{6} \div (\frac{5}{7} \times \frac{4}{6} + \frac{2}{7} \times \frac{1}{6})$	
			$\frac{10}{11}$ or 0.909 (3 sf)	A1		
			11	[3]		
8	(i)		1 - 0.1754 alone	M1	Allow 1– 0.2855 or 0.7145 or 0.715 alone	
			= 0.825 (3 sfs)	A1		
			4~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	[2]		
8	(ii)	(a)	_	M1	All correct	
			$=\frac{1323}{5000}$ or 0.265 (3 sf)	A1		
0				[2]		
8	(ii)	(b)	, , , , , , , , , , , , , , , , , , ,	B1	Both needed	
			$P(Y=4) = 0.7^4$ (or $\frac{2401}{10000}$ or 0.2401)	M1		
			$P(Y=3) = 4 \times 0.3 \times 0.7^3$ (or $\frac{1029}{2500}$ or 0.4116)	M1		
			$(1 - 3) = 4 \times 0.3 \times 0.7$ (of 2500 of 0.4110)			if " $3\times$ " omitted twice or " $3!\times$ "
			$\mathbf{D}(\mathbf{A}, \mathbf{a}, \mathbf{a}) = \mathbf{A}(\mathbf{a}, \mathbf{a}, \mathbf{a}, \mathbf{a})$	2.61	is 2 × their $\mathbf{D}(4)$ × (their $\mathbf{D}(2)$) ²	used twice allow M1M0
			$P(4,3,3) = 3 \times "0.2401" \times "0.4116"^{2} (or \ 0.122)$	M1	ie 3 × their P(4) × (their P(3)) ² ie 3 × (their P(4)) ² × their P(2) ft (ii)(a)	eg ans 0.0560, 0.0559,0.336,
			$P(4,4,2) = 3 \times 0.2401^{2} \times 0.265^{2}$ (or 0.0458)	M1	For M mks ignore extra combs eg $P(4,4,3)$	probably B1M1M1M1M0A0
					T OF WE HIRS IGNORE EXTRA COMOS CG I (4,4,5)	but must see method
			$D(T_{at} = 10) = 0.168 (2 \text{ sfs})$	A1		but must see method
			P(Tot = 10) = 0.168 (3 sfs)	AI	If B(30, 0.6) <u>clearly</u> being used:	
					Any 5 combs adding to 10 seen B1	
					$P(8) = {}^{30}C_8 \times 0.4^{22} \times 0.6^8 \text{ or } 0.0002$	
					$P(9) = {}^{30}C_9 \times 0.4^{21} \times 0.6^9 \text{ or } 0.0007$	
					$P(10) = {}^{30}C_{10} \times 0.4^{20} \times 0.6^{10} \text{ or } 0.0020$	
					all three correct M2	
				[6]	or two correct M1	
					No more marks	

C	Question		Answer	Marks	Guidance	
9	(i)	(a)	Geo stated or implied $0.9^5 \times 0.1$ alone = 0.059(0) (2 sfs)	M1 M1 A1 [3]	eg by $0.9^p \times 0.1$ or $0.1^p \times 0.9$ alone, $p>1$ all correct	
9	(i)	(b)	$\begin{array}{l} 0.9^5 \text{ or } 0.59 & (\text{NB cf ans to } (i)(a)!!) \\ 1 - 0.9^5 \end{array}$ $= 0.4095 \text{ or } 0.410 (3 \text{ sfs}) \end{array}$	M1 M1 A1 [3]	$0.1 + 0.9 \times 0.1 + 0.9^{4} \times 0.1$: M2 1 term wrong or omit or extra or 1 – (all terms correct): M1 or 1 – 0.9 ⁶ : M1	M0M0A0 for 0.9 ^{<i>p</i>} × 0.1
9	(ii)	(a)	$0.05 + 0.95^{2} \times 0.05$ = $\frac{761}{8000}$ or 0.0951 (3 sfs)	M1 A1 [2]	All correct	NB!! 2 × 0.95 × 0.05 = 0.095 M0A0
9	(ii)	(b)	$0.05, 0.95^2 \times 0.05, \dots$ or $\frac{1}{20}, \frac{361}{8000}, \dots$ oe $\frac{0.05}{1-0.95^2}$ or $\frac{0.05}{1-0.9025}$ oe $= \frac{20}{39}$ or 0.513 (3 sfs)	M1 M1 A1 [3]	≥ 2 terms. Not nec'y added May be implied by next line or $\frac{0.05}{1-(1-0.5)^2}$ or $\frac{0.05}{2\times0.05-0.05^2}$ or $\frac{1}{1.95}$ oe	or $r = 0.95^2$ stated or implied NB $\frac{0.05}{1-0.5 \times 0.05} = 0.0513$ M0A0

Note: "(3 sfs)" means "answer which rounds to ... to 3 sfs". If correct ans seen to \geq 3sfs, ISW for later rounding. Penalise over-rounding only once in paper.

"3 sf" means "answer which rounds to ... to 3 sf". Penalise over–rounding if no better answer is seen and penalise only once in the paper.

	Questio	on	Answer	Marks	Guidan	ce
1	(i)		2k + 4k + 6k + 8k = 1	M1	or $2 + 4 + 6 + 8 = 20$ M1	Must see correct wk'g for $k = \frac{1}{20}$,
			$k = \frac{1}{20}$ AND $6 \times \frac{1}{20} = \frac{3}{10}$ AG	A1	Must see both for A1	otherwise M0A0 NB $k \times 6 = \frac{3}{10} \implies k = \frac{1}{20}$ M0A0
					or $2k + 4k + 6k + 8k = 20k$ M1 P(X = 6) = $\frac{6k}{20k} = \frac{3}{10}$ A1	(even if tested by showing that $k = \frac{1}{20}$
				[2]		gives $\Sigma p=1$) Just showing $\frac{1}{10} + \frac{2}{10} + \frac{3}{10} + \frac{4}{10} = 1$ M0A0
1	(ii)		$2 \times \frac{1}{10} + 4 \times \frac{2}{10} + 6 \times \frac{3}{10} + 8 \times \frac{4}{10}$ oe	[2] M1	\geq 3 terms correct ft their values of p,	Allow i.t.o. k for M1 $\div 4$ M0
	()		10 10 10 10		$\frac{1}{dep} \sum p = 1$	
			= 6	A1	cao	
			$2^2 \times \frac{1}{10} + 4^2 \times \frac{2}{10} + 6^2 \times \frac{3}{10} + 8^2 \times \frac{4}{10}$ oe (= 10)	M1	\geq 3 terms correct; ft their values of <i>p</i> ; dep $\Sigma p = 1$	Allow ito k for M1M1 \div 4 M0 NOT – m ² \div 4
			- '6' ²	M1	ft their values of p; dep +ve result & $\Sigma p = 1$ cao	$\sqrt{4} = 2$ lose final A1, not ISW, unless labelled sd
			= 4	A1		
				[5]		
2	(i)		$\frac{3}{4} + \frac{1}{4} \times \frac{3}{8}$	M1	$\frac{1}{4} \times \frac{5}{8} \times \frac{13}{16}$ (= $\frac{65}{512}$ or 0.127)	
			$+\frac{1}{4}\times\frac{5}{8}\times\frac{3}{16}$	M1	$1 - \frac{1}{4} \times \frac{5}{8} \times \frac{13}{16}$	
			$=\frac{447}{512}$ or 0.873 (3 sf)	A1		
				[3]		
2	(ii)		0.6 <i>p</i> or equiv seen	B1	Tree diag alone insufficient for mark.	NB $0.6 \times 0.3 = 0.18$ seen at the end is
			0.4 + 0.6p = 0.58	M1	Or $0.6p = 0.18$. "0.18" alone insufficient	probably a check, not an answer.
			p = 0.3	A1		But if 0.3 seen and 0.18 is very clearly indicated as the ans then B1M1 A0
				[3]		indicated as the ans then B1M1A0

Q	Juestio	n	Answer	Marks	Guidan	ce
3	(i)		$S_{xx} = 8700000 - \frac{7000^2}{6} (= 533333)$ $S_{xy} = 509900 - \frac{7000 \times 456}{6} (= -22100)$ $b = -\frac{"22100"}{"533333"} \text{ or } -\frac{663}{16000} (= -0.0414)$ $y - \frac{456}{6} = "-0.0414"(x - \frac{7000}{6})$ y = -0.0414x + 124 (3 sf)	M1 M1 M1 A1 [4]	Correct subst'n in any correct <i>S</i> formula Correct subst'n in any correct <i>b</i> formula from two correct <i>S</i> formulae ft their <i>b</i> except if using <i>r</i> or $y = -\frac{663}{16000} x + \frac{3979}{32}$ or $y = -0.041x + 124$	or $a = \frac{456}{6} - ("-0.0414") \times \frac{7000}{6}$ oe ft "b" Allow $y = -0.04x + 124$ if -0.041 seen above
3	(ii)		70 to 72	B1 [1]	or 71 per thousand, NOT 71000	No ft from (i) Ignore method
3	(iii)		Extrapolation oe Corr'n not high or small sample	B1 B1 [2]	Allow "2400 is beyond graph" } "Not shown on the graph" or }1 st B1 only "Line drops low, or below 0" } "Outlier" } Poor corr'n oe, or pts not close to line oe 2 nd B1	"Line only allows for countries poorer than Nigeria" 1 st B1 Allow "Value for Nigeria is –ve 1 st B1 NOT "Other factors may apply" oe Ignore all else
3	(iv)		$S_{xx} = 8700000 + 1300^{2} - \frac{(7000 + 1300)^{2}}{7}$ $S_{yy} = 36262 + 96^{2} - \frac{(456 + 96)^{2}}{7}$ $S_{xy} = 509900 + 1300 \times 96 - \frac{8300 \times 552}{7}$ $r = \frac{"-19814.3"}{\sqrt{"548571" \times "1948.86"}}$ $= -0.606 (3 \text{ sf})$	M1 A1 M1 A1 [4]	or $10390000 - \frac{(8300)^2}{7} = \frac{3840000}{7}$ or 548571 or $45478 - \frac{552^2}{7} = \frac{13642}{7}$ or 1948.86 or $634700 - \frac{8300 \times 552}{7} = -\frac{138700}{7}$ or -19814.3 Correct subst'n in any correct <i>r</i> formula from 3 correct subs in 3 correct <i>S</i> formulae, ie all correct method	Correct sub in any correct <i>S</i> formula M1 Correct value of any <i>S</i> seen or implied by <i>r</i> A1 SC If $n = 6$, but otherwise correct allow M1A0M1A0 (ans $r = -0.574$, must see wking)

(Questic	on	Answer	Marks	Guida	nce
3	(v)		No effect oe	B1 [1]	Stay the same oe Allow just "No"	Ignore all else
4	(i)	(a)	6	B1 [1]		
4	(i)	(b)	3×3×3 = 27	A1 [2]	$\begin{array}{cccc} 3!+7\times3 & 3+3\times6+6 & 3!\times4+3\\ \text{Complete correct method. Allow methods}\\ \text{equiv to these.} \\ \text{Only allow other methods if they appear}\\ \text{correct} \end{array}$	(Explanation for 3! × 4 + 3: 123: 3!, 112 & 122: 3!, 223 & 233: 3!, 331 & 311: 3! 111, 222, 333: 3 Candidates need not include this)
4	(i)	(c)	 (i)(b) - 3 If answer is not 24, this method must be explicitly stated in order to give M1A1ft = 24 ft their (i)(b) 	M1 A1ft [2]	or 3! + 6×3 or 3! + 3!×3 or 6 + 3!×3!÷2! or 3! × 4 Complete correct method. Allow methods equiv to these. Only allow other methods if they appear correct	or 8×3 (Explanation: there are 8 possible orders starting with 1. Candidates need not include this)
4	(ii)		eg 1123: $\frac{4!}{2!} \times 3$ alone allow M1 for $\frac{4!}{2!} \times 3!$ alone eg 1122: $\frac{4!}{2!2!} \times 3$ alone allow M1 for $\frac{4!}{2!2!} \times 3!$ alone Total = 54	A1 [5]	$3! \times {}^{4}C_{1} \times 3$ or $3! \times 12$ M1 $\div 2$ M1dep (= 36) $3! \times {}^{4}C_{2}$ M1 $\div 2$ M1dep (= 18)Allow methods equiv to these, eg correctlylisting casesOnly allow other methods if they appearcorrect.NB $3 \times 3 \times 2 \times 2 = 36$ & $3 \times 3 \times 2 \times 1 = 18$ are incorrect methods unless clearjustification given	This method only scores if $3 \times 3 \times 3 = \dots$ is used: No. with 4 rep'ns = 3 M1 No. with 3 rep'ns = $\frac{4!}{3!}$ M1 $\times 6$ (= 24) M1 or 8 × 3 M2 81-('3'+'24') or 81-27 M1 (allow 81-3 or 81-24) 18, 36 only score if a correct method seen,, or eg: 18 orders listed starting with "1" or 18 orders listed with two repetitions

(Juestic	on	Answer	Marks	Guidan	ce
5			If incorrect <i>p</i> used consistently in all parts	of qu 5, no ml	ks in (i)(a) & (b) but can score M-marks in (ii) a	und (iii).
5	(i)	(a)	1.25 oe	B1 [1]		
5	(i)	(b)	0.8965 - 0.6328	M1	${}^{5}C_{2}(\frac{3}{4})^{3}(\frac{1}{4})^{2}$	
			= 0.264 (3 sf)	A1 [2]	$=\frac{135}{512}$ or 0.264 (3 sf)	Answer which rounds to 0.264
5	(ii)			M1	$\left(\left(\frac{3}{4}\right)^5\right)^2$ or $\left(\frac{243}{1024}\right)^2$ or $\left(\frac{3}{4}\right)^{10}$ oe $\left(=\frac{59049}{1048576}\right)$	B(10. 0.25) seen or implied M1
			Answer which rounds to 0.244	M1	$\left(\frac{3}{4}\right)^5 \times 5\left(\frac{3}{4}\right)^4 \left(\frac{1}{4}\right)$ or $\frac{243}{1024} \times \frac{405}{1024}$ or $5\left(\frac{3}{4}\right)^9 \left(\frac{1}{4}\right)$	Table or formula with $n = 10$ used M1
				M1	$(=\frac{98415}{1048576})$ 2×(attempt P(1, 0) alone), (NOT 2×(P(1,0) + P(0,0))	P(X ≤ 1) from table or $(\frac{3}{4})^{10} + 10(\frac{3}{4})^9 \times (\frac{1}{4})$ M1 0.244 (3 sf) A1
					If $P(sum \le 2)$, all three M-mks are available, but for 3rd M1, must be $2 \times (P(1,0)+P(2,0))$ only	$P(X \le 2) = 0.526$ from table $n = 10$ M1M1M1A0
				A1	Ans 0.150 probably M1M1M0A0 but check working Ans 0.188 probably M0M1M1A0 but check working	SC P($X = 2$) answer 0.282: B1
				[4]		10 7 2
5	(iii)		Use of 0.2637 or 0.264 ${}^{10}C_3 \times (1 - {}^{\circ}0.2637{}^{\circ})^7 \times {}^{\circ}0.2637{}^{\circ}^3$	M1 M1	or their (i)(b) ft (i)(b) allow ft their (ii) for this M1 only	SC allow ${}^{10}C_3 \times (1-0.282')^7 \times 0.282'^3$ MOM1 (0.282 comes from P(3 totals = 2))
			= 0.258 (3 sf)	A1 [3]	Correct ans, no working: M1M1A1	(0.202 comes from 1 (5 <u>totals</u> – 2))

(Question	Answer	Marks	Guidance		
6	(i)	Attempt find total area, (even if includes a^2) eg 20×1.4a+10×3.4a+6×4.6a+4×2.6a+10×3a+30a ar 28a+24a+27 6a+10 4a+20a+20a		eg tot $\underline{area} = 16cm^2 \text{ or } 16a$ M1 $800/16 (= 50)$ M1 $10 = 50$ M1	Trial methods, eg:	
		or 28a+34a+27.6a+10.4a+30a+30a or 20×1.4+10×3.4+6×4.6+4×2.6+10×3+30		$a \times 10 = 50 a = 5 $ A1	$a = 5$ gives $7 \times 20 + 17 \times 10 + 23 \times 6 + \dots$ = 800 M1	
		or 28+34+27.6+10.4+30+30		eg tot area = 400 (sqs) M1	But no of apples = 800 M1	
		or 7×20+17×10+23×6 +		800/400 (= 2) M1	Hence $a = 5$ A1	
		or 160 <i>a</i> or 160 or 16 or 16 <i>a</i> (if area, not ht)	M1	$1.4a \times 20 = 70 \times 2$ $a = 5$ A1		
		$800 \div$ their total (must involve area, not ht)	Miller		$a = 10$ gives $14 \times 20 + 34 \times 10 + 46 \times 6 + . = 1600$ M1	
		$eg \ 160a = 800, \ 800 \div$	M1dep	Correct ans with nothing incorrect seen:	$\begin{array}{cc} 1600 & \text{M1} \\ \text{But no of apples} = 800 & \text{M1} \end{array}$	
		a=5	A1	M1M1A1	Hence $a = 5$ A1	
		"Box" \Rightarrow area. "Square" possibly \Rightarrow area		Dut where the correct opening closely recults	NOT " $1 - 5$ " (because may just	
		box is area. Square possiony is area		But where the correct answer clearly results from incorrect working, eg $a = 800/167 = 4.8$	NOT "1cm = 5" (because may just come from counting squares)	
				rounded to $a = 5$, then max M1M1A0	$\frac{NB \text{ total ht} = 16 \text{ cm so if } 16 \text{ seen, must}}{16 \text{ seen, must}}$	
					clearly be area eg 800/16 may score 0	
			[3]		or 2	
6	(ii)	$\frac{1}{2}$ total area or $\frac{1}{2}$ total no. apples ft their 6(i)	B1f		Examples of correct methods:	
		Median is in 50 – 56 class stated or implied	M1		$400 - (7 \times 20 + 17 \times 10)$ (= 90)	
		Wedian is in 50 – 50 class stated of implied			$50 + \frac{"90"}{23 \times 6} \times 6 = 54$	
					200 - (70+85) (= 45)	
		Calculate (approx) $\frac{2}{3}$ of way along class			$50 + \frac{"45"}{69} \times 6 = 54$	
		5			69	
		or $\frac{1}{3}$ of way from top of class	M1		400.5 - (7×20+17×10) (= 90.5)	
			A 1		$50 + \frac{"90.5"}{23 \times 6} \times 6 = 54$	
		$Median = 53.9 \text{ to } 54 \qquad Not \text{ eg } 54.2$	A1	Correct ans with nothing incorrect seen:		
				M1M1A1	Use of $LB = 49.5$:	
				But where the correct answer clearly results	eg median = 49.5 +appr $\frac{2}{3} \times 6 = 53.4$	
			[4]	from incorrect working, eg $a = 800/167 = 4.8$	B1M1A1A0	
				rounded to $a = 5$, then max M1M1A0		

Q	Juestio	n	Answer	Marks	Guidan	ce
7	(i)		$\Sigma d^{2} = n \text{ seen or implied}$ $1 - \frac{6 \times \text{anything}}{n(n^{2} - 1)} = \frac{63}{65} \text{ or } \frac{6 \times \text{anything}}{n(n^{2} - 1)} = \frac{2}{65}$	M1 M1	eg $1 - \frac{6 \times \Sigma d^2}{n(n^2 - 1)}$ or $1 - \frac{6 \times n^2}{n(n^2 - 1)}$ or $1 - \frac{6 \times 1^n}{n(n^2 - 1)}$ or $1 - \frac{6 \times 6^2}{n(n^2 - 1)} = \frac{63}{65}$	Trial method: $\Sigma d^2 = 14$ M1 $1 - \frac{6 \times 14}{14(14^2 - 1)}$ oe M1 $= \frac{63}{65}$ A1 (0.969 : A0)
			$\frac{6}{(n^2-1)} = \frac{2}{65}$ or eg 390 = 2(n^2 - 1)	A1 depM2	Any <u>correct</u> eqn after cancelling <i>n</i> or take out factor of <i>n</i> ; can be implied by $n = 14$	$\Rightarrow n = 14 \qquad A1 \\ Conclusion needed$
			$n = 14$ NOT $n = \pm 14$	A1	But A0 if $n = 14$ clearly follows from incorrect working	
				[4]	If no working or unclear working, but $n = 14$, M1M1A1A1	
7	(ii)	(a)	$r = 1 \implies$ st line, hence true (or $r_s = 1$) oe Explanation essential Must state or imply "true"	B1	$r = 1 \implies y$ incr as x incr, so $r_s = 1$ oe Allow "True because perfect corr'n" or "True because $r = 1$ means pts ranked in order so $r_s = 1$ " " $r = 1$ means the ranks will agree" " $r = 1$ means all d's are 0, hence $r_s = 1-0 = 1$ "	NOT " <i>r</i> incr so ranks incr" NOT " $r_s = r$ for ranks so true" NOT "True because strong corr'n"
7	(ii)	(b)	Diag, ≥ 3 pts, not on st line but with $x_{n+1} > x_n$ & $y_{n+1} > y_n$, Zig zag line or curve, moving up & right	[1] B1	Ignore explan if correct diag given Ignore any st line drawn Allow numerical example for which $r \neq 1$ but $r_s = 1$. If expl'n contradicts diag, mark diag	
			so r_s can still be 1	B1dep [2]	For 2 nd B1 must state or imply "false"	
			eg "expon'l curve gives $r \neq 1$ but $r_s = 1$ " B1B1			

(Juestio	n	Answer	Marks	Guidan	ce
8	(i)	(a)	$0.9^4 \times 0.1 = \frac{6561}{100000} \text{ or } 0.0656 \text{ (3sf)}$	M1 A1 [2]		
8	(i)	(b)	$0.9^{5} = \frac{59049}{100000} \text{ or } 0.59 (2 \text{ sf})$	M1 A1 [2]	Allow 0.9^4 or $1-0.9^5$:M1 but $1-0.9^n$ ($n \neq 5$) or 0.1×0.9^n :M0	$1 - (0.1+0.9\times0.1+0.9^{2}\times0.1 +0.9^{4}\times0.1)$ Allow without "1 –" OR omit last term NB $0.9^{5}\times0.1 = 0.0590$ M0A0
8	(i)	(c)	+ 0.1×0.9×0.1	oe M1 oe M1 oe M1 oe M1 Image: All state of the state of	M1M1 two correct terms, <u>no incorrect multiples</u> M1 all correct Ans 0.027 probably M0M1M1A0 but check working SC if no M-mks scored: SSF, SSS, FSS, SFS or SS, FSS, SFS seen or implied: B1	The 0.9 × 0.1 = 0.0590 More $3 \times 0.1^2 \times 0.9 + 0.1^3$ no incorrect multiplesM2 for 1st term; M1 for 2ndThis method only scores using "1 – ": 0.9^3 ; $3 \times 0.9^2 \times 0.1$ no incorrect multiplesM1; M11 – one or both terms with no furtherwking:M1(dep M1)eg 1 – 0.9^3 alone M1M0M1
8	(ii)	(a)	$0.9 \times 0.8 \times 0.1 = \frac{9}{125} \text{ or } 0.072$	M1 A1 [2]	alone or allow \times 0.8 (ie girls in wrong order) (= 0.0576)	NOT 0.9×0.8×0.1×0.2= 0.0144: M0A0 NOT 0.9×0.8×0.2= 0.144: M0A0
8	(ii)	(b)	$\begin{array}{l} 0.9^{9 \text{ or } 10} \times 0.8^{9 \text{ or } 10} \times 0.1 \text{ (or } \times 0.2, \text{ not} \\ \times 0.1 \times 0.2) \\ (0.9 \times 0.8)^{9} \times 0.1 \text{oe} \\ = 5.2 \times 10^{-3} \text{ or } 0.0052 \text{ (2 sf)} \end{array}$	M1 M1 A1 [3]	allow $0.9^{9 \text{ or } 10} \times 0.8^{9 \text{ or } 10} \times 0.1 \times {}^{18,19,20}C_1$ fully correct SC Consistent use of 0.8 for both girls: (ii)(a) or 0.9 for both girls: (ii)(a) seen, allow (a) 0 (b) B1	If ans = 0.00360 or 0.0150 see SC below 0.128 (ii)(b) 0.00360 0.081 (ii)(b) 0.0150 If both these ans

No	te: "(3 sf	fs)" mea	ins "answer which rounds to to 3 sfs". If correct ans seen	to \geq 3sfs, ISV	V for later rounding. Penalise over-rounding	only once in <u>paper</u> .
(Questi	on	Answer	Marks		Guidance
1	(i)		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	B1	B1 for stem correct AND (3 branches correct OR 5 branches correct nos but incorrectly ordered)	Ignore "0" and/or "1" in stem, without leaves Allow incorrect alignment. Allow space instead of line. Allow left–facing diag
			$\begin{array}{cccccccccccccccccccccccccccccccccccc$	B1	B1 for all correct	If all digits are in correct rows and orders, award this mark <u>unless</u> : 4^{th} row is not the longest OR eg a 3^{rd} digit in one row is clearly aligned with a 4^{th}
			2 4 means 24 or similar	B1 [3]		digit in another
1	(ii)		47.6 (3 sf) or $\frac{857}{18}$ or $47\frac{11}{18}$ (cm) oe	B1	cao	eg 857 ÷ 18 = 41.6 B0 but $\frac{857}{18}$ = 41.6 ISW B1
			51 (cm)	B1ft [2]	ft wrong diag	
1	(iii)		49 (or 9 th no.) becomes 51	B1	No marks for identifying 49 & 53 alone or 51 & 55 alone	NB NO ft from wrong diag NOT eg '51 or higher'
			or 53 (or 10 th no.) becomes 55	B1 [2]		Allow embedded answer eg 53 identified as incorrect <u>and</u> state(55+49)÷2=52 scores 2nd B1
2	(i)		5 2 4 1 3 or A B C D E (grades)	M1	Attempt ranks	Scores 2nd B1
-			3 4 5 2 1 3 1 5 2 4	A1	Correct ranks; allow both sets reversed Can be implied by eg $\Sigma d^2 = 14$	One set reversed: A0
			d^2 4 4 1 1 4			Use PMCC on ranks: 1 st M1A1 as main scheme then: $\Sigma x = \Sigma y = 15 \ \Sigma x^2 = \Sigma y^2 = 55 \ \Sigma xy = 48$
			$\Sigma d^2 \qquad (=14)$	M1	Attempt Σd^2 dep 1st M1	$\mathbf{S}_{xx} = \mathbf{S}_{yy} = 10$ $\mathbf{S}_{xy} = 3$ allow one arith error M1
			$1 - \frac{6 \times "14"}{5 \times (5^2 - 1)}$	M1	ft Σd^2 dep 1 st M1	$r = 3/\sqrt{(10 \times 10)}$ allow one arith error M1
			= 0.3 oe	A1 [5]	If one set reversed, $r_s = -0.3$ M1A0M1M1A0	= 0.3 A1
2	(ii)		$\Sigma d^2 = 8$ or '2 the same and 2 differ by 2' 1 4 3 2	M1 A1 [2]	May be implied	Allow $d^2 = 8$ or similar

No	ote: "(3 sfs	(s)" means "answer which rounds to to 3 sfs". If correct ans see	n to <u>></u> 3sfs, ISV	V for later rounding. Penalise over-rounding or	nly once in <u>paper</u> .
(Questic		Marks		Guidance
3	(i)	$ \begin{array}{c} 1 \times 0.4 + 3 \times 0.3 + 5 \times 0.2 + 7 \times 0.1 \\ = 3 \end{array} $	M1 A1	\geq 3 terms correct \div eg 4 M0	Use of $\Sigma(x-\overline{x})^2 \times p$:
		$\begin{vmatrix} 1^{2} \times 0.4 + 3^{2} \times 0.3 + 5^{2} \times 0.2 + 7^{2} \times 0.1 \\ - 3^{2} \times 0.2 + 7^{2} \times 0.1 \\ = 4 \end{vmatrix}$	M1 M1 A1	\geq 3 terms correct \div eg 4 M0 Dep +ve result	$2^{2} \times 0.4 + 0 + 2^{2} \times 0.2 + 4^{2} \times 0.1$ M2 or 2 correct non-zero terms M1
3	(ii)	775, 757, 577 $\frac{2}{3}$ or 0.667 (3 sf)	[5] B1 B1	Must show all three	Allow repeats, eg list of 6 orders Alt method $X_{1:}$ 5 or 7, $X_{2:}$ 5 or 7; $X_{3:}$ 5 or 7 or X_1, X_2, X_3 can be 5 or 7 B1
2	(:::)		[2]	$\int ds = h_{12} \left(0.0^{T} + 0.0^{S} \left(s = 1 \right) \right) ds = t \text{ inst her } \frac{h_{12}}{h_{12}}$	ND 0.0289 second D1M0A0 as $\frac{11}{10}$ 11C $\frac{10}{10}$ 0.095 $\frac{10}{10}$
3	(iii)	Binomial stated, or seen or implied with any $n \& p$ ${}^{11}C_4 \times 0.8^7 \times 0.2^4$ = 0.111 (3 sf)	B1 M1 A1 [3]	eg by $0.8^r \times 0.2^s$ (<i>r</i> , <i>s</i> >1) not just by ^{<i>n</i>} C _{<i>r</i>} Correct method Correct answer, no working M1M1A1	NB 0.0388 scores B1M0A0 as it is ${}^{11}C_5 \times 0.8^6 \times 0.8^5$
4	(i)	5.74 0.13 or 'the same'	B1 B1 [2]	NB 0.13 seen within working; B0	$eg \frac{\Sigma x^2}{10} - (their mean)^2 = 0.13^2$ scores B0 for 0.13
4	(ii)	$(10 \times 5.74' + 15 \times 5.6) \div 250e$ all correct	M1	eg 5.74× $\frac{2}{5}$ + 5.6× $\frac{3}{5}$	NB $(5.74 + 5.6) \div 2 = 5.67 \text{ M0A0}$
		= 5.656 = 5.66 (3 sf)	A1ft [2]	ft their 5.74	NB 5.7 with no wking: M0A0 even if already penalised elsewhere for over-rounding
4	(iii)	1 st gp (or one gp) is more consistent (or less spread oe) but less accurate	B1ft	2 nd gp (or one gp) more accurate or etc but less consistent or etc	1^{st} gp (or one gp) more consistent or etc 2^{nd} gp (or the other gp) more accurate or etc
		(or mean further from true mean oe)		If neither B1 scored, but state 'consistency does not imply accuracy' or similar: SC B1	Ignore all other, eg ignore 'Claim false' or 'Claim true' etc even if it contradicts other statements Reference to mean of all 25 does not score
			[2]	Equiv answers accepted, but no others	Follow through their values for 1^{st} gp: eg if 1^{st} gp sd = 5.13: 1^{st} gp less accurate and less consistent oe B1B1 Similar for other ft.

⁴⁷³²

	Duestic					nly once in <u>paper</u> .
			Answer	Marks		Guidance
5	(i)		$S_{xx} = 503.45 - \frac{70.3^2}{10} \qquad (=9.241)$			
			$S_{yy} = 103.94 - \frac{30.8^2}{10} \qquad (=9.076)$			
			$S_{xy} = 211.9 - \frac{70.3 \times 30.8}{10} \qquad (= -4.624)$	M1	Correct sub in any correct S formula	
			$r = \frac{"-4.624"}{\sqrt{"9.241" \times "9.076"}}$	M1	Correct sub in any correct r formula	Must be correct sub in all <i>S</i> 's & <i>r</i> but not nec'y accurate
			= -0.5049 or -0.505 (3 sfs)	A1 [3]	Correct ans with no wking: M1M1A1	
5	(ii)		Correlation (of UR & CPI) does not imply causation oe	B1	Both (UR & CPI) may depend on another factor	Allow One may depend on another factor Allow without context
			or <i>r</i> not close to -1		or <i>r</i> small or poor corr'n oe	NOT eg UR is independent
					Ignore all else	NOT eg Only for the given years
				[1]		NOT eg Only for certain months
5	(iii)	(a)	$b' = \frac{S_{xy}}{S_{yy}} = \frac{"-4.624"}{"9.076"} \ (= -\frac{1156}{2269} \text{ or } -0.50948)$	M1	ft their S's	If y on x: $b = \frac{S_{xy}}{S_{xx}} = \frac{"-4.624"}{"9.241"}$ (= -0.500) M1
			$x - \frac{70.3}{10} = "-\frac{1156}{2269}"(y - \frac{30.8}{10})$	M1	or $a' = (-\frac{1156}{2269}) \times (-\frac{30.8}{10}) + \frac{70.3}{10}$	y-3.08="-0.500"×(x -7.03) or a = 3.08+0.5×7.03 M1
			x = -0.51y + 8.6 (2 sfs)	A1	NB use b' (= -0.509), not r (= -0.5049)	y = -0.50x + 6.6 A0
			or $x = -\frac{1156}{2269}y + 8.6$			
				[3]		
5	(iii)	(b)	$x = -0.509 \times 4.0 + 8.60$	M1	Allow sub $y = 0.04$ for M1 only	If y on x found in (a)
			= 6.56 (3 sf) or 6.6 (2 sf)	Alft	ft their equn; ans to 2 sf	4.0 = -0.500x + 6.60 M1 $x = 5.2 (2 sf) A1ft$
				[2]		
6						award full marks. If the right answer follows from a unless there is a partly correct method worth M1.
6	(i)				$^{2}C_{2}$ 1 $^{2}P_{2}$	Allow M1 for $\frac{1}{5} \times \frac{1}{4}$, but NOT other methods
			$\frac{1}{5} \times \frac{1}{4} \times 2$ or $\frac{2}{5} \times \frac{1}{4}$ alone oe	M1	or $\frac{{}^{2}C_{2}}{{}^{5}C_{2}}$ or $\frac{1}{{}^{5}C_{2}}$ or $\frac{{}^{2}P_{2}}{{}^{5}P_{2}}$	leading to $\frac{1}{20}$ and NOT $\frac{1}{20}$ with no wking
			$=\frac{1}{10}$ or 0.1 oe	A1	Allow ${}^{5}C_{3}$ instead of ${}^{5}C_{2}$	M1 for totally correct method $\underline{\text{except}} \frac{1}{5} \times \frac{1}{4}$ seen: M1
				[2]		NB $\frac{2}{5} \times \frac{1}{4} \times 2$ M0A0; $\frac{2}{5}_{C_2}$ M0A0; $\frac{2}{5} \times \frac{1}{5}$ M0A0

			ns "answer which rounds to to 3 sfs". If correct ans seen	to \geq 3sfs, ISV	V for later rounding. Penalise over-rounding o	
	Questi	on	Answer	Marks		Guidance
6	(ii)		$\frac{2}{5} \times \frac{3}{4} \times \frac{2}{3} \text{ or } \frac{1}{5} \times \frac{3}{4} \times \frac{2}{3} \times 2 \text{ oe}$ or $\frac{1}{5}$ or 0.2 (not from incorrect method) or correct list of 6 comb's with 1 vowel or $\frac{2}{3} \times \frac{3}{3} \times \frac{2}{3} \times 3 \text{ or } \frac{1}{3} \times \frac{3}{3} \times \frac{2}{3} \times 6$	M1	$\frac{2 \times {}^{3}C_{2}}{} \text{ or } \frac{1}{5}C_{3} \text{ or } \frac{6}{} \text{ or } \frac{2}{5} \times \frac{3}{5} \times \frac{3}{5}$	<u>Only if using complement</u> (ie 1–P(0V or 2V)): $\frac{3}{5} \times \frac{2}{4} \times \frac{1}{3}$ OR $\frac{2}{5} \times \frac{3}{4} \times \frac{1}{3} \times 3$ M1
			$\frac{1}{5} \times \frac{3}{4} \times \frac{2}{3} \times 2 \times 3$ oe fully correct method	M1	$\frac{2 \times {}^{3}C_{2}}{{}^{5}C_{3}} \text{oe} \text{or } 6 \div 10$	$1 - (\frac{3}{5} \times \frac{2}{4} \times \frac{1}{3} + \frac{2}{5} \times \frac{3}{4} \times \frac{1}{3} \times 3) $ M1
				A 1	Allow ${}^{5}C_{2}$ instead of ${}^{5}C_{3}$. Not P's	5! or 120 alone is probably an incorrect method in this part
			$=\frac{3}{5}$ or 0.6 oe	A1 [3]		See comment before 6(i)
6	(iii)		$1 - \frac{1}{{}^{5}C_{4}} \text{ or } 1 - \frac{1}{5} \text{ or } \frac{5! - 4!}{5!} \text{ or } \frac{1 \times {}^{4}C_{3}}{{}^{5}C_{4}} \text{ or } \frac{1}{5} \times 4$	M1	or $(\frac{1}{5} \times \frac{4}{4} \times \frac{3}{3} \times \frac{2}{2}) + (\frac{4}{5} \times \frac{1}{4} \times \frac{3}{3} \times \frac{2}{2}) + (\frac{4}{5} \times \frac{3}{4} \times \frac{1}{3} \times \frac{2}{2}) + (\frac{4}{5} \times \frac{3}{4} \times \frac{2}{3} \times \frac{1}{2})$	or $1 - \frac{4}{5} \times \frac{3}{4} \times \frac{2}{3} \times \frac{1}{2}$ or $\frac{24 + 24 + 24 + 24}{5!}$
			$=\frac{4}{5}$ or 0.8 oe	A1		$\frac{4}{5} \times \dots$ M0A0 eg $\frac{4}{5} \times \frac{1}{5}$ M0A0
				[2]		See comment before 6(i)
7	(i)	(a)	$X \sim B(30, 0.05)$ seen or implied	B1	eg by 0.8122 or $1-0.5535$ or $0.95^r \times 0.05^s$ ($r, s > 1$) Allow B(30,0.95) or B(30, 0.5) for B1 30×0.05 alone insufficient for B1	If $n = 15$: B(15, 0.05) B1
			$P(X > 2) = 1 - 0.8122 \text{ alone or} 1 - (0.95^{30} + 30 \times 0.95^{29} \times 0.05 + {}^{30}C_2 \times 0.95^{28} \times 0.05^2)$	M1	^{<i>n</i>} C _{<i>r</i>} insufficient for B1	$1 - (0.95^{15} + 15 \times 0.95^{14} \times 0.05 + {}^{15}C_2 \times 0.95^{13} \times 0.05^2) \text{ M1}$
			= 0. 1878 or 0.188 (3 sfs)	A1		= 0.0362 A0
				[3]		

No	te: "(3 sf	s)" mea	ns "answer which rounds to to 3 sfs". If correct ans seen	to \geq 3sfs, ISV	V for later rounding. Penalise over-rounding of	nly once in <u>paper</u> .
()uesti	on	Answer	Marks		Guidance
7	(i)	(b)	Addition method: $X \sim B(30,0.05) \& Y \sim B(15,0.05)$ stated or implied	B1	NB eg 0.0362 implies B(15, 0.05) see below	Subtraction methods: $X \sim B(30,0.05) \& Y \sim B(15,0.05)$ stated or impl B1
			P(X = 2) = (0.8122 - 0.5535) or ³⁰ C ₂ ×0.95 ²⁸ ×0.05 ² or 0.2587/6 <u>OR</u> P(Y ≥ 1) = (1 - 0.95 ¹⁵) or 0.5367	M1		$P(X=2) = (0.8122 - 0.5535) \text{ or } {}^{30}C_2 \times 0.95^{28} \times 0.05^2$ or 0.2587/6 <u>OR</u> P(Y=0) = 0.95^{15} or 0.4633 M1
			" $0.2587/6$ " × " 0.5367 " or 0.1388	M1	fully correct method for $P(X=2) \times P(Y \ge 1)$	fully correct method for $P(X=2) \times P(Y=0)$ "0.2587" × "0.4633" or 0.1199/8 M1
			$P(X > 2) + P(X = 2) \times P(Y \ge 1)$ = "0.1878" + "0.1388" alone	M1	[their (a)+any p] alone, but dep 1 st M1	$1 - (P(X = 0,1) + P(X=2) \times P(Y=0))$ = 1 - ("0.5535" + "0.1199") OR P(X \ge 2) - P(X=2) \times P(Y=0)) = (1 - "0.5535") - "0.1199" dep 1 st M1 M1
			= 0. 327 (3 sf) AG For A1 must see correct wking or 0.3265/6	A1	If ans 0.327, check whether it comes from a correct method (possibly not in MS) or clearly comes from an incorrect method eg (0.4465 + 0.2587)× 0.4633 = 0.327 (ie ($P(X \ge 2) + P(X = 2)$) × $P(Y = 0)$ B1M1M0M0A0	= 0. 327 (3 sf) AG A1 Do not use marks from a mixture of 3^{rd} column and other columns. Decide which column would give most marks and mark according to that method.
				[5]		If $n = 15$ for both distr's, see next page NB If 0.1392 seen, it comes from given answer – (i)(a) (ie 0.3270 – 0.1878).

No	te: "(3 sf	fs)" mea	ns "answer which rounds to to 3 sfs". If correct ans seen t		V for later rounding. Penalise over-rounding o	nly once in paper.
(Questi	on	Answer	Marks		Guidance
7	(i)	(b)	Alternative scheme for the case where $n = 15$ is used for both distr's			If $n = 15$ for both distr's:B0B(15, 0.05)B0P(X = 2) = ${}^{15}C_2 \times 0.05^2 \times 0.95^{13}$ or 0.1348 OR P(Y ≥ 1) = $1 - 0.95^{15}$ or 0.5367 M1
						" $(0.1348" \times 0.5367")$ or 0.0723 correct method M1 their (i)(a) + " $(0.0732")$ Dep 1 st M1 M1
						= 0.1085 A0 NB Also mark subtraction methods if seen.
7	(ii)		Any use of 0.327 or their $(i)(b)$ for $1^{st} M1$	M1		
			$(1-0.327)^3 \times 0.327 + (1-0.327)^4 \times 0.327$ Allow "correct" use of their (i)(a) or (i)(b) for 2 nd M1	M1	$(0.5535 + 0.2586 \times 0.4633)^3 \times 0.327 +$ $(0.5535 + 0.2586 \times 0.4633)^4 \times 0.327$	$1 - 0.673^5 - (1 - 0.673^3)$ oe Allow <u>any</u> use of their (i)(b) for 1^{st} M1 then if "correct" use, also 2^{nd} M1
			= 0.167 (3 sf)	A1		Allow use of their (i)(a) in "correct" method for M0M1A0
				[3]		No marks for use of 0.95 & 0.05
8	(i)		12×10×5 (in numerators or alone) OR any prod of 3 probs×6(or ×3! or ${}^{3}P_{3}$)	M1	or ${}^{12}C_1 \times {}^{10}C_{1\times} {}^{5}C_1$ or 600 (in numerators or alone)	or $\frac{4}{117}$ or 0.0342 oe
			$\frac{12}{27} \times \frac{10}{26} \times \frac{5}{25} \times 6$ or $\frac{12 \times 10 \times 5}{27}_{C_3}$	M1	or eg $(\frac{12}{27} \times \frac{10}{26} \times \frac{5}{25} + \frac{12}{27} \times \frac{5}{26} \times \frac{10}{25}) \times 3$	Fully correct method
			$=\frac{8}{39}$ oe or 0.205 (3 sfs)	A1		Examples: $\frac{12}{27} \times \frac{10}{27} \times \frac{5}{27} \times 6 \text{ or } \frac{12}{25} \times \frac{10}{24} \times \frac{5}{23}$ M1M0A0
				[3]		or $\frac{1}{27} \times \frac{1}{26} \times \frac{1}{25} \times 6$ M1M0A0

No	ote: "(3 sf	fs)" mea	ns "answer which rounds to to 3 sfs". If correct ans seen	to ≥ 3sfs, ISV	V for later rounding. Penalise over-rounding o	nly once in <u>paper</u> .		
(Questi	on	Answer	Marks		Guidance		
8	(ii)		$0.4 \times \frac{x}{50}$ OR $0.6 \times \frac{50-x}{50}$ oe or $0.4 \times \frac{?}{50}$	M1	$0.4 \times p \text{ OR } 0.6 \times (1-p)$ or similar	$0.4 \times \frac{x}{50}$ or etc	$0.4 \times a$ etc	M1
			$0.4 \times \frac{x}{50} + 0.6 \times \frac{50 - x}{50} = 0.54$	M1	$0.4 \times p + 0.6 \times (1 - p) = 0.54$	$0.4 \times \frac{x}{50} + 0.6 \times \frac{y}{50} = 0.54$ AND $x + y = 50$	0.4a + 0.6b = 0.54 AND $a + b = 1$	
			4x = 60 oe, two terms	A1	p = 0.3	4x = 60 or 4y = 140	a = 0.3 or b = 0.7	
			no. of red = 15 T & I:	A1	no. of red = 15 Allow $x = 15$ as <u>answer</u> , but not if contradicted later	no. of red = 15	no. of red = 15	A1
			$0.4 \times \frac{x}{50}$ or etc OR one trial $(n \neq 15)$ M1 Trial of $n = 15$ M1A1 Answer stated A1		If $x \leftrightarrow (50-x)$ or $p \leftrightarrow (1-p)$: similar mks including 1 st A1 for $p = 0.7$ or $x = 35$	Correct answer scores full from incorrect method.	marks <u>unless</u> clearly	у
				[4]				
9			If 0.8 ↔ 0.2 apparently used consistently (i)(a) and A0 (i)(b) This may be implied by their answers with (i)(a) $0.2^{10} \times 0.8 = 8.19 \times 10^{-8}$; $0.2^{9} \times 0.8 = 4$ (i)(b) $1 - 0.2^{10} = 0.999999898$ M1M1A0; But if 0.9999 or similar, unclear p (ii) $1 \div 0.8 = 1.25$ M1A1 NB!!!!! Any other $p (\neq 0.2$ or 0	hout work 4.10×10^{-7} 1 - 0.2 precisely 0.8) can so	ing as follows ; $0.2^{11} \times 0.8 = 1.64 \times 10^{-8}$ M1A0 $^{9} = 0.999999488$ M0M1A0; $1 - 0.2^{11} =$ which method used so M0M0A0 core only M1 in (ii) & possibly B1ft in (ii	$0.999999979;$ $0.2^{10} = 1.$		
9	(i)	(a)	$0.8^{10} \times 0.2$ = 0.0215 (3 sf)	M1 A1	Allow $0.8^9 \times 0.2$ or $0.8^{11} \times 0.2$ or 0.0268 or 0.0172		If $0.8 \leftrightarrow 0.2$, see al	bove
				[2]	10			
9	(i)	(b)	0.8^{10} or 0.107	M1	Not $0.8^{10} \times$ M0M0 Not just 0.8^9 or 0.8^{11} M0M0	$0.2 + 0.8 \times 0.2 + + 0.8^9$ Allow M1 for 1 term omit	()	[2
			$1 - 0.8^{10}$ alone	M1	Allow M1 for $1-0.8^9$ or $1-0.8^{11}$ alone or 0.866 or 0.914	Allow use of dots as above as their 1 st & last and one		long
			= 0.893 (3 sf)	A1 [3]			If $0.8 \leftrightarrow 0.2$, see a	ıbove

Mark Scheme

No	Note: "(3 sfs)" means "answer which rounds to to 3 sfs". If correct ans seen to \geq 3sfs, ISW for later rounding. Penalise over-rounding only once in <u>paper</u> .								
(Question		1	Answer	Marks	Guidance			
9	(ii)		$\frac{1}{2}$ alone		M1	11 Allow $1 \div$ their incorrect <i>p</i> used in (i)(a)			
			0.2 dione						
			= 5		A1	(5, 1) M1A0	Ignore eg " $E(X) =$ "		
					[2]		If $1 \div 0.8 = 1.25$, see above		
9	(iii)		4	Allow (4, 1)	B1ft	or (ii) -1 or (ii) $\times 0.8$	ft (their (ii)–1, 1)		
					[1]				

S1 June 2014 Mark Scheme Final (without introduction)

Note: "(3 sfs)" means "answer which rounds to ... to 3 sfs". If correct ans seen to \geq 3sfs, ISW for later rounding Penalise over-rounding only once in paper.

Q	uestic	n	Answer	Marks	Guidan	ce
1	(i)		Median = 7.45 (m) IQR = 7.75 – 6.7 = 1.05 (m) allow 1.175 or 1.18 NOT 1.3	B1 M1 A1	cao allow 7.775 – 6.6 or 77.5 – 67 or 77.75 – 66 or 7.8 – 6.5 even though this is an incorrect method or 78 – 65 allow 10.5 or 11.75 or 11.8 but <u>only</u> if med = 74.5	These <u>pairs</u> of values only, and subtract, for M1 eg 7.45, 7.75 - 6.7 = 1.05 B1M1A1 7.45, 7.775 - 6.6 = 1.175 B1M1A1 7.45, 7.8 - 6.5 = 1.3 B1M1A0 7.45, 7.7 - 6.5 = 1.2 B1M0A0 7.45, 77.5 - 67 = 10.5 B1M1A0 74.5, 77.5 - 67 = 10.5 B0M1A1 74.5, 77.5 - 67 = 10.5 B0M1A1 74.5, 77.75 - 66 = 11.75 B0M1A1 74.5, 78 - 65 = 13 B1M1A0
				[3]		74.5, $78 - 65$ $= 13$ $BIMIAO$ 74.5 , $78 - 65$ $= 13$ $B0M1AO$ 74.5 , $77 - 65$ $= 12$ $B0M0AO$
1	(ii)		4 2 2 5 3 3 0 6 8 7 7 6 4 3 2 7 6 5 7 8 5 8 Complete correct diag including order and	B1* B1dep	correct digits in correct leaves, ignore order, allow one omitted or extra or misplaced or incorrect digit key: eg 8 6 4 means 6.8 (<i>B</i>) and 6.4 (<i>A</i>)	Allow a separate diag with leaves to left of stem. If only a separate diag is drawn, with leaves to <u>right</u> of stem: all correct including order, alignment and key: B1 If <u>all</u> digits are in correct rows and orders,

Q	Question		Answer	Marks	Guidance		
			key and alignment	[2]	allow just 8 6 means 6.8 NOT 8 6 means 8.6 Allow 8 6 means 68, if consistent with (i)	 & correct key, award this mark <u>unless</u> EITHER: 1. eg a 2nd digit in one row is <u>clearly</u> aligned with a 3rd digit in another OR 2. 1st, 3rd, 4th & 5th rows are <u>very</u> different lengths, eg because of crossing out and replacement 	
1	(iii)		One correct comment on size: B1. One correct Ignore any working; mark the statements on		ent on spread or shape: B1. The following are e Allow "First set" or "Right" for A, "Set	xamples only.	
			A higher <u>overall</u> A has more taller trees or fewer shorter A has higher median (mean, ave, medium)	B1	B shorter <u>overall</u> B has fewer taller trees or more shorter B has lower median (mean, ave, medium)	NOT A higher than B NOT B has shorter trees than A Allow just quoting the two medians, even if wrong, so long as med of A is gter than med of B. Similarly if quote IQRs	
			B more evenly spread or distributed B more spread out B has larger range or IQR or sd Ranges of both are similar A is nearer to normal A is negatively skewed	B1	A less evenly spread or distributed A less spread out A has smaller range or IQR or sd Allow A's heights are more consistent Not other comment about skew	NOT any reference to outliers NOT any reference to sample size NOT any reference to indiv trees	
			A has a (unique) mode, or modal class or peak; (B doesn't)		Ignore any other reference to mode or most common	NOT two comments on size NOT two comments on spread	
2	(a)		$(0^2 \times 0.3) + 2^2 \times 0.4 + 4^2 \times 0.3$	[2] M1	Ignore all else even if incorrect last two terms correct. NOT eg ÷ 6 or ÷ 3	eg highest on both is 8.5 B0 $2^2 \times 0.3 + (0) + 2^2 \times 0.3$ M2 1st or 3rd term correct M1	
			$-2^{2} \text{ or } -4$ = 2.4	M1 A1 [3]	allow $-(any number)^2$, dep +ve result	÷ 3 M0M0A0	
2	(b)	(i)	2k + 3k + 4k + 5k = 1 oe	B1	or $14k = 1$ oe "= 1" is essential	NOT just $2 + 3 + 4 + 5 = 14$ so $k = \frac{1}{14}$	

Mark Scheme

Q	luestio	on	Answer	Marks	Guidan	ce
			$(k = \frac{1}{14} \mathbf{AG})$	543		Allow verification, eg stating that $\frac{2}{14} + \frac{3}{14} + \frac{4}{14} + \frac{5}{14} = 1$
				[1]		11 11
2	(b)	(ii)	$\frac{2}{14}, \frac{3}{14}, \frac{4}{14}, \frac{5}{14}$ or $\frac{2}{14}, \frac{6}{14}, \frac{12}{14}, \frac{20}{14}$	B1	\geq 3 correct	2k, 6k,12k, 20k B1
			Σxp	M1	\geq 3 correct terms added	2k + 6k + 12k + 20k or $40k$ M1 $\div 4$ M0A0
			$=\frac{20}{7}$ or $2\frac{6}{7}$ or 2.86 (3 sf) oe, eg $\frac{40}{14}$	A1	SC $1 \times \frac{1}{14} + 2 \times \frac{2}{14} + 3 \times \frac{3}{14} + 4 \times \frac{4}{14} (=2.143)$	
					B0M1A0	
				[3]		
3	(i)		Use of 5 or 6 instead of 5.5 for last value of 1.40)	x: all M-r	marks can be scored, but no A-marks. (ans: $5 g$	gives 2.32 and 1.23; 6 gives 2.39 and
			Use of 5 and 6 instead of 5.5 (probably with	n freqs 194	400/2) could lead to correct mean M1A1, but po	ssibly M1M1A0 for sd.
			$\frac{\Sigma f x}{\Sigma f} \text{ attempted} \qquad (= \frac{662000}{280900})$	M1	3 terms of Σfx correct and $\div \Sigma f$ Allow incorrect Σf NOT Σx	$\div 5 \text{ or } \div 6 \text{ M0A0}$
			= 2.36 (3 sf)	A1	, , , , , , , , , , , , , , , , , , ,	
			$\frac{\Sigma f x^2}{\Sigma f} \text{ attempted } (=\frac{2042350}{280900} =$		3 terms of $\Sigma f x^2$ correct and $\div \Sigma f$ Allow incorrect Σf NOT Σx	$\frac{\sum f (x - \overline{x})^2}{\sum f}$
			7.270737)	M1	5	3 terms of num correct and $\div \Sigma f$ M2
						$(86900 \times 1.36^2 + 92500 \times 0.36^2 + 45000 \times 0.64^2)$
						$+37100 \times 1.64^{2} + 19400 \times 3.1^{2}$), $(\frac{482210.64}{280900})$
						2 terms of num correct and $\div \Sigma f M1$
						Allow incorrect Σf but NOT if $\Sigma f = \Sigma x$
			- "2.36" ² (= 1.70 to 1.72, 3			NB $\sqrt{1}$ not requ'd for M1M1
			sf)	M1	dep +ve result	
					\div 5 or \div 6 M0M0A0	
			s.d. = 1.31 or 1.30 (3 sf)	A1	allow 1.3	Correct answer(s) without working score full marks
				[5]		

C	Questio	on	Answer	Marl	ks	Guidan	се
3	(ii)		2 3	B1 B1 [2]	1	allow $IQR = 3 - 1 = 2$, ie $UQ = 3$ implied	Ignore working for both, even if Incorrect NB 3, 2 B0B0 unless labelled correctly
4	If $\frac{2}{3}$	is inte	erpreted consistently as 0.6 or 0.	66 or 0.67 or 0.7, ma	ax n	narks: (i)(a) M1M1A0 (i)(b) B0 (i)(c) B1ft	B1ft (ii) B1M1M1A0
4	(i)	(a)	Binomial seen or implied	M1		by use of table or ${}^{9}C_{6}$ or $(\frac{2}{3})^{p}(\frac{1}{3})^{q}(p+q=9)$	Eg 0.6228 seen
			0.6228 - 0.3497	M1	1	${}^{9}C_{6}(\frac{1}{3})^{3}(\frac{2}{3})^{6}$	
			= 0.273 (3 sf)	A1	1	<u>1792</u> 6561	
				[3]]		
4	(i)	(b)	0.3497 or 0.350 (3 sf)	B1	1	NB 0.3498 (from 0.6228 - 0.273) rounds to 0.350 so B1	
				[1]]		
4	(i)	(c)	6	B1f	ft		
			2	B1f			NB 2, 6 B0B0 unless labelled correctly
				[2]			
4	(ii)		27 seen	B1		not necessarily in a statement	
			B(27, $\frac{2}{3}$) seen or implied	M1	1		
			$^{27}C_{18}(\frac{1}{3})^9(\frac{2}{3})^{18}$	MI	1	or attempt eg $P(X_1 = 1) \times P(X_2 = 8) \times P(X_3 = 9),$ $P(X_1 = 2) \times P(X_2 = 7) \times P(X_3 = 9),$ $P(X_1 = 3) \times P(X_2 = 6) \times P(X_3 = 9),$ etc	NB P($X_1 = 6$) × P($X_2 = 6$) × P($X_3 = 6$) = 0.273 ³ = 0.0203 M0M0A0 $\frac{55}{729}$ (= 0.0754) M0M0A0
			= 0.161 (3 sf)	A1 [4]		\geq 3 sets with $X_1+X_2+X_3=18$ (not nec'y added) M1	729 (= 0.0754) MOMORO
5	(i)		$S_{xx} = 20400 - \frac{360^2}{8}$ $S_{yy} = 6.88 - \frac{6.8^2}{8}$	(= 4200)	<u>د</u>		
			$S_{yy} = 6.88 - \frac{6.8^2}{8}$	(= 1.1)			

0	Question	Answer	Marks	Guidan	ce
		$S_{xy} = 241 - \frac{360 \times 6.8}{8} \qquad (=-65)$	M1	Correct sub in a correct S formula	
		$r = \frac{"-65"}{\sqrt{"4200" \times "1.1"}}$	M1	Correct sub in 3 correct <i>S</i> formulae and a correct <i>r</i> formula	
		= -0.956 (3 sf)	A1 [3]	Correct ans with no working M2A1	Ignore comment about $-1 < r < -0.9$
5	(ii)	eg As you move further away, prices drop	B1	High prices go with short distances oe	Both variables must be in context ; miles & £ enough
				Allow " <u>Strong</u> (or high or good or equiv) <u>neg</u> corr'n between price and distance"	Ignore all else, even if incorrect NOT just <u>neg</u> corr'n between price & dist
			[1]		
5	(iii)	None	B1 [1]		Ignore all else, even if incorrect
5	(iv)	$b = \frac{"-65"}{"4200"} \qquad (= -0.0154762)$	M1	ft their S_{xy} & S_{xx} from (i) for M-marks only	or fresh start correct method
		$Y - \frac{6.8}{8} = "-0.0154762"(x - \frac{360}{8})$ oe	M1	or $a = \frac{6.8}{8} + "0.0154762" \times \frac{360}{8}$ oe	
		y = -0.0155x + 1.55 (3 sf) oe	A1	allow $y = -0.015x + 1.5$	Must have " $y =$ "
		or $y = \frac{433}{280} - \frac{13}{840}x$ oe		(or figs which round to these)	
		280 840		(NOT $y = -0.016x + 1.6$	Allow figures in equn which round to
			[0]	NOT $y = -0.02x + 1.5$)	the correct figures to <u>either</u> 3 sf <u>or</u> 2 sf, even if they result from arith errors.
-	(.)		[3]	Correct ans with no working M2A1	
5	(v)	Values of <i>x</i> are chosen beforehand or <i>x</i> is independent or controlled	B1	<i>x</i> is fixed or given or set or predetermined oe	Not "x is constant." Not just "y depends on x"
		or x is independent or controlled	[1]		Ignore all other, even if incorrect
6	(i)	654321	B1		
			[1]		
6	(ii)	$\Sigma d^2 = 0$ for first 6 teams	M1	May be implied by use of $\Sigma d^2 = 2$	
		$\Sigma d^2 = 2$	B1		
		$1 - \frac{6\sum d^2}{8(8^2 - 1)}$	M1	ft their $\Sigma d^2 (\neq 0)$	using ranks from (i) can score 2nd M1 only

⁴⁷³²

Mark Scheme

June 2014

Q	uestic	on	Answer	Marks	Guidan	се
			$=\frac{41}{42}$ or 0.976 (3 sf)	A1		
			42	[4]		
7	(i)		$\frac{n}{n+45} = \frac{5}{8} \text{ or } n: 45 = 5:3 \text{ or } \frac{3}{8}: 45 = \frac{5}{8}:n$	M1	$\frac{3F}{8} = 45 \& n = \frac{5}{8} \times F; 45 \times \frac{8}{3} - 45; 45 \times \frac{8}{3} \times \frac{5}{8}$	correct first step involving <i>n</i> or complete correct method for finding <i>n</i>
			<i>n</i> = 75	A1		
				[2]		
	(ii)		$\frac{45+"75"+52}{45+"75"+52+78}$ alone oe	M1	$1 - \frac{78}{45 + 75' + 52 + 78}$ oe or $\frac{250'' - 78}{250''}$ oe	$\frac{45+"75"}{"250"} + \frac{52+"75"}{"250"} - \frac{"75"}{"250"}$
					Completely correct method	or $0.48 + 0.508 - 0.48 \times 0.508$
			$=\frac{86}{125}$ or $\frac{172}{250}$ or 0.688 (3 sf) oe	A1ft	ft their integer answer to (i) eg if their (i) is 28, ans 0.616 or $\frac{125}{203}$ M1A1ft	
				[2]		
7	(iii)	(a)	$\frac{10}{25} \times \frac{6}{24} \text{ or } \frac{6}{25} \times \frac{10}{24} \text{ seen } (\text{or } \frac{2}{5} \times \frac{1}{4} \text{ or } \frac{6}{25} \times \frac{5}{12})$ oe	M1	or $\frac{10}{25} \times \frac{6}{25} + \frac{6}{25} \times \frac{10}{25}$ or $\frac{10}{25} \times \frac{6}{25} \times 2$ oe	ie allow M1 if '2×' is omitted OR if 25 instead of 24, but not both errors
					$\frac{{}^{10}C_1 \times {}^6C_1}{{}^{25}C_2}$ or $\frac{10 \times 6}{300}$ oe	allow M1 for correct num or denom
			$(\frac{10}{25} \times \frac{6}{24} + \frac{6}{25} \times \frac{10}{24} $ or $\frac{10}{25} \times \frac{6}{24} \times 2)$			
			$=\frac{1}{5}$	A1		
				[2]		NB long methods <u>may</u> be correct, eg $(\frac{14}{25} \times \frac{10}{14}) \times (\frac{11}{24} \times \frac{6}{11})$ same as $\frac{10}{25} \times \frac{6}{24}$
7	(iii)	(b)	FA + MC or FC + MA			
			Either $\frac{4}{25} \times \frac{5}{24} \times 2$ or $\frac{10}{25} \times \frac{6}{24} \times 2$ NB ft their	M1	Allow $\frac{10}{25} \times \frac{6}{25} \times 2 \text{ or } \frac{4}{25} \times \frac{5}{25} \times 2$ or $\frac{10}{25} \times \frac{6}{24} + \frac{4}{25} \times \frac{5}{24}$ or $\frac{10}{25} \times \frac{6}{25} + \frac{4}{25} \times \frac{5}{25}$	ie allow 25 instead of 24 AND allow one case <u>with \times 2</u> or both cases <u>without</u> \times 2
			(iiia)		NB ft their (iii)(a)	ie allow 25 and one of these two errors

Q	uestic	on	Answer	Marks	Guidan	ce
			$\left(\frac{4}{25} \times \frac{5}{24} \times 2 + \frac{10}{25} \times \frac{6}{24} \times 2 = \frac{1}{5} + \frac{1}{15}\right)$		$\frac{{}^{10}\text{C}_1 \times {}^6\text{C}_1}{{}^{25}\text{C}_2} + \frac{{}^4\text{C}_1 \times {}^5\text{C}_1}{{}^{25}\text{C}_2} \text{ oe } \text{ or } \frac{60+20}{300} \text{ oe}$	cf scheme for (iii)(a) allow M1 if one of these fracts correct NB $^{25}C_2$ in denom NOT M1 , cf (iii)(a)
			$=\frac{4}{15}$ or 0.267 (3 sf)	A1	cao	C_2 in denomination with, cr (m)(a)
				[2]		NB see note on long methods in 7(iiia)
8	(i)		${}^{5}C_{2}$ oe seen anywhere or num= 10 alone	M1	$\frac{1}{8} \times \frac{1}{7} \times \frac{5}{6} \times \frac{4}{5}$ or $\frac{20}{1680}$ or $\frac{1}{84}$ oe seen	alone or $\times \dots$ eg $\frac{2}{8} \times \frac{1}{7} \times \frac{5}{6} \times \frac{4}{5}$ M1
			$\frac{{}^{5}C_{2}}{{}^{8}C_{4}}$ oe or $\frac{{}^{5}C_{2} \times 4!}{{}^{8}P_{4}}$ oe all correct	M1	$\frac{1}{8} \times \frac{1}{7} \times \frac{5}{6} \times \frac{4}{5} \times {}^{4}C_{2} \times 2 \text{ or } \frac{1}{8} \times \frac{1}{7} \times \frac{5}{6} \times \frac{4}{5} \times 4! \div 2 \text{ oe}$ or $\frac{1}{8} \times \frac{1}{7} \times \frac{5}{6} \times \frac{4}{5} \times 12 \text{ oe all correct}$	$\frac{\frac{4}{8} \times \frac{3}{7} \times \frac{4}{6} \text{ oe all correct M2}}{\text{NB} \frac{\text{incorrect}}{{}^{8}\text{C}_{4}} \text{ does not score}}$
			$=\frac{1}{7}$ or 0.143 (3 sf)	A1	Correct ans scores M1M1A1 regardless of method.	
	()			[3]		
8	(ii)		$6! \times 2$ alone or $5! \times 6 \times 2$ alone oe	M2	M1 for 6! or $5! \times 6$ or ${}^{6}P_{5}$ or 720 seen NB 5! scores M0 unless $5! \times 6$ or $5! \times 12$	M1 for $7! \times 2$ alone NB 7! scores M0 unless $7! \times 2$ alone
			= 1440	A1 [3]		TAD 7: SCOLES IND UNIESS 7: × 2 diolle
8	(iii)		$6! \times 4$ alone or $6! \times 2 \times 2$ alone	M2	M1 for 6! or ${}^{6}P_{5}$ or 720 seen or 5! × 6 seen but NOT from 5!×3!	5!: M0 unless 5!×6 or 5!×12 or 5!×24
			= 2880	A1 [3]		
9			.7 are interchanged consistently through all f calculated incorrectly (eg 0.6 or 0.66 or $\frac{2}{3}$)	•	all M-marks can be scored, but no A-marks. ly, lose the A-mark in (i) but all other marks are	available on ft, so long as $0 < ans < 1$.

0	Question	Answer	Marks	Guidan	ce
9	(i)	$0.7^4 \times 0.3$ alone = 0.0720 (3 sf) or $\frac{7203}{100000}$ oe	M1 A1 [2]	allow 0.072	
9	(ii)	$(0.7 + 0.7^2 + 0.7^3) \times 0.3$	M2	M1 for 1 term omitted, wrong or extra. must add terms, not mult.	$(1 - 0.7^4) - 0.3 \text{ or } 0.7599 - 0.3 \text{ M2}$ $(1 - 0.7^4) - \dots \text{ or } 1 - 0.3 - \dots \text{ M1}$ $0.7599 - \dots \text{ or } 0.7 - \dots \text{ M1}$ Just $1 - 0.7^4$ or $1 - 0.3$: M0 $(1 + 0.7 + 0.7^2 + 0.7^3) \times 0.3 - 0.3 \text{ M2}$ 1 term omitted, wrong or extra M1
		$= 0.4599 \text{ or } 0.460 \text{ (3sf) or } \frac{4599}{10000} \text{ oe}$	A1 [3]	Allow 0.46	
9	(iii)	1-0.7 ⁶	M2	M1 for 0.7^6 alone or $1 - 0.7^5$ (= 0.832) or $1 - 0.7^7$ (= 0.918)	$\begin{array}{l} 0.3(1+0.7+0.7^2+0.7^3+0.7^4+0.7^5) \ \text{M2} \\ \text{or (ii)} + 0.3(1+0.7^4+0.7^5) \ \text{M2} \\ \text{or (i)} + (ii) + 0.3(1+0.7^5) \ \text{M2} \\ \text{one term omitted or extra:} \ \text{M1} \\ \text{must add terms, not mult.} \\ \text{NB ans } 0.832 \ \text{might be M1M0A0 from} \\ \text{omitting last term. Could be, eg,} \\ \text{their (ii)} + 0.3(1+0.7^4) \\ \text{correct working, but subtr from 1: M1} \end{array}$
		= 0.882 (3 sf)	A1 [3]		concet working, but subtraining i. wit
9	(iv)	$(1 - "0.882")^2 \times "0.882"$ oe	M1	or $(0.7^6)^2 \times (1 - 0.7^6)$ or $0.1176^2 \times (1 - 0.1176)$ or $(0.7^6)^2 \times$ their "0.882" or $0.3(0.7^{12} + (0.7^{13} + 0.7^{14} + + 0.7^{17}))$	Not $0.7^2 \times 0.3$
		= 0.0122 (3 sf)	A1ft [2]	or $0.3(0.7 + (0.7 + 0.7 + + 0.7))$ allow 0.0123	Completely correct method ft their "0.882" except if 0.3 or 0.7

⁴⁷³²