AQA Maths Statistics 1

Mark Scheme Pack

2006-2015

PhysicsAndMathsTutor.com

General Certificate of Education

Mathematics 6360 Statistics 6380

MS/SS1B Statistics 1B

Mark Scheme 2006 examination – January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key To Mark Scheme And Abbreviations Used In Marking

М	mark is for method					
m or dM	mark is dependent on one or more M marks and is for method					
А	mark is dependent on M or m marks and is for accuracy					
В	mark is independent of M or m marks an	d is for method	l and accuracy			
E	mark is for explanation					
$\sqrt{100}$ or ft or F	follow through from previous					
	incorrect result	MC	mis-copy			
CAO	correct answer only	MR	mis-read			
CSO	correct solution only	RA	required accuracy			
AWFW	anything which falls within	FW	further work			
AWRT	anything which rounds to	ISW	ignore subsequent work			
ACF	any correct form	FIW	from incorrect work			
AG	answer given	BOD	given benefit of doubt			
SC	special case	WR	work replaced by candidate			
OE	or equivalent	FB	formulae book			
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme			
–x EE	deduct <i>x</i> marks for each error	G	graph			
NMS	no method shown	с	candidate			
PI	possibly implied	sf	significant figure(s)			
SCA	substantially correct approach	dp	decimal place(s)			

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

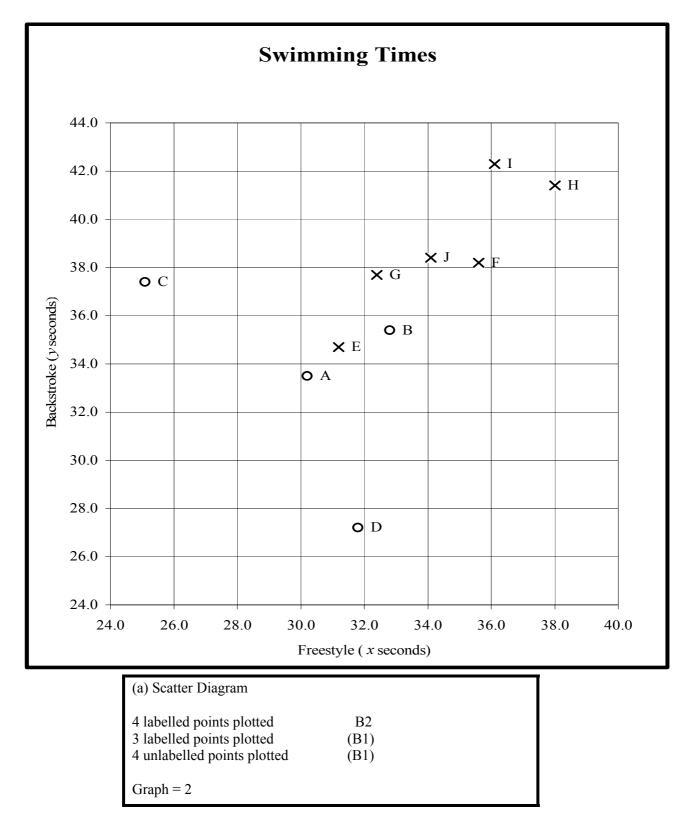
Otherwise we require evidence of a correct method for any marks to be awarded.

MS/SS1B

Q	Solution	Marks	Total	Comments
1(a)	Gradient, $b = 0.886$ to 0.887 b = 0.88 to 0.89	B2 (B1)		AWFW AWFW
	Intercept, $a = 2.31$ to 2.33 a = 2.3	B2 (B1)		AWFW AWRT
	Attempt at $\sum x \sum x^2 \sum y \sum xy$ or Attempt at $S_{xx} S_{xy}$ Attempt at a correct formula for <i>b</i> b = 0.886 to 0.887 a = 2.31 to 2.33	(M1) (m1) (A1) (A1)		72, 624, 87, 720 105.6, 93.6 AWFW AWFW
	Accept <i>a</i> & <i>b</i> interchanged only if y = ax + b stated or subsequently used correctly in either (b) or (c)		4	
(b)	<i>a</i> : average waiting time of 2.32 minutes (139 seconds) when entering empty restaurant	B1		OE; accept minimum waiting time
	<i>b</i> : average increase in waiting time of 0.886 minutes (53 seconds) for each customer in restaurant on entry	B1	2	OE
(c)	Use of $y = a + 5b$ or $y = a + 25b$	M1		
(i)	For $x = 5$ $y = 6.6$ to 6.8			
(ii)	For $x = 25$ $y = 24.3$ to 24.6	A1	2	Both; AWFW
(d)(i)	Reliable as interpolation and small residuals	B1 B1		Within range OE OE
	or Reliable as interpolation but large percentage residuals so inconclusive	(B1) (B1)		
	or Large percentage residuals so unreliable	(B1)		
(ii)	Unreliable as extrapolation	B1	3	Outside range OE
	Total		11	

_

Q	Solution	Marks	Total	Comments
2(a)	P(X) = 0.3 $P(Y) = 0.4$ $P(Z) = 0.2$			
(i)	$P(X \cap Y \cap Z) = 0.3 \times 0.4 \times 0.2 = 0.024$	M1	1	
(ii)	$P(X' \cap Y' \cap Z') = 0.7 \times 0.6 \times 0.8$ = 0.336	M1 A1	2	At least 2 correct terms CAO
(iii)	$P(X' \cap Y' \cap Z) = 0.7 \times 0.6 \times 0.2$	M1		Correct numerical expression
	= 0.084	A1		CAO
(b)	P(W Z) = 0.9 $P(W Z') = 0.25$			
(i)	$P(Z \cap W) = 0.2 \times 0.9$ = 0.18	M1 A1	2	Correct numerical expression CAO
(ii)	$P((Z \cap W') \cup (Z' \cap W))$ or $1 - [P((Z \cap W) \cup (Z' \cap W'))]$			
	$= 0.2 \times (1 - 0.9)$	M1		0.2×0.9 or (b)(i)
	$^+$ (1 – 0.2) × 0.25	M1		$(1-0.2) \times (1-0.25)$
				Cannot score an M1 in both methods
	= 0.02 + 0.20 = 0.22	A1	3	1 – (0.18 + 0.60) CAO
	Total		11	


Q	Solution	Marks	Total	Comments
3(a)	Mean = $\frac{286.5}{50} = 5.73$	B1		CAO
	Standard deviation = $\sqrt{\frac{45.16}{49 \text{ or } 50}}$ =			
	0.95 to 0.961	B1	2	AWFW
(b)	$99\% \Rightarrow z = 2.57$ to 2.58	B1		AWFW 2.5758
	CI for μ is $\overline{x} \pm z \times \frac{(\sigma \text{ or } s)}{\sqrt{n}}$	M1		Use of Must have $(\div \sqrt{n})$ with $n > 1$
	Thus $5.73 \pm 2.5758 \times \frac{(0.95 \text{ to } 0.961)}{\sqrt{50}}$	A1√		$$ on z and $s^2 > 0$ but not on \overline{x} Accept only 50 or 49 for n
	$5.73 \pm (0.34 \text{ to } 0.36)$	\uparrow		Dependent
	5.37 to 5.39, 6.07 to 6.09)	A1	4	AWFW
(c)	CI excludes both values of 5 and 6 ¹ / ₂ so Neither claim appears valid	B1√ ↑ B1√		$\sqrt[]{}$ on (b); OE Dependent $\sqrt[]{}$ on (b); OE
	or			
	CI excludes 5 so claim not valid and	(B1√)		on (b); OE
	CI excludes $6\frac{1}{2}$ so claim not valid	(B1√)	2	on (b); OE
	Total		8	

_

Q	Solution	Marks	Total	Comments
4(a)	$\Sigma fx = 8025$			
.()	$f_{x} = 5025$ $f_{x} = 739975$			
	Mean $(\bar{x}) = 80.2$ to 80.3	B2		AWFW 80.25
	Standard Deviation $(s_n, s_{n-1}) = 30.9$ to 31.2	B2		AWFW 30.97882 or 31.13489
	MPs (<i>x</i>): 25, 35, 50, 70, 90, 110, 135, 165	(B1)		At least 4 correct
	C			
	Mean $(\overline{x}) = \frac{\Sigma fx}{100}$	(M1)	4	Use of
(b)(i)	Large $(n > 30)$ sample or			
	Central Limit Theorem	B1	1	OE
(ii)	Mean $(\overline{Y}) = 80.2$ to 80.3	B1√		on (a)
()				
	Standard error $(\overline{Y}) = \frac{30.9 \text{ to } 31.2}{\sqrt{36}}$			
	√36			
	= 5.1 to 5.25	M1	2	$\sqrt{s^2} > 0$ in (a) $\div \sqrt{36}$ or 6
	(-90 - (80.2 to 80.3))	M1		Standardising 90
(iii)	$P(\overline{Y} < 90) = P\left(Z < \frac{90 - (80.2 \text{ to } 80.3)}{(5.1 \text{ to } 5.25)}\right)$	M1		Using values from (b)(ii) with
				$\sqrt{s^2/36} > 0$ or $\sqrt{s^2/100} > 0$
	= P(Z < 1.84 to 1.93)			
	= 0.967 to 0.974	A1	3	AWFW
	Total		10	
	Total	1	10	

Q	Solution	Marks	Total	Comments
5(a)	Scatter Diagram or or	B2 (B1) (B1)	2	4 labelled points plotted 3 labelled points plotted 4 unlabelled points plotted
(b)(i)	Positive/linear correlation/relationship except for	B1		OE
	two unusual values/results	B1	2	OE
(ii)	0.462	B1	1	CAO; accept 3 rd /final/last value
(c)	C and D	B1		САО
	C is likely freestyle champion D is likely backstroke champion	B1		Style identified
	or C is likely freestyle champion D is likely backstroke champion	(B1) (B1)	2	
(d)(i)	r = 0.912 to 0.913	В3		AWFW
	or $r = 0.91$ to 0.92 or 0.46 to 0.47	B2		AWFW
	or $r = 0.9$	B1		AWRT
	Attempt at $\Sigma x \Sigma x^2$ $\Sigma y \Sigma y^2$ Σxy			270.4, 9188.46 301.6, 11437.84 10246.53
	or	(M1)		18 04 67 52 52 45
	Attempt at S_{xx} S_{yy} S_{xy}	(M1)		48.94, 67.52, 52.45
	Attempt at a correct formula for <i>r</i>	(m1)		
	r = 0.912 to 0.913	A1	3	AWFW
(ii)	Boys are faster/slower at both strokes or Boys are equally good at both strokes	B1	1	OE;do not accept freestyle times are proportional to backstroke time
	Total		11	

Question 5(a)

Q	Solution	Marks	Total	Comments
6(a)(i)	B(50, 0.2) P($R \le 15$) = 0.969 to 0.97	M1 A1	2	Use of in (a) AWFW 0.9692
(ii)	$P(R = 10) = P(R \le 10) - P(R \le 9)$			Stated or implied
	or P(R = 10) = $\binom{50}{10} (0.2)^{10} (0.8)^{40}$	M1		Stated or implied
	= 0.5836 - 0.4437 = 0.139 to 0.141	Al	2	AWFW 0.1399
(iii)	P(5 < R < 15) = P(R \le 14 or 15) = 0.9393 or 0.9692	M1		Accept values to 3 dp
	minus $P(R \le 5 \text{ or } 4) = 0.0480 \text{ or}$ 0.0185	M1		Accept values to 3 dp
	= 0.89 to 0.893 or	A1		AWFW 0.8913
	B(50, 0.2) expressions stated for at least 3 of $5 \le R \le 15$	(M1)		Or implied by a correct answer
	Answer	(A2)	3	
(b)	Mean, $\mu = np = 50 \times 0.2 = 10$	B1		Either; CAO
	or			
	Estimate of p , $\hat{p} = 0.21$			
	Variance, $\sigma^2 = np(1-p) = 10 \times 0.8 = 8$	B1		CAO
	Mean or Estimate of <i>p</i> is similar to that expected			10.5 and 10 or 0.21 and 0.2
	but	B1		Either point
	Variance (standard deviation) is different from that expected			20.41 and 8 or 4.5 and 2.8
	Reason to doubt validity of Sly's claim	B1	4	Must be based on both 10 or 0.2 and 8 or on both 10 or 0.2 and 2.8 correctly
	Total		11	

_

Q	Solution	Marks	Total	Comments
7 (a) (i)	Weight, $X \sim N(406, 4.2^2)$ $P(X < 400) = P\left(Z < \frac{400 - 406}{4.2}\right)$ = P(Z < -1.428 to -1.43)	M1		Standardising (399.5, 400 or 400.5) with 406 and ($\sqrt{4.2}$, 4.2 or 4.2 ²) and/or (406 – <i>x</i>)
	= 1 - P(Z < 1.428 to 1.43)	m1		$\Phi(-z) = 1 - \Phi(z)$
	= 0.076 to 0.077	A1	3	AWRT 0.07636
(ii)	P(402.5 < X < 407.5) = P(X < 407.5) - P(X < 402.5) =	M1		Difference OE
	P(Z < 0.36) - P(Z < -0.83)	B2,1		AWRT; ignoring signs
	= 0.64058 - (1 - 0.79673) = 0.433 to 0.44	A1	4	AWFW 0.43731
(b)(i)	$0.975 \implies z = 1.96$	M1		Accept explanation in words
	$P(Y < 310) = P\left(Z < \frac{310 - \mu}{\sigma}\right)$ or	M1		Standardising 310 using μ and σ
	$x = \mu + \pm z\sigma$			Accept in words
	Thus $\frac{310 - \mu}{\sigma} = 1.96 \implies \text{result}$ or	m1		Equating AG
	$310 = \mu + 1.96\sigma \implies \text{result}$ NB: Working backwards from given equation \implies at most M1 M0 mo		3	Substitution
(ii)	$0.86 \implies z = 1.08$	B1		AWRT 1.0803
	$310 - \mu = 1.96\sigma$ $307.5 - \mu = 1.08\sigma$			
	$2.5 = 0.88\sigma$	M1		Attempt at solving 2 equations each of form $x - \mu = z\sigma$
	σ = 2.84 to 2.842	A1		AWFW 2.841
	$\mu = 304.4$ to 304.5	A1	4	AWFW 304.43
	Total		14	
	TOTAL		75	

General Certificate of Education

Mathematics 6360

MS1B Statistics 1B

Mark Scheme

2006 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key To Mark Scheme And Abbreviations Used In Marking

М	mark is for method					
m or dM	mark is dependent on one or more M marks and is for method					
А	mark is dependent on M or m marks and is for accuracy					
В	mark is independent of M or m marks an	d is for method	l and accuracy			
Е	mark is for explanation					
$\sqrt{100}$ or ft or F	follow through from previous					
	incorrect result	MC	mis-copy			
CAO	correct answer only	MR	mis-read			
CSO	correct solution only	RA	required accuracy			
AWFW	anything which falls within	FW	further work			
AWRT	anything which rounds to	ISW	ignore subsequent work			
ACF	any correct form	FIW	from incorrect work			
AG	answer given	BOD	given benefit of doubt			
SC	special case	WR	work replaced by candidate			
OE	or equivalent	FB	formulae book			
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme			
–x EE	deduct <i>x</i> marks for each error	G	graph			
NMS	no method shown	c	candidate			
PI	possibly implied	sf	significant figure(s)			
SCA	substantially correct approach	dp	decimal place(s)			

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1(a)(i)	r = 0.143 to 0.1432	B3		AWFW
	or			
	r = 0.142 to 0.144	B2		AWFW
	or	D 1		
	r = 0.1 to 0.2	B1		AWRT
	Attempt at $\Sigma x \Sigma x^2$ $\Sigma y \Sigma y^2$ Σxy			3952, 2228282 47.00, 292.0000 23517.50
	Or Attempt at C C C	M1		275004 15 875 200 5
	Attempt at $S_{xx} S_{yy} S_{xy}$	IVI I		275994, 15.875, 299.5
	Attempt at a correct formula for r	m1		
	r = 0.143 to 0.1432	A1	3	AWFW
(ii)	Little/weak/no correlation/relationship/association between number of pages and (retail)	B1		or equivalent; but not poor
	price	B1	2	context
(iii)	Size (page, thickness), author, ranking, publicity/marketing, cover design, recommendations on back, publisher, font, popularity, quality, print-run, etc	B1	1	or any sensible variable but not pictures, coloured pictures, age, words, weight, mass
(b)	positive/perfect correlation/relationship/			
	association	B1		or equivalent
	between number of pages and sale/new price	B1	2	context
	Sale price appears to be determined by	D		
	number of pages	B2	0	or equivalent
	Total		8	

MS1B

Q	Solution	Marks	Total	Comments
2(a) (i)	Height, $X \sim N(185, 10^2)$ P(X < 200) = P $\left(Z < \frac{200 - 185}{10}\right)$	M1		standardising (199.5, 200 or 200.5) with 185 and ($\sqrt{10}$, 10 or 10 ²) and/or (185 – x)
	$= P(Z < 1.5) = \Phi(1.5) = 0.933$	A1 A1	3	CAO; ignore sign AWRT (0.93319)
(ii)	$P(X > 175) = P\left(Z > \frac{175 - 185}{10}\right)$	M1		standardising (174.5, 175 or 175.5) with 185 and ($\sqrt{10}$, 10 or 10 ²) and/or (185 – <i>x</i>)
	= P(Z > -1) = P(Z < 1) = 0.841	ml Al	3	area change AWRT (0.84134)
(iii)	P(175 < X < 200) = (i) - [1 - (ii)]	M1		or equivalent
	= 0.93319 - [1 - 0.84134] = 0.774 to 0.775	A 1√	2	AWFW (0.77453) √ on (i) and (ii) providing > 0
(b)	Mean of $\overline{X} = 185$	B1		CAO; may be implied by use in standardising
	Variance of $\overline{X} = \frac{10^2}{4} = 25$	B1		CAO; or equivalent
	$P(\overline{X} > 190) = P\left(Z > \frac{190 - 185}{5}\right)$	M1		standardising 190 with 185 and 5 and/or (185 – 190)
	$= P(Z > 1) = 1 - \Phi(1)$ = 0.159	A1√	4	AWRT (0.15866) $$ on (a)(ii) if used
		Total	12	

Q	Solution	Marks	Total	Comments
3(a)(i)	Gradient, $b = -3.24$ to -3.26	B2		AWFW (-3.25)
	b = -3.2 to -3.3	B1		AWFW
	Intercept, $a = 262$ to 264	B2		$AWFW \qquad (262.88)$
	a = 260 to 270	B1		AWFW
	Attempt at $\Sigma x \ \Sigma x^2 \ \Sigma y \ \Sigma xy$ or			108, 1836, 2015, 22425
	Attempt at S_{xx} S_{xy} Attempt at a correct formula for <i>b</i>	M1 m1		540, -1755
	b = -3.24 to $-3.26a = 262$ to 264	A1 A1	4	AWRT AWFW
	Accept <i>a</i> & <i>b</i> interchanged only if identified correctly in (b) and (c)			
(ii)	Gradient, <i>b</i> : Decrease in pressure per month	B2		or equivalent
	Change in pressure	B2 B1	2	or better
(iii)	Intercept, a:			
	Initial pressure or pressure at $x = 0$ Reference to 265, actual or expected value	B1 B1	2	or equivalent; not y-intercept
(b)(i)	Value for $b = 2 \times [\text{gradient or } b \text{ from} (a)(i)]$	M1		accept 2 <i>b</i> ; ignore sign
	=-6.4 to -6.6	A1√	2	AWFW (-6.5) $\sqrt{10}$ from (a)(i) but must be < 0
(ii)	$P_8 = 265 - 6.5 \times 8$	M1		must use 265 and $x = 8$ and $2 \times [b (< 0) \text{ from } (a)(i)]$
	= 212 to 214 (< 220)	A1	2	$2 \times [b (< 0) \text{ from } (a)(1)]$ or [from (b)(i) (< 0)] AWFW AG
	(~220)			
	Total		12	

Q	Solution	Marks	Total	Comments
4(a)(i)	Mean, $\overline{x} = 505.2$	B1		CAO; stated or implied
		B1		AWEW (25759)
	$99\% \Rightarrow z = 2.57$ to 2.58 or	ы		AWFW (2.5758)
	$99\% \Rightarrow t = 3.25$	B1		AWRT (3.250)
	(Knowledge of the <i>t</i> -distribution is not			
	required in this unit)			
	CI for μ is $\overline{x} \pm (z \text{ or } t) \times \frac{(\sigma \text{ or } s)}{\sqrt{n}}$	M1		use of; must have $(\div \sqrt{n})$ with $n > 1$
	Thus $505.2 \pm 2.5758 \times \frac{6}{\sqrt{10}}$	A1√		$$ on \overline{x} and z only
	$\sqrt{10}$			
	or $505.2 \pm 3.25 \times \left(\frac{5.96}{\sqrt{10}} \text{ or } \frac{5.65}{\sqrt{9}}\right)$	A1√		$$ on \overline{x} only
	Hence			
	505.2 ± 4.9			use of $t \Rightarrow 505.2 \pm 6.1$
	or (500.3, 510.1)	A1	5	AWRT
(ii)	Weights of packets can be assumed to be	B1	1	accept 'population of weights'; not
	normally distributed			'sample of weights' or 'it'
(iii)	Given sample:			
()	3 in 10/ some of packets have weights			
	below 500 grams	B1		or equivalent
	Confidence interval:			
	CI > 500	B1√		on CI in (a)(i)
	Conclusion:			
	Statement does not appear justified	B1 dep	3	or equivalent
				dependent on both B1 and B1 \checkmark
(b)	0.01 or 1%	B1	1	CAO; or equivalent
<u> </u>	Total		10	

Q	Solution	Marks	Total	Comments
5(a)	B(15, 0.3)	M1		use of in (a)
(i)	$P(K = 5) = P(K \le 5) - P(K \le 4)$			
	$P(K = 5) = {\binom{15}{5}} (0.3)^5 (0.7)^{10}$	M1		may be implied
	= 0.7216 - 0.5155 = 0.2055 to 0.2065	A1	3	AWFW (0.2061)
(ii)	(Fewer than) half \Rightarrow 7 or 7 ¹ / ₂ or 8	B1		stated or implied
	Thus require $P(K \le 7 \text{ or } < 8)$	M1		used or implied by correct answer
	= 0.9495 to 0.9505	A1	3	AWFW (0.9500)
(iii)	P(2 < K < 7) = 0.8689 or 0.9500	M1		
	minus 0.1268 or 0.2969	M1		
	= 0.7415 to 0.7425 or	A1	3	AWFW (0.7421)
	B(15, 0.3) expressions stated for at least 3	M1		or implied by a correct answer
	terms within $2 \le K \le 7$ Answer	A2		
(b)(i)	Mean, $\mu = np = 15 \times 0.4 = 6$	B1		САО
	Variance, $\sigma^2 = np(1-p) = 6 \times 0.6 = 3.6$	M1		use of $\sigma^2 = np(1-p)$
	Standard deviation = $\sqrt{3.6}$ = 1.89 to 1.9	A1	3	AWFW; or equivalent
(ii)	Mean, $\overline{x} = 6$	B1		CAO $(\Sigma x = 60)$
				CSO if evidence of $np(1-p)$ or 1.9
	Standard deviation, s or $\sigma = 2.82$ to 2.99	B1	2	AWFW; or equivalent. $(\Sigma x^2 = 440)$
(iii)	Means are same/equal	B1√		\checkmark on 2 means; accept $\frac{6}{15} = 0.4$ if not
				contradicted by \overline{x} in (ii)
	Standard deviations are different	B1 dep		dependent on 2 correct SDs
	Reason to doubt validity of Kirk's claim	B1 dep	3	dependent on 2 correct SDs
	Total		17	

Q	Solution	Marks	Total	Comments
6	$ 0(R) 1(S) 2(T) \ge 3 T$			
	D(D) 24 32 41 23 120			
	SD(D') 40 37 88 35 200 T 64 69 129 58 320			
	1 04 09 129 50 520			
(a)(i)	$P(D) = \frac{120}{320}$ or $\frac{3}{8}$ or 0.375	B1	1	CAO: or aminutant
(a)(i)	$1(D) = \frac{1}{320}$ or $\frac{1}{8}$ or 0.575	DI	1	CAO; or equivalent
	24 2			
(ii)	$P(D \cap R) = \frac{24}{320}$ or $\frac{3}{40}$ or 0.075	B1	1	CSO; or equivalent
	520 +0			
(iii)	$P(D \cup T) = \frac{120 + 88}{320} = \frac{129 + 24 + 32 + 23}{320}$	M1		
	$1(D \cup T) = \frac{1}{320} = \frac{1}{320}$	1011		
	$=\frac{208}{320}$ or $\frac{13}{20}$ or 0.65	A1	2	CAO; or equivalent
	320 20			
	24/			
(iv)	$P(D R) = \frac{P(D \cap R)}{P(R)} = \frac{(ii)}{P(R)} = \frac{\frac{24}{320}}{\frac{64}{320}}$	M1		M0 if independence assumed
	$P(R) = P(R) = P(R) = \frac{64}{(320)}$	1011		
	24 3			
	$=\frac{24}{64}$ or $\frac{3}{8}$ or 0.375	A1	2	CAO; or equivalent
	$P(R \cap D') = \frac{40}{(320)}$	M1		
(v)	$P(R \mid D') = \frac{P(R \cap D')}{P(D')} = \frac{\frac{40}{(320)}}{\frac{200}{(320)}}$	M1		numerator allow independence assumed
	$1(D) = \frac{200}{(320)}$	M1		denominator
	$=\frac{40}{200}$ or $\frac{1}{5}$ or 0.2			
	200 5 61 0.2	A1	3	CAO; or equivalent
(b)(i)	R and S or R and T or S and T	B1	1	not <i>D</i> and <i>D</i> '
			1	
(ii)	P(D) = 0.375 = P(D R) or (i) = (iv)	M1		$P(D) \times P(R) = 0.375 \times 0.2$
				$= 0.075 = P(D \cap R)$ or (ii)
	so YES	A1	2	or $P(R D) = P(R) = 0.2$, etc
		111	-	
(c)(i)	A semi-detached house	B1		CAO
	or two children (or both)	B1	2	or equivalent
(ii)	A detached house and/with	B1		САО
()	less than two children	B1	2	(0 or 1 must not include 'both')
	Total		16	
	TOTAL		75	

General Certificate of Education

Mathematics 6360 Statistics 6380

MS/SS1B Statistics 1B

Mark Scheme

2007 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2007 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

М	mark is for method						
m or dM	mark is dependent on one or more M m	arks and is for	method				
Α	mark is dependent on M or m marks and is for accuracy						
В	mark is independent of M or m marks and is for method and accuracy						
Е	mark is for explanation						
$\sqrt{100}$ or ft or F	follow through from previous						
	incorrect result	MC	mis-copy				
CAO	correct answer only	MR	mis-read				
CSO	correct solution only	RA	required accuracy				
AWFW	anything which falls within	$\mathbf{F}\mathbf{W}$	further work				
AWRT	anything which rounds to	ISW	ignore subsequent work				
ACF	any correct form	FIW	from incorrect work				
AG	answer given	BOD	given benefit of doubt				
SC	special case	WR	work replaced by candidate				
OE	or equivalent	FB	formulae book				
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme				
–x EE	deduct <i>x</i> marks for each error	G	graph				
NMS	no method shown	С	candidate				
PI	possibly implied	Sf	significant figure(s)				
SCA	substantially correct approach	Dp	decimal place(s)				

Key to mark scheme and abbreviations used in marking

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

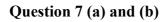
Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

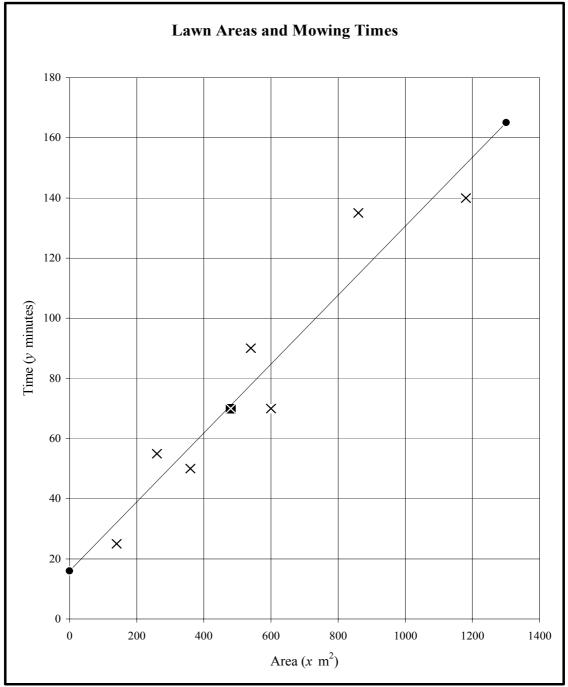
Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MS/SS1B - AQA GCE Mark Scheme 2007 January se	ries
---	------


Q	Solution	Marks	Total	Comments
1(a)	Mean $(\overline{x}) = 39.3$ to 39.4	B1		AWFW (39.35)
	Standard Deviation (s_n, s_{n-1}) = 12.3 to 12.7	B2	3	AWFW (12.358 or 12.679)
	If neither correct but working shown, then			$\sum x = 787 \sum x^2 = 34023$
	Mean $(\overline{x}) = \frac{\sum x}{20}$	(M1)		Used
(b)	Median = 42	B2		САО
	Median = 41.5 or 39 or 40	(B1)		CAO
	Interquartile Range = $55 - 31 = 24$	В2	4	CAO; allow B1 for identification of 31 and 55; B0 if method shown is incorrect
	Interquartile Range = 21 to 27	(B1)		AWFW
(c)(i)	Mode: eg Does not exist If exists, must be > 60 or 58 All / too many different values Sparse data	B1		OE
(ii)	Range: eg Maximum value is unknown / > 60 or 58	B1	2	OE; accept 'slowest' but not 'smallest'
		Total	9	


Q	Solution	Marks	Total	Comments
2(a)	Use of binomial in (a), (b) or (c)	M1		Can be implied
	$P(E=5) = {\binom{16}{5}} (p)^5 (1-p)^{11}$	M1		Allow $p = 0.45, 0.25, 0.30$ or $\frac{1}{3}$
	= 0.112	A1	3	AWRT (0.1123)
(b)(i)	B(50, 0.25)	B1		Used; can be implied
	$P(C \le 12) = 0.511$	B1	2	AWRT (0.5110)
(ii)	P(10 < B' < 20) = 0.9152 or 0.9522	M1		Allow 3 dp accuracy
	minus 0.0789 or 0.1390	M1		Allow 3 dp accuracy
	= 0.836	A1	3	AWRT (0.8363)
	or B(50, 0.30) expressions stated for at least 3 terms within $10 \le B' \le 20$ Answer = 0.836	(M1) (A2)		Or implied by a correct answer AWRT
(c)	n = 40, p = 0.7	B1		Both used; can be implied
	Mean $\mu = np = 28$	B1√		CAO; $$ on <i>p</i> only
	Variance $\sigma^2 = np(1-p) = 8.4$	M1		Use of $np(1-p)$ even if SD
	Standard deviation = $\sqrt{8.4}$ or = 2.89 to 2.9	A1	4	CAO; AWFW
	Total		12	

2	Solution	Marks	Total	Comments	
3(a)	$0.5 \le \text{Value} \le 0.95$	B2		Value is actually 0.8	
	Positive value < 1 (and > 0)	(B1)			
(b)	$-0.2 \le \text{Value} \le +0.2$	B1		Value is actually 0.0	
(c)	$-0.95 \le \text{Value} \le -0.5$	B2	5	Value is actually –0.7	
	Negative value > -1 (and < 0)	(B1)			
	Total		5		
4(a)	$90\% \Rightarrow z = 1.64$ to 1.65	B1		AWFW (1.6449)	
	or				
	$90\% \implies t = 1.66 \text{ to } 1.67$	(B1)		AWFW (1.6649)	
	(Knowledge of the <i>t</i> -distribution is not				
	required in this unit)				
	CI for μ is $\overline{x} \pm (z \operatorname{or} t) \times \frac{(s_{n-1} \operatorname{or} s_n)}{\sqrt{n}}$	M1		Used; must have \sqrt{n} with $n > 1$	
	$\int \frac{1}{\sqrt{n}} dx = \frac{1}{\sqrt{n}} \int \frac{1}{\sqrt{n}} dx$				
	Thus				
	$184 \pm (1.6449 \text{ or } 1.6649) \times \frac{(32 \text{ or } 32.2)}{(\sqrt{78} \text{ or } \sqrt{77})}$	A1√		on <i>z</i> or <i>t</i> only	
	, , , , , , , , , , , , , , , , , , ,				
	Hence $184 \pm (5.94 \text{ to } 6.13)$				
	or $\pounds 184 \pm \pounds 6$				
	$01^{-}1104^{-}110$				
	or (£178, £190)	A1	4	AWRT; ignore units	
(b)(i)	Likely to be valid	B1		Accept 'valid' or equivalent	
(ii)	Different plays have different:				
(11)	programme prices, sales, marketing, etc				
	theatre or audience sizes, etc	B1			
	popularity, artists, etc				
	so	↑Dep↑			
	Unlikely to be valid	B1	3	Accept 'not valid' or equivalent	
	Total		7		

Q	Solution	Marks	Total	Comments
5(a)	$P(D' \cap E' \cap F') = 0.4 \times 0.3 \times 0.2$	M1		At least 1 probability correct
	= 0.024	A1	2	CAO; OE
(b)	$P(D' \cap E' \cap F) = 0.4 \times 0.3 \times 0.8$	M1		At least 2 probabilities correct
	= 0.096	A1	2	CAO; OE
(c)	$P(One) =$ (b) + P(D \cap E' \cap F') + P(D' \cap E \cap F')	M1		Use of 3 possibilities; ignore multipliers
	=(b) + (0.6 × 0.3 × 0.2) + (0.4 × 0.7 × 0.2)	M1		At least 1 new term correct
	= 0.096 + 0.036 + 0.056 = 0.188	A1	3	CAO; OE
(d)	P(One or two) = (c) + (3 terms each of 3 probabilities) or = $1 - (a) - (1 \text{ term of 3 probabilities})$	M1		(c) + P(Two) Used; OE; ignore multipliers 1 - (a) - P(Three)
	$= 0.188 + (0.6 \times 0.7 \times 0.2) + (0.6 \times 0.3 \times 0.8) + (0.4 \times 0.7 \times 0.8) = 0.188 + 0.084 + 0.144 + 0.224$ or $= 1 - 0.024 - (0.6 \times 0.7 \times 0.8) = 1 - 0.024 - 0.336$	M1		At least 1 new term correct
	= 0.64	A1	3	CAO; OE
	Total		10	

Q	Solution	Marks	Total	Comments
6(a)(i)	$P(X < 45) = P\left(Z < \frac{45 - 37}{8}\right)$	M1		Standardising (44.5, 45 or 45.5) with 37 and ($\sqrt{8}$, 8 or 8 ²) and/or (37 – <i>x</i>)
	= P(Z < 1)	A1		CAO; ignore sign
	= 0.841	A1	3	AWRT (0.84134)
(ii)	P(30 < X < 45) = (i) - P(X < 30)	M1		Used; OE
	= (i) – P(Z < -0.875)			
	=(i) - [1 - (0.80785 to 0.81057)]	m1		Area change
	= 0.648 to 0.652	A1	3	AWFW (0.65056)
(b)	$0.12 \Rightarrow z = 1.17$ to 1.18	B1		AWFW; ignore sign (1.1750)
	$z = \frac{45 - 40}{\sigma}$	M1		Standardising 45 with 40 and σ
	= 1.175	m1		Equating <i>z</i> -term to <i>z</i> -value but not using 0.12, 0.88 or $ 1-z $
	σ = 4.23 to 4.28	A1	4	AWFW
(c)	Route A: $P(X > 45) = 1 - (a)(i)$ Route B: $P(Y > 45) = 0.12$	B1 ↑Dep↑		OE; must use 45
	Monica should use Route B (smaller prob)	B1√	2	on (a)(i); allow Route <i>Y</i>
(d)	Mean of $\overline{W} = 18$	B1		CAO; can be implied by use in standardising
	Variance of $\overline{W} = \frac{12^2}{36} = 4$	B1		CAO; OE
	$P(\overline{W} > 20) = P\left(Z > \frac{20 - 18}{2}\right)$	M1		Standardising 20 with 18 and 2 and/or $(18 - 20)$
	= P(Z > 1) = 0.159	A1√	4	AWRT (0.15866); $$ on (a)(i) if used
(e)	In part (d)	B1	1	CAO; OE
	Total		17	

		(Graph =	= 4)
(b)	Line plotted accurately (Evidence of correct method for ≥ 2 points		B2 M1)
(a)	8 or 7 points plotted accurately (6 or 5 points plotted accurately		B2 B1)

$(b = 0.11 \text{ to } 0.12)$ (B1) Intercept, $a = 15.9 \text{ to } 16.1$ B2 $(a = 13 \text{ to } 19)$ (B1) Attempt at $\sum x$, $\sum x^2$, $\sum y$ and $\sum xy$ 4420, 32	7 (0.11469) 7 (16.00824) 230800, 635 and 441300 9 and 90462.5
(b) Gradient, $b = 0.114$ to 0.115 (b = 0.11 to 0.12) Intercept, $a = 15.9$ to 16.1 (a = 13 to 19) Attempt at $\sum x$, $\sum x^2$, $\sum y$ and $\sum xy$ 4420, 32	7 (16.00824) 230800, 635 and 441300
$(b = 0.11 \text{ to } 0.12)$ (B1) Intercept, $a = 15.9 \text{ to } 16.1$ B2 $(a = 13 \text{ to } 19)$ (B1) Attempt at $\sum x$, $\sum x^2$, $\sum y$ and $\sum xy$ 4420, 32	7 (16.00824) 230800, 635 and 441300
$(b = 0.11 \text{ to } 0.12)$ (B1) Intercept, $a = 15.9 \text{ to } 16.1$ B2 $(a = 13 \text{ to } 19)$ (B1) Attempt at $\sum x$, $\sum x^2$, $\sum y$ and $\sum xy$ 4420, 32	7 (16.00824) 230800, 635 and 441300
Intercept, $a = 15.9$ to 16.1 $(a = 13 \text{ to } 19)$ B2 (B1)AWFWAttempt at $\sum x$, $\sum x^2$, $\sum y$ and $\sum xy$ 4420, 32	230800, 635 and 441300
$(a = 13 \text{ to } 19) $ $(B1)$ $Attempt at \sum x, \sum x^{2}, \sum y \text{ and } \sum xy$ $(B1)$ $4420, 32$	230800, 635 and 441300
Attempt at $\sum x$, $\sum x^2$, $\sum y$ and $\sum xy$ 4420, 32	
	and 90462.5
or (M1)	and 90462.5
Attempt at correct formula for b (m1) $b = 0.114$ to 0.115 (A1)	T
b = 0.114 to 0.115 $a = 15.9 to 16.1$ (A1) (A1) (A1) (AWFW) (AVFW)	
$ \begin{vmatrix} u - 15.5 \ (0.1) \\ A W F W \end{vmatrix} $	
Accept <i>a</i> and <i>b</i> interchanged only if then	
identified correctly later in question	
Line platted accurately.	200 / 1000
Line plotted accuratelyB26At least(Evidence of correct method for ≥ 2 (M1)	t from $x = 200$ to 1000
points)	
	or implied by correct answer;
allow fo	or $Y_{\rm H} - y_{\rm H}$ shown
= -1.5 to -0.5 A1 AWFW	^V (-1.06)
	(1.00)
Point H is (almost) on / just below the B1 3 Accept	near / close / just above or
line equivale	ent
$(\mathbf{d}) \mathbf{V} = \mathbf{u} + \mathbf{h} + \mathbf{S}(0)$	
(d) $Y = a + b \times 560$ or reading from scatter diagram M1 Used	
or reading from seatter diagram	
= 79 to 81 A1 AWFW	/ (80.2)
Cost = $Y \times \frac{12}{60}$ or $\frac{Y}{5}$ M1 Used	
= £15.8 to £16.2 A1 4 AWFW	; ignore units (£16.05)
$= \pounds 15.8 \text{ to } \pounds 16.2 \qquad A1 \qquad 4 \qquad AWFW$ Total 15	<i>I</i> ; ignore units (£16.05)
TOTAL 75	

General Certificate of Education

Mathematics 6360 Statistics 6380

MS/SS1B Statistics 1B

Mark Scheme

2007 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright $\ensuremath{\mathbb{C}}$ 2007 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

М	mark is for method				
m or dM	mark is dependent on one or more M marks and is for method				
Α	mark is dependent on M or m marks and is for accuracy				
В	mark is independent of M or m marks and is for method and accuracy				
Е	mark is for explanation				
or ft or F	follow through from previous				
	incorrect result	MC	mis-copy		
CAO	correct answer only	MR	mis-read		
CSO	correct solution only	RA	required accuracy		
AWFW	anything which falls within	$\mathbf{F}\mathbf{W}$	further work		
AWRT	anything which rounds to	ISW	ignore subsequent work		
ACF	any correct form	FIW	from incorrect work		
AG	answer given	BOD	given benefit of doubt		
SC	special case	WR	work replaced by candidate		
OE	or equivalent	FB	formulae book		
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme		
-x EE	deduct x marks for each error	G	graph		
NMS	no method shown	с	candidate		
PI	possibly implied	sf	significant figure(s)		
SCA	substantially correct approach	dp	decimal place(s)		

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1(a)	r = -0.526 to -0.525	B3		AWFW
	or			
	r = -0.53 to -0.52	(B2)		AWFW; ignore sign
	or			
	r = -0.6 to -0.4	(B1)		AWFW; ignore sign
	OR			
	Attempt at			
	$\sum x$, $\sum x^2$, $\sum y$, $\sum y^2$ and $\sum xy$			260, 6970, 143, 2083 and 3671
	or	(M1)		
	Attempt at S_{xx} , S_{yy} and S_{xy}	, í		210, 38.1 and -47
	Attempt at a correct formula for r	(m1)		
	L			
	r = -0.526 to -0.525	(A1)	3	AWFW
(b)				OE; must qualify strength and indicate
	Weak/some/moderate negative			negative
	correlation (relationship/association)	B1		B0 for strong/poor/reasonable/average
				B0 if $r > 0$ or $r < -1$
	between			B0 if contradictory statements
	between			
	length and (maximum) diameter	B1		Context
	Ignore subsequent comments (as below)			
	only if B1 B1 already scored			
	OR			
	Some ovidence that large log other an-	(D1)		OF: must qualify streng ath and is directed
	Some evidence that large lengths are associated with small diameters	(B1) (B1)		OE; must qualify strength and indicate negative
	associated with small diameters	(B1)		negative
	OR			
	Longer melons tend to have	(B1)		OE; must qualify strength and indicate
	smaller diameters / be thinner	(B1)	2	negative
	Total		5	

Q	Solution	Marks	Total	Comments
2	Ratios: Penalise first occurrence only of a correct answer			
(a)(i)	$P(Welsh back) = \frac{7}{50} \text{ or } 0.14$	B1	1	CAO; OE
(ii)	$P(\text{English}) = \frac{14+8}{50} =$	B1		Correct expression; PI
	$\frac{22}{50}$ or $\frac{11}{25}$ or 0.44	B1	2	CAO; OE
(iii)	P(not English) = 1 - (ii) =			
	$\frac{28}{50}$ or $\frac{14}{25}$ or 0.56	B1√	1	\checkmark on (ii) if used; 0
(iv)	$P(\text{Irish} \text{back}) = \frac{P(\text{Irish} \cap \text{back})}{P(\text{back})} = \frac{6}{\sum(\text{back})} =$	M1		Used; may be implied by values or answe
	$\frac{6}{23}$ or 0.26 to 0.261	A1	2	CAO/AWFW (6/50 \Rightarrow 0)
(v)	$P(\text{forward} \mid \text{not Scottish}) = \frac{P(\text{forward} \cap \text{not Scottish})}{P(\text{not Scottish})} = \frac{14+5+6}{50-4} = \frac{27-2}{50-4} =$	M1		Used; OE May be implied by values or answer
	$\frac{25}{46}$ or 0.54 to 0.544	A1	2	CAO/AWFW (25/50 \Rightarrow 0)
(b)	$P(4 \times English) =$			
	$\left(\frac{22}{50}\right) \times \left(\frac{21}{49}\right) \times \left(\frac{20}{48}\right) \times \left(\frac{19}{47}\right) =$	M1 M1		Reducing non-tabulated value 4 times Reducing 50 and multiplying 4 terms (ignore multipliers)
	$\frac{175560}{5527200}$ or $\frac{209}{6580}$			
	or 0.0317 to 0.032	A1	3	CAO/AWFW
	Total		11	

Q	Solution	Marks	Total	Comments
3(a)	$95\% \implies z = 1.96$	B1		CAO
	or			
	$95\% \implies t = 2.0$ to 2.01	(B1)		AWFW (2.009
	(Knowledge of the <i>t</i> -distribution is not required in this unit)			
	CI for μ is $\overline{x} \pm (z \operatorname{or} t) \times \frac{(s_{n-1} \operatorname{or} s_n)}{\sqrt{n}}$	M1		Used; must have \sqrt{n} with $n > 1$
	Note that $25.1 \times \sqrt{\frac{50}{49}} = 25.35483$			$25.1 \times \frac{50}{49} = 25.61224$
	V 49			Max of B1 M1 A0√ A1
	Thus			
	$234 \pm (1.96 \text{ or } 2.009) \times \frac{(25.1 \text{ or } 25.3 \text{ to } 25.4)}{(\sqrt{50} \text{ or } \sqrt{49})}$	A1√		on z or t only
	Hence $234 \pm (6.95 \text{ to } 7.30)$			
	ie 234 ± 7			
	or (227, 241)	A1	4	AWRT
(b)	Customers are likely to	B1	1	OE; accept any sensible alternative
	choose large / similar sized potatoes Total		5	

MS/SS1B (co	MS/SS1B (cont)						
Q	Solution	Marks	Total	Comments			
4(a)(i)	Mode = 2	B1		CAO			
	Range = 15	B1	2	САО			
(ii)	CF:417415873848995x:0123491415						
	$Median (48^{th}) = 3$	B2		CAO; B0 if shown method is incorrect			
	Interquartile Range $(72^{nd} - 24^{th})$ = 4 - 2 = 2	B2		CAO Allow B1 for identification of 4 and 2 B0 if shown method is incorrect			
	If neither correct but CF attempted and matched correctly with $\ge 5 x$ -values	(M1) (A1)	4	Allow for median = $2 + \frac{x}{17}$			
(iii)	Mean $(\overline{x}) = 4.2$	В2		CAO $\sum fx = 399$			
	Standard Deviation (s_n, s_{n-1}) = 3.88 to 3.91	B2		AWFW $\sum fx^2 = 3111$ (3.887 or 3.907)			
	If neither correct but mid-points of 7 and 12 seen	(B1)					
	and use of mean $(\overline{x}) = \frac{\sum fx}{95}$	(M1)	4	Allow for $4.1 \le \overline{x} \le 4.3$			
(b)(i)	Unknown values (16) have no effect on median and IQR or median and IQR are exact values but \overline{x} and <i>s</i> are estimates	B1	1				
(ii)	Use all available data or Enable further analyses	B1	1				
	Total		12				

Q	Solution	Marks	Total	Comments
5(a)	Time taken depends upon temperature	B1	1	OE; not <i>x</i> set values
(b)	b (gradient) = -0.0873 to -0.087	B2		AWFW (-0.08727)
(~)	b (gradient) = -0.09 to -0.08	(B1)		AWFW AWFW; $-8.73^{-02} \Rightarrow B0$ (-0.08727) AWFW (5.9509)
	a (intercept) = 5.94 to 5.96	B2		AWFW (5.9509)
	a (intercept) = 5.6 to 6.1	(B1)		AWFW
	Attempt at $\sum x$, $\sum x^2$, $\sum y$ and $\sum xy$			396, 16016, 30.9 and 958.8
	or	(M1)		
	Attempt at S_{xx} and S_{xy} Attempt at correct formula for <i>b</i>	(m1)		1760 and -153.6
	b = -0.0873 to -0.087	(A1)		AWFW
	a = 5.94 to 5.96	(A1)	4	AWFW
	Accept <i>a</i> and <i>b</i> interchanged only if then identified correctly later in question			
(c)(i)	Each 1 °C rise in temperature results in an (average) decrease of 0.087 m (5 s) in time taken for pellets to dissolve	B1 B1	2	Quantified rise in x (results in) Decrease in y OE
(ii)	<i>a</i> is <i>y</i> -value at $x = 0$ at which water is solid/ice/frozen so pellets cannot dissolve	B1 B1	2	Indication that it is y at $x = 0$ Mention of solid or ice or frozen
(d)(i)	When $x = 30$			
	y = 3.3 to 3.4	B2		AWFW (3.3327)
	y = 2.9 to 3.7	(B1)		AWFW
	If B0, use of their equation with $x = 30$	(M1)	2	
(ii)	When $x = 75$			
	y < 0 or negative	B1		OE
	which	↑Dep↑	-	
	is impossible	B1	2	OE; not extrapolation

0	ont) Solution	Maulta	Tatal	Commonte
\mathbf{Q}	Solution	Marks	Total	Comments
6(a)	Use of binomial in (a) or (b)(i)	M1		PI
(i)	$P(T_{10} \le 3) = 0.38$ to 0.383	B1	2	AWFW (0.3823)
(ii)	$P(10 < T_{40} < 20) = 0.8702 \text{ or } 0.9256$	M1		Allow 3 dp accuracy
	minus 0.0352 or 0.0156	M1		Allow 3 dp accuracy
	= 0.83 to 0.84 OR	A1		AWFW (0.835)
	B(40, 0.40) expressions stated for at least 3 terms within $10 \le T_{40} \le 20$	(M1)		Or implied by a correct answer
	Answer = 0.83 to 0.84	(A2)	3	AWFW
(b)(i)	n = 5 $p = 0.4$			
	Mean, $\mu = np = 2$	B1		CAO
	Variance, $\sigma^2 = np(1-p) = 1.2$	M1		Use of $np(1-p)$ even if SD
	Standard deviation = $\sqrt{1.2}$ or = 1.09 to 1.1	A1	3	CAO AWFW
(ii)	$Mean(\overline{x}) = 2$	B1		CAO $\sum x = 26$
	Standard Deviation (s_n, s_{n-1}) = 1.1 to 1.16	B2		AWFW $\sum x^2 = 68$ (1.1094 or 1.1547)
	If neither correct but			
	use of mean $(\overline{x}) = \frac{\sum x}{13}$	(M1)	3	
(iii)	Means are same and SDs are similar/same Means are same but SDs are different so	B1 ↑Dep↑		Must have scored full marks in (b)(i) and (b)(ii)
	Trina's claims appear valid / invalid	B1	2	
	Total		13	

MS/SS1B (cont)

Q	Solution	Marks	Total	Comments
7(a)	Time, $X \sim N(48, 20^2)$			
(i)	$P(X < 60) = P\left(Z < \frac{60 - 48}{20}\right) =$	M1		Standardising (59.5, 60 or 60.5) with 48 and ($\sqrt{20}$, 20 or 20 ²) and/or (48 – <i>x</i>)
	P(Z < 0.6) = 0.725 to 0.73	A1	2	AWFW (0.72575)
(ii)	P(30 < X < 60) = P(X < 60) - P(X < 30) = (i) - P(X < 30) = (i) - P(Z < -0.9) =	M1		Difference or equivalent Standardising other than 60 and 30 ⇒ max of M1 m1 A0
	$\begin{array}{l} (i) - \{1 - P(Z < +0.9)\} = \\ 0.72575 - \{1 - 0.81594\} = \end{array}$	m1		Area change
	0.54 to 0.542	A1	3	AWFW (0.54169)
(iii)	$0.9 \Rightarrow z = 1.28$ to 1.282	B1		AWFW (1.2816)
	$z = \frac{k - 48}{20}$	M1		Standardising k with 48 and 20
	= 1.2816	m1		Equating <i>z</i> -term to <i>z</i> -value; not using 0.9, 0.1, $ 1 - z $ or $\Phi(0.9) = 0.81594$
	k = 73.6 to 74	A1	4	AWFW
(b)	Time, $Y \sim N(37, 25^2)$			
(i)	Use of $\mu - (2 \text{ or } 3) \times \sigma = 37 - (50 \text{ or } 75)$	M1		Or equivalent justification
	$< 0 \Rightarrow$ likely negative times	B1	2	for (likely) negative times
(ii)	Central Limit Theorem or $n arge / > 30$	B1	1	
(iii)	Variance of $\overline{Y} = \frac{25^2}{35}$	B1		OE; stated or used
	$P(\overline{Y} > 40) = P\left(Z > \frac{40 - 37}{25/\sqrt{35}}\right) =$	M1		Standardising 40 with 37 and $25/\sqrt{35}$ and/or $(37 - 40)$
	P(Z > 0.71) = 1 - P(Z < 0.71) =	m1		Area change
	0.238 to 0.24	A1	4	AWFW (1 – 0.76115)
	Total		16	
	TOTAL		75	

General Certificate of Education

Mathematics 6360 Statistics 6380

MS/SS1B Statistics 1B

Mark Scheme

2008 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2008 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX Dr Michael Cresswell Director General

М	mark is for method						
m or dM	mark is dependent on one or more M marks and is for method						
А	mark is dependent on M or m marks and is for accuracy						
В	mark is independent of M or m marks and is for method and accuracy						
E	mark is for explanation						
$\sqrt{0}$ or ft or F	follow through from previous						
	incorrect result	MC	mis-copy				
CAO	correct answer only	MR	mis-read				
CSO	correct solution only	RA	required accuracy				
AWFW	anything which falls within	FW	further work				
AWRT	anything which rounds to	ISW	ignore subsequent work				
ACF	any correct form	FIW	from incorrect work				
AG	answer given	BOD	given benefit of doubt				
SC	special case	WR	work replaced by candidate				
OE	or equivalent	FB	formulae book				
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme				
–x EE	deduct <i>x</i> marks for each error	G	graph				
NMS	no method shown	с	candidate				
PI	possibly implied	sf	significant figure(s)				
SCA	substantially correct approach	dp	decimal place(s)				

Key to mark scheme and abbreviations used in marking

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

S/SS1B				
Q	Solution	Marks	Total	Comments
1(a)(i)	$P(X < 3.5) = P\left(Z < \frac{3.5 - 3.3}{0.16}\right) =$	M1		Standardising (3.45, 3.5 or 3.55) with 3.3 & $(\sqrt{0.16}, 0.16 \text{ or } 0.16^2)$ and/or $(3.3 - x)$
	P(Z < 1.25) =	A1		CAO; ignore sign
	0.894 to 0.895	A1	3	AWFW (0.89435)
(ii)	$P(X > 3.0) = P\left(Z > \frac{3.0 - 3.3}{0.16}\right) =$	M1		Standardising (2.95, 3 or 3.05) with 3.3 & $(\sqrt{0.16}, 0.16 \text{ or } 0.16^2)$ and/or $(3.3 - x)$
	P(Z > -1.875) = P(Z < 1.875) =	m1		Correct area change
	0.969 to 0.97(0)	A1	3	AWFW (0.96960)
(iii)	P(3.0 < X < 3.5) = (i) - [1 - (ii)] =	M1		OE
	0.863 to 0.865	A1	2	AWFW: CSO (0.86395)
(b)	$0.025 \Rightarrow z = 1.96$	B1		CAO; ignore sign
	$z = \frac{3.1 - \mu}{0.16}$	M1		Standardising 3.1 with μ and 0.16; allow (μ – 3.1)
	= -1.96	m1		Equating <i>z</i> -term to <i>z</i> -value; not using 0.025, 0.975, $ 1 - z $ or $\Phi(0.025) = 0.507$ to 0.512
	Hence $\mu = 3.4(0)$ to 3.42	A1	4	AWFW; CSO (3.4136)
	Total		12	

Q	Solution	Marks	Total	Comments
2(a)	$r = \frac{416.3}{\sqrt{1280.55 \times 281.8}} =$	M1		Allow no $$
	0.69 to 0.7(0)	A1	2	AWFW (0.693 (0.00115
(b)	(Quite or fairly) weak / some / moderate (quite or fairly) strong positive correlation (relationship / association)	A1		 OE; must qualify strength and indicate positive A0 for poor / reasonable / average / medium / good A0 for very weak / very strong etc
	between			
	head & body length and tail length	B1	2	Context; accept 'body and tail' or even 'head and tail'
	Ignore subsequent alternative comments only if A1 B1 already scored			
	OR			
	Some evidence that mice with large head & body lengths also have long tails	(A1) (B1)		OE; must qualify strength and indicate positive in context
(c)	0.69 to 0.7(0) OR Answer to (a)	B1√	1	0 < <i>r</i> < 1
(d)	Existence of: Non-linear relationship Outliers More than one relationship	B1		Any one; OE Not reasons identifiable from context (e spurious)
	Sensible related sketch	B1	2	
	SC: Check on calculation \Rightarrow B1 B0			
	Total		7	

<u>MS/SS1B (c</u> Q	Solution	Marks	Total	Comments
3(a)	12 elephants are a random sample OR are selected independently	B1		OE; eg representative
	Mean $\overline{x} = \frac{39.24}{12} = 3.27$	B1		САО
	98% $\Rightarrow z = 2.32$ to 2.33	B1		AWFW (2.3263)
	CI for μ is $\overline{x} \pm z \times \frac{\sigma}{\sqrt{n}}$	M1		Used; must have \sqrt{n} with $n > 1$
	Thus $3.27 \pm 2.3263 \times \frac{0.20}{\sqrt{12}}$	A 1√		$$ on \overline{x} and z only
	Hence 3.27 ± 0.1343			
	Hence $3.27 \pm (0.13 \text{ to } 0.14)$	A1	6	AWFW
	OR (3.13 to 3.14, 3.4(0) to 3.41)		Ū	
(b)	Value of 2.90 is below / outside CI	B 1√		on (a); OE
	Suggests mean height of adult male Asian elephants is less than / different from that / mean height of adult male African elephants	B1√ dep	2	on (a); OE
	Total		8	

MS/SS1B (cont)

Q	Solution	Marks	Total	Comments
4 (a)	≥ 8 points plotted accurately	B2	2	
	$(\geq 6 \text{ points plotted accurately})$	(B1)		
(b)	b (gradient) = 1.19 to 1.2(0)	B2		AWFW (1.19066)
(0)	(b (gradient) = 1.1 to 1.2(0))	(B1)		
		~ /		
	a (intercept) = 3.8 to 4(.0)	B2	4	AWFW (3.94949)
	(a (intercept) = 2.2 to 5.4)	(B1)		
	Attempt at $\sum x$, $\sum x^2$, $\sum y$ and $\sum xy$			160 2758 220 and 2015 75
	$\begin{array}{c} \text{Autompt at} \sum x, \ \sum x \ , \ \sum y \ \text{and} \ \sum xy \\ \text{OR} \end{array}$	(\mathbf{M}^{1})		160, 2758, 230 and 3915.75
	Attempt at S_{xx} and S_{yy}	(M1)		109 1 225 75
		(1)		198 and 235.75
	Attempt at correct formula for b (gradient) b (gradient) = 1.19 to 1.2(0)	(m1) (A1)		AWFW
	a (intercept) = 3.8 to 4(.0)	(A1)		AWFW
		, í		
	Accept a and b interchanged only if then			
	identified correctly later in question			
(c)	Line plotted accurately	B2	2	At least from $x \approx 7.5$ to 22.0
	(Evidence of correct method for ≥ 2	(M1)	_	$x = 10 \implies y = 15.5$ to 16.5
	points)			$x = 20 \implies y = 27.0$ to 28.5
(d)(i)	When $x = 15$:			
	y = 21.5 to 22(.0)	B2	2	AWFW (21.8)
	(y = 18.5 to 25(.0))	(B1)	_	AWFW
	If B0, then use of c's equation with $x = 15$	(M1)		
(ii)	Points are quite widely scattered about	B1		When $x = 14$ then $y = 14.5$
()	line			When $x = 16$ then $y = 27.5$
	Hence not very reliable	B1 dep	2	B0 B0 for 'interpolation so reliable'
	Total		12	

Q	Solution	Marks	Total	Comments
5(a)(i)	P(G') = 1 - 0.70 = 0.3(0)	B1	1	CAO; OE
(ii)	$P(G \cap S') = 0.70 - (0.25 \text{ or } 0.55 \text{ or } 0.45)$ or $1 - 0.55$	M1		Can be implied only if answer is correct
	= 0.45	A1	2	CAO; OE
(iii)	$P(1 \text{ only}) = 0.70 + 0.55 - (2 \times 0.25)$ or 1 - 0.25 or 0.45 + 0.30	M1		Can be implied only if answer is correct; allow no $(\times 2)$ but not by implication from answer
	= 0.75	A1	2	CAO; OE
(b)	$\mathbf{P}(G' \cap G' \cap G' \cap G') = [(\mathbf{a})(\mathbf{i})]^4$	M1		Can be implied by correct answer Ignore multiplier of 4
	= 0.0081	A1	2	CAO; OE
(c)	$\mathbf{P}(\mathbf{H}_G) = \mathbf{P}(\mathbf{A}_G \cap \mathbf{H}_G) + \mathbf{P}(\mathbf{A}_G' \cap \mathbf{H}_G) =$			
	(0.70×0.60) or 0.42	M1		Can be implied by correct answer Ignore additional terms
	(0.30×0.10) or 0.03	M1		Can be implied by correct answer
	= 0.42 + 0.03 = 0.45	A1	3	CAO; OE
(d)	$P(H_0) = 1 - [0.35 + (c)]$	M1		Can be implied by correct answer
	= 0.2(0)	A1	2	CAO; OE
	Total		12	

Q	Solution	Marks	Total	Comments
6 (a)(i)	x: 0 1 2 3 4 5 6 7 8 9 F: 30 109 208 276 336 360 371 377 379 380			
	Median ($\approx 190.5^{\text{th}}$) = 2	B2		CAO; B0 if shown method incorrect
	Interquartile range ($\approx 285.75^{\text{th}} - \approx 95.25^{\text{th}}$)			
	= 4 - 1 = 3	B2	4	CAO; B0 if shown method incorrect B1 for identification of 4 and 1
	If neither is correct but F attempted	(M1)		Allow for median = $1 + \frac{x}{99}$
	and matched correctly with ≥ 5 <i>x</i> -values	(A1)		
(ii)	Mean $(\overline{x}) = 2.56$ to 2.57	B2		AWFW (2.56316)
	(2.5 to 2.6)	(B1)		AWFW $\sum fx = 974$ and $\sum fx^2 = 3546$
	Standard Deviation $(s_n, s_{n-1}) =$ 1.66 to 1.67 (1.6 to 1.7)	B2 (B1)	4	AWFW(1.66187)AWFW(1.66406)
	If neither is correct but $\sum fx$ attempted and result divided by 380	(M1) (M1)		
(b)(i)	Average: Same/similar/greater in 2004/05	B1 dep		OE; dep on 2 and 2.5 to 2.6
	Spread: Similar/greater in 2004/05	B1 dep	2	OE; dep on 3 and 1.6 to 1.7
(ii)	Rule applies to data that is (approximately) symmetric/normal/bell- shaped	B 1		OE
	Data for 2005/06 is (positively) skewed/ not symmetric/not normal/not bell-shaped	B1	2	OE
	Total		12	

Q	Solution	Marks	Total	Comments	
7(a)	Use of binomial in (a) or (b)	M1		Can be implied by answers	
(i)	$P(X \ge x) = 1 - P(X \le x - 1)$ OR = 1 - B(\Sigma x, 50, 0.08)	M1		Identified from an answer / 1 – answer Can be implied from a correct answer Identified from an answer/expression	
	= 1 - 0.0827 = 0.915 to $0.92(0)$	A1		AWFW (0.9173	3)
(ii)	$P(X \ge 3) = 1 - 0.2260 = 0.77(0) \text{ to } 0.775$	A1	4	≥ 1 correct \Rightarrow M1 M1 AWFW (0.7740))
(b)(i)	$P(Y=0) = (1 - 0.025)^{15} = 0.975^{15}$	M1		Can be implied from correct answer	
	= 0.68(0) to 0.685	A1		AWFW (0.6840))
(ii)	$P(Y \ge 1) = 1 - (i)$	M1		Can be implied from answer if ε (0, 1)	
	= 0.315 to $0.32(0)$	A1√	4	$\int on(i)$ if $\epsilon(0, 1)$ (0.3160)))
(c)	Probability = $[(b)(ii) \times (a)(i)]$ or (0.316×0.917) $[(b)(i) \times (a)(ii)]$ or (0.684×0.774)	M1 M1		Ignore additional terms	
	= 0.2898 + 0.529	A1		2 terms added with \geq 1 correct	
	= 0.81 to 0.83	A1	4	AWFW (0.8193	3)
	Total		12		
	TOTAL		75		

General Certificate of Education

Mathematics 6360 Statistics 6380

MS/SS1B Statistics 1B

Mark Scheme

2008 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2008 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Μ	mark is for method				
m or dM	mark is dependent on one or more M marks and is for method				
А	mark is dependent on M or m marks ar	nd is for accuracy			
В	mark is independent of M or m marks	and is for method a	and accuracy		
Е	mark is for explanation				
$\sqrt{0}$ or ft or F	follow through from previous				
	incorrect result	MC	mis-copy		
CAO	correct answer only	MR	mis-read		
CSO	correct solution only	RA	required accuracy		
AWFW	anything which falls within	FW	further work		
AWRT	anything which rounds to	ISW	ignore subsequent work		
ACF	any correct form	FIW	from incorrect work		
AG	answer given	BOD	given benefit of doubt		
SC	special case	WR	work replaced by candidate		
OE	or equivalent	FB	formulae book		
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme		
–x EE	deduct x marks for each error	G	graph		
NMS	no method shown	с	candidate		
PI	possibly implied	sf	significant figure(s)		
SCA	substantially correct approach	dp	decimal place(s)		

Key to mark scheme and abbreviations used in marking

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MS/SS1B

Q	Solution	Marks	Total	Comments	
1(a)	b (gradient) = -1.01 to -1(.00) (b (gradient) = -1.05 to -0.95)	B2 (B1)		AWFW	(-1.00337)
	a (intercept) = 53(.0) to 53.2 (a (intercept) = 52(.0) to 54(.0))	B2 (B1)	4	AWFW	(53.06736)
	OR				
	Attempt at $\sum x$, $\sum x^2$, $\sum y$ and $\sum xy$			180, 3986, 297 and 5552.7	
	or Attempt at S_{xx} and S_{xy}	(M1)		386 and -387.3	
	Attempt at correct formula for <i>b</i> (gradient)	(m1)			
	b (gradient) = -1.01 to -1(.00) a (intercept) = 53(.0) to 53.2	(A1) (A1)		AWFW AWFW	
	Accept <i>a</i> and <i>b</i> interchanged only if then identified correctly in part (b), but B2 in (b) does not necessarily imply 4 marks in (a)				
(b)	When $x = 21$,				
	y = 31.7 to 32.2 ($y = 29.9$ to 34.1)	B2 (B1)	2	AWFW AWFW	(32.0)
	Evidence of use of 21 in c's equation	(M1)			
	Special Cases (if seen):				
	$y = \frac{33.0 + 30.7}{2} = 31.8$ to 31.9	(B1)		AWFW; or equivalent	
	y = 31.85 without working	(B1)			
	Total		6		

Q	Solution	Marks	Total	Comments
2(a)	$P(Blue) = \frac{160}{400} = 0.4 \text{ or } \frac{2}{5} \text{ or } \frac{160}{400}$	B1	1	CAO; or equivalent
	In (b) to (e), method marks are for single fractions, or equivalents, only			
(b)	$P(Marker) = \frac{280}{400}$	M1		$270 \le$ Numerator ≤ 290 and Numerator $<$ Denominator ≤ 400
	$= 0.7 \text{ or } \frac{7}{10} \text{ or } \frac{280}{400}$	A1	2	CAO; or equivalent
(c)	$P(B \text{ or } M) = P(B \cup M) =$			
	$\frac{160 + 280 - 119}{400} = \frac{280 + 41}{400} = \frac{321}{400}$	M1		$290 \le$ Numerator ≤ 321 and Numerator $<$ Denominator ≤ 400
	$= 0.802$ to 0.803 or $\frac{321}{400}$	A1	2	AWFW/CAO (0.8025)
(d)	$P(Green \mid Highlighter) = P(G \mid H) = \frac{42}{120}$	M1		Numerator = 42 and $110 \le \text{Denominator} \le 120$
	$= 0.35 \text{ or } \frac{7}{20} \text{ or } \frac{42}{120}$	A1	2	CAO; or equivalent
(e)	$P(Non-Permanent Red) = P(P' R) = \frac{21}{90}$	M1		Numerator = 21 and $80 \le Denominator \le 90$
	$= 0.233$ to 0.234 or $\frac{7}{30}$ or $\frac{21}{90}$	A1	2	AWFW/CAO (0.2333)
	Total		9	

Q	Solution	Marks	Total	Comments
3 (a)	r = 0.806 to 0.807	B3	3	AWFW (0.80656)
	(r = 0.8(0) to 0.81)	(B2)		AWFW
	(r = 0.7 to 0.9)	(B1)		AWFW
	OR			
	Attempt at $\sum x, \sum x^2, \sum y, \sum y^2$ and $\sum xy$ or	(M1)		2859, 681575, 1428, 170342 and 340555
	Attempt at S_{xx} , S_{yy} and S_{xy}	(111)		418.25, 410 and 334
	Attempt at correct formula for $r = 0.806$ to 0.807	(m1) (A1)		AWFW
(b)	Moderate/fairly strong/strong positive correlation (relationship/association)	B1		Or equivalent; must qualify strength and indicate positive B0 for some/average/medium/very strong/etc
	between length and width of plaques	B1	2	Context; providing $0 < r < 1$
(c)	Figure 1: 6 correct labelled points (5 correct labelled points) (4 correct labelled points)	B3 (B2) (B1)	3	Deduct 1 mark if not labelled
(d)	A to F: $r = -0.2$ to $+0.2$ Accept 'Zero' but not 'No' correlation	B1		AWFW (-0.0275) No penalties for calculations Statements must include a single value
	G to L: $r = -0.2$ to $+0.2$	B1	2	within rangeAWFW(-0.0196)
	Special Cases:			
	r = -0.2 to +0.2 with no sources	(B1)		AWFW
	r = -0.2 to +0.2 for each/both source(s)	(B2)		AWFW; or equivalent identification
	If B0 B0 but both values of			
	r = -0.4 to $+0.4$	(B1)		AWFW
	Total	ļ	10	

Q	Solution	Marks	Total	Comments
4(a)	Ordering: 0 0 13 28 35 40 47 51 63 77 <i>a</i>	M1		May be implied by 40 and/or 63 and 13
	$Median (6^{th}) = 40$	B1		CAO
	$IQR = Q_3(9^{th}) - Q_1(3^{rd})$			
	= 63 - 13 = 50	(B1) B2	4	Identification of 63 and 13 CAO
(b)(i)	<i>Mode</i> : Zero is not representative / sensible reason Wide range of (known) values Small number of values mostly different	B1		Or equivalent
(ii)	<i>Range</i> : Largest value, <i>a</i> , is unknown Cannot be calculated	B1	2	Or equivalent
	Total		6	

Q	Solution	Marks	Total	Comments
5	Height $X \sim N(140, 2.5^2)$			
(a)(i)	$P(X < 145) = P\left(Z < \frac{145 - 140}{2.5}\right) =$	M1		Standardising (144.5, 145 or 145.5) with 140 and ($\sqrt{2.5}$, 2.5 or 2.5 ²) and/or (140 - x)
	P(Z < 2) =	A1		2 CAO; ignore sign
	0.977 to 0.98(0)	A1	3	AWFW (0.97725)
(ii)	P(138 < X < 142) = P(X < 142) - P(X < 138) =	M1		Difference (142 – 138)
	P(Z < 0.8) - P(Z < -0.8) =	B1		0.8 CAO
	$P(Z < 0.8) - \{1 - P(Z < 0.8)\} = (0.78814) - (1 - 0.78814) =$	m1		Correct area change
	0.576 to 0.58(0)	A1	4	AWFW (0.57628)
(b)	$0.85(85\%) \Rightarrow z = -1.03$ to -1.04	B1		AWFW; ignore sign (-1.0364)
	$z = \frac{x - 140}{2.5}$	M1		Standardising x with 140 and 2.5; allow $(140 - x)$
	$= \pm 1.03$ to ± 1.04	A1		Equating <i>z</i> -term to the <i>z</i> -value
	Hence $x = 137.3$ to 137.5	A1	4	AWFW; CSO (137.41)
(c)	Variance of $\bar{X}_4 = \frac{2.5^2}{4} = 1.56(25)$ SD of $\bar{X}_4 = \frac{2.5}{2} = 1.25$	B1		CAO; stated or used
	$P(\overline{X}_4 > 139) = P\left(Z > \frac{139 - 140}{\sqrt{2.5^2/4}}\right) =$	M1		Standardising 139 with 140 and 1.25; allow (140 – 139)
	P(Z > -0.8) = P(Z < 0.8) =	m1		Correct area change
	0.788 to 0.79(0)	A1	4	AWFW (0.78814)
	Total		15	

Q	Solution	Marks	Total	Comments
6	Binomial distribution	M1		Used somewhere in question
(a)(i)	$M \sim B(40, 0.35)$	A1		Used; may be implied
	$P(M \le 15) = 0.69(0)$ to 0.696	A1	3	AWFW (0.6946)
(ii)	P(10 < M < 20) = 0.9637 or 0.9827	M1		Accept 3 dp accuracy
	minus 0.1215 or 0.0644	M1		Accept 3 dp accuracy
	= 0.84(0) to 0.843	A1	3	AWFW (0.8422)
	OR			
	B(40, 0.35) expressions stated for at least 3 terms within $10 \le M \le 20$	(M1)		Or implied by a correct answer
	Answer = $0.84(0)$ to 0.843	(A2)		AWFW
(b)	$W \sim B(10, 0.29)$	B1		Used; may be implied
	$P(W=3) = {\binom{10}{3}} (0.29)^3 (0.71)^7$	M1		Stated; may be implied
	= 0.266 to 0.2665	A1	3	AWFW (0.2662) Note: B(10, 0.3) \Rightarrow 0.2668
(c)(i)	n = 20 $p = 0.71$	B1		Stated or used; may be implied by 14.2
	Mean, $\mu = np = 14.2$	B1		CAO
	Variance, $\sigma^2 = np(1-p) = 4.11$ to 4.12	B1	3	AWFW (4.118)
(ii)	Mean of 16.5 is greater/different or $16.5/20 = 0.825$ is greater/different to 0.71	B1dep		Dependent on $\mu = 14.2$
	Means and variances are different	(B2,1 dep)		
	Variance of 2.50 is smaller/different	B1dep		Dependent on $\sigma^2 = 4.11$ to 4.12
	Suggests claim that groups are not random samples is justified	B1dep	3	Dependent on previous 2 marks Or equivalent
	Total		15	

Q	Solution	Marks	Total	Comments
7(a)(i)	x: -5 -3 -1 1 3 5 7 9			
	f: 4 9 13 27 21 15 7 4			
	Mean $(\overline{x}) = 1.9$	B2		CAO (190)
	(0.9 to 2.9)	(B1)		AWFW
	Standard deviation $(s - \sigma - \sigma) =$			(1452)
	Standard deviation $(s_{n-1} \text{ or } \sigma_n) = 3.3(0)$ to 3.32	B2	4	AWFW (3.31967)
	(3(.00) to 3.5(0))	(B1)		AWFW (3.30303)
	\mathbf{M}			
	If no marks scored but $\sum fx$ attempted	(M1)		
	and result divided by 100	(1411)		
(ii)	Mean = $60 + \overline{x}$	M1		
	= 61.9	A1√		on (a)(i)
	Standard deviation $= 3.3(0)$ to 3.32	B1√	3	on (a)(i); accept 'same as' only providing answer in (a)(i)
(b)(i)	$98\% \implies z = 2.32$ to 2.33	B1		AWFW (2.3263)
	$(\Rightarrow t = 2.36 \text{ to } 2.37)$			AWFW (2.364)
	CL for $w = \frac{1}{2} + \frac{1}{2} (1 + \frac{1}{2})^n$ or σ_n			
	CI for μ is $\overline{x} \pm z/t \times \frac{s_{n-1} \text{ or } \sigma_n}{\sqrt{n \text{ or } n-1}}$	M1		Used; must have \sqrt{n} with $n > 1$
	Thus $61.9 \pm 2.3263 \times \frac{3.3 \text{ to } 3.32}{\sqrt{100 \text{ or } 99}}$	A1√		on (a)(ii) and z/t only
	$\sqrt{100}$ or 99			
	Hence $61.9 \pm (0.7 \text{ to } 0.8)$			Accept $1.03 \pm (0.012 \text{ to } 0.013)$
		A1	4	AWFW
	or (61.1 to 61.2, 62.6 to 62.7)			Accept (1.01 to 1.02, 1.04 to 1.05)
(ii)	Mean and SD based upon grouped data			
(11)	SD (not mean) calculated from a sample	B1	1	Actual times/values unknown
	CLT used / Times (may) not (be)	DI	1	Or equivalent
	normal			
(c)	S > 1 hour or 60 minutes:	D 1		Must use 74 etc
	Valid as 74/100 or 0.74 or 74% > 50%	B1		Or equivalent
	$\overline{\mathbf{S}}$ >> 1 hours on 60 minutes			
	$\overline{S} >> 1$ hour or 60 minutes: Not valid as UCL ≈ 1 hour	B1dep	2	Dependent on UCL = 62.6 to 62.7 or
	Not value as UCL \approx 1 hour (Accept Both limits \approx 1 hour)	Drucp	4	UCL = 1.04 to 1.05
	Total		14	
	TOTAL		75	

General Certificate of Education

Mathematics 6360 Statistics 6380

MS/SS1B Statistics 1B

Mark Scheme

2009 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2009 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and	abbreviations used	in marking
------------------------	--------------------	------------

Μ	mark is for method				
m or dM	mark is dependent on one or more M marks and is for method				
А	mark is dependent on M or m marks				
В	mark is independent of M or m mark	and is for metl	hod and accuracy		
E	mark is for explanation				
·					
$\sqrt{10}$ or ft or F	follow through from previous				
	incorrect result	MC	mis-copy		
CAO	correct answer only	MR	mis-read		
CSO	correct solution only	RA	required accuracy		
AWFW	anything which falls within	FW	further work		
AWRT	anything which rounds to	ISW	ignore subsequent work		
ACF	any correct form	FIW	from incorrect work		
AG	answer given	BOD	given benefit of doubt		
SC	special case	WR	work replaced by candidate		
OE	or equivalent	FB	formulae book		
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme		
–x EE	deduct <i>x</i> marks for each error	G	graph		
NMS	no method shown	с	candidate		
PI	possibly implied	sf	significant figure(s)		
SCA	substantially correct approach	dp	decimal place(s)		

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MS.SS1B - AQA GCE Mark Scheme 2009 January series

PMT

MS/SS1B

Q	Solution	Marks	Total	Comments
1 (a)	Mean = $\frac{\sum fx}{\sum x} = \frac{247}{52} = 4.75$ or $4\frac{3}{4}$	B2		$\frac{247}{52} \Rightarrow B1$ CAO (4.75 = 5 \Rightarrow ISW) $4\frac{39}{52} \Rightarrow B2$
	If B0 but evidence of $\frac{\sum fx}{52}$	(M1)		
	Median (26, 26 ¹ / ₂) = 5 If B0 but evidence of cumulative	B2 (B1)		CAO Stated identification of 26 or 26 ¹ / ₂
	frequencies F: (0) 1 3 12 25 32 45 51 52 or	(M1)		Need to see attempt at ≥ 4 <i>F</i> -values
	If data assumed continuous so use of $4 + \frac{x}{7}$ where $0 < x < 2$			(4 < median < 4.29)
	Mode(s) = 4 and 6	B1	5	CAO both (so mode = $5 \Rightarrow B0$)
(b)	Mode(s) More than one mode/value Two modes/values No unique mode/value	B1 B1dep		CAO Or equivalent; eg not unique Dep only on previous B1 scored
	Notes: If data treated as two separate sets, then only marks available are B1 B1dep in (b) If averages confused then mark (a) as stated			Modes = 1 and $13 \Rightarrow B0$ in (a) but B1 B1dep available in (b)
	eg median = 4 and $6 \Rightarrow B0$ in (a) and in (b) "median, as two values" $\Rightarrow B0 B0$		2	
		Total	7	

Q	Solution	Marks	Total	Comments
2 (a)(i)	r = 0.022 to 0.023	B3		AWFW (0.022557)
	r = 0.02 to 0.03	(B2)		AWFW
	r = -0.1 to 0.1	(B1)		AWFW
	OR			
	Attempt at $\sum x \sum x^2 \sum y \sum y^2$ &			118.8 1619.36 31.5 114.43 & 416.13
	$\sum xy$			(all 5 attempted)
	or	(M1)		
	Attempt at S_{xx} S_{yy} & S_{xy}			51.2 4.18 & 0.33 (all 3 attempted)
	Attempt at correct formula for <i>r</i>	(m1)		
	r = 0.022 to 0.023	(A1)	3	AWFW
(ii)	(Almost/virtually) no/zero (linear) correlation (relationship/association/link)	B1		Or equivalent qualification of NO strength; do not follow-through from (i) B0 for very weak/weak/some/ little/slight/positive/hardly any/etc unless correct qualification also stated
	between length and (maximum) diameter of carrots	B1	2	Context; providing $-1 < r < 1$
(b)	Unlikely/wrong/incorrect/invalid	B1		Or equivalent
	Would expect a positive value or Would expect weight to increase with length or	B1		Or equivalent reason
	Would imply shorter carrots are heavier		2	
		Total	7	

MS/SS1B (co	IS/SS1B (cont)							
Q	Solution	Marks	Total	Comments				
3 (a)(i)	$X \sim N(5.08, 0.05^{2})$ $P(X < 5) = P\left(Z < \frac{5 - 5.08}{0.05}\right) = P(Z < -1.6)$	M1		Standardising (4.5, 4.95, 5, 5.05 or 5.5) with 5.08 and ($\sqrt{0.05}$, 0.05 or 0.05 ²) and/or (5.08 – <i>x</i>)				
	= 1 - P(Z < 1.6) = 1 - 0.9452	ml		Area change; may be implied				
()	= 0.0545 to 0.055	A1	3	AWFW (0.0548) $(1 - answer) \Rightarrow M1 max$				
(ii)	P(5 < X < 5.10) = P(X < 5.10) - (i)	M1		Or equivalent; must be clear correct method if answer incorrect and answer > 0				
	= P(Z < 0.4) - (i) = 0.65542 - 0.0548							
	= 0.6 to 0.601	A1	2	AWFW (0.60062)				
(b)(i)	Variance of $\overline{X}_4 = 0.05^2/4 = 0.000625$ SD of $\overline{X}_4 = 0.05/2 = 0.025$	B1		CAO; stated or used				
	$P(\overline{X}_4 > 5.05) = P(Z > \frac{5.05 - 5.08}{0.025})$	M1		Standardising 5.05 with 5.08 and 0.025; allow (5.08 – 5.05)				
	= P(Z > -1.2) = P(Z < 1.2)	m1		Area change; may be implied				
	= 0.884 to 0.886	A1	4	AWFW (0.88493) $(1 - answer) \Rightarrow B1 M1 max$				
(ii)	Zero	B1	1	CAO; or equivalent (ignore any working)				
(c)	$1\% (0.01) \implies z = -2.33 \text{ to } -2.32$	B1		AWFW; ignore sign (-2.3263)				
	$z = \frac{5 - \mu}{0.05}$	M1		Standardising 5 with μ and 0.05 or 0.025; allow $(\mu - 5)$				
	= -2.3263	A1		Only allow: ± 2.05 to ± 2.06 ± 2.32 to ± 2.33 ± 2.57 to ± 2.58				
	$\mu = 5.11$ to 5.12	A1		AWFW (5.1163)				
	Note: $\frac{5-\mu}{0.05} = 2.3263 \implies 5.116$			Or equivalent inconsistent signs				
	\Rightarrow B1 M1 A1 A0		4					
		Total	14					

Q	Solution	Marks	Total	Comments
4	$P(C) = 0.6 P(C \cap B) = 0.25$			In (a), ratios (eg $4:10$) are only
				penalised by 1 mark
	$\{P(C \text{ only}) = 0.35 P(B \text{ only}) = 0.4\}$			at first correct answer
(a) (i)	P(C') = 1 - P(C) = 1 - 0.6 = 0.4	B1	1	CAO; or equivalent
(ii)	$P(C \cap B') = 0.6 - 0.25$ = 1 - (0.4 + 0.25)	M1		Can be implied by correct answer
	= 1 - (0.4 + 0.25) = 0.35	A1	2	CAO; or equivalent
(iii)		M1		Can be implied by correct answer
	= (i) + 0.25	A1		Can be implied by correct answer
	= 0.65	A1		CAO; or equivalent
	OR P(B) = 1 - (ii)	(M2)		Can be implied by correct answer
	= 0.65	(A1)		Can be implied by correct answer
	OR			
	$1 = P(C) + P(B) - P(C \cap B)$	(M1)	-	Can be implied by correct answer
	Thus $P(B) = 1 - (0.6 - 0.25)$	(A1)	3	Can be implied by correct answer
	= 0.65	(A1)		CAO; or equivalent
(b)	$P(L G_{C}) = 0.9 P(L G_{CB}) = 0.7$ $P(L G_{B}) = 0.3$			
(i)	$P(G \cap L) \Rightarrow (a)(ii) \times 0.9$ (0.315)	M1		Follow through or correct
	0.25×0.7 (0.175)	M1		
	$[(a)(iii) - 0.25] \times 0.3$ (0.12)	M1		Follow through or correct
	Note: Each pair of multiplied probabilities must be > 0 to score the corresponding method mark			Ignore any multiplying factors Ignore any additional terms
	$\Rightarrow 0.315 + 0.175 + 0.12 = 0.61$	A1	4	CAO
(ii)	Probability = $\{1 - (b)(i)\}^5$	M1		Allow $5 \times \{1 - (b)(i)\}^5$
	$= 0.39^5 = 0.009$	A1	2	AWRT (0.00902)
		Total	12	

Q	Solution	Marks	Total	Comments
5 (a)	Mean = $\frac{1620}{30} = 54$	B1	1	CAO; cannot be gained in (b)
(b)	98% (0.98) $\Rightarrow z = 2.32$ to 2.33 CI for μ is $\overline{x} \pm z \times \frac{\sigma}{\sqrt{n}}$	B1 M1		AWFW (2.3263) Used
	Thus $54 \pm 2.3263 \times \frac{\sqrt{n}}{\sqrt{30}}$	A1F		Must have \sqrt{n} with $n > 1$ F on \overline{x} (but not 1620) and z only Allow $\overline{x} = 54$ even if B0 in (a)
	Hence $54 \pm (3.38 \text{ to } 3.42)$ or $(50.58 \text{ to } 50.62, 57.38 \text{ to } 57.42)$	A1	4	CAO & AWFW (54 & 3.4) AWFW (50.6, 57.4)
	Notes: Use of $n = 1$ in (b) must not be deemed as answer to (c) Use of $n = 1$ in (b) followed by use of $n = 1$ in (c) \Rightarrow (b) B1, (c) M1 A1 max Use of $n = 1$ with (b) or (c) not identified \Rightarrow (b) B1, (c) 0 max			
(c)	Repeat of structure in (b) but with $n = 1$ and $1.96 \le z \le 3.03$	M1		Or equivalent
	Thus 54 ± (18.56 to 18.64) or	A1F		CAO & AWFW (54 & 18.6) If z-value incorrect, then must use $54 \pm 8 \times [z \text{ from}(b)]$
	(35.36 to 35.44, 72.56 to 72.64) Note: Accept sensible non-symmetric intervals such as: $(0, 54 + 2.0537 \times 8)$ = (0, 70.4 to 70.5)		2	AWFW (35.4, 72.6)
(d)	Nowhere or No	B1	1	CAO; or equivalent (ignore any reasoning)
		Total	8	

Q	Solution	Marks	Total	Comments
6(a)	Figure 1:3 correct labelled points2 correct labelled points	B2 (B1)	2	Deduct 1 mark if not labelled
(b)				
	b (gradient) = 0.685	B2		AWRT (0.68502)
	b (gradient) = 0.68 to 0.69	(B1)		AWFW
	a (intercept) = 0.344 a (intercept) = 0.34 to 0.35	B2 (B1)		AWRT (0.34404) AWFW
	OR	(D1)		
	Attempt at $\sum x \sum x^2 \sum y \& \sum xy$			630 40344 435 & 27853
		(M1)		(all 4 attempted)
	or Attempt at S_{xx} & S_{xy}	(M1)		654 & 448 (both attempted)
	Attempt at correct formula for <i>b</i> (gradient)	(m1)		054 & 448 (both attempted)
	b (gradient) = 0.685	(A1)		AWRT
	a (intercept) = 0.344	(A1)		AWRT
	Accept <i>a</i> & <i>b</i> interchanged only if then identified correctly by a stated or used			
	equation in (c) or (d)		4	
	^			
(c)	Figure 1: Correct line (50, 34 to 35) (60, 40 ¹ / ₂ to 42)	B2dep		Dep on \ge B1 B1 or \ge A1 A0 in (b) At least from $x \approx 55$ to 70
	$(50, 54 \ 10 \ 55)$ $(00, 4072 \ 10 \ 42)$ $(70, 4714 \ 10 \ 49)$ $(80, 54 \ 10 \ 56)$			At least nom $x \approx 35$ to 70 Any two
	If B0 but evidence of use of line for ≥ 2	(M1)	2	Calc ⁿ or points shown on graph
(J)(;)	points within range $50 \le x \le 80$	(111)	-	Cale of points shown on graph
(d)(i)	Residual = $y - (a + bx)$ [or $(a + bx) - y$]	M1		Used or implied; or equivalent
				(using graph); ≥ 1 residual correct
	H I J	101		(2.98)
	2.5 to 4(.0) 2.5 to 4(.0) 2(.0) to 4(.0)	A2,1 (-1 EE)		AWFW; ignore signs only(3.19)providing all the same(2.70)
		(-1 EE)		providing an the same (2.70)
	Mean = 2.3 to $4(.0)$	A1dep	4	AWFW; do not ignore sign (2.96)
(ii)	$y_{65} = a + b \times 65$	muop	•	Dep on previous A2 scored
(II)	or $y_{65} = 44$ to 45.5	M1		Use shown or AWFW (44.9)
	+ [(d)(i)] or [2.95 to 2.97]	m1		Use shown or AWFW; ignore sign of
	= 46 to 50			mean residual
	= 46 to 50 Special Cases:	A1		AWFW (47.8)
	Line drawn/calc ^d on H, I & J			$y_{\rm M} = 4.51 + 0.666x \implies 47.8$
	or	(B2)		OR no evidence of method {from $(d)(i)$
	linear interp ⁿ using I & J = 47 to 49			and/or (d)(ii)} Evidence of incorrect method \Rightarrow B0
	44 to 45.5 seen with no evidence \Rightarrow B1		3	\rightarrow D
		Total	15	

Q	Solution	Marks	Total	Comments
7 (a)(i)	B(16 or 25 or 40, 0.45)	M1		Used at least once in (a)(i) to (iii)
	$P(S = 3) = {\binom{16}{3}} (0.45)^3 (0.55)^{13}$	A1		May be implied by correct answer Ignore any additional terms
	= 0.021 to 0.022	A1	3	AWFW (0.0215)
(ii)	P(S < 10) = 0.3843 or 0.2424	B1		Accept 3 dp accuracy from tables or
	= 0.242 to 0.243	B1	2	calculation AWFW (0.2424)
(iii)	$P(15 \le S \le 20)$	M1		Accept 3 dp accuracy
	$= 0.7870 \text{ or } 0.6844 \qquad (p_1)$ minus 0.1326 or 0.2142 (p_2) = 0.654 to 0.655	M1 A1		$p_2 - p_1 \implies M0 M0 A0$ $p_1 - (1 - p_2) \implies M1 M0 A0$ Accept 3 dp accuracy / truncation AWFW (0.6544)
	OR B(40, 0.45) expressions stated for at least 3 terms within $14 \le S \le 20$ gives	(M1)		Or implied by a correct answer
	probability $= 0.654$ to 0.655	(A2)	3	AWFW
(iv)	Mean, $\mu = np = 50 \times 0.45$ = 22.5 or 22 ¹ / ₂	B1		CAO (22.5 = 22 or 23 \Rightarrow ISW)
	Variance, $\sigma^2 = np(1-p)$ = 50 × 0.45 × 0.55 = 12.3 to 12.4	B1	2	Accept $12\frac{3}{8}$ or $\frac{99}{8}$ AWFW (12.375)
(b)(i)	Non-independence of senior citizens travel Senior citizens tend to travel in pairs/groups	B1	1	Or equivalent; but must be a clear indication of non-independent events
(ii)	7.15 am is outside 9.30 am to 11.30 am Cannot use SCPs before 9.30 am Cannot use SCPs @ 7.15 am Cannot use SCPs during morning 'rush hour'			
	Value of <i>p</i> likely to be smaller/different/zero Data not available	B1		Or equivalent Accept other sensible reasons
	Senior citizens not out at this time Passengers likely to be workers/school children		1	Distribution of types of passenger different
		Total	1 12	
		IVIAI	75	

General Certificate of Education

Mathematics 6360 Statistics 6380

MS/SS1B/W Statistics 1B

Mark Scheme

2009 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2009 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

М	mark is for method				
m or dM	mark is dependent on one or more M marks and is for method				
А	mark is dependent on M or m marks and is for accuracy				
В	mark is independent of M or m marks and is for method and accuracy				
Е	mark is for explanation				
$\sqrt{10}$ or ft or F	follow through from previous				
	incorrect result	MC	mis-copy		
CAO	correct answer only	MR	mis-read		
CSO	correct solution only	RA	required accuracy		
AWFW	anything which falls within	FW	further work		
AWRT	anything which rounds to	ISW	ignore subsequent work		
ACF	any correct form	FIW	from incorrect work		
AG	answer given	BOD	given benefit of doubt		
SC	special case	WR	work replaced by candidate		
OE	or equivalent	FB	formulae book		
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme		
–x EE	deduct <i>x</i> marks for each error	G	graph		
NMS	no method shown	с	candidate		
PI	possibly implied	sf	significant figure(s)		
SCA	substantially correct approach	dp	decimal place(s)		

Key to mark scheme and abbreviations used in marking

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1(a) (i)	P(P) = 100/160 = 50/80 = 25/40 = 10/16			In (a), ratios (eg 100:160) are only penalised by 1 mark at first correct answer
(-)	= 5/8 = 0.625	B1	1	САО
(ii)	$P(S') = 1 - \frac{32}{160}$ or $P(S) = \frac{32}{160}$	M1		Or equivalent Ignore labels of <i>S'</i> & <i>S</i> Can be implied by correct answer
	= 128/160 = 64/80 = 32/40 = 16/20 = 8/10 $= 4/5 = 0.8$	A1	2	САО
(iii)	$P(S \text{ or } H) = P(S \cup H) = \frac{60 + 32 - 18}{160} \text{ or } \frac{60 + 14}{160} \text{ or } \frac{32 + 8 + 16 + 18}{160}$	M1		Or equivalent Can be implied by correct answer
	= 74/160 = 37/80 = 0.462 to 0.463	A1	2	CAO/AWFW (0.4625)
(iv)	$P(T P) = \frac{\frac{30}{160}}{(i)}$	M1		Or equivalent Can be implied by correct answer But watch for $\frac{18}{160}$ or $\frac{48}{160}$
	= 3/100 = 3/10 = 0.3	A1	2	САО
(b)	P(1C & 1R & 1S) =			
	$\frac{24}{160} imes \frac{56}{159} imes \frac{32}{158}$	M1		Multiplication of any 3 different given subject totals
	160 159 158	M1		Multiplication of 160, 159 & 158
	$(0.15 \times 0.35220 \times 0.20253) \times 6$	M1		Accept 3dp accuracy Award for $3 \le$ multiplier ≤ 6
	= 0.064 to 0.0644	A1		AWFW (0.0642) Do not accept a fraction as answer A correct answer can imply 4 marks
	Special Case: (Any given subject total) ÷ 160			Can award if no marks scored in (b)
	seen anywhere in (b)	(M1)	4	Accept a decimal equivalent
		Total	11	

Q	Solution	Marks	Total	Comments
2(a)	r = 0.893 to 0.8933	B3		AWFW (0.89319)
	r = 0.89 to 0.896	(B2)		AWFW
	r = 0.8 to 0.95	(B1)		AWFW
	or			
	Attempt at $\sum_{x} x \sum_{y} x^2 \sum_{y} y \sum_{y} y^2 \&$ $\sum_{xy} xy$			561 30667 671 42613 & 35882 (all 5 attempted)
	or Attempt at S_{xx} S_{yy} & S_{xy}	(M1)		2056 1682 & 1661 (all 3 attempted)
	Attempt at correct corresponding formula for <i>r</i>	(m1)		
	r = 0.893 to 0.8933	(A1)	3	AWFW
(b)	Fairly strong / strong / very strong positive (linear) correlation / relationship / association / link (but not trend)	B1dep		Or equivalent; must qualify strength and indicate positive Dependant on $0.8 \le r \le 0.95$ B0 for some/average/medium/etc
	between			
	length and weight of adult snakes	B1	2	Context; providing $0 < r < 1$
(c)	Figure 1: 5 correct labelled points 4 or 3 correct labelled points	B2 (B1)	2	Deduct 1 mark if points not labelled
(d)(i)	D and G	B1	1	Both CAO
(ii)	r = 0.25 to 0.75	B1		AWFW (0.48790) No penalty for calculation Accept a range only if whole of it falls within 0.25 to 0.75
	Fairly weak / weak / some / moderate positive (linear) correlation / relationship / association / link	B1dep	2	Or equivalent; must qualify strength and indicate positive Dependant on $0.25 \le r \le 0.75$ B0 for very weak/little/slight/hardly
	Do not accept comparison with value in (a) or statement in (b)		10	any/fair/average/medium/anything involving strong/etc
		Total	10	<u> </u>

Q	Solution	Marks	Total	Comments
3 (a)	$X \sim N(253, 5^2)$			
(i)	$P(X < 250) = P\left(Z < \frac{250 - 253}{5}\right) = P(Z < -0.6) = 1 - P(Z < 0.6)$	M1		Standardising (249.5, 250 or 250.5) with 253 and ($\sqrt{5}$, 5 or 5 ²) and/or (253 – <i>x</i>)
	= 1 - 0.72575	m1		Area change; may be implied
	= 0.274 to 0.275	A1	3	AWFW (0.27425) $(1 - answer) \Rightarrow M1 max$
(ii)	P(245 < X < 250) = [C's(a)(i)] - P(X < 245)	M1		Or equivalent; must be clear correct method if answer incorrect and answer > 0
	= (i) $- P(Z < -1.6) = 0.27425 - 0.0548$			
	= 0.219 to 0.22(0)	A1	2	AWFW (0.21945) M1 A0 for $[1 - (i)] - 0.0548 = 0.67095$ M0 A0 for $0.9452 - [(i)] = 0.67095$ M1 A1 for $0.9452 - [1 - (i)] = 0.21945$
(iii)	P(X = 245) = 0 or zero or impossible	B1	1	Ignore any working B0 for 'for impossible to calculate'
(b)	98% (0.98) $\Rightarrow z = -2.05$ to -2.06	B1		AWFW; ignore sign (-2.0537)
	$z = \frac{245 - 253}{\sigma}$	M1		Standardising 245 with 253 and σ ; allow (253 – 245)
	= -2.0537	A1		Only allow: ± 2.05 to ± 2.06 ± 2.32 to ± 2.33
	$\sigma = 3.88$ to 3.9(0)	A1		AWFW (3.8954)
	$\frac{245 - 253}{\sigma} = 2.0537 \implies \sigma = 3.8954$			
	\Rightarrow B1 M1 A1 A0		4	Or equivalent inconsistent signs
		Total	10	

Q	Solution	Marks	Total	Comments
4 (a)	b (gradient) = -0.5485 to -0.5475	B2		AWFW (-0.54814)
	b (gradient) = -0.55 to -0.54	(B1)		AWFW
	Omission of -ve sign	(B0)		
	a (intercept) = 49.7 to 49.9	B2		AWFW (49.7982)
	a (intercept) = 49 to 50	(B1)		AWFW
	or			
	Attempt at $\sum x \sum x^2 \sum y \& \sum xy (\sum y^2)$			305 14975 281 & 6980 (10173) (all 4 attempted)
	or	(M1)		
	Attempt at S_{xx} & S_{xy}			4638.89 & - 2542.78
	Attempt at compact formula for h (andiant)	(m1)		(both attempted)
	Attempt at correct formula for <i>b</i> (gradient) b (gradient) = -0.5485 to -0.5475	(m1) (A1)		AWFW
	a (intercept) = 49.7 to 49.9	(A1) (A1)	4	AWFW
	a (intercept) = 49.7 to 49.9	(AI)	4	AWFW
	Accept $a \& b$ interchanged only if identified correctly by a clearly shown equation (stated			If a and b not identified anywhere in question, then: -0.5485 to $-0.5475 \Rightarrow B1$
	answers are not sufficient) in (b) or (c)			49.7 to 49.9 \Rightarrow B1
(b)	C's value of intercept from (a) providing > 47			
	or	B1F	1	Accept value rounded to nearest
	Value 50 stated even if (a) incorrect or not attempted	DIF	1	integer (50)
(c)	13 weeks \Rightarrow 91 days	B1		Stated or used
				Accept a descriptive answer that includes 91 and a value in range
	y = -1.1 to + 1.1	B1		AWFW (-0.08254)
	or			
	$y = 0 \implies x = 89$ to 93	(B1)		AWFW (90.84942) Accept a descriptive answer that
				includes a value in range and 13
	\Rightarrow 13 weeks (approximately)	(B1)		Stated
	Note:			
	B1 B1 or (B1) (B1) are available even if (a)			
	not attempted			
	Thus claim appears justified			Or equivalent; ignore reasoning
	or	B1 dep		unless contradictory
	Thus tablet likely to have dissolved	r		Dependent upon 2^{nd} B1 in (c) or 2^{nd}
				(B1) in (c)
	or			
	Extrapolation required so cannot comment	(B1)		Not dependent
	Note:			
	If (B1) for extrapolation maximum mark is 2;			
	other mark available is for 91		3	
	outer mark available is 101 71			l

MS/SS1B/W - AQA GCE Mark Scheme 2009 June series

Total	8	

Q	Solution	Marks	Total	Comments
5(a) (i)	Median (50) = 3 If not identified, then assume order is median then IQR	B1		CAO Do not award marks if correct answers are based on shown incorrect method; eg accept use of 99/2, etc but not 276/2, etc
	IQR $(75 - 25) = 4 - 2 = 2$	B2		CAO; but $25^{\text{th}} \text{ value } \Rightarrow \text{ IQR} = 2 \Rightarrow \text{ B0}$
	Special Cases: Identification that $LQ = 2$ and $UQ = 4$	(B1)		Both CAO
	Statement of ≥ 4 cumulative frequencies <i>F</i> : 14 49 74 87 96 98 99	(M1)	3	Can award if no marks scored in (i) even if then applied to continuous data
(ii)	Mean = $\frac{\sum fx}{\sum f} = \frac{275}{99} = 2.77$ to 2.78	B1		AWFW (2.778)
	If not identified, assume order is \overline{x} then s SD $\left(\sum fx^2 = 933\right) = 1.3(0)$ to 1.32	B2		Treat rounding to integers as ISWAWFW(1.307 & 1.314)
	Special Case: Evidence of $\frac{\sum fx}{99}$	(M1)	3	Can award if no marks scored in (ii
(b)(i)	Mean ₁₆₃ = $\frac{99 \times \text{Mean}_{99}}{163}$ or $\frac{\sum fx \text{ from}(a)(ii)}{163}$	M1		Or equivalent; may be implied by an answer within range
	= 1.68 to 1.69	A1	2	AWFW (1.687)
(ii)	Increase	B1	1	CAO; or equivalent (1.696) Ignore any working (1.702)
(iii)	Data is (positively/negatively) skewed / not symmetric / bimodal / not bell-shaped from frequency distribution / given table			
	or [C's mean in (b)(i)] $-2 \times [C's SD in (a)(ii)] < 0$	B1		Or equivalent $(1.75 to -0.00)$
	or [C's mean in (b)(i)] $-2 \times [1.69 \text{ to } 1.71] < 0$			(-1.75 to -0.90
	Thus claim appears not valid	B1 dep	2	Or equivalent Dependent upon previous B1
	Total		11	

Q	Solution	Marks	Total	Comments
6(a)	Mean = $\frac{470}{10}$ = 47	B1		САО
	98% (0.98) $\Rightarrow z = 2.32$ to 2.33	B1		AWFW (2.3263)
	CI for μ is $\overline{x} \pm z \times \frac{\sigma}{\sqrt{n}}$	M1		Used Must have \sqrt{n} with $n > 1$
	Thus $47 \pm 2.3263 \times \frac{15}{\sqrt{10}}$	A1F		Fon \overline{x} and z only
	Hence $47 \pm 11.0 \text{ to } 11.1$ Or (35.9 to 36.0, 58.0 to 58.1)	A1	5	CAO & AWRT (accept 11) AWRT (accept 36 & 58)
(b)	$Y \sim N(108, 28^2)$ Variance of $\overline{Y}_{40} = 28^2/40 = 19.6$ \sqrt{SD} of $\overline{Y}_{40} = 28\sqrt{40} = 4.425$ to 4.43	B1		CAO Stated or used AWFW
	$P(\overline{Y}_{40} > 120) = P\left(Z > \frac{120 - 108}{28/\sqrt{40}}\right)$	M1		Standardising 120 with 108 and $\sqrt{19.6}$ or (4.425 to 4.43) or equivalent; allow (108 – 120)
	= P(Z > 2.71) = 1 - P(Z < 2.71)	m1		Area change; may be implied
	= 1 - 0.99664 = 0.0033 to 0.0034	A1	4	AWFW (0.00336) $(1 - answer) \Rightarrow B1 M1 max$
(c)	Part (b) or Teleair times	B1		Or equivalent; ignore reasoning
	Distribution of Y not known	B1		Or equivalent; must be clear reference to <i>Y</i> or population B0 for $n > 30$
	Note: To score B1 B1 there must be both a clear indication of where in question and a valid reason		2	Any reference to part (a) \Rightarrow B0 B0
		Total	11	

MS/SS1B/W	(cont)
-----------	--------

MS/SS1B/W Q	Solution	Marks	Total	Comments
7(a)	$R \sim B(50, 0.15)$			
(i)	P(R < 10) = 0.791	B1		AWRT (0.7911)
(ii)	$P(5 \le R \le 10) = 0.8801 \text{ or } 0.7911$ (p ₁)	M1		Accept 3 dp accuracy $(1 - p_2) - p_1 \implies M0 M0 A0$ $p_1 - (1 - p_2) \implies M1 M0 A0$ only providing result > 0
	minus 0.1121 or 0.2194 (p_2)	M1		Accept 3 dp accuracy
	= 0.768	A1		AWRT (0.7680)
	or			
	B(50, 0.15) expressions stated for at least 3 terms within $4 \le R \le 10$ gives probability	(M1)		Can be implied by correct answer
	= 0.768	(A2)	4	AWRT
(b)	Confusion of 22, 35, 120 and/or 0.15, 0.06			Do not treat as misreads
(i)	$S \sim B(22, 0.06)$	M1		Used in (b)(i) as evidenced by any correct binominal term for $S > 0$
	$P(S = 2) = {\binom{22}{2}} (0.06)^2 (0.94)^{20}$	A1	_	Can be implied by correct answer Ignore any additional terms
	= 0.24 to 0.242	A1	3	AWFW (0.24125)
(ii)	$P(S \ge 1) = 1 - q^{35}$ where $0.84 \le q \le 0.96$	M1 (B1)		Can be implied by correct answer Award for $(0.94)^{35}$ seen in an expression but not if accompanied by a multiplier $\neq 1$
	= 0.885 to 0.89	A1	2	AWFW (0.88532)
(iii)	Mean = np = 120 × 0.94 = 112.8 or 113 If not identified, assume order is μ then σ^2	B1		Either
	Variance = $np(1-p)$ = 120 × 0.94 × 0.06 = 6.76 to 6.78	B1	2	Must clearly state variance value AWFW (6.768)
(iv)	Means are (approximately) the same stated or			Must have scored 1 st B1 in (iii)
	Variances are (very) different stated	B1		Must have scored 2 nd B1 in (iii)
	Agree with $P(\text{sorts letter incorrectly}) = 0.06$	B1 dep		Dependent on 'means same' stated
	Disagree with independent from letter to letter	B1 dep	3	Dependent on 'variances different' stated
		Total	14	
		Paper	75	

MS/SS1B/W - AQA GCE Mark Scheme 2009 June series

General Certificate of Education

Mathematics 6360 Statistics 6380

MS/SS1B/W Statistics 1B

Mark Scheme

2010 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2010 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX Dr Michael Cresswell Director General

М	mark is for method						
m or dM	mark is dependent on one or more M marks and is for method						
A	mark is dependent on M or m marks and is for accuracy						
B	mark is independent of M or m marks and is for method and accuracy						
Ē	mark is for explanation						
$\sqrt{10}$ or ft or F	follow through from previous						
	incorrect result	MC	mis-copy				
CAO	correct answer only	MR	mis-read				
CSO	correct solution only	RA	required accuracy				
AWFW	anything which falls within	FW	further work				
AWRT	anything which rounds to	ISW	ignore subsequent work				
ACF	any correct form	FIW	from incorrect work				
AG	answer given	BOD	given benefit of doubt				
SC	special case	WR	work replaced by candidate				
OE	or equivalent	FB	formulae book				
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme				
–x EE	deduct <i>x</i> marks for each error	G	graph				
NMS	no method shown	с	candidate				
PI	possibly implied	sf	significant figure(s)				
SCA	substantially correct approach	dp	decimal place(s)				

Key to mark scheme and abbreviations used in marking

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

SS1B Q	Solution	Marks	Total	Comments
Q	Solution		10141	Comments
1(a)(i)	$X \sim N(10.2, 0.15^2)$			
	$P(X < 10.5) = P\left(Z < \frac{10.5 - 10.2}{0.15}\right)$	M1		Standardising (10.45, 10.5 or 10.55) wit 10.2 and $(\sqrt{0.15}, 0.15 \text{ or } 0.15^2)$ and/or (10.2 - x)
	= P(Z < 2)	A1		CAO; ignore inequality and sign May be implied by a correct answer
	= 0.977	A1	3	AWRT (0.97725
(ii)	P(10.0 < X < 10.5) = [C's (a)(i)] - P(X < 10.0)	M1		Or equivalent; must be clear correct method if answer incorrect and answer > 0
	= (a)(i) - P(Z < -1.33) $= (a)(i) - (1 - p)$			Method correct using -1.3 gives 0.88 to 0.881 \Rightarrow M1 m1 A0
	= 0.97725 - (1 - 0.90824)	m1		Area change May be implied by a correct answer or answer > 0.5
	= 0.885 to 0.887	A1	3	AWFW (0.88604) M1 m1 A1 for $0.90824 - [1 - (a)(i)]$ $= 0.886$ M1 m0 A0 for $(a)(i) - 0.90824$ $= 0.0686$ M0 mo A0 for answer < 0
(b)	P(X > 10) = p[from (a)(ii)] = 0.908 to 0.909	B1F		Correct value or F on value used or implied in (a)(ii) providing > 0.5 Use of -1.3 gives 0.9032
	$P(6 \text{ rolls} > 10) = 0.90824^{6}$	M1		Accept any probability to power 6
	0.56 to 0.565	A1	3	AWFW
	Note: B0F M1 A0 is possible			
		1		

Q	Solution	Marks	Total	Comments
2(a)	Ordering unline since			May be implied by correct median
	Ordering values gives: (<i>a</i>) 14 15 18 20 25 25 26 27 29 32 34 37 37 (<i>b</i>)	M1		or correct IQR Ignore any reference to <i>a</i> and <i>b</i>
	Median $= 26$	A1		CAO
	IQR = 34 - 18 = 16	A2		CAO
	Special Case: Identification that LQ = 18 and UQ = 34	(A1)	4	Both CAO
(b)(i)	Two values (25 and 37) of mode No unique value Sparse data Many different values	B1		Or equivalent
(ii)	<i>a</i> and <i>b</i> (two values) unknown Impossible to calculate Cannot be calculated	B1	2	Or equivalent
(c)	Mean = $\frac{\sum x}{n} = \frac{390}{15} = 26$	B1		CAO
	If not identified, assume order is \overline{x} then s			
	SD $(\sum x^2 = 11472) = 9.4$ to 9.8	B1	2	AWFW (9.423 & 9.754) Treat rounding of a correct stated answer to an integer as ISW
	Special Case: Evidence of $\frac{\sum x}{15}$	(M1)		Can only be awarded if no marks scored elsewhere in (c)
		Total	8	

Q	Solution	Marks	Total	Comments
3(a)	b (gradient) = 7.05 b (gradient) = 7(.00) to 7.1(0)	B2 (B1)		AWRT (7.05134 AWFW Treat rounding of correct stated answers
	a (intercept) = 2500 to 2502 a (intercept) = 2490 to 2510	B2 (B1)	4	as ISW AWFW (2501.091 AWFW
	or Attempt at $\sum x \sum x^2 \sum y \& \sum xy (\sum y^2)$ or Attempt at $S_{xx} \& S_{xy} (S_{yy})$	(M1)		1351 268047 27034 & 5269065 (105653202) (all 4 attempted) 7304 & 51503 (1247894) (both attempted)
	Attempt at correct formula for b (gradient) b (gradient) = 7.05 a (intercept) = 2500 to 2502	(m1) (A1) (A1)		AWRT AWFW
	Accept <i>a</i> & <i>b</i> interchanged only if identified correctly by a clearly shown equation (stated answers are not sufficient) in (b)			If a and b are not identified anywhere in solution, then: $7.05 \Rightarrow B1$ $2500 \text{ to } 2502 \Rightarrow B1$
(b)	$y_{200} = a + b \times 200$	M1		Used May be implied by correct answer
	= 3890 to 3930	A1	2	AWFW (3911.36
(c)	Large residuals / residual range suggest estimate may be unreliable or	B1 B1dep	2	
	Largest residuals only small in relation to y-values (10%) so estimate may be reliable (unreliable)	B1 B1dep		(unreliable) requires (10% or equivalent
	Special Case: If B0 B0dep then: Involves interpolation Does not involve extrapolation Within observed range	(B1)		Any one; or equivalent
		Total	8	

Q	ont) Solution	Marks	Total	Comments
Q	Solution	Ivial KS	10181	Comments
4(a)(i)	$P(all 3 walk) = 0.65 \times 0.40 \times 0.25$	M1		Ratios (eg 65:1000) are only penalised by 1 mark at first correct answer Can be implied by correct answer
	= 65/1000 = 13/200 = 0.065	A1	2	CAO; do not confuse with 0.65
(ii)	P(Rita by bus) = $0.25 \times (1 - 0.15) \times (1 - 0.20)$	M1		Can be implied by correct answer
	= 17/100 = 0.17	A1	2	САО
(iii)	$P(2 \text{ cycle}) = 0.10 \times 0.45 \times (0.25 + 0.20) = 0.02025 + 0.10 \times (0.40 + 0.15) \times 0.55 = 0.03025 + (0.65 + 0.25) \times 0.45 \times 0.55$			CAO at least 1 of these 3 terms or
	= 0.22275 (0.27325)	B1		equivalent but allow a ' \times 3'
	$P(3 \text{ cycle}) = 0.10 \times 0.45 \times 0.55 \\= 0.02475$	B1		CAO
	$P(\geq 2 \text{ cycle}) = P(2 \text{ cycle}) + P(3 \text{ cycle})$	M1		Sum of 4 or 7 terms each a product of 3 probabilities but not '× 3'
	= 0.298	A1	4	CAO
	or $P(0 \text{ cycle}) = 0.90 \times 0.55 \times 0.45 = 0.22275$	(B1)		САО
	$P(1 \text{ cycles}) = 0.10 \times 0.55 \times 0.45 = 0.02475 + 0.90 \times 0.45 \times 0.45 = 0.18225 (0.47925) + 0.90 \times 0.55 \times 0.55 = 0.27225 P(\ge 2 \text{ cycle})$	(B1)		CAO at least 1 of these 3 terms but allow a '× 3' 1 – [sum of 4 terms each a product of 3
	= 1 - [P(0 cycle) + P(1 cycles)]	(M1)		probabilities but not $\times 3'$]
	1 - 0.702 = 0.298	(A1)		CAO
(b)(i)	$P(WW) = (0.65 \times 0.90) = 0.585$ $P(CC) = (0.10 \times 0.70) = 0.070$	B1		CAO either
	P(WW or CC) = 0.585 + 0.070 $= 0.655$	M1 A1	3	Sum of 2 terms each a product of 2 probabilities CAO; or equivalent
(ii)	P(different) = 1 - (b)(i) = 0.345	B1F	1	F on (b)(i) providing 0
		Total	12	

MS/SS1B	(cont)
TID/DDID	(COIIC)

MS/SS1B (co	Solution	Marks	Total	Comments
5(a)(i)	Mean = $\frac{12120}{12}$ = 1010	B1		CAO
	98% (0.98) $\Rightarrow z = 2.32$ to 2.33	B1		AWFW (2.3263)
	CI for μ is $\overline{x} \pm z \times \frac{\sigma}{\sqrt{n}}$	M1		Used Must have \sqrt{n} with $n > 1$
	Thus $1010 \pm 2.3263 \times \frac{10.5}{\sqrt{12}}$	A1F		Fon \overline{x} and z only
	Hence $1010 \pm (7(.0) \text{ to } 7.1)$ or $(1003, 1017)$	A1dep	5	CAO & AWFW (accept 7) Dependent on A1F AWRT
	Notes: Use of $t_{11}(0.99) = 2.718 \implies$ maximum of B1 B0 M1 A0F A0 Use of a 'corrected' 10.5 \implies maximum of B1 B1 M1 A0F A0			
(ii)	Weight of flour in a bag (may be assumed to be) is normally distributed	B1	1	Or equivalent; must refer to weight
(iii)	Any number such that $20 \le \text{number} \le 50$	B1	1	Must be a single integer value Ignore any reasoning
(b)	1 kg or 1000 grams is outside / below CI or From CI, (population) mean weight is greater than 1kg or 1000 grams	B1F		Or equivalent F on (a)(i) Any reference to 1010 \Rightarrow B0F
	3 or 3/12 or 25% of bags in sample weigh less than 1kg or 1000 grams	B1		Or equivalent; but not 'some'
	Statement appears dubious/incorrect/invalid	B1dep	3	Dependent on both B1F and B1
(c)	2/100 or 1/50 or 0.02 or 2%	B1	1	CAO; not 0.02%
		Total	11	

6(a)(i) $R \sim B(14, 0.35)$ $P(R \le 7) = 0.924$ to 0.925M1 A12Used somewhere in (a); may be implied AWFW(0.92466)(ii) $P(R \ge 11) = 1 - P(R \le 10)$ $= 1 - (0.9989 \text{ or } 0.9999)$ M12AWRT(0.001106)(iii) $P(S \le R < 10) = 0.9940$ or 0.9989 (p_1) M12AWRT(0.001106)(iii) $P(S \le R < 10) = 0.9940$ or 0.9989 (p_1) M12AWRT(0.001106)(iii) $P(S \le R < 10) = 0.9940$ or 0.9989 (p_1) M1Accept 3 dp accuracy $p_2 - p_1 \Rightarrow M0 M0 A0$ $(1 - p_2) \Rightarrow M1 M0 A0$ on oly providing result > 0minus0.6405 or 0.4227 (p_2) M13AWFW(0.35346)or $= 0.353 \text{ to } 0.354$ A13AWFW(0.35346)or $= 0.353 \text{ to } 0.354$ (M1)3AWFW(0.35346)(b) $R \sim B(21, 0.35)$ M13AWFW(0.35346) $P(R = 4) = {21 \atop 4}^{21} (0.35)^4 (0.65)^{17}$ A13AWFW(0.059274)(c)(i) $S \sim B(7, 5/7)$ Mean $= np = 7 \times 5/7 = 5$ If not identified, assume order is μ then σ^2 B13AWFW(0.059274)(ii)Means are the same and (both comparisons clearly stated) Variances/standard deviations are similar Do not accept statements involving correct/incorrect/stated correct/incorrect/statedB12Must have scored B1 B1 in (i) or B1 B0 plus 10/7 v $\sqrt{1.5}$ stated(iii)Means are the same and (both comparisons clearly state) correct/incorrect/stated correct/incorrect/statedB12Must have scored previous	0	Solution	Marks	Total	Comments
$P(R \le 7) = 0.924$ to 0.925 A12AWFW (0.92466) (ii) $P(R \ge 11) = 1 - P(R \le 10)$ $= 1 - (0.9989 or 0.9999)$ M1Requires '1 -'and ≥ 4 dp accuracy $P_1 - ind 0 M0 A0$ (iii) $P(5 \le R \le 10) = 0.9940$ or 0.9989 (p_1) M1Accept 3 dp accuracy $p_1 - p_1 \Rightarrow M0 M0 A0$ $(1 - p_2) - p_1 \Rightarrow M0 M0 A0$ $(1 - p_2) - p_1 \Rightarrow M0 M0 A0$ $(1 - p_2) - p_1 \Rightarrow M1 M0 A0$ only providing result > 0 Accept 3 dp accuracy $minus 0.6405$ or 0.4227 (p_2) M1 $a = 0.353$ to 0.354 A13 $AWFW$ (0.35346) or $B(14, 0.35)$ expressions stated for at least $B(14, 0.35)$ expressions to 0.354 A1 $A = 0.353$ to 0.354 A13 $AWFW$ (0.35346) Or $R < B(21, 0.35)$ M1 $P(R = 4) = {21 \choose 4} (0.35)^4 (0.65)^{17}$ $man = np = 7 \times 5/7 = 5$ If not identified, assume order is μ then σ^2 A1(iii)Means are the same and (both comparisons clearly stated) $Variances/standard deviations are similarDo not accept stated or similarDo not accept stated form and similarDo not accept stated form and similarDo not accept stated for similarDo not accept stated for similarDo not accept state and edviations are similarDo not accept state and whintons are similarDo not accept state and by attributions are similarDo not accept state attributions are similar$					
= 1 - (0.9989 or 0.9999)M1Requires '1 -'and ≥ 4 dp accuracy= 0.0011A12AWRT(0.001106)(iii)P($5 < R < 10$) = 0.9940 or 0.9989 (p_1)M1Accept 3 dp accuracy $p_2 - p_1 \Rightarrow M0 M0 A0$ $(1 - p_2) - p_1 \Rightarrow M0 M0 A0$ $p_1 - (1 - p_2) \Rightarrow M1 M0 A0$ or B(14, 0.35) expressions stated for at least 3 terms within $4 \leq R \leq 11$ gives probability = 0.353 to 0.354A13AWFW(0.35346)(b) $R \sim B(21, 0.35)$ M1(M1) (A2)Can be implied by correct answer AWFW(0.35346)(c)(i) $S \sim B(7, 5/7)$ Mean = $np = 7 \times 5/7 = 5$ If not identified, assume order is μ then σ^2 A13AWFW(0.059274)(iii)Means are the same and (both comparisons clearly stated) Point accept statements involving correct/incorrect/stated deviations are similar Do not accept statements involving correct/incorrect/stated deviations are similar Do not accept statements involving correct/incorrect/statedB1 dep2(iii)Means are the same and (both comparisons clearly stated) Sound/valid/correct/likelyB1 dep2Must have scored B1 B1 in (i) or B1 B0 plus $10/7 v \sqrt{1.5}$ stated	- ()(-)			2	
(iii) $P(5 < R < 10) = 0.9940 \text{ or } 0.9989 (p_1)$ M1 Accept 3 dp accuracy $p_1 - p_1 \Rightarrow M0 M0 A0$ $(1 - p_2) - p_1 \Rightarrow M0 M0 A0$ $(1 - p_2) - p_1 \Rightarrow M0 M0 A0$ $p_1 - (1 - p_2) \Rightarrow M1 M0 A0$ or B(14, 0.35) expressions stated for at least 3 terms within $4 \le R \le 11$ gives probability $= 0.353 \text{ to } 0.354$ (M1) (A2) AWFW (0.35346) (A2) AWFW (0.35346) (A2) AWFW (0.35346) (A2) (A2) AWFW (0.35346) (A2) (A2) AWFW (0.35346) (A2) (A2) (A3) (A4) (A4) (A4) (A4) (A4) (A4) (A4) (A4	(ii)	= 1 – (0.9989 or 0.9999)		2	
minus0.6405 or0.4227 (p_2) M1 $(1 - p_2) - p_1 \Rightarrow M0 M0 A0$ $p_1 - (1 - p_2) \Rightarrow M1 M0 A0$ $(-1 - p_2) \Rightarrow M1 M0 A0$ $(-2 - M1) = M1 M0 A0$ $(-2 - M1) =$	(iii)				
$= 0.353 \text{ to } 0.354$ A13AWFW (0.35346) or B(14, 0.35) expressions stated for at least 3 terms within $4 \le R \le 11$ gives probability $(M1)$ $= 0.353 \text{ to } 0.354$ $(M1)$ $(A2)$ Can be implied by correct answer AWFW(b) $R \sim B(21, 0.35)$ M1 $(A2)$ Implied from correct stated formula; do not accept misreads $P(R = 4) = {21 \ 4} (0.35)^4 (0.65)^{17}$ $= 0.059 \text{ to } 0.0595$ A13Can be implied by a correct answer Ignore any additional terms $P(R = 4) = {21 \ 4} (0.35)^4 (0.65)^{17}$ $= 0.059 \text{ to } 0.0595$ A13Can be implied by a correct answer Ignore any additional terms $P(R = 4) = {21 \ 4} (0.35)^4 (0.65)^{17}$ $= 0.059 \text{ to } 0.0595$ A13Can be implied by a correct answer Ignore any additional terms $P(R = 4) = {21 \ 4} (0.35)^4 (0.65)^{17}$ $= 7 \times 5/7 = 5$ If not identified, assume order is μ then σ^2 B1CAOVariance = $np(1-p)$ $= 7 \times 5/7 \times 2/7 = 10/7 \text{ or } 1.42 \text{ to } 1.43$ B12(ii)Means are the same and (both comparisons clearly stated) Variances/standard deviations are similar Do not accept statements involving correct/incorrect/stat/etcB1Barry's claim appears/is sound/valid/correct/likelyB12B1dep2Must have scored previous B1dep		minus 0.6405 or 0.4227 (<i>p</i> ₂)	M1		$(1 - p_2) - p_1 \implies M0 M0 A0$ $p_1 - (1 - p_2) \implies M1 M0 A0$ only providing result > 0
or B(14, 0.35) expressions stated for at least 3 terms within $4 \le R \le 11$ gives probability(M1) (A2)Can be implied by correct answer AWFW(b) $R \sim B(21, 0.35)$ M1Implied from correct stated formula; do not accept misreads(b) $R \sim B(21, 0.35)$ M1Implied from correct stated formula; do 					
B(14, 0.35) expressions stated for at least 3 terms within $4 \le R \le 11$ gives probability $= 0.353 \text{ to } 0.354$ (M1) (A2)Can be implied by correct answer AWFW(b) $R \sim B(21, 0.35)$ M1Implied from correct stated formula; do not accept misreads(c)(i) $S \sim B(2, 5/7)$ Mean = $np = 7 \times 5/7 = 5$ If not identified, assume order is μ then σ^2 A13(c)(i) $S \sim B(7, 5/7)$ Mean = $np = 7 \times 5/7 = 5$ If not identified, assume order is μ then σ^2 B1CAO(ii)Means are the same and (both comparisons clearly stated) Variances/standard deviations are similar Do not accept statements involving correct/incorrect/exact/etcB1dep2Barry's claim appears/is sound/valid/correct/likelyB1dep2Must have scored previous B1dep			A1	3	AWFW (0.35346)
(b) $R \sim B(21, 0.35)$ $R \sim B(21, 0.35)$ $R \sim B(21, 0.35)$ $P(R = 4) = {21 \\ 4}(0.35)^4(0.65)^{17}$ = 0.059 to 0.0595 R = 0.059 to 0.059274 R = 0.059274 R		B(14, 0.35) expressions stated for at least 3 terms within $4 \le R \le 11$ gives	(M1)		Can be implied by correct answer
(i) $R \sim B(21, 0.35)$ $P(R = 4) = {21 \\ 4} (0.35)^4 (0.65)^{17}$ = 0.059 to 0.0595 A1 (c)(i) $S \sim B(7, 5/7)$ Mean = $np = 7 \times 5/7 = 5$ If not identified, assume order is μ then σ^2 Variance = $np(1-p)$ $= 7 \times 5/7 \times 2/7 = 10/7 \text{ or } 1.42 \text{ to } 1.43$ (ii) Means are the same and (both comparisons clearly stated) Variances/standard deviations are similar Do not accept statements involving correct/incorrect/exact/etc Barry's claim appears/is sound/valid/correct/likely MI1 A1 A1 A1 B1 B1dep A1 A1 A1 A1 A1 A1 A1 A1 A1 A1		1 2	(A2)		AWFW (0.35346)
(c)(i) $S \sim B(7, 5/7)$ Mean = $np = 7 \times 5/7 = 5$ If not identified, assume order is μ then σ^2 A13AWFW(0.059274)(c)(i) $S \sim B(7, 5/7)$ Mean = $np = 7 \times 5/7 = 5$ If not identified, assume order is μ then σ^2 B1CAOMust clearly state variance value if standard deviation (also) stated CAO / AWFW(ii)Means are the same and (both comparisons clearly stated) Variances/standard deviations are similar Do not accept statements involving correct/incorrect/exact/etcB1depB1depMust have scored B1 B1 in (i) or B1 B0 plus $10/7 v 1.5 \text{ or } \sqrt{10/7} v \sqrt{1.5}$ statedBarry's claim appears/is sound/valid/correct/likelyB1dep2Must have scored previous B1dep	(b)	$R \sim B(21, 0.35)$	M1		-
(c)(i) $S \sim B(7, 5/7)$ Mean = $np = 7 \times 5/7 = 5$ If not identified, assume order is μ then σ^2 B1CAO Must clearly state variance value if standard deviation (also) stated CAO / AWFW(ii)Means are the same and (both comparisons clearly stated) Variances/standard deviations are similar Do not accept statements involving correct/incorrect/exact/etcB1 depMust have scored B1 B1 in (i) or B1 B0 plus $10/7 v \sqrt{1.5}$ statedBarry's claim appears/is sound/valid/correct/likelyB1 dep2Must have scored previous B1 dep		$P(R = 4) = {\binom{21}{4}} (0.35)^4 (0.65)^{17}$	A1		
Mean = $np = 7 \times 5/7 = 5$ If not identified, assume order is μ then σ^2 B1CAOVariance = $np(1-p)$ $= 7 \times 5/7 \times 2/7 = 10/7$ or 1.42 to 1.43B1CAO(ii)Means are the same and (both comparisons clearly stated) Variances/standard deviations are similar Do not accept statements involving correct/incorrect/exact/etcB1depABarry's claim appears/is sound/valid/correct/likelyB1dep2Must have scored previous B1dep		= 0.059 to 0.0595	A1	3	AWFW (0.059274)
Variance = $np(1-p)$ = 7 × 5/7 × 2/7 = 10/7 or 1.42 to 1.43B1Must clearly state variance value if standard deviation (also) stated CAO / AWFW(ii)Means are the same and (both comparisons clearly stated) Variances/standard deviations are similar Do not accept statements involving correct/incorrect/exact/etcB1 depB1 depBarry's claim appears/is sound/valid/correct/likelyB1 dep2Must have scored B1 B1 in (i) or B1 B0 plus $10/7 v 1.5 \text{ or } \sqrt{10/7} v \sqrt{1.5}$ stated	(c)(i)	Mean = np = 7 × 5/7 = 5	B1		САО
and (both comparisons clearly stated) Variances/standard deviations are similar Do not accept statements involving correct/incorrect/exact/etcB1 depMust have scored B1 B1 in (i) or B1 B0 plus $10/7 v 1.5 or \sqrt{10/7} v \sqrt{1.5}$ statedBarry's claim appears/is sound/valid/correct/likelyB1 dep2Must have scored previous B1 dep		Variance = $np(1-p)$	B1	2	standard deviation (also) stated
sound/valid/correct/likely	(ii)	and (both comparisons clearly stated) Variances/standard deviations are similar Do not accept statements involving	B1dep		B1 B0 plus
Total 14			B1dep	2	Must have scored previous B1dep
			Total	14	

Q	Solution	Marks	Total	Comments
7(a)	r = -0.0355 to -0.035	B3	3	AWFW (- 0.03546)
	r = -0.036 to -0.034	(B2)		AWFW
	r = -0.04 to $+0.04$	(B1)		AWFW
	Attempt at $\sum_{x} x \sum_{y} x^{2} \sum_{y} y \sum_{y} y^{2} \&$			636 42702 738 68294 &38605 (all 5 attempted)
	or Attempt at S_{xx} S_{yy} & S_{xy}	(M1)		8994 22907 & -509 (all 3 attempted)
	Attempt at substitution into correct corresponding formula for <i>r</i>	(m1)		
	r = -0.0355 to -0.035	(A1)		AWFW
(b)	Almost/virtually/practically no / zero (linear) correlation / relationship / association / link (but not 'no trend')	B1dep		Dependent on $-0.1 < r < 0.1$ Or equivalent; must qualify strength as 'zero'; B0dep for very weak/weak/etc unless then qualified correctly
	between purchase and auction prices of antiques	B1	2	Context; providing $-1 < r < 1$
(c)(i)	Figure 1: 6 correct labelled points 5 or 4 correct labelled points 3 correct labelled points	B3 (B2) (B1)	3	Deduct 1 mark if > 1 point not labelled or labelled incorrectly
(ii)	(Two) outlier/anomaly/unusual or identification of J and L	B1		Or equivalent
	(Otherwise) a positive/linear correlation	B1	2	Or equivalent; ignore any qualification of 'strength'
(d)(i)	$r = \frac{4268.8}{\sqrt{4854.4 \times 4216.1}}$	M1		Used Award B2 for a correct answer without/with different method
	r = 0.943 to 0.944	A1	2	AWFW (0.94359
(ii)	Very strong/strong positive (linear) correlation /relationship/association/link	B1dep	1	Dependent on $0.9 < r < 1$ Or equivalent; must qualify strength and indicate positive; B0dep for high/etc
	Previous calculation of r was not appropriate (due to outliers)	(B1)		
		Total	13	
		TOTAL	75	

Version 1.0

General Certificate of Education June 2010

Mathematics	MS1B
Statistics	SS1B

Statistics 1B

PMT

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2010 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

М	mark is for method						
m or dM	mark is dependent on one or more M marks and is for method						
А	mark is dependent on M or m marks and is for accuracy						
В	mark is independent of M or m marks and is	for method and	accuracy				
E	mark is for explanation						
$\sqrt{0}$ or ft or F	follow through from previous						
	incorrect result	MC	mis-copy				
CAO	correct answer only	MR	mis-read				
CSO	correct solution only	RA	required accuracy				
AWFW	anything which falls within	FW	further work				
AWRT	anything which rounds to	ISW	ignore subsequent work				
ACF	any correct form	FIW	from incorrect work				
AG	answer given	BOD	given benefit of doubt				
SC	special case	WR	work replaced by candidate				
OE	or equivalent	FB	formulae book				
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme				
–x EE	deduct x marks for each error	G	graph				
NMS	no method shown	с	candidate				
PI	possibly implied	sf	significant figure(s)				
SCA	substantially correct approach	dp	decimal place(s)				

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MS/SS1B

Q	Solution	Marks	Total	Comments
1(a)	r = 0.915	B3		AWRT (0.91504)
	r = 0.91 to 0.92 r = 0.88 to 0.95 OR	(B2) (B1)		AWFW AWFW
	Attempt at $\sum x \sum x^2 \sum y \sum y^2$ and $\sum xy$ or			12510 15835890 1180 146616 and 1510062 (all 5 attempted)
	Attempt at S_{xx} S_{yy} and S_{xy}	(M1)		185880 7376 and 33882 (all 3 attempted)
	Attempt at substitution into correct corresponding formula for r	(m1)		
	r = 0.915	(A1)	3	AWRT
(b)	Very strong / strong / fairly strong positive (linear) correlation / relationship / association / link (<i>but not ' trend</i> ')	B1dep		Dependent on $0.88 < r < 0.95$ Or equivalent; must qualify strength and indicate positive B0dep for (almost) perfect / high / average / medium / some / etc
	between weight and (engine) power/bhp of (hatchback) cars	B1	2	Context; providing $0 < r < 1$
	Examples: The more weight/heavier the more/greater power \Rightarrow B0dep B1 Strong correlation and as weight/kg increases so does engine power / bhp \Rightarrow B0dep B1			No mention of strength Mention of strength but implied suggestion of positive not sufficient
	Total		5	

Q	Solution	Marks	Total	Comments
2	-18 -11 1 15 7 -1 17 -16 18 -3 0 9			
(a)(i)	Mean, $\overline{d} = 1.5$ Standard deviation, σ_d or s_d = 11.7 to 12.3	B1 B1	2	CAO $\sum d = 18$ Ignore notation and units (11.737 or 12.259) AWFW $\sum d^2 = 1680$
(ii)	Mean, $\overline{x} = 50 + \overline{d} = 51.5$	B1F		F on (a)(i) or correct
	x: 32 39 51 65 57 49 67 4 68 47 50 59 Standard deviation, σ_x or s_x = 11.7 to 12.3	B1F	2	$\sum x = 618 \qquad \sum x^2 = 33480$ Ignore notation and units F on (a)(i) providing > 0 or correct
(b)	[Values, mean or sd in (a)(i) or (a)(ii)] $\times \frac{1.22}{100}$ or 1.22	M1		Award if use seen or implied by ≥ 1 Subsequent correct or (correct $\times 100$) answer
	Mean = 0.628 to 0.63	A1		AWFW (0.6283)
	Standard deviation = 0.14 to 0.151	A1	3	AWFW (0.1432 or 0.1496)
	Special Cases: At least one answer correct with no stated units or incorrect stated units \Rightarrow M1 A1 A1 max At least one answer \times 100 with its units stated as 'cents' \Rightarrow M1 A1 A1 max At least one answer \times 100 with no units stated or units stated as euros / pence / £ \Rightarrow M1 only			'cents' attached to ≥ 1 answer $\times 100$
	Total		7	

Q	Solution	Marks	Total	Comments
3	<u>Time, $X \sim N(65, 20^2)$</u>			
(a) (i)	$P(X < 90) = P\left(Z < \frac{90 - 65}{20}\right) - \left[P\left(Z < \frac{0 - 65}{20}\right) = P\left(Z < -3.25\right) = 0.00058\right]$	M1		Standardising (89.5, 90 or 90.5 or 59.5, 60 or 60.5) with 65 and $(\sqrt{20}, 20 \text{ or} 20^2)$ and/or (65 – x) May be gained in (a)(i) or (a)(ii)
	= P(Z < 1.25)	A1		CAO; ignore inequality and sign May be implied by a correct answer
	= 0.893 to 0.895	A1		AWFW (0.89435)
(ii)	P(X > 60) = P(Z > -0.25)			
	= P(Z < 0.25)	M1		Area change May be implied by a correct answer or answer > 0.5
	= 0.598 to 0.599	A1	5	AWFW (0.59871)
(b) (i)	P(1 in 6 = 60) = 0 or zero or impossible	B1	1	Ignore any working B0 for 'impossible to calculate'
(ii)	P(X < 60) = 1 - [(a)(ii)] or (0.401 to 0.402)	M1		May be implied
	$P(6 \text{ in } 6 < 60) = p^6 \text{ with } 0 < p < 1$	M1		Any probability to power 6; do not allow multiplying factors
	$= (0.40129)^6 = 0.004$ to 0.00425	A1dep	3	Dependent on M1 M1 (0.0041759)
(iii)	Variance of $\overline{X}_6 = 20^2/6 = 66.6$ to 66.7 or Sd of $\overline{X}_6 = 20/\sqrt{6} = 8.16$ to 8.17	B1		CAO/AWFW Stated or used anywhere in (b) CAO/AWFW
	$P(\overline{X}_6 < 60) = P\left(Z < \frac{60 - 65}{20/\sqrt{6}}\right) =$	M1		Standardising 60 with 65 and $20/\sqrt{6}$ or equivalent allow (65 - 60)
	P(Z < -0.61) = 1 - P(Z < 0.61)	m1		Area change May be implied by a correct answer or answer < 0.5
	= 1 - 0.72907 = = 0.27(0) to 0.271	A1	4	AWFW (0.27093) (1 - answer) \Rightarrow B1 M1 max
	Note: Watch for answers to (ii) and (iii) interchanged			
	Total		13	

MS/SS1B (co	Solution	Marks	Total	Comments
4 (a)	<u>$M \sim B(50, 0.15)$</u>	M1		Used somewhere in (a); may be implied
(i)	$P(M \le 10) = 0.88(0)$	A1	2	AWRT (0.8801)
(ii)	$P(M \ge 5) = 1 - P(M \le 4)$ = 1 - (0.1121 or 0.2194)	M1		Requires '1 –'; accept 3 dp accuracy Implied by 0.888 but not by 0.781
	= 0.888	A1	2	AWRT (0.8879)
(iii)	P(6 < R < 12) = 0.9372 or 0.9699 (p ₁)	M1		Accept 3 dp accuracy rounding or truncation $p_2 - p_1 \implies M0 M0 A0$
				$(1 - p_2) - p_1 \implies M0 M0 A0$ $p_1 - (1 - p_2) \implies M1 M0 A0$ only providing result > 0
	minus 0.3613 or 0.2194 (p_2)	M1		Accept 3 dp accuracy
	= 0.576	A1		AWRT (0.5759)
	OR B(50, 0.15) expressions stated for at least 3 terms within $5 \le R \le 12$ gives	(M1)		Can be implied by correct answer
	probability = 0.576	(A2)	3	AWFW (0.5759)
(b)	<u>$F \sim B(35, 0.11)$</u>	M1		Implied from correct stated formula; do not accept misreads
	$P(F = 4) = {\binom{35}{4}} (0.11)^4 (0.89)^{31}$	A1		Can be implied by a correct answer Ignore any additional terms
	= 0.206 to 0.208	A1	3	AWFW (0.20685)
(c)	or $P(M \text{ and } LH) = 0.52 \times 0.15 = 0.078)$ $N(M) = 2000 \times 0.52 = 1040)$	M1		≥1 of these 2 probabilities or ≥1 of these 2 numbers attempted; may be implied
	or $P(F \text{ and } LH) = 0.48 \times 0.1 = 0.0528)$ $N(F) = 2000 \times 0.48 = 960$)	A1		2 probabilities or 2 numbers evaluated correctly
	$N(M \text{ and } LH) = 2000 \times 0.078 = 1040 \times 0.15 = 156)$ $N(F \text{ and } LH) = 2000 \times 0.0528 = 960 \times 0.11 = 105.6)$ or $P(LH) = 0.078 + 0.0528 = 0.1308)$	A1		Evaluation of ≥ 1 of these 2 numbers or Addition of these 2 probabilities
	$N(LH) = 156 + 105.6 = 2000 \times 0.1308 = 261 \text{ to } 262$	A1	4	$262/2000 \Rightarrow A0$ $AWFW $ (261.6)
	Total		14	

(a) $P(J) = 0.9 P(R J) = 0.7 P(R J') = 0.2$ (i) P(both at trough) = 0.9×0.7 = $0.63 = 63/100$ A1 P(neither at trough) = $(1 - 0.9) \times (1 - 0.2)$ = 0.1×0.8 M1 = $0.08 = 8/100 = 4/50 = 2225$ A1 = $0.08 = 8/100 = 4/50 = 2325$ A1 P(at least one at trough) = $(1 - (ii))$ = $0.92 = 92/100 = 46/50 = 2325$ B1F M1 $\frac{M}{0.40} \frac{M'}{0.35} 0.75$ Note: Use of Venn or tree diagrams without table completed on page 10 \Rightarrow max of B1 B1 (ii) Accept answers + 1.00 (A) P(neither at gate) = 0.05 B1F (b) P(exactly one at gate) = $P(D \cap M') + P(D' \cap M)$ (c) P(exactly one at gate) = $P(D \cap M') + P(D' \cap M)$ (d) P(exactly one at gate) = $P(D \cap M') + P(D' \cap M)$ (d) $0.35 + 0.20 = 0.55$ A1F 2 Fon table or correct answer by 'otherwise' A1F 2 Fon table or correct answer by 'otherwise' Fon table or correct answer by 'otherwise' Fon table or correct answer by 'otherwise' A1F 2 Fon table Can be implied by correct answer B1 D 0.40 0.05; CAO D 0.40 0.40; CAO D 0.5; CAO D 0.	<u>IS/SS1B (c</u> Q	Solution	Marks	Total	Comments
(i) P(both at trough) = 0.9×0.7 = $0.63 = 63/100$ M1 (ii) P(neither at trough) = $(1 - 0.9) \times (1 - 0.2)$ = 0.1×0.8 M1 = $0.08 = 8/100 = 4/50 = 2/25$ A1 = $0.08 = 8/100 = 4/50 = 2/25$ A1 = $0.92 = 92/100 = 46/50 = 23/25$ B1F (iii) P(at least one at trough) = $(1 - (ii))$ = $0.92 = 92/100 = 46/50 = 23/25$ B1F 1 F on (ii) or correct answer B0 fb row and column totals is 0.25 and 0.40 ; CAO Three table values is 0.35 and 0.20 and 0.05 ; CAO (iii) Accept answers ± 1.00 (A) P(neither at gate) = 0.35 B1F (b) P(only Daisy at gate) = 0.35 B1F (c) P(exactly one at gate) = $P(D \cap M') + P(D' \cap M)$ $0.35 \pm 0.20 = 0.55$ A1F 2 Fon table Can be implied by correct answer Can be implied by correct answer (b) (i) Correct two values from c's table Can be implied by correct answer (b) (ii) Correct inswer by 'otherwise' (c) P(exactly one at gate) = $P(D \cap M') + P(D' \cap M)$ $0.35 \pm 0.20 = 0.55$ A1F 2 Fon table Can be implied by correct answer (c) P(exactly one at gate) = $P(D \cap M') + P(D' \cap M)$ $0.35 \pm 0.20 = 0.55$ A1F 2 Fon table Can be implied by correct answer (c) P(exactly one at gate) = $P(D \cap M') + P(D' \cap M)$ $0.35 \pm 0.20 = 0.55$ A1F 2 Fon table Can be implied by correct answer by 'otherwise'					mark at first correct answer F marks can only
(ii) P(neither at trough) = $(1 - 0.9) \times (1 - 0.2)$ = 0.1×0.8 M1 Can be implied by correct answer = $0.08 = 8/100 = 4/50 = 2/25$ A1 CAO (iii) P(at least one at trough) = $(1 - (ii))$ = $0.92 = 92/100 = 46/50 = 23/25$ B1F 1 F on (ii) or correct answer (b)(i) $\frac{M}{\frac{M}{0.40} + 0.38} - 0.75}{\frac{D}{0.40} - 0.60}$ B1F 1 F on (ii) or correct answer Both row and column totals is 0.25 and $0.40;$ CAO Three table values is 0.35 and 0.20 and $0.05;$ CAO (A) P(neither at gate) = 0.05 B1F 1 F on table or correct answer by 'otherwise' (B) P(only Daisy at gate) = 0.35 B1F 1 F on table (C) P(exactly one at gate) = $P(D \cap M') + P(D' \cap M)$ M1 Only correct two values from c's table shown and added Can be implied by correct answer by 'otherwise' F on table or correct answer by 'otherwise' F on table (C) P(exactly one at gate) = $P(D \cap M') + P(D' \cap M)$ M1 Only correct two values from c's table shown and added Can be implied by correct answer by 'otherwise' F on table or correct answer by 'otherwise' F on table (C) P(exactly one at gate) = $P(D \cap M') + P(D' \cap M)$ M1 0.35 + 0.20 = 0.55 A1F 2 F on table or correct answer by 'otherwise'	(a)	$P(J) = 0.9$ $P(R \mid J) = 0.7$ $P(R \mid J') = 0.2$			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(i)			2	- ·
(iii) P(at least one at trough) = $(1 - (ii))$ = $0.92 = 92/100 = 46/50 = 23/25$ B1F (b)(i) $\frac{M}{\frac{M}{0.40} 0.35}{\frac{D}{0.20} 0.05} 0.25}{\frac{D}{10 \text{ tot}} 0.005 0.25}{\frac{D}{10 \text{ tot}} 0.60 0.40} 1.00}$ Notes: Use of Venn or tree diagrams without table completion \Rightarrow B0 B0 Table not completed on page 13 but completed on page 13 but completed on page 10 \Rightarrow max of B1 B1 (ii) Accept answers + 1.00 (A) P(neither at gate) = 0.05 B1F (B) P(exactly one at gate) = $P(D \cap M') + P(D' \cap M)$ 0.35 + 0.20 = 0.55 A1F 2 F on table or correct answer by 'otherwise' A1F 2 F on table or correct answer by 'otherwise'	(ii)		M1		Can be implied by correct answer
P(at least one at trough) = $(1 - (n))$ = $0.92 = 92/100 = 46/50 = 23/25$ B1F 1 F on (ii) or correct answer B1 B1 B		= 0.08 = 8/100 = 4/50 = 2/25	A1	2	САО
(b)(i) $ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(iii)	P(at least one at trough) = (1 - (ii))			
M M' Total D 0.400.350.75 D' 0.200.050.25Total0.600.401.00Notes:Use of Venn or tree diagrams without table completed on page 13 but completed on page 10 \Rightarrow max of B1 B1B12(ii)Accept answers ± 1.00 B1F1F on table or correct answer by 'otherwise'(B)P(neither at gate) = 0.05B1F1F on table or correct answer by 'otherwise'(C)P(exactly one at gate) = $P(D \cap M') + P(D' \cap M)$ M1Only correct two values from c's table shown and added Can be implied by correct answer(C)P(exactly one at gate) = $P(D \cap M') + P(D' \cap M)$ M1Only correct answer by 'otherwise'(B)P(only Daisy at gate) = 0.55A1F2F on table or correct answer by 'otherwise'		= 0.92 = 92/100 = 46/50 = 23/25	B1F	1	F on (ii) or correct answer
Total0.600.401.00B12Three table values ie 0.35 and 0.20 and 0.05; CAONotes: Use of Venn or tree diagrams without table completion \Rightarrow B0 B0 Table not completed on page 13 but completed on page 10 \Rightarrow max of B1 B1812Three table values ie 0.35 and 0.20 and 0.05; CAO(ii)Accept answers $+ 1.00$ 9B1F1F on table or correct answer by 'otherwise'(B)P(neither at gate) = 0.05B1F1F on table or correct answer by 'otherwise'(C)P(exactly one at gate) = $P(D \cap M') + P(D' \cap M)$ M1Only correct two values from c's table shown and added Can be implied by correct answer(C)P(exactly one at gate) = $P(D \cap M') + P(D' \cap M)$ M1Only correct answer by 'otherwise'(C)P(exactly one at gate) = $P(D \cap M') + P(D' \cap M)$ M1Construction of the provide the	(b)(i)	D 0.40 0.35 0.75	B1		
Notes: Use of Venn or tree diagrams without table completion \Rightarrow B0 B0 Table not completed on page 13 but completed on page 10 \Rightarrow max of B1 B1F on table or correct answer by 'otherwise'(ii)Accept answers ± 1.00 (A)P(neither at gate) = 0.05B1F1F on table or correct answer by 'otherwise'(B)P(only Daisy at gate) = 0.35B1F1F on table or correct answer by 'otherwise'(C)P(exactly one at gate) = $P(D \cap M') + P(D' \cap M)$ M1Only correct two values from c's table shown and added Can be implied by correct answer(C)P(exactly one at gate) = $P(D \cap M') + P(D' \cap M)$ M1Only correct answer by 'otherwise'(C)P(exactly one at gate) = $P(D \cap M') + P(D' \cap M)$ M1Only correct two values from c's table shown and added Can be implied by correct answer			B1	2	
(A)P(neither at gate) = 0.05B1F1F on table or correct answer by 'otherwise'(B)P(only Daisy at gate) = 0.35B1F1F on table or correct answer by 'otherwise'(C)P(exactly one at gate) = $P(D \cap M') + P(D' \cap M)$ M1Only correct two values from c's table shown and added Can be implied by correct answer(C)P(exactly one at gate) = $0.35 + 0.20 = 0.55$ A1F2F on table or correct answer by 'otherwise'		Use of Venn or tree diagrams without table completion \Rightarrow B0 B0 Table not completed on page 13 but			
(B) P(only Daisy at gate) = 0.05 B1F 1 or correct answer by 'otherwise' (B) P(only Daisy at gate) = 0.35 B1F 1 F on table or correct answer by 'otherwise' (C) P(exactly one at gate) = $P(D \cap M') + P(D' \cap M)$ M1 Only correct two values from c's table shown and added Can be implied by correct answer 0.35 + 0.20 = 0.55 A1F 2 F on table or correct answer by 'otherwise'	(ii)	Accept answers ÷ 1.00			
(C) $P(\text{exactly one at gate}) = 0.35$ $M1$ 0.35 + 0.20 = 0.55 $A1F$ 2 $P(orrect answer by 'otherwise'P(\text{only correct two values from c's table shown and added} Can be implied by correct answer by 'otherwise'}$	(A)	P(neither at gate) = 0.05	B1F	1	
P($D \cap M'$) + P($D' \cap M$) 0.35 + 0.20 = 0.55 A1F 2 Shown and added Can be implied by correct answer F on table or correct answer by 'otherwise'	(B)	P(only Daisy at gate) = 0.35	B1F	1	
0.35 + 0.20 = 0.55 AIF 2 or correct answer by 'otherwise'	(C)		M1		shown and added
		0.35 + 0.20 = 0.55	A1F	2	
T_{-4-1} 11		Total		11	

Q	Solution	Marks	Total	Comments
6		DA		
(a)	b (gradient) = 3.25 to 3.26 b (gradient) = 3.2 to 3.2	B2		AWFW (3.25472)
	b (gradient) = 3.2 to 3.3	(B1)		AWFW Treat rounding of correct answers as ISW
	a (intercept) = 509 to 510	B2		AWFW (509.71698)
	a (intercept) = 507 to 513	(B1)		AWFW
	OR			
	Attempt at $\sum x \sum x^2 \sum y$ and $\sum xy$			720 44472 8460 and 511740 (6399400)
	$(\sum y^2)$			(all 4 attempted)
	or	(M1)		
	Attempt at S_{xx} and S_{xy} (S_{yy})			1272 and 4140 (435100) (both attempted)
	Attempt at correct formula for <i>b</i>			(both attempted)
	(gradient)	(m1)		
	b (gradient) = 3.25 to 3.26	(A1)	_	AWFW
	a (intercept) = 509 to 510	(A1)	4	AWFW If a and b are not identified anywhere
	Accept a and b interchanged only if			in question, then:
	identified correctly by a clearly shown or			3.25 to $3.26 \Rightarrow B1$
	drawn equation			509 to 510 \Rightarrow B1
(b) (i)	Connect line ducum on such	Dodon		Dom on $\geq B1 B1$ on $\geq A1 A0$ in (a)
(1)	Correct line drawn on graph (40, 630 to 650) (80, 750 to 790)	B2dep		Dep on \ge B1 B1 or \ge A1 A0 in (a) From $x \approx 40$ to 80
	If B0 but evidence of use of line for ≥ 2			
	points within range $0 \le x \le 80$ or	(M1)	2	Calc ⁿ or points shown on graph Allow point ('0', 500 to 520)
	'intercept' and means			
(ii)	Outliers / at least E and H identified /			Graph
(11)	wide scatter (of points) / large residuals	B1		Or equivalent words
	Evidence of a $(+ ve)$ relationship or	B1	2	Or equivalent words; none of strong/
	correlation /model is not appropriate	DI	2	negative/trend/etc or unreliable/invalid
(c)				
(i)	Correct two points marked on graph	B1	1	Labels are not required; nor is \bigcirc
				Graph
(ii)	b (gradient) = 11.6	B1		AWRT (11.60377)
	a (intercept) = 23 to 24	B1		AWFW (23.77358)
	Correct line on graph (40, 480 to 500) (80, 930 to 970)	B1dep	3	Graph Dependent on B1 B1
(iii)	No outliers / less scatter / small residuals	B1		Or equivalent words
(111)	no outliers / less seater / siliali residuals	ы		or equivalent words
	Strong(er)/more evidence of a positive			Or equivalent words; must indicate
	link/ relationship or more rapid increase	B1	2	change from (b)(ii) in context;
	(of reaction time with age) or model is			not some/weak/etc or reliable/valid
	more appropriate Total		14	References to correlation alone \Rightarrow B0
	lotal		14	

Q	Solution	Marks	Total	Comments
7(a)(i)	$\overline{t} - 2s = 6.31 - 2\sqrt{19.3} = -2.48$ to -2.47	B1		AWRT (-2.4764)
	Negative value is impossible for a measurement of time	B1	2	Or equivalent; allow if negative value incorrect or not stated
(ii)	Sample size, $n = 80$ is large $/ > 25$	B1		Indication that given sample is 'large'
	Thus sample mean (\overline{T}) ~ approximately normal due to CLT	B1dep	2	Dependent on previous B1 Requires 'mean' and 'normal' and 'CLT'
(b)	98% (0.98) $\Rightarrow z = 2.32$ to 2.33	B1 (B1)		AWFW(2.3263) $t_{79}(0.99) = 2.37$ AWRT
	CI for μ is $\overline{t} \pm z/t \times \frac{s}{\sqrt{n}}$	M1		Used Must have \sqrt{n} with $n > 1$
	Thus $6.31 \pm 2.3263 \times \frac{\sqrt{19.3}}{\sqrt{80}}$	A1F		F on z/t only
	Hence 6.31 ± (1.13 to 1.15) or	A1		CAO and AWFW
	(5.16 to 5.18, 7.44 to 7.46)			AWFW (5.17, 7.45)
	Note: Use of t gives $6.31 \pm (1.17)$ or $(5.14, 7.48)$	(A1)	4	AWRT
(c)	$\mu_T < 8$ Since CI / UCL < 8 \Rightarrow Yes	B1F		F on (b); must clearly compare 8 with CI/UCL and state a correct follow-through conclusion
	$P(T \le 20) > 95\%$			
	P(T > 20) = 1/80 = 0.01 to 0.013 or $P(T \le 20) = 79/80 = 0.987$ to 0.99	B1		CAO/AWFW; accept eg '1 in 80' B0 for use of normal distribution CAO/AWFW; accept eg '79 in 80'
	$\begin{array}{l} P(T > 20) < 0.05 \text{ or } 5\% \\ \text{or} & \Rightarrow \text{ Yes} \\ P(T \le 20) > 0.95 \text{ or } 95\% \end{array}$	B1dep	3	Dependent on previous B1 A correct comparison must be clearly stated together with clear conclusion Do not accept use of 2% or 98% OE
	Total		11	
	TOTAL		75	1

Version 1.0

General Certificate of Education (A-level) January 2011

Mathematics

MS/SS1B

(Specification 6360)

Statistics 1B

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2011 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

М	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\checkmark or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MS/SS1B	IS/SS1B						
Q	Solution	Marks	Total	Comments			
1(a)(i)	r = 0.6 to 0.98	B1		AWFW (≈ 0.8) If answers are not labelled, assume order is (a)(i) then (a)(ii)			
(ii)	r = -0.5 to $-0.02Accept answers as ranges if and only ifcontained entirely within given ranges$	B1	2	AWFW (≈ -0.3) Eg: (a)(i) 0.7 to 0.9 \Rightarrow B1 (a)(ii) -0.6 to -0.4 \Rightarrow B0			
(b)(i)	r = 0.757 r = 0.75 to 0.77 r = 0.65 to 0.85 or	B3 (B2) (B1)	3	AWRT (0.75708) AWFW AWFW			
	Attempt at $\sum x \sum x^2 \sum y \sum y^2$ and $\sum xy$ or Attempt at $S_{xx} S_{yy}$ and S_{xy} Attempt at substitution into correct corresponding formula for r r = 0.757	(M1) (m1) (A1)		271.5 6142.97 1911.9 304650.01 and 43259.17 (all 5 attempted) 0.2825 36.5425 and 2.4325 (all 3 attempted) AWRT			
(ii)	Strong/fairly strong/moderate positive (linear) correlation/relationship/ association/link (but not 'trend') between	Bdep1		Dependent on $0.65 < r < 0.85$ Or equivalent; must qualify strength and indicate positive Bdep0 for very strong/high/average/ medium/some etc.			
	Circumference/size and weight of (cricket) balls	B1	2	Context; providing $0 < r < 1$			
	Total		7				

Mark Scheme – General Certificate of Education (A-level) Mathematics – Statistics 1B – January 20	011
---	-----

MS/SS1B (co	Mark Scheme – General Certificate of Education (A-level) Mathematics – Statistics 1B – January 201						
Q	Solution	Marks	Total	Comments			
	$P(M \cap C) = \frac{175}{645} = \frac{35}{129} = 0.271$	B1	1	AWRT; accept either correct fraction			
(ii)	$P(M) = \frac{519}{645} = \frac{173}{215} = 0.804$ to 0.805	B1	1	AWFW; accept either correct fraction			
(iii)	$P(LD) = \frac{63}{645} = \frac{21}{215} = 0.097$ to 0.098	B1	1	AWFW; accept either correct fraction			
(iv)	$P(L F) = \frac{94}{126} = \frac{47}{63}$ = 0.746	M1 A1	2	Accept $\frac{94}{645} \div \frac{126}{645}$ AWRT			
(v)	$P(M L') = \frac{519 - 255}{645 - 349} = \frac{175 + 54 + 35}{193 + 63 + 40}$	M1 M1		Allow one arithmetic slip Allow one arithmetic slip			
	$=\frac{264}{296}=\frac{132}{148}=\frac{66}{74}=\frac{33}{37}$			Any of these implies M1 M1			
	= 0.891 to 0.893	A1	3	AWFW			
(b)	$P(L \cap L F) = \left(\frac{94}{126} \times \frac{93}{125}\right) \text{ or } \frac{8742}{15750}$	B1		Or $\left(\frac{47}{63} \times \frac{93}{125}\right)$ or $\frac{4371}{7875}$ or $\frac{1457}{2625}$			
	= 0.555	B1	2	AWRT			
(c)	$P(L \cap C \cap (LD + O))$						
	$=\frac{349}{645}\times\frac{193}{644}\times\frac{63+40}{643}$	M1 M1		Correct numerator Correct denominator			
	SC The three correct fractions identified but not multiplied \Rightarrow M1 M0 M0 A0						
	× 6 or 3	M1		Note that a denominator of $\begin{pmatrix} 645\\ 3 \end{pmatrix}$ \Rightarrow M2 (second and third M1 marks)			
	= 0.155 to 0.157	A1	4	AWFW			
	NB: 0.026 with no working \Rightarrow M1 only 0.026 × 6 = 0.156 with no working \Rightarrow 4 marks						
	Total		14				

<u>IS/S</u> S1B (co	Mark Scheme – General Certificate of Education (A-level) Mathematics – Statistics 1B – January 20 S/SS1B (cont)						
Q	Solution	Marks	Total	Comments			
3(a)(i)	$\frac{0.98+1.00}{2} \text{ or } \frac{0.975+1.005}{2} \text{ or}$ $0.98+\frac{0.02}{2} \text{ or } 0.975+\frac{0.03}{2} = 0.99$	B1		AG (At least) one correct expression seen Ignore contradictions Accept any valid equivalent			
(ii)	$\frac{0.97 + 0.98}{2} = 0.975 \text{ and}$ $\frac{1.00 + 1.01}{2} = 1.005$ SC In (a)(i) and (a)(ii) allow 1.0049 or 1.0049 etc	B1	2	Both CAO Can not be implied from (a)(i) Similar forms for lower boundary			
(b)	Mean, $\overline{x} = 1.062$ Standard deviation, <i>s</i> or $\sigma = 0.043$	B1 B2	3	CAO $\sum fx = 106.2$ Ignore notation AWRT $\sum fx^2 = 112.9662$ If B0 B0, M1 can be awarded for attempt at $\frac{\sum fx}{100}$			
(c)(i)	$99\%(0.99) \Rightarrow z = 2.57 \text{ to } 2.58$	B1 (B1)		AWFW (2.5758) $t_{99}(0.995) = 2.626$ AWRT			
	CI for μ is $\overline{x} \pm (z \text{ or } t) \times \frac{(s \text{ or } \sigma)}{\sqrt{n}}$	M1		Used Must have \sqrt{n} with $n > 1$			
	Thus $1.062 \pm 2.5758 \times \frac{0.043}{\sqrt{100 \text{ or } 99}}$	A1F		F on \overline{x} , s/σ and z/t			
	Hence 1.06±0.01 or (1.05, 1.07)	A1	4	AWRT; award even if previous inaccuracies in \overline{x} , s/σ or z/t Dependent on A1F			
(ii)	Volumes/ X / (parent) population may be modelled by a normal distribution / is normally distributed (Ignore contradictions)	B1	1	Or equivalent; not distribution, data, values (in table), sample, <i>n</i> large, nor simply 'It is stated in question'			
(iii)	Sample data grouped Exact sample values unknown / mid- points used \overline{x} and s calculated from grouped data	B1	1	σ unknown s calculated from a sample $ \overline{x} $ (not $μ$) and s are estimates NOT data values rounded			
(d)(i)	CI for μ or CI in (c)(i) > 1 LCL of CI for μ or LCL of CI in (c)(i) > 1	B1		Or equivalent; must compare CI to 1 Dependent on CI in $(c)(i) > 1$			
(ii)	99 or 100 or all sample/ table/ data volumes/ values/ x-values/ cartons are within this range (or none/0 or 1 volumes outside)	B1	2				
	Total		13				

MS/SS1B (co				evel) Mathematics – Statistics 1B – January 201
Q	Solution	Marks	Total	Comments
4 (a)	$R \sim B(15, 0.45)$			
(i)	$P(R \le 5) = 0.26(0)$ to 0.261	B1	1	AWFW (0.2608)
(ii)	$\mathbf{P}(R>10)=1-\mathbf{P}(R\le10)$			Requires '1 –' Accept 3dp rounding or truncation
	=1-(0.9745 or 0.9231)	M1		Can be implied by 0.025 to 0.026 but not by 0.0769 to 0.077
	= 0.025 to 0.026	A1	2	AWFW (0.0255)
(iii)	P(R=6) = 0.4522 - (a)(i)			
	$\mathbf{or} = \binom{15}{6} (0.45)^6 (0.55)^9$	M1		Can be implied by a correct answer
	= 0.191 to 0.192	A1	2	AWFW (0.1914)
(iv)	$P(5 \le R \le 10) = 0.9745 \text{ or } 0.9231 \ (p_1)$	M1		Accept 3dp rounding or truncation $p_2 - p_1 \Rightarrow M0 M0 A0$ $(1 - p_2) - p_1 \Rightarrow M0 M0 A0$ $p_1 - (1 - p_2) \Rightarrow M1 M0 A0$ only providing result > 0
	Minus 0.1204 or 0.2608 (p_2) = 0.853 to 0.855	M1 A1	3	Accept 3dp rounding or truncation AWFW (0.8541)
	Or B (15, 0.45) terms stated for at least 3 values within $4 \le R \le 11$ gives probability = 0.853 to 0.855	(M1) (A2)		Can be implied by a correct answer AWFW (0.8541)
(b)(i)	P(S) = 0.85 plus 1 minus (0.15×0.80) (0.15×0.20)	B1	2	CAO; requires 'plus' or 'minus'
	(0.13×0.80) (0.13×0.20)	B1	2	CAO; not simply 0.12 or 0.03
	= 0.97			AG
	NB: $(0.85 \times 0.20) + 0.80 \Rightarrow B0 B0$ $(0.85 \times 0.20) + (0.85 \times 0.80)$ $+ (0.15 \times 0.80) \Rightarrow B0 B1$			
(ii)	$P(S \ge 48) = 0.81$ to 0.82 or 0.5553 or 0.9372	M2		Accept 3dp rounding or truncation M2 for the three correctly expressed terms for $P_{1}(50, 0.02) = P_{2}(50, 0.07)$ adds d
	= 0.81(0) to 0.811 NB: Answer = 0.4447 or 0.1892 or 0.0628 \Rightarrow M1 only	A1	3	for B (50, 0.03) or B (50, 0.97) added AWFW (0.8108)
(iii)	p = 1 - 0.85 = 0.15	B1		CAO; may be implied by correct answer or correct expression for mean
	Mean, $\mu = 80 \times 0.15 = 12$	B1	2	CAO
	SC Mean = $9.6 \Rightarrow B1$ only Total		15	

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Q	Solution	Marks	Total	Comments
b (gradient) = 1.25 to 1.35(B1)AWFWb (gradient) = 29.95 to 30 (or 659/22) a (intercept) = 29 to 31B2 (B1)AWFWThus y = 30 + 1.28 xB1F5or Attempt at $\sum x \sum x^2 \sum y$ and $\sum xy (\sum y^2)$ or(M1)SF on a and b275 9625 682 and 20575 (47494) (All four attempted)or Attempt at S_{xx} and $S_{yy}(S_{yy})$ (M1)Attempt at S_{xx} and $S_{yy}(S_{yy})$ (M1)Attempt at correct formula for b gradient b (gradient) = 1.28 (or 141/110) a (intercept) = 29.95 to 30 (or 659/22)(m1) (A1)Attempt at correct formula for b gradient b (gradient) = 1.28 x(B1F)Thus $y = 30 + 1.28 x$ (B1F)Accept a and b interchanged only if identified orrectly by a clearly shown equation(B1F)(c)7.45 am $\Rightarrow x = 15$ $\Rightarrow y_{15} = 30 + 1.28 \times 15$ $= 47 \text{ to } 52$ Time before 9.00 am = $9.00 - (7.45 + c's y_{15})$ $= 23 to 28$ M1 A1SC Answer of 17 CAO (use of c's $y_{15} = 58$) gains 2 marksM1 AWFW (138.9)(d)(i) $y_{85} = 30 + 1.28 \times 85 = 135 to 146$ B1IAWFW (138.9)(ii)Extrapolation/ outside/ above range of x-values Implies leaves home at 8.55 so different Implies leaves home at 8.55 so different	5 (a)		B1	1	Or equivalent
a (intercept) = 29 to 31 Thus $y = 30 + 1.28x$ (B1) BIFAWFWor Attempt at $\sum x \sum x^2 \sum y$ and $\sum xy (\sum y^2)$ or Attempt at $\sum x \sum x^2 \sum y$ and $\sum xy (\sum y^2)$ (M1)or Attempt at $\sum x \sum x^2 \sum y$ and $\sum xy (\sum y^2)$ (M1)Attempt at $\sum x \sum x^2 \sum y$ and $\sum xy (\sum y^2)$ (M1)Attempt at $\sum x \sum x^2 \sum y$ and $\sum xy (\sum y^2)$ (M1)Attempt at $\sum x \sum x^2 \sum y$ and $\sum xy (\sum y^2)$ (M1)Attempt at correct formula for b gradient b (gradient) = 1.28 (or 141/110) a (intercept) = 29.95 to 30 (or 659/22)(m1) (A1)Thus $y = 30 + 1.28x$ (B1F)F on a and b Accept a and b interchanged only if identified correctly by a clearly shown equation(B1F)(c)7.45 am $\Rightarrow x = 15$ $\Rightarrow y_{15} = 30 + 1.28 \times 15$ $= 47 to 52$ B1 M1 A1(c)7.45 am $\Rightarrow x = 15$ $= 23 to 28$ B1 A1(d)(i) $y_{85} = 30 + 1.28 \times 85 = 135 to 146$ B1 B1(d)(i) $y_{85} = 30 + 1.28 \times 85 = 135 to 146$ B1 B1(d)(ii) $\sum x_{12} = 58$ gains 2 marks $x values$ Implies leaves home at 8.55 so differentB1 B1(iii)Extrapolation/ outside/ above range of $x values$ Implies leaves home at 8.55 so differentB1 B1(iii)Extrapolation/ outside/ above range of $x values$ B1 $x values$ Or equivalent; 8.55 may be implied	(b)				AWRT; (CAO or equivalent) (1.28182) AWFW Treat rounding of correct answers as ISV
or Attempt at $\sum x \sum x^2 \sum y$ and $\sum xy (\sum y^2)$ or(M1)275 9625 682 and 20575 (47494) (All four attempted)or Attempt at $\sum x$ and $\sum y (\sum y)$ (M1)2750 and 3525 (5210) (Both attempted)Attempt at correct formula for b gradient b (gradient) = 1.28 (or 141/10) 		a (intercept) = 29 to 31	(B1)	~	
Attempt at $\sum x \sum x^2 \sum y$ and $\sum xy (\sum y^2)$ or(M1)275 9625 682 and 20575 (47494) (All four attempted)Attempt at $\sum x \sum x^2 \sum y$ and $\sum xy (\sum y^2)$ (M1)2750 and 3525 (5210) (Both attempted)Attempt at correct formula for b gradient b (gradient) = 1.28 (or 141/10) a (intercept) = 29.95 to 30 (or 659/22)(m1) (A1)AWRT; (CAO or equivalent) AWFW; (CAO or equivalent)Thus $y = 30 + 1.28x$ (B1F)F on a and bAccept a and b interchanged only if identified correctly by a clearly shown equationB1(c)7.45 am $\Rightarrow x = 15$ $\Rightarrow y_{15} = 30 + 1.28 \times 15$ $= 47 to 52$ B1 A1(c)7.45 am $\Rightarrow x = 15$ $\Rightarrow y_{15} = 30 + 1.28 \times 15$ $= 23 to 28$ B1 A1(d)(i) $y_{85} = 30 + 1.28 \times 85 = 135 to 146$ B11AWFW (use of c's $y_{15} = 58$) gains 2 marksSC Answer of 17 CAO (use of c's $y_{15} = 58$) gains 2 marksB1 A1(ii)Extrapolation/ outside/ above range of $x-values$ B1 A11(iii)Extrapolation/ outside/ above range of $x-values$ B1 A10(iii)Extrapolation/ outside/ above range of $x-values$ B1 A10(iiii)Extrapolation/ outside/ above range of $x-v$			BIF	5	F on a and b
Attempt at S_{xx} and $S_{xy}(S_{yy})$ 2750 and 3525 (5210) (Both attempted)Attempt at correct formula for b gradient b (gradient) = 1.28 (or 141/110) a (intercept) = 29.95 to 30 (or 659/22)(m1) (A1)AWRT; (CAO or equivalent) AWFW; (CAO or equivalent)Thus $y = 30 + 1.28x$ (B1F)F on a and bAccept a and b interchanged only if identified correctly by a clearly shown equationB1If a and b are not identified anywher the question, then: 1.25 to 1.35 \Rightarrow B1 29 to 30 \Rightarrow B1(c)7.45 am $\Rightarrow x = 15$ $\Rightarrow y_{15} = 30 + 1.28 \times 15$ $= 47 to 52$ B1 A1CAO; stated, used or implied Use of $10 < x < 20$ AWFW (49.2)Time before 9.00 am = 9.00 - (7.45 + c's y_{15}) $= 23 to 28$ M1 A1May be impliedSC Answer of 17 CAO (use of c's $y_{15} = 58$) gains 2 marksM1 B1M1 AWFW (138.9)(d)(i) $y_{35} = 30 + 1.28 \times 85 = 135 to 146$ B11Mile Aultes Implies leaves home at 8.55 so differentB1 P12					
b (gradient) = 1.28 (or 141/110) a (intercept) = 29.95 to 30 (or 659/22)(A1)AWRT; (CAO or equivalent) AWFW; (CAO or equivalent)Thus $y = 30 + 1.28x$ (B1F)F on a and bAccept a and b interchanged only if identified correctly by a clearly shown equation(B1F)F on a and b(c) 7.45 am $\Rightarrow x = 15$ $\Rightarrow y_{15} = 30 + 1.28 \times 15$ B1 $A1$ CAO; stated, used or implied Use of $10 < x < 20$ $AWFW$ (49.2)Time before 9.00 am = 9.00 - (7.45 + c's y_{15}) $= 23$ to 28M1 $A1$ May be implied $A1$ SC Answer of 17 CAO (use of c's $y_{15} = 58$) gains 2 marksM1 $A1$ MFW (25.8)(d)(i) $y_{85} = 30 + 1.28 \times 85 = 135$ to 146B1 $A1$ AWFW (138.9)(ii)Extrapolation/ outside/ above range of x -values Implies leaves home at 8.55 so differentB1 $A1$ Or equivalent; 8.55 may be implied			(M1)		
Accept a and b interchanged only if identified correctly by a clearly shown equationIf a and b are not identified anywhere the question, then: 1.25 to $1.35 \Rightarrow B1$ 29 to $30 \Rightarrow B1$ (c)7.45 am $\Rightarrow x = 15$ $\Rightarrow y_{15} = 30 + 1.28 \times 15$ $= 47$ to 52 B1 M1 A1CAO; stated, used or implied Use of $10 < x < 20$ AWFW (49.2)Time before 9.00 am = $9.00 - (7.45 + c's y_{15})$ $= 23$ to 28 M1 A1M2 M3 be impliedSC Answer of 17 CAO (use of c's y_{15} = 58) gains 2 marksM1 A15AWFW (25.8)(d)(i) $y_{85} = 30 + 1.28 \times 85 = 135$ to 146 B1 B11AWFW (138.9)(ii)Extrapolation/ outside/ above range of x-values Implies leaves home at 8.55 so differentB1 B12Or equivalent; 8.55 may be implied be Or equivalent; 8.55 may be implied by or equivalent; 8.55 may be implied by		b (gradient) = 1.28 (or 141/110)	(A1)		1
identified correctly by a clearly shown equationthe question, then: 1.25 to $1.35 \Rightarrow B1$ 29 to $30 \Rightarrow B1$ (c) $7.45 \text{ am} \Rightarrow x = 15$ $\Rightarrow y_{15} = 30 + 1.28 \times 15$ $= 47$ to 52 B1 M1 A1CAO; stated, used or implied Use of $10 < x < 20$ AWFW (49.2)Time before 9.00 am = $9.00 - (7.45 + c's y_{15})$ $= 23$ to 28 M1 A1M2 A1May be implied A1(d)(i) $y_{85} = 30 + 1.28 \times 85 = 135$ to 146 B11AWFW (138.9)(ii)Extrapolation/ outside/ above range of x -values Implies leaves home at 8.55 so differentB12Or equivalent Or equivalent; 8.55 may be implied b		Thus $y = 30 + 1.28x$	(B1F)		F on a and b
$\Rightarrow y_{15} = 30 + 1.28 \times 15$ $= 47 \text{ to } 52$ $Time \text{ before } 9.00 \text{ am} = 9.00 - (7.45 + c^{2} \text{ s } y_{15}) = 23 \text{ to } 28$ $SC \text{ Answer of } 17 \text{ CAO} \text{ (use of } c^{2} \text{ s } y_{15} = 58) \text{ gains } 2 \text{ marks}$ $(d)(i) y_{85} = 30 + 1.28 \times 85 = 135 \text{ to } 146$ $B1 1$ $WI With the equivalent (138.9)$ $With the equi$		identified correctly by a clearly shown			1.25 to $1.35 \Rightarrow B1$
$\Rightarrow y_{15} = 30 + 1.28 \times 15$ $= 47 \text{ to } 52$ $Time \text{ before } 9.00 \text{ am} = 9.00 - (7.45 + c^{2} \text{ s } y_{15}) = 23 \text{ to } 28$ $SC \text{ Answer of } 17 \text{ CAO} \text{ (use of } c^{2} \text{ s } y_{15} = 58) \text{ gains } 2 \text{ marks}$ $(d)(i) y_{85} = 30 + 1.28 \times 85 = 135 \text{ to } 146$ $B1 1$ $WI With the equivalent (138.9)$ $With the equi$	(c)	7 45 am \rightarrow r = 15	B1		CAO: stated used or implied
$= 47 \text{ to } 52$ A1AWFW (49.2)Time before 9.00 am = 9.00 - (7.45 + c's y_{15}) = 23 to 28M1 A1M1 5May be implied AWFW (25.8)SC Answer of 17 CAO (use of c's y_{15} = 58) gains 2 marksA15NB: An answer of 8.32 to 8.37 gains B1 M1 A1 M0 A0(d)(i) $y_{85} = 30 + 1.28 \times 85 = 135 \text{ to } 146$ B11AWFW (138.9)(ii)Extrapolation/ outside/ above range of x-values Implies leaves home at 8.55 so differentB12Or equivalent; 8.55 may be implied b	(C)				-
$\begin{array}{c ccccc} 9.00 - (7.45 + c^{'}s y_{15}) \\ = 23 \text{ to } 28 \end{array} \qquad A1 \qquad 5 \qquad AWFW (25.8) \\ \textbf{SC Answer of 17 CAO} \\ (use of c's y_{15} = 58) \text{ gains 2 marks} \\ \textbf{(d)(i)} \qquad y_{85} = 30 + 1.28 \times 85 = 135 \text{ to } 146 \end{array} \qquad B1 \qquad 1 \qquad AWFW (138.9) \\ \textbf{(ii)} \qquad Extrapolation/ \text{ outside/ above range of} \\ x-values \\ Implies leaves home at 8.55 \text{ so different} \end{array} \qquad B1 \qquad 2 \qquad Or equivalent; 8.55 \text{ may be implied by } P_{11} = 2 \\ \textbf{(iii)} \qquad P_{12} = 2 \\ \textbf{(iii)} \qquad P_{13} = 2 \\ \textbf{(iiii)} \qquad P_{13} = 2 \\ \textbf{(iii)} \qquad P_$			A1		AWFW (49.2)
= 23 to 28A15AWFW (25.8)SC Answer of 17 CAO (use of c's $y_{15} = 58$) gains 2 marksNB: An answer of 8.32 to 8.37 gains B1 M1 A1 M0 A0(d)(i) $y_{85} = 30 + 1.28 \times 85 = 135$ to 146B11(ii)Extrapolation/ outside/ above range of x-values Implies leaves home at 8.55 so differentB11ParticularParticular Cor equivalent; 8.55 may be implied by			M1		May be implied
(use of c's $y_{15} = 58$) gains 2 marksgains B1 M1 A1 M0 A0(d)(i) $y_{85} = 30 + 1.28 \times 85 = 135$ to 146B11AWFW (138.9)(ii)Extrapolation/ outside/ above range of x-values Implies leaves home at 8.55 so differentB10PlanePlanePlanePlane(iii)Extrapolation/ outside/ above range of x-values Implies leaves home at 8.55 so differentB10			A1	5	AWFW (25.8)
(ii) Extrapolation/ outside/ above range of x -values Implies leaves home at 8.55 so different B1 Or equivalent; 8.55 may be implied by $x = 1$ Or equivalent;					
x-valuesB1Or equivalentImplies leaves home at 8.55 so different P_1 Q Or equivalent; 8.55 may be implied by	(d)(i)	$y_{85} = 30 + 1.28 \times 85 = 135$ to 146	B1	1	AWFW (138.9)
	(ii)	· · ·	B1		Or equivalent
uante conditions infinutes		Implies leaves home at 8.55 so different traffic conditions	B1	2	Or equivalent; 8.55 may be implied by 5 minutes

$\sigma = 5.04$ A1solving the two given equations by eliminating μ or σ Do NOT allow MC or MR $A1$ AWRT (5.03626)	MS/SS1B (co	AS/SS1B (cont)								
(i) $P(V < 400) = P\left(Z < \frac{400 - 412}{8}\right)$ M1 Standardising 400 with 412 and 8 and/or $(412 - x)$ = P(Z < -1.5) = 1 - P(Z < 1.5) M1 Area change May be implied by a correct answer or an answer $< 0.5= 1 - 0.93319 = 0.066 to 0.067$ A1 3 AWFW (0.06681) (ii) $P(V > 420) = P(Z > 1)$ B1 CAO but ignore inequality and sign May be implied by a correct answer $= 1 - P(Z < 1) = 1 - 0.84134$ = 0.158 to 0.159 B1 2 AWFW (0.15866) (iii) $P(V = 410) = 0$ or zero or impossible B1 1 Ignore any working B0 for 'impossible to calculate' or 'no answer' (b)(i) A statement/indication that $(-) 1.6449$ and/or 2.3263 are z-values B1 $z = \pm 1.6449$ and/or $z = \pm 2.3263$ or sketch of normal curve with at least one z-value marked Do not allow $\Phi(0.99) = 2.3263$, cic but allow $\Phi^{-1}(0.99) = 2.3263$ more $z = \psi - \mu}{\sigma}$ or $v = \mu + 2\sigma$ with 400 and/or 420 (condone sign errors) The two given equations correctly derived A1 3 AG; watch for sign inconsistencies (ii) Thus $20 = (2.3263 + 1.6449)\sigma$ M1 Asensible (one that would lead to values required if completed correctly) attempt at solving the two given equations by climinating μ or σ Do NOT allow MC or MR AT	Q	Solution	Marks	Total	Comments					
(i) $P(V < 400) = P\left(Z < \frac{400 - 412}{8}\right)$ M1 Standardising 400 with 412 and 8 and/or $(412 - x)$ = P(Z < -1.5) = 1 - P(Z < 1.5) M1 Area change May be implied by a correct answer or an answer $< 0.5= 1 - 0.93319 = 0.066 to 0.067$ A1 3 AWFW (0.06681) (ii) $P(V > 420) = P(Z > 1)$ B1 CAO but ignore inequality and sign May be implied by a correct answer $= 1 - P(Z < 1) = 1 - 0.84134$ = 0.158 to 0.159 B1 2 AWFW (0.15866) (iii) $P(V = 410) = 0$ or zero or impossible B1 1 Ingore any working B0 for "impossible to calculate" or "no answer" (b)(i) A statement/indication that $(-) 1.6449$ and/or 2.3263 are z-values B1 2 Simple statement that $z = \pm 1.6449$ and/or $z = \pm 2.3263$ or sketch of normal curve with at least one z-value marked Do not allow $\Phi(0.99) = 2.3263$, etc but allow $\Phi^{-1}(0.99) = 2.3263$ more $= \psi - \mu + 2\sigma$ with 400 and/or 420 (condone sign errors) The two given equations correctly derived A1 3 AG; watch for sign inconsistencies (ii) Thus $20 = (2.3263 + 1.6449)\sigma$ M1 Asensible (one that would lead to values required if completed correctly) attempt at solving the two given equations by climinating μ or σ Do NOT allow MC or MR AWRT (5.03626)	6(a)	Volume, $V \sim N(412, 8^2)$								
$= P(Z < -1.5) = 1 - P(Z < 1.5)$ MI May be implied by a correct answer or an answer < 0.5 $= 1 - 0.93319 = 0.066 \text{ to } 0.067$ A1 A May be implied by a correct answer or an answer < 0.5 $= 1 - 0.93319 = 0.066 \text{ to } 0.067$ A1 A May be implied by a correct answer or an answer < 0.5 CAO but ignore inequality and sign May be implied by a correct answer $= 1 - P(Z < 1) = 1 - 0.84134$ $= 0.158 \text{ to } 0.159$ B1 A WFW (0.15866) I Generation working B0 for 'impossible to calculate' or 'no answer' B1 B1 A statement/indication that (-) 1.6449 and/or 2.3263 are z-values D0 not allow $\Phi^{-1}(0.99) = 2.3263$, etc but allow $\Phi^{-1}(0.99) = 2.3263$, etc but allow $\Phi^{-1}(0.99) = 2.3263$ D0 not award for z-value(s) simply embedded in standardisation statement(s) A clear use of $z = \frac{v - \mu}{\sigma}$ or $v = \mu + 2\sigma$ with 400 and/or 420 (condone sign errors) The two given equations correctly derived A1 B CC Immediate algebraic use of $v - \mu = z\sigma \Rightarrow B1 M1 A0$ AG; watch for sign inconsistencies (ii) Thus $20 = (2.3263 + 1.6449)\sigma$ M1 A sumple correctly attempt at solving the two given equations by eliminating $\mu \circ \sigma$ Do NOT allow MC or MR AWRT (5.03626)			M1		-					
Image: a = 1-0.333 (y = 0.066 (0.007)Image: a = 1 - 0.333 (y = 0.066 (0.007)Image: a = 1 - 0.333 (y = 0.066 (0.007)(ii) $P(V > 420) = P(Z > 1)$ B1Image: a = 1 - 0.233 (y = 0.066 (0.007) $= 1 - P(Z < 1) = 1 - 0.84 (134)$ B12AWFW (0.15866)(iii) $P(V = 410) = 0$ or zero or impossibleB11Ignore any working B0 for 'impossible to calculate' or 'no answer'(b)(i)A statement/indication that (-) 1.6449 and/or 2.3263 are z-valuesB11Simple statement that $z = \pm 1.6449$ and/or $z = \pm 2.3263$ or sketch of normal curve with at least one z-value markedDo not allow $\Phi(0.99) = 2.3263$ Do not award for z-value(s) simply embedded in standardisation statement(s)M1SC Immediate algebraic use of $v - \mu = z\sigma \Rightarrow B1 M1 A0$ (ii)The two given equations correctly derivedA13AG; watch for sign inconsistencies(iii)Thus $20 = (2.3263 + 1.6449)\sigma$ M1A sensible (one that would lead to values required if completed correctly attempt at solving the two given equations by eliminating $\mu \circ \sigma$ Do NOT allow MC or MR $\sigma = 5.04$ A1A1AWRT (5.03626)		= P(Z < -1.5) = 1 - P(Z < 1.5)	M1		May be implied by a correct answer or an					
Image: Non-Section of the section		=1-0.93319=0.066 to 0.067	A1	3	AWFW (0.06681)					
$ \begin{array}{ c c c c c c } \hline & = 0.158 \mbox{ to } 0.159 & B1 & B1 & 2 & AWFW & (0.15866) \\ \hline & & \\ \hline \hline & & \\ \hline & & \\ \hline & & \hline$	(ii)	P(V > 420) = P(Z > 1)	B1							
(ii) $P(v = 410) = 0$ of 2e10 of hipossible P(v = 410) = 0 of 0 hipossible P(v = 410) = 0 of			B1	2	AWFW (0.15866)					
B1 $z = \pm 2.3263$ or sketch of normal curve with at least one z-value markedDo not allow $\Phi(0.99) = 2.3263$, etc but allow $\Phi^{-1}(0.99) = 2.3263$ Do not award for z-value(s) simply embedded in standardisation statement(s)B1 $z = \pm 2.3263$ or sketch of normal curve with at least one z-value markedA clear use of $z = \frac{v - \mu}{\sigma}$ or $v = \mu + 2\sigma$ with 400 and/or 420 (condone sign errors)M1SC Immediate algebraic use of $v - \mu = z\sigma \Rightarrow$ B1 M1 A0(ii)The two given equations correctly derived $\sigma = 5.04$ A13AG; watch for sign inconsistencies(iii)Thus $20 = (2.3263 + 1.6449)\sigma$ M1A sensible (one that would lead to values required if completed correctly) attempt at solving the two given equations by eliminating μ or σ Do NOT allow MC or MR	(iii)	P(V = 410) = 0 or zero or impossible	B1	1	B0 for 'impossible to calculate' or 'no					
Do not allow $\Phi(0.99) = 2.3263$, etc but allow $\Phi^{-1}(0.99) = 2.3263$ Do not award for z-value(s) simply embedded in standardisation statement(s)M1SC Immediate algebraic use of $v - \mu = z\sigma \Rightarrow$ B1 M1 A0A clear use of $z = \frac{v - \mu}{\sigma}$ or $v = \mu + 2\sigma$ with 400 and/or 420 (condone sign errors)M13AG; watch for sign inconsistencies(ii)The two given equations correctly derivedA13AG; watch for sign inconsistencies(iii)Thus $20 = (2.3263 + 1.6449)\sigma$ M1A sensible (one that would lead to values required if completed correctly) attempt at solving the two given equations by eliminating μ or σ Do NOT allow MC or MR $\sigma = 5.04$ A1A1AWRT (5.03626)	(b)(i)		B1		$z = \pm 2.3263$ or sketch of normal curve					
σ M1 $v - \mu = z\sigma \Rightarrow B1 M1 A0$ with 400 and/or 420 (condone sign errors)A13AG; watch for sign inconsistencies(ii)The two given equations correctly derivedA13AG; watch for sign inconsistencies(iii)Thus $20 = (2.3263 + 1.6449)\sigma$ M1A sensible (one that would lead to values required if completed correctly) attempt at solving the two given equations by eliminating μ or σ Do NOT allow MC or MR $\sigma = 5.04$ A1A1AWRT (5.03626)		allow $\Phi^{-1}(0.99) = 2.3263$ Do not award for <i>z</i> -value(s) simply								
(ii) Thus $20 = (2.3263 + 1.6449)\sigma$ M1 A sensible (one that would lead to values required if completed correctly) attempt at solving the two given equations by eliminating μ or σ Do NOT allow MC or MR $\sigma = 5.04$ A1 AWRT (5.03626)		σ	M1		5					
Inds $20 = (2.3263 \pm 1.6449) \delta$ MIA sensible (one that would lead to values required if completed correctly) attempt at solving the two given equations by eliminating μ or σ Do NOT allow MC or MR $\sigma = 5.04$ A1AWRT (5.03626)		The two given equations correctly derived	A1	3	AG; watch for sign inconsistencies					
	(ii)	Thus $20 = (2.3263 + 1.6449)\sigma$	M1		required if completed correctly) attempt at solving the two given equations by eliminating μ or σ					
$\mu = 408$ A1 2 AWDT (409 294)		$\sigma = 5.04$	A1		AWRT (5.03626)					
$\mu = 100$ A1 $J = AWK1(400.204)$		$\mu = 408$	A1	3	AWRT (408.284)					
Total 12		•								
TOTAL 75				75						

Version 1.0

General Certificate of Education (A-level) June 2011

Mathematics

MS/SS1B

(Specification 6360)

Statistics 1B

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2011 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

Key to mark scheme abbreviations

М	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\sqrt{or} ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
с	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1 (a)(i)	Mode = 253	B1	1	САО
(ii)	Median = 252	B1		САО
	Upper quartile = 253 Lower quartile = 250	B1		CAO; either May be implied by $IQR = 3$
	Interquartile range = 3	B1	3	CAO; do not award if seen to be not based on 253 and 250
(b)(i)	Range = 271 - 227 = 44	B1	1	CAO; do not award if seen to be not based on 271 and 227
(ii)	Mean, $\overline{x} = 251$ to 251.4 Award B1 if divisor seen not to be 85 but answer in range	B2		AWFW $\sum fx = 21352$ $\bar{x} = 251.2$
	Note: If B0 then can award M1 for attempt at $\sum fx \div 85$ seen			Ignore notation and condone incorrect midpoints (eg upper or lower limits used)
	Standard deviation, s or $\sigma = 4.21$ to 4.28 Award B1 if divisor seen not to be 84 or 85 but answer in range	B2	4	AWFW $\sum fx^2 = 5365134$ $\sigma = 4.217$ $s = 4.24$
(c)	Interquartile range (IQR)	B1		Named
	Not affected by unknown/large/small/extreme/ outlying/227 & 271 values	Bdep1	2	Or equivalent Dependent on previous B1 Only negative comments on other measures ⇒ Bdep
	OR			More than one named \Rightarrow B0 Bdep0 Range \Rightarrow B0 Bdep0
	Standard deviation (s or σ)	(B1)		Named
	Uses all data values	(Bdep1)		Or equivalent Dependent on previous (B1) Only negative comments on other measures \Rightarrow Bdep
	Total		11	

Q 2	Solution	Marks	Total	Comments
2				
(a)(i)	<u>Diameter</u> , $D \sim N(57.15, 0.04^2)$			
	$P(D < 57.2) = P\left(Z < \frac{57.2 - 57.15}{0.04}\right)$	M1		Standardising 57.2 with 57.15 and 0.04; allow (57.15 – 57.2)
	= P(Z < 1.25)	A1		CAO; ignore inequality and sign May be implied by a correct answer
	= 0.894 to 0.895	A1	3	AWFW (0.8943
(ii)	P(57.1 < D < 57.2)			Allow over if incompatistandordising
	= p - (1 - p)	M1		Allow even if incorrect standardising providing $p - (1-p)$ seen May be implied by a correct answer
	$= 2 \times 0.89435 - 1 = 0.788$ to 0.79(0)	A1	2	AWFW (0.78870
(b)(i)				
	P(16 balls < 57.2) = p^{16} with 0	M1		Any probability to power 16 or $1 - p^1$ do not allow multiplying factors <i>If only seen in (b)(ii), allow just M1</i>
	$= [(a)(i)]^{16} = (0.89435)^{16} = 0.166 \text{ to } 0.17(0)$	A1	2	AWFW (0.1675
(ii)				CAO
(11)	Variance of $\overline{D}_{16} = 0.04^2/16 = 0.0001$ or	B1		Stated or used (see Notes below)
	Sd of $\overline{D}_{16} = 0.04/\sqrt{16} = 0.01$	DI		CAO If only seen in (b)(i), allow just B1
	$P(\overline{D}_{16} > 57.16) = P\left(Z > \frac{57.16 - 57.15}{0.01}\right)$	M1		Standardising 57.16 with 57.15 and 0.01 or equivalent ; allow (57.15 – 57.16)
	= P(Z > 1) = 1 - P(Z < 1)	m1		Area change May be implied by a correct answer or answer < 0.5
	= 1 - 0.84134 = = 0.158 to 0.159	A1	4	AWFW (0.1586) $(1 - answer) \Rightarrow$ B1 M1 max
	Notes:			Marile true according to the second second
	Ignore partial/incomplete attempts at (ii) in (i) if followed by correct method			Mark two complete answers in (i) as two attempts so $(0 + 2)/2 \implies 1$ max
	Answer to (i) or (ii) repeated			Mark as per scheme; thus (2 max, 0) or (0, 4 max)
	Total		11	

Q	(cont) Solution	Marks	Total	Comments
3				
(a)	b (gradient) = 191 b (gradient) = 190 to 192	B2 (B1)		CAO AWFW Treat rounding of correct answers as ISW
	a (intercept) = 115 a (intercept) = 93 to 137 OR	B2 (B1)	4	CAO AWFW
	OR			
	Attempt at $\sum x \sum x^2 \sum y \& \sum xy \left(\sum y^2\right)$			154345230219& 677042(133170091)(all 4 attempted)
	or Attempt at S_{xx} & S_{xy} (S_{yy})	(M1)		12224 & 64 (2714668) (both attempted)
	Attempt at correct formula for b (gradient) b (gradient) = 191 a (intercept) = 115	(m1) (A1) (A1)		CAO CAO
	Accept $a \& b$ interchanged only if identified and used correctly in (ii)			If a and b are not identified anywhere in question, then: 190 to 192 \Rightarrow B1 93 to 137 \Rightarrow B1
(ii)	$y_{24} = 115 + 191 \times 24$ = £4699 or £4700 = £4650 to £4750 SC: (4290 + 5057)/2 = 4673 to 4674 \Rightarrow B1	B2 (B1)	2	Either; ignore units (£469 AWFW
	If B0 but clear evidence of correct use of c's equation with $x = 24$	(M1)		
(iii)	(Maximum) temperature (in February) is likely to be/will be lower/different Must imply a temperature comparison with July	B1	1	Or equivalent; must be clear indication that (max) temperature less than/different Extrapolation/not July/not summer/winter/etc \Rightarrow B0
(iv)	Rainfall amount/wind strength/sunshine hours/ daylight hours/opening times/day of week/ visitor numbers/public holidays/school holidays/	B1	1	Or equivalent Accept any sensible reason; do not penalise for dubious 'variable name' so, for example, accept 'rainfall'
	local attractions/etc Allow if at least 1 variable correctly identified			So, for example, accept funnant Minimum/average temp/etc \Rightarrow BC Quality or price of food/ staff/etc \Rightarrow B0
	Total		8	

MS/SS1B ((cont)
-----------	--------

Q	Solution	Marks	Total	Comments
3				
(b)	Any line (straight, freehand, curve) from $(0, -1)$ on Figure 1 or from $(0, 5)$ on Figure 2	B1		Accept clear marking of $(0, -1)$ or $(0, 5)$ with no line
(i)	Straight, not freehand, line from (0, -1) to (40, 5) on F1 only; allow line extensions and only very minor inaccuracies in points plotted	B1		(10, 0.5) (20, 2) (30, 3.5)
(ii)	Straight , not freehand, line from (0, 5) to (10, 1) on F2 only; allow line extensions and only very minor inaccuracies in points plotted	B1	3	(2, 4.2) (4, 3.4) (6, 2.6) (8, 1.8)
	Notes: Both lines on F1 \Rightarrow B1 B1 B0 max Both lines on F2 \Rightarrow B1 B0 B1 max >1 undeleted line on either F1 or F2 \Rightarrow 2 max			
	Total		3	

Q	Solution	Marks	Total	Comments
4 (a)	$\sqrt{\frac{184.5}{49}}$ or $1.92 \times \sqrt{\frac{50}{49}}$ = 1.94	B1	1	Fully correct expression or equivalent must be seen Note: $s = \sqrt{184.5/50} = 1.939 \implies$ AG
(b) (i)	96% (0.96) $\Rightarrow z = 2.05$ to 2.06	B1		AWFW (2.05
	CI for μ is $\overline{x} \pm z \times \frac{s}{\sqrt{n}}$	M1		Used with 251.1 and 1.94 correct Must have \sqrt{n} with $n > 1$
	Thus $251.1 \pm 2.0537 \times \frac{1.94}{\sqrt{50 \text{ or } 49}}$	AF1		F on z only
	Hence 251.1 ± 0.6 or $(250.5, 251.7)$	Adep1	4	CAO/AWRT Dependent on AF1 but not on z so can be gained using an incorrect z AWRT
(ii)	Claim is $\mu > 250$			
	Clear correct comparison of 250 with LCL or CI	BF1		F on CI $(250 < LCL \text{ or })$
	Claim is supported/reasonable/correct/true/etc Must be consistent with c's comparison	Bdep1	2	Dependent on BF1
(c)	$\overline{x} - ns = 251.1 - n \times 1.94 < 250$ SC: Quoted values of 249.2, 247.2 or 245.3 (AWRT) \Rightarrow M1	M1		Allow any multiple of 1.94 Must clearly indicate the value of a numerical expression giving a result less than 250
	so Some individual packets are likely to/will contain less than 250 grams	A1	2	Or equivalent
	Total		9	

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	<u>Q</u>		Solu	tion		Marks	Total	Comments
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								
W 0.55 0.10 0.65 W' 0.15 0.20 0.35 $Votes:$ 0.70 0.30 1.00 $Use of Venn or tree diagrams without tablecompletion \Rightarrow B0 B0 B0B1B1Printed table not completed but constructed andcompleted on Page 12/13\Rightarrow B1 B1 B1 maxB1(ii)P(purchases exactly one)= 0.025 or 25/100 or 5/20 or 1/4A12(iii)P(W \cup J) = 0.88/4 P(W) + P(J) = 1.35B1aVote MA12CAO(iii)P(W \cup J) = 0.55 (>0); accept if indicatedin a Venn diagramor P(W) + P(J) = 1.35 > 0 or impossibleB1B1B1B1B1B2P(W \mid J) = 0.55/0.70 = 0.79B18/4 = P(W) = 0.65Bdep13or = P(W \cap J) = 0.55/0.70 = 0.79B18/4 = P(W) = 0.65Bdep13or = P(W \otimes J) = 0.55/0.70 = 0.79B1B1B1B1B2B1B1B1B2B1B1B1B2B1<$			J	J'	Total	B1		0.35 and 0.7 CAO
Image: Total $\overline{\text{Total}}$ $\overline{0.30}$ $\overline{1.00}$ B130.1 and 0.2; CAONotes: Use of Venn or tree diagrams without table completion \Rightarrow B0 B0 B0 Printed table not completed but constructed and completed on Page 12/13 \Rightarrow B1 B1 B1 max30.1 and 0.2; CAOAccept fractional answers Do not accept percentagesOnly c's equivalent to 0.10 shown and added to 0.15 Can be implied by correct answer(ii)P($W \cap J'$) + 0.15 $=$ 0.25 or 25/100 or 5/20 or 1/4M1 A1CAO(iii)P($W \cup J$) = 0.85 & $\&/\neq$ P(W) + P(J) = 1.35B1or P($W \cap J$) = 0.55 (>0); accept if indicated in a Venn diagram or P(W) + P(J) = 0.55/0.70 = 0.79B1B1B2On ot accept use of W' and/or J AWRTAny one of these three seen Ignore contradictions, explanations justificationsor P($W \mid J$) = 0.55/0.65 = 0.85 $\&/\neq$ P(W) = 0.65On ot allow multiplying factors in (b)(i)Do not allow multiplying factors in (b)(ii)P(2) = 0.85 × 0.60 × 0.45 = 0.2295 $+$ 0.85 × 0.60 × 0.455 = 0.1870 $+$ 0.15 × 0.60 × 0.55 = 0.0495On P(2) = 0.85 × 0.60 × 0.455 = 0.2295 $+$ 0.456 × 0.2265 $+$ 0.2805On or P(2) = 0.85 × 0.60 × 0.455 = 0.2895On or any marks		W	0.55			DI		
Note: Use of Venn or tree diagrams without table completion \Rightarrow B0 B0 B0 Printed table not completed but constructed and completed on Page 12/13 \Rightarrow B1 B1 B1 maxB130.1 and 0.2; CAO Accept fractional answers Do not accept percentages(ii)P(purchases exactly one) $= P(W \cap J') + 0.15$ $= 0.25$ or 25/100 or 5/20 or 1/4M1 A12Only c's equivalent to 0.10 shown and added to 0.15 Can be implied by correct answer CAO (iii)P($W \cup J$) = 0.8 & &/ \neq P(W) + P(J) = 1.35 $= 0.25$ or 25/100 or 5/20 or 1/4M1 A12CAO(iii)P($W \cup J$) = 0.8 & &/ \neq P(W) + P(J) = 1.35 $= 0.25 (>0$; accept if indicated in a venn diagram or P(W) + P(J) = 1.35 >0 or impossibleB1 B1Any one of these three seen Ignore contradictions, explanations justifications(B)P($W \mid J$) = 0.55/0.70 = 0.79 & $&/{e} P(W) = 0.65$ B1 $= 0.027$ or 27/100B13(b)Do not allow multiplying factors in (b) (f)P($W \cup J$) = 0.45 to 0.46 & $&/{e} P(W \cap J) = 0.55$ B1 $= 0.027$ or 27/1000B1 2 (iii)P(2) = 0.85 × 0.60 × 0.45 = 0.2295 $+ 0.85 \times 0.40 \times 0.55 = 0.1870$ $+ 0.15 \times 0.60 \times 0.55 = 0.0495$ B1 2 2(iii)P(2) = 0.85 × 0.60 × 0.45 = 0.2295 $+ 0.85 \times 0.60 \times 0.55 = 0.0495$ M2 $M1$ Are ether method: At least two bold expressions correct Can be implied by correct answer for second method: M1 in the interval of the method: At least two bold expressions correct Can be implied by correct answer for second method: M1 in the interval of the method: M1 in the interval of the method: M1 in the interval of the method: M2 in the interval o		W'	0.15	0.20	0.35	B1		0.55 ; CAO
Notes: Use of Venn or tree diagrams without table completed on Page 12/13 \Rightarrow B1 B1 B1 maxAccept fractional answers Do not accept percentages(ii) P(purchases exactly one) = $P(W \cap J') + 0.15$ = 0.25 or $25/100$ or $5/20$ or $1/4$ M1 A1Only c's equivalent to 0.10 shown and added to 0.15 Can be implied by correct answer 2 CAO(iii) (iii) (iiii) (iiii) (iiii) P(W $-J$) = 0.58 & $k/\neq P(W) + P(J) = 1.35$ or $P(W \cap J) = 0.55$ (>0); accept if indicated in a Venn diagram or $P(W) + P(J) = 1.35 > 0$ or impossibleB1 Any one of these three seen Ignore contradictions, explanations justifications(B) (B) (iiiii) (iiii) (iiiii) (iiiii) (iiiii) (iiiiii)P(W $-J$) = $0.55/0.70 = 0.79$ $8.7 \pm P(W) = 0.65$ or $P(J W) = 0.55/0.65 = 0.85$ $8/\neq P(W) = 0.65$ or $P(J W) = 0.55/0.65 = 0.85$ $8/\neq P(W \cap J) = 0.55$ B1 B1 B1(iiii) (iiiiii) P(2) = $0.35 \times 0.60 \times 0.45 = 0.2295 + 0.365 \times 0.049 \times 0.55 = 0.0495$ or $= 1 - (0.027 + 0.2265 + 0.2805)$ B1 B1 M2 M2 M2 M2Can be implied by correct answer or $1 - (0.227 + 0.2265 + 0.2805)$		Total	0.70	0.30	1.00			
Use of Venn or tree diagrams without table completion \Rightarrow B0 B0 B0 Printed table not completed but constructed and completed on Page 12/13 \Rightarrow B1 B1 B1 maxAccept fractional answers Do not accept percentages(ii) (iii) (A)P(purchases exactly one) $= P(W \cap J') + 0.15$ $= 0.25 \text{ or } 25/100 \text{ or } 5/20 \text{ or } 1/4$ M1 A1CAL(iii) (A)P(W $\cup J$) = 0.8 $\&/\neq P(W) + P(J) = 1.35$ M1 $= 0.25 \text{ or } 25/100 \text{ or } 5/20 \text{ or } 1/4$ A1CAL(iii) (A)P(W $\cup J$) = 0.8 $\&/\neq P(W) + P(J) = 1.35$ B1 B1B1 B1Any one of these three seen Ignore contradictions, explanations justifications(iii) (B)P(W $\cup J$) = 0.55/0.70 = 0.79 $\&/\neq P(W) = 0.65$ B1 $= 0.25/0.65 = 0.85$ $\&/\neq P(W) = 0.65$ B1 B1(b) (b) (c) (c)Do not allow multiplying factors in (b) (ψ) B1 $= 0.027 \text{ or } 27/1000$ B1 B1 $= 1 - (0.027 + 0.2265 + 0.2805)$ B1 2 (ii) (iii)P(2) = 0.85 $\times 0.60 \times 0.45 = 0.2295$ $+ 0.85 \times 0.40 \times 0.55 = 0.0495$ or $= 1 - (0.027 + 0.2265 + 0.2805)$ M2 M2 M2Can be implied by correct answer CAO						B1	3	0.1 and 0.2 ; CAO
completion \Rightarrow B0 B0 B0 Printed table not completed but constructed and completed on Page 12/13 \Rightarrow B1 B1 B1 maxDo not accept percentages(ii)P(purchases exactly one) = $P(W \cap J') + 0.15$ = 0.25 or 25/100 or 5/20 or 1/4M1 A12(iii)P(W $\cup J$) = 0.8 &/ \neq P(W)+P(J) = 1.35 or P(W $\cap J$) = 0.55 (>0); accept if indicated in a Venn diagram or P(W)+P(J) = 1.35 >0 or impossibleB1 B1(B)P(W $\cup J$) = 0.55/0.70 = 0.79 & $&& & & & & & & & & & & & & & & & & &$			· 1'	•41	4 / 1 1			A agent functional answers
Printed table not completed but constructed and completed on Page 12/13 \Rightarrow B1 B1 B1 maxOnly c's equivalent to 0.10 shown and added to 0.15 Can be implied by correct answer(ii)P(purchases exactly one) = 0.25 or 25/100 or 5/20 or 1/4M1 A12Only c's equivalent to 0.10 shown and added to 0.15 Can be implied by correct answer(iii)P(W $\cup J$) = 0.8 & & # P(W) + P(J) = 1.35 or P(W $\cap J$) = 0.55 (>0); accept if indicated in a Venn diagram or P(W) + P(J) = 1.35 >0 or impossibleB1Any one of these three seen Ignore contradictions, explanations justifications(B)P(W $\mid J$) = 0.55/0.70 = 0.79 & $& & & & & & & & & & & & & & & & & & $			-		nout table			
(ii) $\begin{array}{ll} \text{P}(\text{purchases exactly one}) &= P(W \cap J') + 0.15 & \text{M1} \\ &= 0.10 + 0.15 &= 0.25 \text{ or } 25/100 \text{ or } 5/20 \text{ or } 1/4 & \text{A1} & 2 & \text{CAO} \\ \end{array}$ (iii) $\begin{array}{ll} P(W \cup J) = 0.8 & \&/\neq & P(W) + P(J) = 1.35 & \text{B1} \\ \text{or } P(W \cap J) = 0.55 & (.0); \text{ accept if indicated} \\ \text{in a Venn diagram} \\ \text{or } P(W) + P(J) = 1.35 > 0 \text{ or impossible} \\ \end{array}$ (B) $\begin{array}{ll} P(W \mid J) = 0.55/(.70) = 0.79 & \text{B1} \\ \&/\neq & P(W) = 0.65 & \text{or } 8 \\ \&/\neq & P(W) = 0.65 & \text{o.85} \\ \&&\&\neq & P(J) = 0.70 & \text{or } P(W) \times P(J) = 0.45 \text{ to } 0.46 \\ \&&\&& & \& & & \swarrow & P(W \cap J) = 0.55 \\ \end{array}$ (b) $\begin{array}{ll} \text{Do not allow multiplying factors in (b)} \\ P(0) = 0.15 \times 0.40 \times 0.45 & \text{model} \\ &= 0.027 \text{ or } 27/1000 & \text{B1} \\ \hline \end{array}$ (i) $\begin{array}{ll} P(2) = 0.85 \times 0.60 \times 0.45 = 0.2295 \\ &+ 0.85 \times 0.40 \times 0.55 = 0.1870 \\ &+ 0.15 \times 0.60 \times 0.55 & = 0.0495 \\ \text{or } \end{array}$ (ii) $\begin{array}{ll} P(2) = 0.85 \times 0.60 \times 0.45 = 0.2295 \\ &+ 0.85 \times 0.40 \times 0.55 = 0.1870 \\ &+ 0.15 \times 0.60 \times 0.55 & = 0.0495 \\ \text{or } \end{array}$ (ii) $\begin{array}{ll} P(2) = 0.85 \times 0.60 \times 0.45 = 0.2295 \\ &+ 0.85 \times 0.40 \times 0.55 & = 0.1870 \\ &+ 0.15 \times 0.60 \times 0.55 & = 0.0495 \\ \text{or } \end{array}$ (ii) $\begin{array}{ll} P(2) = 0.85 \times 0.60 \times 0.45 = 0.2295 \\ &+ 0.85 \times 0.40 \times 0.55 & = 0.1870 \\ &+ 0.15 \times 0.60 \times 0.55 & = 0.0495 \\ \text{or } \end{array}$ (ii) $\begin{array}{ll} P(2) = 0.85 \times 0.60 \times 0.45 & = 0.2295 \\ &+ 0.85 \times 0.40 \times 0.55 & = 0.1870 \\ &+ 0.15 \times 0.60 \times 0.55 & = 0.0495 \\ \text{or } \end{array}$ (iii) $\begin{array}{ll} P(2) = 0.85 \times 0.60 \times 0.45 & = 0.2295 \\ &+ 0.85 \times 0.40 \times 0.55 & = 0.0495 \\ \text{or } \end{array}$ (iv) $\begin{array}{ll} P(2) = 0.85 \times 0.60 \times 0.55 & = 0.1870 \\ &+ 0.15 \times 0.60 \times 0.55 & = 0.0495 \\ \text{or } \end{array}$ (M1) $\begin{array}{ll} For either method: \\ At least two bold expressions correct \\ Can be implied by correct answer \\ For second method: \\ Must have '1 - ' \text{ for any marks} \end{array}$					onstructed and			
(ii) $\begin{array}{lll} P(purchases exactly one) &= P(W \cap J') + 0.15 \\ = 0.10 + 0.15 \\ = 0.25 \text{ or } 25/100 \text{ or } 5/20 \text{ or } 1/4 & A1 \\ 2 & CAO \\ (iii) \\ (A) & P(W \cup J) = 0.8 & \&/\neq & P(W) + P(J) = 1.35 \\ \text{or } P(W \cap J) = 0.55 & (>0); \text{ accept if indicated} \\ \text{in a Venn diagram} \\ \text{or } P(W) + P(J) = 1.35 > 0 \text{ or impossible} \\ (B) & P(W \mid J) = 0.55 & (>0); \text{ accept if indicated} \\ \text{in } a \text{ Venn diagram} \\ \text{or } P(W) + P(J) = 1.35 > 0 \text{ or impossible} \\ B1 \\ \&/\neq & P(W) = 0.65 \\ \text{or } P(U \mid J) = 0.55/0.70 = 0.79 \\ \&/\neq & P(W) = 0.65 \\ \text{or } P(W \mid J) = 0.55/0.65 = 0.885 \\ \&/\neq & P(J) = 0.70 \\ \text{or } P(W) \times P(J) = 0.45 \text{ to } 0.46 \\ \&/\neq & P(W \cap J) = 0.55 \\ \end{array} $ (b) $Do \text{ not allow multiplying factors in (b)} \\ P(0) = 0.15 \times 0.40 \times 0.45 \\ = 0.027 \text{ or } 27/1000 \\ B1 \\ (i) & P(2) = 0.85 \times 0.60 \times 0.45 = 0.2295 \\ + 0.85 \times 0.40 \times 0.55 = 0.1870 \\ + 0.15 \times 0.60 \times 0.55 = 0.0495 \\ \text{or} & = 1 - (0.027 + 0.2265 + 0.2805) \\ \end{array}$ M1 A1 2 CAO Any one of these three seen Ignore contradictions, explanations justifications AWFW CAD ADD ADD ADD ADD ADD ADD ADD ADD ADD			-					
(iii) (A) $P(W \cup J) = 0.8 \&/\neq P(W) + P(J) = 1.35$ or $P(W \cap J) = 0.55$ (>0); accept if indicated in a Venn diagram or $P(W) + P(J) = 1.35 > 0$ or impossible (B) $P(W \mid J) = 0.55/0.70 = 0.79$ $\&/\neq P(W) = 0.65$ or $P(J \mid W) = 0.55/0.70 = 0.79$ $\&/\neq P(W) = 0.65$ or $P(J \mid W) = 0.55/0.65 = 0.85$ $\&/\neq P(J) = 0.70$ or $P(W) \times P(J) = 0.45$ to 0.46 $\&/\neq P(W \cap J) = 0.55$ (b) Do not allow multiplying factors in (b) P(0) = 0.15 × 0.40 × 0.45 = 0.2295 + 0.85 × 0.60 × 0.45 = 0.2295 $+ 0.85 × 0.60 × 0.55 = 0.1870$ (i) $P(2) = 0.85 \times 0.60 \times 0.45 = 0.2295$ $+ 0.15 \times 0.60 \times 0.55 = 0.0495$ or $P(J \mid W) = 0.255 + 0.2805$) (i) $P(2) = 0.85 \times 0.60 \times 0.45 = 0.2295$ $+ 0.15 \times 0.60 \times 0.55 = 0.0495$ or $P(J \mid W) = 0.2265 + 0.2805$)				, , 2.				
(iii) (A) $P(W \cup J) = 0.8 \&/\neq P(W) + P(J) = 1.35$ or $P(W \cap J) = 0.55$ (>0); accept if indicated in a Venn diagram or $P(W) + P(J) = 1.35 > 0$ or impossible (B) $P(W \mid J) = 0.55/0.70 = 0.79$ $\&/\neq P(W) = 0.65$ or $P(J \mid W) = 0.55/0.65 = 0.85$ $\&/\neq P(J) = 0.70$ or $P(W) \times P(J) = 0.45$ to 0.46 $\&/\neq P(W \cap J) = 0.55$ (b) Do not allow multiplying factors in (b) P(0) = 0.15 × 0.40 × 0.45 = 0.2295 + 0.85 × 0.40 × 0.45 = 0.2295 + 0.15 × 0.60 × 0.55 = 0.1870 + 0.15 × 0.60 × 0.55 = 0.0495 or I = 1 - (0.027 + 0.2265 + 0.2805) M1 M1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A	(;;)							Only o's aquivalant to 0.10 shown
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(11)	P(purchases ex	-					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			=]	$P(W \cap J)$	') + 0.15	M1		
(iii) (A) $P(W \cup J) = 0.8 \&/\neq P(W) + P(J) = 1.35$ or $P(W \cap J) = 0.55 (>0)$; accept if indicated in a Venn diagram or $P(W) + P(J) = 1.35 > 0$ or impossible (B) $P(W \mid J) = 0.55/0.70 = 0.79$ $\&/\neq P(W) = 0.65$ or $P(J \mid W) = 0.55/0.65 = 0.85$ $\&/\neq P(J) = 0.70$ or $P(W) \times P(J) = 0.45 \text{ to } 0.46$ $\&/\neq P(W \cap J) = 0.55$ (b) (i) Do not allow multiplying factors in (b) P(0) = 0.15 \times 0.40 \times 0.45 $= 0.027 \text{ or } 27/1000$ (ii) $P(2) = 0.85 \times 0.60 \times 0.45 = 0.2295$ $+ 0.85 \times 0.40 \times 0.45 = 0.2295$ $+ 0.15 \times 0.60 \times 0.55 = 0.0495$ or = 1 - (0.027 + 0.2265 + 0.2805) (iii) P(0) = 0.17 + 0.2265 + 0.2805 (iv) P(0) = 0.15 + 0.265 + 0.2			= 0	0.10 + 0.10	.15			
(A) $P(W \cup J) = 0.8$ $\&/\neq P(W) + P(J) = 1.35$ B1(B) $P(W \cap J) = 0.55$ (>0); accept if indicated in a Venn diagram or $P(W) + P(J) = 1.35$ >0 or impossibleB1(B) $P(W \mid J) = 0.55/0.70 = 0.79$ $\&/\neq P(W) = 0.65$ B1(B) $P(W \mid J) = 0.55/0.70 = 0.79$ $\&/\neq P(W) = 0.65$ B1or $P(J \mid W) = 0.55/0.65 = 0.85$ $\&/\neq P(J) = 0.70$ B1(b)Do not allow multiplying factors in (b)B1(i)Do not allow multiplying factors in (b)B1(ii) $P(2) = 0.85 \times 0.60 \times 0.45 = 0.2295$ $+ 0.35 \times 0.40 \times 0.55 = 0.1870$ $+ 0.15 \times 0.60 \times 0.55 = 0.0495$ B1(ii) $P(2) = 0.85 \times 0.60 \times 0.45 = 0.2295$ $+ 0.35 \times 0.40 \times 0.55 = 0.1870$ $+ 0.15 \times 0.60 \times 0.55 = 0.0495$ M2 (M1)(iii) $P(2) = 0.85 \times 0.60 \times 0.55 = 0.0495$ M2 (M1)(iii) $P(2) = 0.85 \times 0.60 \times 0.55 = 0.0495$ M2 (M1)(iii) $P(2) = 0.85 \times 0.60 \times 0.55 = 0.0495$ M2 (M1)(iii) $P(2) = 0.85 \times 0.60 \times 0.55 = 0.0495$ M2 (M1)(iii) $P(2) = 0.27 + 0.2265 + 0.2805$ M2 (M1)		=	0.25 or 2	25/100 o	or 5/20 or 1/4	4 A1	2	CAO
(A) $P(W \cup J) = 0.8$ $\&/\neq P(W) + P(J) = 1.35$ B1(B) $P(W \cap J) = 0.55 (>0);$ accept if indicated in a Venn diagram or $P(W) + P(J) = 1.35 > 0$ or impossibleB1(B) $P(W \mid J) = 0.55/0.70 = 0.79$ $\&/\neq P(W) = 0.65$ B1(B) $P(W \mid J) = 0.55/0.70 = 0.79$ $\&/\neq P(W) = 0.65$ B1or $P(W \mid J) = 0.55/0.65 = 0.85$ $\&/\neq P(J) = 0.70$ B1(b)Do not allow multiplying factors in (b)B1(i)Do not allow multiplying factors in (b)B1(ii) $P(2) = 0.85 \times 0.60 \times 0.45 = 0.2295$ $+ 0.85 \times 0.40 \times 0.55 = 0.1870$ $+ 0.15 \times 0.60 \times 0.55 = 0.0495$ B1(ii) $P(2) = 0.85 \times 0.60 \times 0.45 = 0.2295$ $+ 0.35 \times 0.40 \times 0.55 = 0.0495$ M2 (M1)(iii) $P(2) = 0.85 \times 0.60 \times 0.45 = 0.2295$ $+ 0.15 \times 0.60 \times 0.55 = 0.0495$ M2 (M1)(iii) $P(2) = 0.85 \times 0.60 \times 0.55 = 0.0495$ M2 (M1)(iii) $P(2) = 0.85 \times 0.60 \times 0.55 = 0.0495$ M2 (M1)(iii) $P(2) = 0.85 \times 0.60 \times 0.55 = 0.0495$ M2 (M1)(iii) $P(2) = 0.27 + 0.2265 + 0.2805$ M2 (M1)	(•••)							
(B) (B) P(W J) = 0.55 (>0); accept if indicated in a Venn diagram or $P(W) + P(J) = 1.35 > 0$ or impossible (B) $P(W J) = 0.55/0.70 = 0.79$ $\&/\neq P(W) = 0.65$ or $P(J W) = 0.55/0.65 = 0.85$ $\&/\neq P(J) = 0.70$ or $P(W) \times P(J) = 0.45$ to 0.46 $\&/\neq P(W \cap J) = 0.55$ (b) Do not allow multiplying factors in (b) P(0) = 0.15 × 0.40 × 0.45 = 0.2295 + 0.2805 + 0.2805 + 0.456 + 0.2805 + 0.456 + 0.2805 + 0.455 + 0.2805 + 0.15 \times 0.60 \times 0.55 = 0.0495 (ii) $P(2) = 0.85 \times 0.60 \times 0.45 = 0.2295 + 0.2805 $		$\mathbf{D}(\mathbf{W} + \mathbf{I})$	00 0-1		(I) = D(I) = 1.2	P5 D1		
(B) $P(W J) = 0.55 (x0)$, accept in indicated in a Venn diagram or $P(W) + P(J) = 1.35 > 0$ or impossible (B) $P(W J) = 0.55/0.70 = 0.79$ $\&/\neq P(W) = 0.65$ or $P(J W) = 0.55/0.65 = 0.85$ $\&/\neq P(J) = 0.70$ or $P(W) \times P(J) = 0.45$ to 0.46 $\&/\neq P(W \cap J) = 0.45$ to 0.46 $\&/\neq P(W \cap J) = 0.55$ (b) Do not allow multiplying factors in (b) (i) $P(0) = 0.15 \times 0.40 \times 0.45$ = 0.027 or $27/1000$ B1 E = 0.027 or $27/1000$ B1 E = 1 - (0.027 + 0.2265 + 0.2805) (ii) $P(0) = 1 - (0.027 + 0.2265 + 0.2805)$ (iv) $P(0) = 1 - (0.027 + 0.2265 + 0.2805)$ (iv) $P(0) = 1 - (0.027 + 0.2265 + 0.2805)$ (iv) $P(0) = 1 - (0.027 + 0.2265 + 0.2805)$ (iv) $P(0) = 1 - (0.027 + 0.2265 + 0.2805)$ (iv) $P(0) = 1 - (0.027 + 0.2265 + 0.2805)$ (iv) $P(0) = 1 - (0.027 + 0.2265 + 0.2805)$ (iv) $P(0) = 1 - (0.027 + 0.2265 + 0.2805)$ (iv) $P(0) = 0.15 \times 0.40 \times 0.55 = 0.0495$ (iv) $P(0) = 0.15 \times 0.40 \times 0.55 = 0.0495$ (iv) $P(0) = 0.15 \times 0.60 \times 0.55 = 0.0495$ (v) $P(0) = 0.15 \times 0.60 \times 0.55 = 0.0495$ (v) $P(0) = 0.15 \times 0.60 \times 0.55 = 0.0495$ (v) $P(0) = 0.15 \times 0.60 \times 0.55 = 0.0495$ (v) $P(0) = 0.15 \times 0.60 \times 0.55 = 0.0495$ (v) $P(0) = 0.15 \times 0.60 \times 0.55 = 0.0495$ (v) $P(0) = 0.15 \times 0.60 \times 0.55 = 0.0495$ (v) $P(0) =$	(A)	, <i>, ,</i>		. ,				Any one of these three seen
(B) in a Venn diagram or $P(W) + P(J) = 1.35 > 0$ or impossible P(W J) = 0.55/0.70 = 0.79 $\&/\neq P(W) = 0.65$ or $P(J W) = 0.55/0.65 = 0.85$ $\&/\neq P(J) = 0.70$ or $P(W) \times P(J) = 0.45$ to 0.46 $\&/\neq P(W \cap J) = 0.55$ (b) Do not allow multiplying factors in (b) $P(0) = 0.15 \times 0.40 \times 0.45$ = 0.027 or 27/1000 (i) $P(2) = 0.85 \times 0.60 \times 0.45 = 0.2295$ $+ 0.85 \times 0.40 \times 0.55 = 0.1870$ $+ 0.15 \times 0.60 \times 0.55 = 0.0495$ or = 1 - (0.027 + 0.2265 + 0.2805) P(D) = 0.127 + 0.2265 + 0.2805 P(D) = 0.127 + 0		· · · ·		>0); acce	ept if indicated	1		-
(B) $P(W J) = 0.55/0.70 = 0.79$ $\&/\neq P(W) = 0.65$ orB1 $M/F = P(W) = 0.65$ orB1 Bdep1Do not accept use of W' and/or J AWRT(B) $P(W J) = 0.55/0.65 = 0.85$ $\&/\neq P(J) = 0.55/0.65 = 0.85$ $\&/\neq P(J) = 0.70$ orBdep13Any one of these three seen Ignore contradictions, explanations justifications(b)Do not allow multiplying factors in (b)B13AWFW(i)Do not allow multiplying factors in (b) $P(0) = 0.15 \times 0.40 \times 0.45$ $= 0.027$ or 27/1000B12(ii)P(2) = 0.85 \times 0.60 \times 0.45 = 0.2295 $+ 0.85 \times 0.40 \times 0.55 = 0.1870$ $+ 0.15 \times 0.60 \times 0.55 = 0.0495$ or $= 1 - (0.027 + 0.2265 + 0.2805)$ M2 (M1)Can be implied by correct answer or 1 - (0.2265 + 0.2805)(iii)P(2) = 0.027 or 27/1000 + 0.2265 + 0.2805)M2 (M1)For either method: At least two bold expressions correct Can be implied by correct answer For second method: Must have '1 -' for any marks			-					
(B) $P(W J) = 0.55/0.70 = 0.79$ $\&/\neq P(W) = 0.65$ orB1 $\&/\neq P(W) = 0.65$ orB1 Bdep1AWRTor $P(J W) = 0.55/0.65 = 0.85$ $\&/\neq P(J) = 0.70$ orBdep13AWRT(i)Do not allow multiplying factors in (b) $P(0) = 0.15 \times 0.40 \times 0.45$ $= 0.027$ or 27/1000B1 B12Can be implied by correct answer or $1 - (0.2265 + 0.466 + 0.280)$ CAO(ii)P(2) = 0.85 \times 0.60 \times 0.45 = 0.2295 $+ 0.85 \times 0.40 \times 0.55 = 0.1870$ $+ 0.15 \times 0.60 \times 0.55 = 0.0495$ or $= 1 - (0.027 + 0.2265 + 0.2805)$ M2 (M1)For either method: At least two bold expressions correct Can be implied by correct answer or second method: Must have '1 -' for any marks		or $P(W) + P(J)$	V) = 1.35	5 >0 or	impossible			
$k/\neq P(W) = 0.0000000 = 0.0000000000000000000000$								
or $P(J W) = 0.55/0.65 = 0.85$ $\&/\neq P(J) = 0.70$ orIgnore contradictions, explanations justifications(b) $Or = P(W) \times P(J) = 0.45$ to 0.46 $\&/\neq P(W \cap J) = 0.55$ AWFW(b)Do not allow multiplying factors in (b) $P(0) = 0.15 \times 0.40 \times 0.45$ $= 0.027$ or 27/1000B12(ii) $P(2) = 0.85 \times 0.60 \times 0.45 = 0.2295$ $+ 0.85 \times 0.40 \times 0.55 = 0.1870$ $+ 0.15 \times 0.60 \times 0.55 = 0.0495$ M2 (M1)Can be implied by correct answer or $1 - (0.2265 + 0.466 + 0.280)$ (iii) $P(2) = 0.85 \times 0.60 \times 0.45 = 0.2295$ $+ 0.15 \times 0.60 \times 0.55 = 0.0495$ M2 (M1)M2 (M1)	(B)	P(W	J) = 0.55	5/0.70 =	0.79	B1		AWRT
or $P(J W) = 0.55/0.65 = 0.85$ $\&/\neq P(J) = 0.70$ orIgnore contradictions, explanations justifications(b) $Or = P(W) \times P(J) = 0.45$ to 0.46 $\&/\neq P(W \cap J) = 0.55$ AWFW(b)Do not allow multiplying factors in (b) $P(0) = 0.15 \times 0.40 \times 0.45$ $= 0.027$ or 27/1000B12(ii) $P(2) = 0.85 \times 0.60 \times 0.45 = 0.2295$ $+ 0.85 \times 0.40 \times 0.55 = 0.1870$ $+ 0.15 \times 0.60 \times 0.55 = 0.0495$ M2 (M1)Can be implied by correct answer or $1 - (0.2265 + 0.466 + 0.280)$ (iii) $P(2) = 0.85 \times 0.60 \times 0.45 = 0.2295$ $+ 0.15 \times 0.60 \times 0.55 = 0.0495$ M2 (M1)M2 (M1)		&/≠	P(W) =	0.65		Rden1	3	Any one of these three seen
int in $(0, m)$ is the form index index indexinterval is the form index index index $\&/\neq P(J) = 0.70$ interval is the form index indexor $P(W) \times P(J) = 0.45$ to 0.46 $\&/\neq P(W \cap J) = 0.55$ B1(i) $P(0) = 0.15 \times 0.40 \times 0.45$ $= 0.027$ or $27/1000$ B1(ii) $P(2) = 0.85 \times 0.60 \times 0.45 = 0.2295$ $+ 0.85 \times 0.40 \times 0.55 = 0.1870$ $+ 0.15 \times 0.60 \times 0.55 = 0.0495$ or $= 1 - (0.027 + 0.2265 + 0.2805)$			· /		0.85	Ducpi	5	
or $P(W) \times P(J) = 0.45$ to 0.46 $\&/\neq P(W \cap J) = 0.55$ AWFW(b)Do not allow multiplying factors in (b)B1B1(i) $P(0) = 0.15 \times 0.40 \times 0.45$ $= 0.027$ or 27/1000B1B1(ii) $P(2) = 0.85 \times 0.60 \times 0.45 = 0.2295$ $+ 0.85 \times 0.40 \times 0.55 = 0.1870$ $+ 0.15 \times 0.60 \times 0.55 = 0.0495$ M2 (M1)M2 (M1)(iii) $P(2) = 0.85 \times 0.60 \times 0.45 = 0.2295$ $+ 0.85 \times 0.60 \times 0.55 = 0.0495$ or $= 1 - (0.027 + 0.2265 + 0.2805)$ M2 (M1)M2 (M1)			/		0.03			
$\&/\neq P(W \cap J) = 0.55$ (b) (i)Do not allow multiplying factors in (b) $P(0) = 0.15 \times 0.40 \times 0.45$ $= 0.027 \text{ or } 27/1000$ B1 B1Can be implied by correct answer or $1 - (0.2265 + 0.466 + 0.2805)$ (ii) $P(2) = 0.85 \times 0.60 \times 0.45 = 0.2295$ $+ 0.85 \times 0.40 \times 0.55 = 0.1870$ $+ 0.15 \times 0.60 \times 0.55 = 0.0495$ or $= 1 - (0.027 + 0.2265 + 0.2805)$ B1 M2 (M1)Can be implied by correct answer or $1 - (0.2265 + 0.466 + 0.2805)$			· /					
(b) (i)Do not allow multiplying factors in (b) $P(0) = 0.15 \times 0.40 \times 0.45$ $= 0.027 \text{ or } 27/1000$ B1 B1Can be implied by correct answer or $1 - (0.2265 + 0.466 + 0.2803)$ (ii)P(2) = 0.85 × 0.60 × 0.45 = 0.2295 $+ 0.85 \times 0.40 \times 0.55 = 0.1870$ $+ 0.15 \times 0.60 \times 0.55 = 0.0495$ M2 (M1)M2 (M1)(iii)P(2) = 0.87 × 0.60 × 0.45 = 0.2295 $+ 0.85 \times 0.40 \times 0.55 = 0.1870$ $+ 0.15 \times 0.60 \times 0.55 = 0.0495$ M2 (M1)M2 (M1)		or $P(W)$	$) \times \mathrm{P}(J) =$	= 0.45 to	o 0.46			AWFW
(i) $P(0) = 0.15 \times 0.40 \times 0.45$ $= 0.027 \text{ or } 27/1000$ B1B1Can be implied by correct answer or $1 - (0.2265 + 0.466 + 0.2805)$ (ii) $P(2) = 0.85 \times 0.60 \times 0.45 = 0.2295$ $+ 0.85 \times 0.40 \times 0.55 = 0.1870$ $+ 0.15 \times 0.60 \times 0.55 = 0.0495$ orM2 (M1)M2 (M1)For either method: At least two bold expressions correct Can be implied by correct answer For second method: Must have '1 -' for any marks		&/≠	$P(W \cap J)$) = 0.55	5			
(i) $P(0) = 0.15 \times 0.40 \times 0.45$ $= 0.027 \text{ or } 27/1000$ B1 B1Can be implied by correct answer or $1 - (0.2265 + 0.466 + 0.2805)$ (ii) $P(2) = 0.85 \times 0.60 \times 0.45 = 0.2295$ $+ 0.85 \times 0.40 \times 0.55 = 0.1870$ $+ 0.15 \times 0.60 \times 0.55 = 0.0495$ orM2 (M1)M2 (M1)For either method: At least two bold expressions correct Can be implied by correct answer For second method: Must have '1 -' for any marks	(b)	Do not a	llow multir	lving foot	ore in (h)			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			_		013 III (U)	Dí		Can be implied by correct answer
(ii) $P(2) = 0.85 \times 0.60 \times 0.45 = 0.2295$ + $0.85 \times 0.40 \times 0.55 = 0.1870$ + $0.15 \times 0.60 \times 0.55 = 0.0495$ or = $1 - (0.027 + 0.2265 + 0.2805)$ M2 (M1) $P(2) = 0.85 \times 0.60 \times 0.45 = 0.2295$ (M1) $P(2) = 0.85 \times 0.60 \times 0.45 = 0.2295$ (M1) $P(2) = 0.85 \times 0.60 \times 0.45 = 0.2295$ (M1) $P(2) = 0.85 \times 0.60 \times 0.45 = 0.2295$ (M1) $P(2) = 0.85 \times 0.40 \times 0.45 = 0.2295$ (M1) $P(2) = 0.85 \times 0.40 \times 0.45 = 0.2295$ (M1) $P(2) = 0.85 \times 0.40 \times 0.45 = 0.2295$ (M1) $P(2) = 0.85 \times 0.40 \times 0.45 = 0.2295$ (M1) $P(2) = 0.85 \times 0.40 \times 0.45 = 0.2295$ (M1) $P(2) = 0.85 \times 0.40 \times 0.45 = 0.2295$ (M1) $P(2) = 0.85 \times 0.40 \times 0.45 = 0.2295$ (M1) $P(2) = 0.85 \times 0.40 \times 0.45 = 0.2295$ (M1) $P(2) = 0.85 \times 0.40 \times 0.45 = 0.2295$ (M1) $P(2) = 0.85 \times 0.40 \times 0.45 = 0.2295$ (M1) $P(2) = 0.85 \times 0.40 \times 0.45 = 0.2295$ (M1) $P(2) = 0.85 \times 0.40 \times 0.45 = 0.2295$ (M1) $P(2) = 0.85 \times 0.40 \times 0.45 = 0.2295$ (M1) $P(2) = 0.2265 \times 0.40 \times 0.45 \times 0.4$		$P(0) = 0.15 \times$	$0.40 \times$	0.45		BI		· ·
$\begin{array}{c} + 0.85 \times 0.40 \times 0.55 = 0.1870 \\ + 0.15 \times 0.60 \times 0.55 = 0.0495 \\ \text{or} \end{array} \qquad $				= 0.02	27 or 27/100	0 B1	2	CAO
$\begin{array}{c} + 0.85 \times 0.40 \times 0.55 = 0.1870 \\ + 0.15 \times 0.60 \times 0.55 = 0.0495 \\ \text{or} \\ = 1 - (0.027 + 0.2265 + 0.2805) \end{array} \qquad $	/•• `		0.60	0.45	2205			
$ \begin{array}{c} + \ 0.15 \times \ 0.60 \times \ 0.55 = 0.0495 \\ \mathbf{or} \\ = 1 - (0.027 + 0.2265 + 0.2805) \end{array} \tag{M1} \\ \begin{array}{c} \text{(M1)} \\ \text{(M1)}$	(ii)	· · /				N/O		
or = 1 - (0.027 + 0.2265 + 0.2805) Can be implied by correct answer For second method: Must have '1 -' for any marks								
= 1 - (0.027 + 0.2265 + 0.2805) For second method: Must have '1 -' for any marks			0.00 ^	 – ((111)		
								For second method:
= 0.466 or 466/1000 or 233/500 A1 3 CAO; do not imply this from (i)		= 1 - (0.	0.027 + 0.000	2265 +	0.2805)			Must have '1 –' for any marks

Q	(cont) Solution	Marks	Total	Comments
6				
(a) (i)	$\frac{X \sim B(10, 0.15)}{P(X \le 2)} = 0.82(0)$	B1	1	AWRT (0.8202
(ii)	$P(X \ge 2) = 1 - P(X \le 1)$			
	= 1 - (0.5443 or 0.8202)	M1		Requires '1 –' Accept 3/2 dp rounding or truncation Can be implied by 0.455 to 0.456 but not by 0.179 to 0.18(0)
	= 0.455 to 0.456	A1	2	AWFW (0.4557
(iii)	P(1 < X < 5) = 0.9901 or 0.9986 (p ₁)	M1		Accept 3 dp rounding or truncation $p_2 - p_1 \Rightarrow M0 M0 A0$ $(1 - p_2) - p_1 \Rightarrow M0 M0 A0$ $p_1 - (1 - p_2) \Rightarrow M1 M0 A0$ only providing result > 0
	minus 0.5443 or 0.1969 (<i>p</i> ₂)	M1		only providing result > 0 Accept 3 dp rounding or truncation
	= 0.445 to 0.446	A1	3	AWFW (0.4458
	B(10, 0.15) expressions stated for at least 3 terms within $1 \le X \le 5$ gives probability	(M1)		Can be implied by a correct answer
	= 0.445 to 0.446	(A2)		AWFW (0.445)
(b)	<u>$Y \sim B(50, 0.15)$</u>			Normal approximation $\Rightarrow 0$ marks
(i)	$P(Y > 5) = 1 - P(Y \le 5)$			D (1),
	= 1 - (0.2194 or 0.1121)	M1		Requires '1 –' Accept 3 dp rounding or truncation Can be implied by 0.78(0) to 0.781 but not by 0.888 to 0.89
	= 0.78(0) to 0.781	A1	2	AWFW (0.7800
(ii)	$P(5 \le Y \le 10) = 0.8801 \text{ or } 0.7911$ (p ₁)	M1		Accept 2/3 dp rounding or truncation $p_2 - p_1 \implies M0 \text{ M0 A0}$ $(1 - p_2) - p_1 \implies M0 \text{ M0 A0}$ $p_1 - (1 - p_2) \implies M1 \text{ M0 A0}$ only providing result > 0
	minus 0.1121 or 0.2194 (p_2)	M1		Accept 3 dp rounding or truncation
	= 0.768	A1	3	AWRT (0.768)
	B(50, 0.15) expressions stated for at least 3 terms within $4 \le Y \le 10$ gives probability	(M1)		Can be implied by a correct answer
	= 0.768	(A2)		AWRT (0.7680
	Total		11	

MS/SS1B (cont)

S/SS1B Q	Solution	Marks	Total	Comments
7				
(a)	Ryan: Value indicates that as volume increases then weight decreases	B1		Or equivalent in context
	Sunil: Value indicates no correlation/relationship/ association/link between volume and weight	B1	2	Or equivalent in context
	SC: If B0 B0: Would expect weight to increase with volume or Would expect strong(er) positive correlation between weight and volume	(B1)		Or equivalent in context
(b)	Ryan & Sunil: <i>r</i> is not affected by units/(linear) scaling	B1		Or equivalent
	Tim: r is not affected by sample size or $2 \times 0.612 > 1 \implies$ impossibility	B1	2	Either; or equivalent
(c)				
(i)	r = 0.541 to 0.543 r = 0.54 to 0.55 r = 0.5 to 0.6	B3 (B2) (B1)	3	AWFW (0.54186) AWFW AWFW
	OR			
	Attempt at $\sum v \sum v^2 \sum w \sum w^2 \& \sum vw$ or Attempt at $S_{vv} S_{ww} \& S_{vw}$	(M1)		216 6633.16 136 2376.84 & 3795.5 (all 5 attempted) Accept notation of <i>x</i> and <i>y</i> 801.16 64.84 & 123.5 (all 3 attempted)
	Attempt at substitution into correct	(m1)		(all 3 attempted)
	corresponding formula for r r = 0.541 to 0.543	(A1)		AWFW
(ii)	(Quite or fairly) weak/some/moderate positive (linear) correlation /relationship/ association/link (<i>but not ' trend'</i>)	Bdep1		Dependent on $0.5 \le r \le 0.6$ Or equivalent; must qualify strength and state positive Bdep0 for very strong/strong/high/ good/average/medium/reasonable/ poor/very weak/little/etc
	between volumes and weights of suitcases	B1	2	Context; providing $0 < r < 1$
	Total		9	
	TOTAL		75	

Version 1.0

General Certificate of Education (A-level) January 2012

Mathematics

MS/SS1B

(Specification 6360)

Statistics 1B

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2012 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

Key to mark scheme abbreviations

М	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\sqrt{or} ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
с	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MS/SS1B							
Q	Solution	Marks	Total	Comments			
1 (a)	Median = 10	B1		CAO			
	Upper quartile = 11 Lower quartile = 9	B1		CAO; either May be implied by $IQR = 2$			
	Interquartile range = 2	B1	3	CAO; do not award if seen to be not based on 11 and 9			
(b)	Do not group results Illustrations for B1: Use all values Replace ≤ 6 by or use (0), 1,, 6 Replace ≥ 12 by or use 12, 13, Record exact values/frequencies	B1	1	OE statement that implies non grouping or recording of all separate observed values Illustrations for B0: Record max and/or min values Construct frequency table Use 1, 2 or 12, 13			
		Total	4				

Q	Solution	Marks	Total	Comments
2 (a)	Probably correct	B1		CAO; accept minimum of PC or Pc or pC or pc
(b)	Definitely incorrect	B1		CAO; accept minimum of DI or Di or dI or di
(c)	Probably incorrect	B1	3	CAO; accept minimum of PI or Pi or pI or pi
	Notes: Ignore reasoning in all parts, unless it includes 2 of the 4 statements in which case \Rightarrow B0 If answers not labelled, then assume above order			Definitely wrong, etc \Rightarrow B0 Likely correct, etc \Rightarrow B0
		Total	3	

MS/SS1B	MS/SS1B (cont)							
Q	Solution	Marks	Total	Comments				
3(a) (i)	<u>Volume</u> , $X \sim N(32, 10^2)$							
	$P(X < 40) = P\left(Z < \frac{40 - 32}{10}\right)$	M1		Standardising 40 with 32 and 10; allow $(32 - 40)$				
	= P(Z < 0.8)	A1		CAO; ignore inequality and sign May be implied by a correct answer				
	= 0.788	A1	3	AWRT (0.78814)				
(ii)	P(X > 25) = P(Z > -0.7)			Area change				
	= P(Z < +0.7)	M1		May be implied by a correct answer or an answer > 0.5				
	= 0.758	A1	2	AWRT (0.75804)				
(iii)	P(25 < X < 40) = (i) - (1 - (ii)	M1		OE; allow new start ignoring (i) & (ii) Allow even if incorrect standardising providing $0 < answer < 1$ May be implied by a correct answer				
	= $0.78814 - (1 - 0.75804) = 0.546$ Note: If (ii) is 0.242, then $(0.788 - 0.242) = 0.546 \implies M0 A0$	A1	2	AWRT (0.54618)				
(b)	$P(B > \pounds65) = P\left(Z > \frac{48.5 - 32}{10}\right)$ or $P\left(Z > \frac{65 - 42.88}{13.4}\right)$ = P(Z > 1.65) = 1 - P(Z < 1.65)	M1 m1		Attempt to change from <i>B</i> to <i>X</i> using (48 to 49), 32 and 10 or Attempt to work with distribution of <i>B</i> using 65, (42.8 to 42.9) and 13.4 Area change May be implied by a correct answer or an answer < 0.5				
	= 1 - 0.95053 = 0.049 to $0.05(0)$	A1	3	AWFW (0.04947)				
(c)	Other fuels Other vehicles with an example (not other cars) Other types of customer Minimum purchase (policy) Purchases in integer/fixed £s Customers filling fuel cans	B2,1	2	Size of car/engine/fuel tank \Rightarrow B0 Price of fuel \Rightarrow B0 Customer paying capacity \Rightarrow B0 Must be two clearly different valid reasons for award of B2 Drivers and vehicles related \Rightarrow B1 eg lorry drivers & lorries				
		Total	12					

MS/SS1E	(cont)			
Q	Solution	Marks	Total	Comments
4(a)	<u>$U \sim B(40, 0.15)$</u>	M1		Used somewhere in (a)
(i)	P(U = 6) = 0.6067 - 0.4325 or $(40)(0.15)^{6}(0.85)^{34}$	M1		Accept 3 dp rounding or truncation
	$= \binom{40}{6} (0.15)^6 (0.85)^{34}$			Can be implied by a correct answer
	= 0.174	A1	3	AWRT (0.1742)
(ii)	$P(U \le 5)$ = 0.432 to 0.433	B1	1	AWFW (0.4325)
(iii)	See supplementary sheet for individual probabilities			
	P(5 < U < 10) = 0.9328 or 0.9701 (p ₁)	M1		Accept 3 dp rounding or truncation but allow 0.97 $p_2 - p_1 \implies M0 M0 A0$ $(1 - p_2) - p_1 \implies M0 M0 A0$ $p_1 - (1 - p_2) \implies M1 M0 A0$ $(1 - p_2) - (1 - p_1) \implies M1 M1 (A1)$ only providing result > 0
	MINUS 0.4325 or 0.2633 (p_2)	M1		Accept 3 dp rounding or truncation
	= 0.5(00) to 0.501	A1	3	AWFW (0.5003)
(b)	Mean or $\mu = 32 \times 0.15$ = 4.8	B1		САО
	(V or $\sigma^2 =$) $32 \times 0.15 \times 0.85$ or (SD or $\sigma =$) $\sqrt{32 \times 0.15 \times 0.85}$	M1		Either numerical expression; ignore terminology May be implied by 4.08 CAO seen or 2.02 AWRT seen
	(SD or σ) = 2.02	A1	3	AWRT(2.0199)Do not award if labelled V or σ^2
(c)	Mean = 7.7	B1		CAO $(\sum x = 77)$
	SD = 1.26 to 1.34	B1		AWFW $\left(\sum x^2 = 609\right)$
	(Sample) mean is bigger / greater / different or 7.7/32 = 0.24 > 0.15 and (Sample) SD is smaller / less / different	Bdep1		Both; dependent on all previous 5 marks of B1 M1 A1 B1 B1 Can be scored for incorrect (b) re-done correctly in (c) Means & SDs different \Rightarrow Bdep0
	So model appears unsuitable	Bdep1	4	OE; dependent on Bdep1
			14	
		Total	14	

IS/SS1B	(cont)			
Q	Solution	Marks	Total	Comments
5	See supplementary sheet for alternative solutions and additional guidelines to parts (b), (d) and (e)			
(a)	Calorific value depends upon moisture content Moisture (content) is set/are fixed values	B1	1	Must be in context; not "it", etc Use of x and $y \Rightarrow B0$
(b)	b (gradient) = -0.076 b (gradient) = -0.07 to -0.08	B2 (B1)		AWRT; including -ve sign (-0.07582) AWFW; including -ve sign Treat rounding of correct answers as ISW
	a (intercept) = 5.35 to 5.36 a (intercept) = 5.1 to 5.6	B2 (B1)		AWFW (5.35385 AWFW
	Thus $y = (5.35 \text{ to } 5.36) -0.076x$	BF1	5	F on a and b even if rounded
(c)	<i>a</i> : calorific value of wood with zero/no moisture or dry maximum calorific value	B1		OE; $a \leq 0 \Rightarrow B0$
	<i>b</i> : each 1(%) rise in moisture content reduces calorific value by 0.076 MWh/tonne	B2	3	In context and with values; F on b $b \ge 0 \implies B0$
	As x increases y decreases	(B1)		Negative relationship/correlation
(d)	$y_{27} = 3.28$ to 3.32 = 2.5 to 3.5	B2 (B1)	2	AWFW (3.30659 AWFW; even if by interpolation from original data giving likely values of 3 or 3.04
(e)	r(35, 2.5) = -0.21 to $-0.19= 0.1 to 0.3$	B2 (B1)	2	AWFW; including -ve sign (-0.20000) AWFW; ignore sign
(f)	Good/reasonable/accurate/correct/etc Accept more positive qualifying adjectives	B1	1	OE; ignore reasoning Very good (B1) Not good (B0)
(g)(i)	Extrapolation/outside (observed) range (of x)	B1	1	OE
(ii)	$y_{80} = -0.5$ to -1	B1		AWFW (-0.71209
	Negative value for calorific value is impossible or More energy needed than is generated	Bdep1	2	OE; dependent on B1 Must be in context; negative value impossible \Rightarrow Bdep0
		Total	17	
		Total	17	

MS/SS1B	(cont)			
Q	Solution	Marks	Total	Comments
6 (a)(i)	See supplementary sheet for alternative solutions to parts (a)(i) and (b)(ii) Table Method	-		
	(2- way with either R or C totals) A A' Total E 0.55 0.05 0.60 E' 0.30 0.10 0.40 Total 0.85 0.15 1.00	B1 B1 Bdep1	3	0.15 or 0.4; CAO; allow fractions0.05 and 0.3; CAO; allow fractions0.1; AG so dependent on B1 B1
(ii)	$P(\geq 1) = 0.9 \text{ or } 9/10$	B1	1	САО
(iii)	P(1) = 0.3 + 0.05 = 1 - (0.55 + 0.10) = 0.35 or 35/100 or 7/20	B1	1	САО
(b)(i)	$P(3) = 0.55 \times 0.30$ = 0.165 or 165/1000 or 33/200	B1 B1	2	OE; implied by correct answer CAO
(ii)	$0.55 \times (1 - 0.3)$ or 0.385 (0.3 × 0.75) or 0.225	M1		
	or (0.05×0.75) or 0.0375 or (0.35×0.75) or 0.2625	M1		At least one of these expressions or values
	(0.385 + 0.2625) + 0.165	B1		OE; implied by correct answer
	= 0.812 to 0.813 or $\frac{8125}{10000}$ or $\frac{1625}{2000}$ or $\frac{325}{400}$ or $\frac{65}{80}$ or $\frac{13}{16}$	A1	4	AWFW (0.8125) CAO
		Total	11	

MS/SS1B	MS/SS1B - AQA GCE Mark Scheme (VP) 2012 January Serie MS/SS1B (cont)							
Q	Solution	Marks	Total	Comments				
7(a) (i)	$\overline{x} = \frac{2290}{50} = 45.8$ or 45800	B1		САО				
	$(s^2 =) \frac{28225.5}{49 \text{ or } 50}$ or $(s =) \sqrt{\frac{28225.5}{49 \text{ or } 50}}$	M1		Ignore notation				
	s = 24(.0) or 24000 to 24001	A1	3	AWRT/AWFW (24.00064)				
	SCs: (for no seen working) M1 A1 for 24.0 or 24000 to 24001 M1 A0 for 24 or 23700 to 23800			$(\sigma = 23.75942)$				
(ii)	See supplementary sheet for alternative solutions							
	$\overline{x} - ns = (45.8 - n \times 24.0) < 0$ SC: Accept quoted values of (-4 to -1) (n = 2) or (-28.5 to -23.5) (n = 3) (both AWFW) and	M1		Allow (45 to 47) and any multiple of (23.5 to 24.5) which gives value < 0 Must clearly state the value of a numerical expression				
	negative salaries are impossible	A1	2	OE; must be in context Negative values impossible \Rightarrow A0				
(b)(i)	Large sample or $n > 25$ or 30 or $n = 50$	B1		OE				
	so CLT applies	Bdep1	2	Must indicate CLT; dependent on B1 Indication that other than sample mean is normally distributed \Rightarrow Bdep0				
(ii)	99% (0.99) $\Rightarrow z = 2.57$ to 2.58	B1		AWFW (2.5758)				
	CI for μ is $\overline{x} \pm z \times \frac{s}{\sqrt{n}}$	M1		Used with $(\overline{x} \& s)$ from (a)(i) and z(1.64 to 2.58) & $\div \sqrt{n}$ with $n > 1$				
	Thus $45.8 \pm 2.5758 \times \frac{24.0}{\sqrt{50}}$	AF1		F on $(\bar{x} \& s)$ with $\div \sqrt{50 \text{ or } 49} \& z(1.64 \text{ to } 1.65 \text{ or } 2.32 \text{ to } 2.33 \text{ or } 2.57 \text{ to } 2.58)$				
	Hence $45.8 \pm (8.7 \text{ to } 8.8)$ or $45800 \pm (8700 \text{ to } 8800)$ OR (37.(0) to 37.1, 54.5 to 54.6) or $(37000 \text{ to } 37100, 54500 \text{ to } 54600)$	A1	4	CAO/AWFW (8.74) Ignore (absence of) quoted units AWFW				
(c)	See supplementary sheet for additional illustrations							
	Clear correct comparison of 55 or 55000 with c's UCL or CI	B1		Accept 55000 compared with c's 54.5 to 54.6 (ie different units)				
	(6/50 or 0.12 or 12%) ≠ 0.25 or 25%</td <td>B1</td> <td></td> <td>OE; correct comparison mentioning both 12% and 25%</td>	B1		OE; correct comparison mentioning both 12% and 25%				
	Reject both/each of the two claims	Bdep1	3	Dependent on B1 B1				
		Total	14					

MS/SS1B	MS/SS1B (cont)								
Q		Soluti	on		Marks	Total	Comments		
4									
(a)(iii)	B(40, 0.15) expressions stated for at least 3 terms within $5 \le U \le 10$ gives probability = 0.5(00) to 0.501			M2 A1		Can be impli AWFW	ed by a corr	ect answer (0.5003)	
		и	(5)	6	7	8	9	(10)	
		P(U=u)	(0.1692)	0.1742	0.1492	0.1087	0.0682	(0.0373)	
						3			

Q	Solution	Marks	Total	Comments
5	Alternative solutions and additional guidelines			
(b)	Attempt at $\sum x \sum x^2 \sum y \& \sum xy (\sum y^2)$ or Attempt at $S_{xx} \& S_{xy} (S_{yy})$	M1		455 20475 35.1 & 883.5 (121.33) (all 4 attempted) 4550 & -345 (26.56) (both attempted)
	Attempt at correct formula for b (gradient) b (gradient) = -0.076 a (intercept) = 5.35 to 5.36 Thus $y = (5.35 \text{ to } 5.36) -0.076x$	m1 A1 A1 BF1		AWRT AWFW F on a and b even if rounded
	 Notes: 1 If a and b interchanged and equation y = ax + b used ⇒ max of 5 marks 2 If a and b interchanged and equation y = a + bx used ⇒ maximum of BF1 3 Marks lost here cannot be gained from subsequent work in parts (d) and/or (e) 		5	If a and b are not identified anywhere in equation, then: -0.07 to $-0.08 \Rightarrow B1$ 5.1 to $5.6 \Rightarrow B1$
(d)	$y_{27} = (5.35 \text{ to } 5.36) -0.076 \times 27$	M1		Clear evidence of correct use of c's equation with $x = 27$
	= 3.28 to 3.32	A1	2	AWFW (3.30659)
(e)	$r(35, 2.5) = 2.5 - y_{35}$	M1		Used; allow $y_{35} - 2.5$
	$= 2.5 - \{(5.35 \text{ to } 5.36) -0.076 \times 35\}$			
	= -0.21 to -0.19	A1	2	AWFW (-0.20000)

MS/SS1B	(cont)			- AQA GCE Mark Scheme (VP) 2012 January Series
Q	Solution	Marks	Total	Comments
6 (a)(i)	Alternative solutions Venn Diagram Method 0.10 A 0.55 0.3 0.55 0.05	B1 B1 Bdep1	3	0.55; CAO 0.3 and 0.05; CAO 0.1; AG so dependent on B1 B1
(a)(i)	Formula Method $P(\ge 1) = 0.85 + 0.60 - 0.55$ OR 0.85 + 0.60 - 0.55 + p = 1 OR 0.15 + 0.40 - 0.45 $P(0) = 1 - P(\ge 1)$ OR $= 1 - 0.9 = 0.1$ 0.9 + p = 1 OR = 0.1	M2 (M1) A1	3	Full justification for numerical expression Insufficient justification or numerical expression only AG; gained from M2 or M1
(b)(ii)	$0.1 \times (1 - 0.4)$ or 0.06	M1		
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M1		At least one of these expressions or values
	1 - (0.1875)	B1		OE; implied by correct answer
	= 0.812 to 0.813	A1	4	AWFW (0.8125) CAO for equivalent fraction
(b)(ii)	(0.55 + p) where 0	M1		
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M1		At least one of these expressions or values
	0.55 + 0.2625	B1		OE; implied by correct answer
	= 0.812 to 0.813	A1	4	AWFW (0.8125) CAO for equivalent fraction

Q	Solution	Marks	Total	Comments
7 (a)(ii)	Alternative solutions			
()	$P(X < 0 N(45.8, 24.0^2) = P(Z < -1.91)$	M1		Standardising 0 using 45.8 & 24.0
	= 0.027 to 0.03	A1	2	In addition to probability within range, must state that negative salaries are impossible
	$P(X > 60 N(45.8, 24.0^2)) = P(Z > 0.59)$	M1		Standardising 60 using 45.8 & 24.0
	= 0.27 to 0.28	A1	2	In addition to probability within range, must compare calculated value to 6/50 = 0.12 OE
(c)	Additional comment illustrations			
	It/(claimed) mean/(claimed) value > UCL/CI	В0		Must indicate 55 or 55000
	99% have (mean) weights between CLs so	B0		
	Any comparison of 60 (£60 000) with UCL/CI	В0		Value of 60 does not refer to mean
	P(X > 60 N(45.8, 24.02)) = P(Z > 0.59) = (0.27 to 0.28) > 6/50 = 0.12	В0		Assumes salaries ~ N; cf (a)(ii)

Version 1.0

General Certificate of Education (A-level) June 2012

Mathematics

MS/SS1B

(Specification 6360)

Statistics 1B

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2012 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

Key to mark scheme abbreviations

М	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\sqrt{or} ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
с	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MS/SS1B				
Q	Solution	Marks	Total	Comments
1 (a)	$r = \frac{S_{xy}}{\sqrt{S_{xx} \times S_{yy}}} = \frac{-0.410}{\sqrt{2.030 \times 1.498}} = -0.235$	M1 A1	2	Correct substitution into correct formula May be implied by a correct answer AWRT (-0.235115)
(b)	Some / (very) weak / (very) little / (very)slight negative correlation/relationship/association/link	Adep1		Dependent on -0.235 or -0.24 OE; must qualify strength and state negative Ignore extra words unless contradict Not 'no', 'low', 'small', 'unlikely' or 'trend'
SC	between width and thickness of lengths of steel $r = (+)0.235 \implies M1 \text{ A0 Adep0 B1 max}$	B1	2	Context; do not allow 'cms' or 'mms'
	Total		4	

Q	Solution	Marks	Total	Comments		
2 (a)(i)	Mode = $\underline{23}$	B1	1	CAO		
(ii)	Median (88 th value) = $\underline{22}$	B1		CAO		
	Upper quartile $(132^{nd} \text{ value}) = 23$ Lower quartile $(44^{th} \text{ value}) = 20$	B1		CAO; either May be implied by $IQR = 3$		
	Interquartile range = $\underline{3}$	B1	3	CAO; do not award if seen to be not based on 23 and 20		
(b)	Mean = 22.3 Mean = 21 to 23	B2 (B1)		CAO; but only award B1 (22.3) if incorrect mid-points or Σfx seen AWFW ($\Sigma fx = 3902.5$)		
	Standard deviation = $\frac{6.37 \text{ or } 6.39}{5 \text{ to } 7}$	B2 (B1)	4	AWRT AWFW $(s = 6.391 \ \sigma = 6.372)$ $(\Sigma f x^2 = 94132.25)$		
SC	Only if B0 B0 or B1 B0 then award as follows but only up to a maximum total part mark of 2 1 At least 2 correct mid-points 4.5, 14.5, 27, 32, 37, 44.5, 54 seen \Rightarrow M1 2 Clear use of $\Sigma fx/(175 \text{ or } 174) \Rightarrow$ M1					
(c)	Mean = (c's mean from (b)) + $\frac{280}{175}$ = 22.3 + 1.6	M1		Adding (1.6 or equivalent) CAO to (c's mean from (b)) or to (c's new mean)		
	Mean = <u>23.9</u>	AF1	2	F on (c's mean from (b)) or on (c's new mean)		
	Total		10			

	(cont)	1				
Q	Solution	Marks	Total	Comments		
3		DO		AWDT (2.27075)		
(a)	$b \text{ (gradient)} = \frac{2.27}{2.2} \text{ to } 2.3$	B2 (B1)		AWRT (2.27075) AWFW		
	b (gradient) = 2.2 to 2.3	(B1)		<i>A</i> W Γ W <i>Treat rounding of correct answers as ISW</i>		
	a (intercept) = 4.16 to 4.2	B2		AWFW (4.16981)		
	$a (intercept) = \frac{1}{3} to 7$	(B1)		AWFW		
	Attempt at $\sum x \sum x^2 \sum y \& \sum xy (\sum y^2)$			480 24500 1140 & 57635 (135908)		
	or	(M1)		(all 4 attempted)		
		~ /		5300 & 12035 (27608)		
	Attempt at S_{xx} & S_{xy} (S_{yy})			(both attempted)		
	Attempt at correct formula for b (gradient)	(m1)				
	b (gradient) = 2.27	(A1)	_	AWRT		
	a (intercept) = 4.16 to 4.2	(A1)	4	AWFW		
Notes	1 Values of a and b interchanged and equation $y = ax + b^2$	<i>b</i> stated in	$(a) \rightarrow m$	ay of 4 marks		
THUES	1 Values of a and b interchanged and equation $y = ax + a$ 2 Values of a and b interchanged and equation $y = a + a$					
	3 Values are not identified or simply $a = #$ and $b = #$, the	en 2.2 to 2	$.3 \Rightarrow B1$	and 3 to 7 \Rightarrow B1 but accept, for example, as		
	identification, $[a = \#, b = \#$ with $y = a + bx$ but no					
	4 $b = \frac{2407/1060}{221/53}$ CAO \Rightarrow B2, otherwise B1 if fraction $a = \frac{221/53}{221/53}$ CAO \Rightarrow B2, otherwise B1 if fraction					
	5 Some/all of marks can be scored in (b), and in c(ii) & (iii),					
	recouped by subsequent working in (b)	I				
				Line must go from $x < 20$ to $x > 70$		
(b)	Correct straight line drawn on scatter diagram	B2		Line must go from $x \le 20$ to $x \ge 70$ and fall between the following 2 lines:		
	Correct shortened and/or freehand line drawn on	(D1)	2	Lower: (10, 25) (80, 180)		
	scatter diagram	(B1)	2	Upper: (10, 30) (80, 190)		
Notes	1 If B0 but seen correct attempt at ≥ 2 points even if incorrectly evaluated \Rightarrow M1					
10000	2 If B0 but no seen evidence to support ≥ 2 points (correct					
(c)(i)	Correct straight line drawn on scatter diagram	B2		Line must go from $x \le 20$ to $x \ge 70$		
	Correct shortened and/or freehand line drawn on			and fall between the following 2 lines:		
	Correct shortened and/or freehand line drawn on scatter diagram	(B1)	2			
	scatter diagram			and fall between the following 2 lines: Lower: (10, 60) (80, 75) Upper: (10, 65) (80, 85)		
Notes	scatter diagram 1 If B0 but seen correct attempt at ≥2 points even if incorr	ectly evalua	ted \Rightarrow M	and fall between the following 2 lines: Lower: (10, 60) (80, 75) Upper: (10, 65) (80, 85)		
Notes	scatter diagram	ectly evalua	ted \Rightarrow M	and fall between the following 2 lines: Lower: (10, 60) (80, 75) Upper: (10, 65) (80, 85)		
Notes	scatter diagram 1 If B0 but seen correct attempt at ≥2 points even if incorr	ectly evalua	ted \Rightarrow M	and fall between the following 2 lines: Lower: (10, 60) (80, 75) Upper: (10, 65) (80, 85) 1 scatter diagram \Rightarrow M0		
	 scatter diagram 1 If B0 but seen correct attempt at ≥2 points even if incorr 2 If B0 but no seen evidence to support ≥2 points (correct 	ectly evalua	ted \Rightarrow M	and fall between the following 2 lines: Lower: (10, 60) (80, 75) Upper: (10, 65) (80, 85) 1 scatter diagram \Rightarrow M0 AWFW (calculation \Rightarrow 27.75)		
Notes (ii)	scatter diagram 1 If B0 but seen correct attempt at ≥2 points even if incorr	ectly evalua or incorrect	ted ⇒ M) marked or	and fall between the following 2 lines: Lower: (10, 60) (80, 75) Upper: (10, 65) (80, 85) 1 scatter diagram \Rightarrow M0		
(ii)	 scatter diagram 1 If B0 but seen correct attempt at ≥2 points even if incorr 2 If B0 but no seen evidence to support ≥2 points (correct 	ectly evalua or incorrect	ted ⇒ M) marked or	and fall between the following 2 lines: Lower: (10, 60) (80, 75) Upper: (10, 65) (80, 85) scatter diagram \Rightarrow M0 AWFW (calculation \Rightarrow 27.75) Must clearly identify <i>x</i> -value Thus (27 to 29, <i>y</i> -value) \Rightarrow B0		
	scatter diagram 1 If B0 but seen correct attempt at ≥ 2 points even if incorr 2 If B0 but no seen evidence to support ≥ 2 points (correct 27 to 29	ectly evalua or incorrect	ted ⇒ M) marked or	and fall between the following 2 lines: Lower: (10, 60) (80, 75) Upper: (10, 65) (80, 85) scatter diagram \Rightarrow M0 AWFW (calculation \Rightarrow 27.75) Must clearly identify <i>x</i> -value Thus (27 to 29, <i>y</i> -value) \Rightarrow B0 Either; OE		
(ii)	 scatter diagram 1 If B0 but seen correct attempt at ≥2 points even if incorr 2 If B0 but no seen evidence to support ≥2 points (correct 	ectly evalua or incorrect B1	ted ⇒ M) marked or	and fall between the following 2 lines: Lower: (10, 60) (80, 75) Upper: (10, 65) (80, 85) scatter diagram \Rightarrow M0 AWFW (calculation \Rightarrow 27.75) Must clearly identify <i>x</i> -value Thus (27 to 29, <i>y</i> -value) \Rightarrow B0 Either; OE (eg a comparison using lines and/or data at a		
(ii)	scatter diagram 1 If B0 but seen correct attempt at ≥2 points even if incorr 2 If B0 but no seen evidence to support ≥2 points (correct 27 to 29 At low temperatures more B (than A) dissolves	ectly evalua or incorrect B1	ted ⇒ M) marked or	and fall between the following 2 lines: Lower: (10, 60) (80, 75) Upper: (10, 65) (80, 85) scatter diagram \Rightarrow M0 AWFW (calculation \Rightarrow 27.75) Must clearly identify <i>x</i> -value Thus (27 to 29, <i>y</i> -value) \Rightarrow B0 Either; OE		
(ii)	scatter diagram 1 If B0 but seen correct attempt at ≥2 points even if incorr 2 If B0 but no seen evidence to support ≥2 points (correct 27 to 29 At low temperatures more B (than A) dissolves At high temperatures more A (than B) dissolves	ectly evalua or incorrect B1 B1	ted ⇒ M) marked or 1	and fall between the following 2 lines: Lower: (10, 60) (80, 75) Upper: (10, 65) (80, 85) scatter diagram \Rightarrow M0 AWFW (calculation \Rightarrow 27.75) Must clearly identify x-value Thus (27 to 29, y-value) \Rightarrow B0 Either; OE (eg a comparison using lines and/or data at a specific temperature but not at 0°C)		
(ii)	scatter diagram 1 If B0 but seen correct attempt at ≥2 points even if incorr 2 If B0 but no seen evidence to support ≥2 points (correct 27 to 29 At low temperatures more B (than A) dissolves At high temperatures more A (than B) dissolves Amount increases more rapidly for A (than B)	ectly evalua or incorrect B1	ted ⇒ M) marked or	and fall between the following 2 lines: Lower: (10, 60) (80, 75) Upper: (10, 65) (80, 85) scatter diagram \Rightarrow M0 AWFW (calculation \Rightarrow 27.75) Must clearly identify <i>x</i> -value Thus (27 to 29, <i>y</i> -value) \Rightarrow B0 Either; OE (eg a comparison using lines and/or data at a specific temperature but not at 0°C) Either; OE		
(ii)	scatter diagram 1 If B0 but seen correct attempt at ≥2 points even if incorr 2 If B0 but no seen evidence to support ≥2 points (correct 27 to 29 At low temperatures more B (than A) dissolves At high temperatures more A (than B) dissolves	ectly evalua or incorrect B1 B1	ted ⇒ M) marked or 1	and fall between the following 2 lines: Lower: (10, 60) (80, 75) Upper: (10, 65) (80, 85) AWFW (calculation \Rightarrow 27.75) Must clearly identify x-value Thus (27 to 29, y-value) \Rightarrow B0 Either; OE (eg a comparison using lines and/or data at a specific temperature but not at 0°C)		
(ii)	scatter diagram 1 If B0 but seen correct attempt at ≥2 points even if incorr 2 If B0 but no seen evidence to support ≥2 points (correct 27 to 29 At low temperatures more B (than A) dissolves At high temperatures more A (than B) dissolves Amount increases more rapidly for A (than B)	ectly evalua or incorrect B1 B1	ted ⇒ M) marked or 1	and fall between the following 2 lines: Lower: (10, 60) (80, 75) Upper: (10, 65) (80, 85) scatter diagram \Rightarrow M0 AWFW (calculation \Rightarrow 27.75) Must clearly identify <i>x</i> -value Thus (27 to 29, <i>y</i> -value) \Rightarrow B0 Either; OE (eg a comparison using lines and/or data at a specific temperature but not at 0°C) Either; OE Any comments about <i>b</i> or $a \Rightarrow$ B0		

Q	Solution	Marks	Total	Comments
4				Ratios (eg 194:640) are only penalised by 1 accuracy mark at first correct answer
(a)(i)	$P(B = 3) = \frac{194/640 \text{ or } 97/320 \text{ or } 0.303 \text{ or } 30.3\%}{194/640 \text{ or } 97/320 \text{ or } 0.303 \text{ or } 30.3\%}$	B1	1	CAO or AWRT (0.303125)
(ii)	$P(T \ge 2) = \frac{172 + 256 + 135}{640} \text{ or } 1 - \frac{77}{640} \text{ or } \frac{563}{640} = 563/640$	M1		САО
		A1	2	
	<u>or (0.879 to 0.88) or (87.9% to 88%)</u>			AWFW (0.879688)
(iii)	$P(B = 3 \& T \ge 2) = \frac{72 + 99 + 16}{640} \text{ or } \frac{194 - 7}{640} \text{ or } \frac{187}{640}$	M1		
	$= \frac{187/640 \text{ or } 0.292 \text{ or } 29.2\%}{187/640 \text{ or } 0.292 \text{ or } 29.2\%}$	A1	2	CAO or AWRT (0.292188)
(iv)	$P(B \le 3 T = 2) = \frac{(14 + 67 + 72)}{172} \text{ or } \frac{172 - 19}{172} \text{ or } \frac{153}{172}$	M1 M1		Correct numerator (accept both ÷ 640) Correct denominator
	= <u>153/172</u>	A1	3	CAO
	<u>or (0.888 to 0.89) or (88.8% to 89%)</u>			AWFW (0.889535)
(b)	$(a)(i) \times (a)(ii) \neq (a)(iii)$	M1		Answers as fractions, percentages or ratios lose accuracy (A & B) marks in (b) & (c) Attempted
	since $0.303 \times 0.88 = 0.265 \text{ to } 0.27 \neq 0.292$	A1	2	AWFW & AWRT
SC	Any correct fully-explained reasoning, using other than any numerically correct decimals (to 3 dp) \Rightarrow B1 (eg P(B = no/unclear/incomplete reasoning or no/incorrect/incomplete	(3) = 0.303	$a \neq P(B =$	3 T = 2) = 72/172 = 0.419 but
(c)	$P(2T \cap 3T \cap \ge 4T \mid B = 3) = \frac{72}{194} \times \frac{99}{193} \times \frac{16}{192}$	M1 M1		Correct 3 values multiplied in numerator Correct 3 values multiplied in denominator 0.371 × 0.513 × 0.083 (all AWRT) ⇒ M1 M1 (OE products)
	<i>abc</i> multiplied by 6 or 3	M1		0 < (a, b & c) < 1
	= 0.095 to 0.0952	A1	4	AWFW (0.095187)

	- 0.095 10 0.0952	AI	4	А₩Г₩	(0.093187)		
NT /							
Notes	1 Incorrect answer with no working $\Rightarrow 0$ marks						
	2 The 3 correct fractions/decimals identified but not multiplied (eg added) \Rightarrow M1 M0 M0 A0						
	3 The 3 correct fractions/decimals identified together with 0.016 (AWRT) \Rightarrow M1 M1 M0 A0						
	4 A denominator of ${}^{194}C_3 = 1198144 \implies M2 (2^{nd} \& 3^{rd} M1 marks)$						
	Total		14				
1							

MS/SS1B		1	r	
Q	Solution	Marks	Total	Comments
5 (a) (i)	<u>Weight, $W \sim N(2.75, 0.15^2)$</u> P($W < 2.8$) = P $\left(Z < \frac{2.8 - 2.75}{0.15}\right)$	M1		In (a)(i) & (c), ignore the inclusion of a lower limit of 0; it has no effect on either answer Standardising 2.8 with 2.75 and 0.15; allow (2.75 – 2.8)
	= P(Z < 0.13 or 1/3)	A1		AWRT/CAO; ignore inequality and sign May be implied by a correct answer
	= <u>0.629 to 0.633</u>	A1		AWFW (0.63056)
(ii)	P(W > 2.5) = P(Z > -1.67) = P(Z < +1.67)	M1		Correct area change May be implied by a correct answer or an answer > 0.5
	= <u>0.951 to 0.953</u>	A1	5	AWFW (0.95221)
(b)	<u>Weight, $X \sim N(5.25, 0.20^2)$</u>			
(i)	P(5.1 < X < 5.3) = P(Z < 0.25) - P(Z < -0.75) = 0.59871 MINUS [(1 - 0.77337) or 0.22663] = <u>0.372(08)</u>	B1 B1	2	Must have diff of 2 probs for each B1 Accept 0.599 Accept 0.773 or 0.227 AG; do not mark simply on answer
(ii)	$P(0 \text{ in } 4) = [1 - 0.372]^4$	M1		Accept $[1 - c's (b)(i)]^4$
	$= 0.628^4 = 0.155 \text{ to } 0.156$	A1	2	AWFW (0.15554)
(c)	<u>Weight, $Y \sim N(10.75, 0.50^2)$</u>			
	Variance of $\overline{Y}_{6} = 0.5^{2}/6 = 0.0416$ to 0.0417 or Sd of $\overline{Y}_{6} = 0.5/\sqrt{6} = 0.204$	B1		CAO or AWFW Stated or used CAO or AWRT
	$P(\overline{Y}_{6} < 10.5) = P\left(Z < \frac{10.5 - 10.75}{\sqrt{0.0416}}\right) =$	M1		Standardising 10.5 with 10.75 and $\sqrt{0.0416}$ OE; allow (10.75 – 10.5)
	P(Z < -1.22) = 1 - P(Z < 1.22) =	m1		Correct area change May be implied by a correct answer or an answer < 0.5; but do not award for use of $z = \pm 0.22$
	1 - (0.88877 to 0.89065) = <u>0.109 to 0.112</u>	A1	4	AWFW (0.11034) $(1 - answer) \Rightarrow B1 M1 max$
	Total		13	

Q				
	Solution	Marks	Total	Comments
6 (a)(i)	<u>$U \sim B(30, 0.13, 0.35 \text{ or } 0.20)$</u>	M1		Used correctly anywhere in (a)
	$P(P=2) = {\binom{30}{2}} (0.13)^2 (0.87)^{28}$	A1		Can be implied by a correct answer
	= <u>0.148 to 0.15</u>	A1	3	AWFW (0.1489)
(ii)	<i>p</i> = <u>0.35</u>	B1		CAO
	$P(R \cup P > 10) = 1 - (0.5078 \text{ or } 0.3575)$	M1		Requires '1 –' Accept 3 dp rounding or truncation Can be implied by 0.49 to 0.493 but not by 0.642 to 0.643
	= <u>0.49 to 0.493</u>	A1	3	AWFW (0.4922)
(iii)	$P(5 \le G \le 10) = 0.9744 \text{ or } 0.9389$ (p ₁)	M1		Accept 3 dp rounding or truncation
	MINUS 0.2552 or 0.4275 (p_2)	M1		Accept 3 dp rounding or truncation
	$=$ <u>0.719 to 0.72</u> (p_3)	A1	3	AWFW (0.7192)
Notes	$\begin{array}{ccccc} 1 & p_3 \leq 0 & \text{or} & p_3 \geq 1 \implies & \text{M0 M0 A0} \\ 2 & p_2 - p_1 \implies & \text{M0 M0 A0} \\ 3 & (1 - p_2) - p_1 \implies & \text{M0 M0 A0} \end{array}$		4 5 6 (1	$p_1 - (1 - p_2) \implies M1 \text{ M0 A0}$ $p_1 \times p_2 \implies M1 \text{ M0 A0}$ $-p_2) - (1 - p_1) \implies M1 \text{ M1 (A1)}$
(b)(i)	Mean or $\mu = 100 \times 0.22$ = <u>22</u> Variance or $\sigma^2 = 100 \times 0.22 \times 0.78$	B1		CAO
	= <u>17.1 to 17.2</u>	B1	2	AWFW (ignore notation)(17.16)ISW all subsequent working
(ii)	22.1 $\approx/=$ 22 or means similar/equal or 0.221 $\approx/=$ 0.22 or proportions similar/equal so reject claim (that $p > 0.22$) or accept that $p = 0.22$	B1		Dependent on 22 seen in (b)(i) or (ii) Accept diff = 0.1 CAO Correct (numerical) comparison with correct conclusion (even if at end and stated as 'reject (both) claims')
	$\sqrt{17.1 \text{ to } 17.2} = 4.13 \text{ to } 4.15 \approx = 4.17$	B1		Comparison using two values or one value + diff (0.02 to 0.04 AWFW) Comparison using two values or
	<u>17.1 to 17.2 ≈/= 17.3 to 17.4</u>			one value + diff (0.1 to 0.3 AWFW)
	reject claim that not random samples or	Bdep1	3	Dependent on previous B1 Correct conclusion regarding
	accept that are random samples	Ducht	5	randomness of sample
	Total		14	

MS/SS1B		1	1			
Q	Solution	Marks	Total	Comments		
7 (a)	$\overline{x} = \frac{181.8}{36} = 5.05 \text{ or } 5050$	B1		CAO		
	98% (0.98) $\Rightarrow z = 2.32 \text{ to } 2.33$	B1		AWFW (2.3263)		
	CI for μ is $\overline{x} \pm z \times \frac{\sigma}{\sqrt{n}}$	M1		Used with z (2.05 to 2.58), \overline{x} (5.05, 5050 or 181.8), σ (0.0075, 0.075, 0.75, 7.5 or 75) and $\div \sqrt{n}$ with $n > 1$		
	Thus $5.05 \pm 2.3263 \times \frac{0.075}{\sqrt{36}}$	A1		$z (2.05 \text{ to } 2.06 \text{ or } 2.32 \text{ to } 2.33 \\ \text{or } 2.57 \text{ to } 2.58), \\ \overline{x} (5.05) \& \sigma (0.075) \text{ or} \\ \overline{x} (5050) \& \sigma (75) \\ \text{and } \div \sqrt{36 \text{ or } 35} \end{cases}$		
	Hence 5.05 ± 0.03 or 5050 ± 30 OR $(5.02, 5.08)$ or $(5020, 5080)$	Adep1	5	CAO/AWRT Dependent on previous A1 so can be scored with $z \neq 2.32$ to 2.33 Ignore (absence of) quoted units AWRT to 3sf accuracy		
Note	Use of $t(2.43 \text{ to } 2.72) \implies B1 \text{ B0 M1 A0 A0 max}$					
(b)	Clear correct comparison of 5 or 5000 with LCL or CI so agree with (first) claim (about mean)	Adep1		Dependent on Adep1 in (a) Must use consistent units		
	(8/36 or 0.22 or 22%) v (1/10 or 0.10 or 10%) or 8 v 3.6 (3 to 4)	B1		Mention of a value on LHS and a value on RHS		
	so 8/36 OE >/≠ 1/10 OE so disagree with (second) claim (about individuals)	Bdep1	3	Dependent on B1 Explicit comparison of values and correct conclusion		
Notes	 It/(claimed) mean/(claimed) value < LCL/CI ⇒ Adep0 98% have (mean) weights between CLs so ⇒ Adep0 Any reference to CI for second claim ⇒ B0 Bdep0 CI 					
(c)	Yes because volumes/bleach/litres/bottles/ (parent) population are not (stated as) normally distributed	B1	1	OE; but do not accept 'data' or 'sample' or 'it' Reference to sample size only \Rightarrow B0 (eg $n > 25$ or $n > 30$)		
	Total		9			
	TOTAL		75			

Version

General Certificate of Education (A-level) January 2013

Mathematics

MS/SS1B

(Specification 6360)

Statistics 1B

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2013 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

Key to mark scheme abbreviations

М	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\sqrt{or} ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
с	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

AS/SS1E		1		1
Q	Solution	Marks	Total	Comments
1 (a)	<i>a</i> = <u>30</u>	B1	1	CAO
(b)(i)	b (gradient) = -0.64 b (gradient) = -0.6 to -0.7	B2 (B1)		CAO (-0.64) AWFW Treat rounding of correct answers as ISW Written form of correct answers as ISW
	$a \text{ (intercept)} = \underline{31} \\ a \text{ (intercept)} = \underline{30 \text{ to } 32}$	B2 (B1)		Written form of equation is not required CAO (31) AWFW
	Attempt at $\sum x \sum x^2 \sum y \& \sum xy (\sum y^2)$ or	(M1)		225 7125 135 & 2415 (2643) (all 4 attempted)
	Attempt at S_{xx} & S_{xy} (S_{yy}) Attempt at correct formula for <i>b</i> (gradient)	(m1)		1500 & -960 (618) (both attempted)
	b (gradient) = -0.64 $a (intercept) = 31$	(A1 A1)	4	CAO both
(ii)	Candle length reduces by 0.64 (cm) per hour Candle burns 0.64 (cm) each/per hour Candle reduces by -0.64 (cm) each/per hour	B1 BF1 (BF2) (BF1)		OE; must be in context OE; must be in context OE; must be in context OE; must be in context (double -ve) F on $-0.6 \le b \le -0.7$ from (i)
	(Length, y , cm) decreases with (time, x , hours) or As (time, x , hours) increases then (length, y , cm) decreases	(B1)	2	OE; context not required B0 for reference only to correlation
(iii)	When $x = 50$, $y = (31 \text{ or } 30) - 0.64 \times 50$ = <u>-1 or -2</u>			CAO; accept correct comparison of 32 with either 30 or 31
	or When $y = 0$, $x = 31 \div 0.64 = 48$ to 48.5 or $30 \div 0.64 = 46.8$ to 47	B1		AWFW AWFW
	Claim not justified or -1 is impossible or value < 50	Bdep1	-	OE; dependent on previous B1
	Claim cannot be answered due to uneven burning or unlikely to burn completely	(B1)	2	Extrapolation required
			9	

MS/SS1E	B (cont)			
Q	Solution	Marks	Total	Comments
2				In (a), ignore the inclusion of a lower limit of 0; it has no effect on the answer
	<u>Volume</u> , $V \sim N(106, 2.5^2)$			
(a)	$P(V < 110) = P\left(Z < \frac{110 - 106}{2.5}\right)$	M1		Standardising 110 with 106 and 2.5; allow $(106 - 110)$
	= P(Z < 1.6)	A1		CAO; ignore inequality and sign May be implied by a correct answer
	= <u>0.945</u>	A1	3	AWRT (0.94520)
(b)	P(V > 100) = P(Z > -2.4) = P(Z < +2.4)	M1		Correct area change May be implied by a correct answer or by an answer > 0.5
	= <u>0.991 to 0.992</u>	A1	2	AWFW (0.99180)
(c)	P(104 < V < 108) = P(-a < Z < a) =			
	P(Z < a) - (1 - P(Z < a)) or $2 \times P(Z < a) - 1$	M1		OE; $a = 0.8$ is not a requirement May be implied by 0.788 seen or by a correct answer
	= 0.788 - (1 - 0.788) = 0.788 - 0.212 or $= 2 \times 0.788 - 1$	A1		AWRT (0.78814/0.21186) Condone 0.211 May be implied by a correct answer
	= <u>0.576</u>	A1	3	AWRT (0.57628)
(d)	$P(V \neq 106) = 1$ or one or unity or 100%	B1	1	CAO; accept nothing else but ignore additional words providing they are not contradictory (eg certain so = 1)
		Total	9	

	(cont)			~
<u>Q</u>	Solution	Marks	Total	Comments
3 (a)	<u>$E \sim B(40, 0.30)$</u>	M1		Used anywhere in (a) even only by implication from a correct value
(i)	$P(E \le 10) = 0.308 \text{ to } 0.309$	A1	(2)	AWFW (0.3087)
SC	For calc ⁿ of individual terms: award B2 for answer within a	bove range;		for answer within range 0.3 to 0.32
(ii)	$P(E \ge 15) = 1 - (0.8074 \text{ or } 0.8849)$	M1		Requires '1 –' Accept 3 dp rounding or truncation Can be implied by 0.192 to 0.193 but not by 0.115 to 0.116
	= <u>0.192 to 0.193</u>	A1	(2)	AWFW (0.1926)
SC	For calc ⁿ of individual terms: award B2 for answer within a	bove range;		for answer within range 0.18 to 0.2
(iii)	$P(E \le 12) = 0.5772 - 0.4406$			Accept 3 dp rounding or truncation
	$P(E \le 12) = {\binom{40}{12}} 0.3^{12} 0.7^{28}$	M1		Correct expression; may be implied by a correct answer
	= <u>0.136 to 0.138</u>	A1	(2)	AWFW (0.1366
			6	
(b)	Means = 3.2 and 2	B1		CAO both values; ignore notation <i>If not labelled, assume order in question</i>
	Variances = <u>2.56 and 1.75</u>	B1 B1	3	CAO each value; ignore notation ISW all subsequent working
(c)(i)	Mean = <u>2</u>	B1		CAO value; ignore notation
	Variance = 2.54 to 2.55 or 2.33 to 2.34 (SD = 1.59 to 1.6 or 1.52 to 1.53)	B1		Any value within either range; ignore notation ISW all subsequent working
			2	
(ii)	<u>B(16, 0.20) or eg "One dist"</u> Different/larger mean Similar/same variance or standard deviation	Bdep1		Identification of distribution not required Both; dep on 3.2, 2.56 /1.6 & (c)(i)
	<u>B(16, 0.125) or eg "Other distⁿ"</u> Equal/same mean Different/smaller variance or standard deviation	Bdep1		Identification of distribution not required Both; dep on 2, 1.75/1.3 & (c)(i)
	Neither likely to provide satisfactory model	Bdep1	3	Dep on Bdep1 and on Bdep1
SC	Award Bdep1 Bdep0 Bdep0 for comparison of 3 correct me Award up to Bdep1 Bdep1 Bdep1 for comparison of 3 corre		for compar	
		Total	14	

0	s (cont)	Maulia	Tatal	Commente
$\frac{\mathbf{Q}}{\mathbf{A}(\mathbf{a})}$	Solution	Marks	Total	Comments
4(a) (i)	r = -0.326 to -0.325 r = -0.33 to -0.32 r = -0.4 to -0.2 r = -0.4 to -0.2 r = -0.2 to -0.4	B3 (B2) (B1) (B1)		AWFW AWFW AWFW AWFW
	Attempt at $\sum x \sum x^2 \sum y \sum y^2 \& \sum xy$ or Attempt at $S_{xx} = S_{yy} \& S_{xy}$	(M1)		756 50004 738 48200 & 45652 (all 5 attempted) 2376 2813 & -842
	Attempt at substitution into correct corresponding formula for r r = -0.326 to -0.325	(m1) (A1)	3	(all 3 attempted) AWFW
(ii)	Some/little/slight/(fairly/quite) weak/ (fairly/quite) moderate negative (linear) correlation/relationship/ association/link (but not 'trend') between	Bdep1		Dependent on $-0.4 \le r \le -0.2$ OE; must qualify strength and state negative Ignore extra words unless contradict Bdep0 for 'low', 'small', 'poor', 'unlikely', 'medium', 'average', or adjective 'very'
	marks/percentages in the two examination papers	B1	2	Context; providing $-1 < r < 1$
(b)(i)	Identifying linear patterns/non-linear patterns/ multiple patterns/no pattern (<i>allow 'trend'</i>) Identifying outliers/anomalies Estimating/gives idea of value of <i>r</i> /sign of <i>r</i>	B2,1		OE; only one mark from each set B0 for reference to checking calculated value
(ii)	Graph (6 labelled points correct) (5 or 4 labelled points correct)	B2 (B1)	2	Correct \Rightarrow within a circle of radius equal to distance between 2 grid lines Deduct 1 mark for any unlabelled or incorrectly labelled point
(iii)	Two separate correlations/relationships/lines/ associations/links/sets of data (<i>but not 'trends'</i>)	B1	1	OE; eg A to F and G to L
(c)	A to F: (+)0.7 to (+)0.99 G to L: -0.9 to -0.5	B1 B1		AWFW; allow calculation (0.937) If not labelled, assume order A to F then G to L AWFW; allow calculation (-0.757)
			2	
		Total	12	

IS/SS1B		I	I	1
Q	Solution	Marks	Total	Comments
5 (a)(i)	P(F & C) = 0.3 or 3/10 or 30%	B1	(1)	Ratios (eg 3:10) are only penalised by 1 accuracy mark at first correct answerCAO(0.3)
(ii)	P(G or S) = 0.45 or 45/100 or 45%	B1	(1)	CAO (0.45)
(iii)	$P(C F) = \frac{0.3 \text{ or } (i)}{0.55} =$	M1		
	or <u>30/55 or 6/11</u> (0.54 to 0.55) or (54% to 55%)	A1	(2)	CAO (6/11) AWFW (0.54545)
(iv)	$P(R' D) = \frac{0.25 \text{ or } (0.30 - 0.05)}{0.30}$	M1 M1		Correct numerator Correct denominator
	or <u>25/30 or 5/6</u> (0.83 to 0.834) or (83% to 83.4%)	A1	(3)	CAO (5/6) AWFW (0.83333)
(v)	$P(F C') = \frac{0.25 \text{ or } (0.60 - 0.35)}{0.60}$	M1		Correct expression
	or (0.416 to 0.42) or (41.6% to 42%)	A1	(2, 3)	CAO (5/12) AWRT (0.41667)
			9	
(b)	$P = [P(F \& C)]^2 + [P(F \& G)]^2$	M1	,	Attempt at sum of at least 2 squared terms; $0 < term < 1$; not $(a+b)^2$ May be implied by a correct expression or a correct answer
	$0.30^2 + 0.25^2$ or $0.09 + 0.0625 =$	A1		OE Ignore additional terms or integer multipliers May be implied by a correct answer
	or (0.152 to 0.153) or (15.2% to 15.3%)	A1	3	CAO AWFW (0.1525)
			10	
		Total	12	

Q	Solution	Marks	Total	Comments
6 (a)	$L \sim N(1005, 15^2)$	11111K5	10141	Comments
	$V(pack) = \frac{15^{2}/12 \text{ or } 225/12 \text{ or } 75/4}{18.7 \text{ to } 18.8}$ OR	B1		CAO AWFW (18.75
	SD (pack) = $\frac{15}{\sqrt{12} \text{ or } 15/2\sqrt{3} \text{ or } 5\sqrt{3}/2}$ or $\frac{4.3 \text{ to } 4.4}{3}$	M1		CAO; OE AWFW (4.33013
	$P(L < 1000) = P\left(\frac{1000 - 1005}{15/\sqrt{12}}\right) =$			Standardising 1000 using 1005 and $15/\sqrt{12 \text{ OE}}$; allow (1005 – 1000)
	P(Z < -1.1547) = 1 - P(Z < 1.1547) = m1		Correct area change May be implied by a correct answer or an answer < 0.5	
	1 - (0.87698 to 0.87493) = 0.123 to 0.126	A1	4	AWFW (0.12411 (1 - answer) \Rightarrow B1 M1 max
(b)(i)	99% (0.99) $\Rightarrow z = 2.57 \text{ to } 2.58$	B1		AWFW (2.5758
	CI for μ is $\overline{x} \pm z \times \frac{\sigma}{\sqrt{n}}$	M1		Used with z (2.05 to 2.58), \bar{x} (4.65) & σ (0.15) and $\div \sqrt{n}$ with $n > 1$
	Thus $4.65 \pm 2.5758 \times \frac{0.15}{\sqrt{24}}$	A1		$z (2.05 \text{ to } 2.06 \text{ or } 2.32 \text{ to } 2.33 \\ \text{or } 2.57 \text{ to } 2.58), \\ \overline{x} (4.65) \& \sigma(0.15) \\ \text{and } \div \sqrt{24 \text{ or } 23 \text{ or } 12 \text{ or } 11}$
	Hence 4.65 ± 0.08			CAO/AWRT
	OR (4.57, 4.73)	A1		AWRT
	<u></u>		4	
(b)(ii)	Clear correct comparison of 4.5 with LCL or CI (eg 4.5 < LCL or its value or 4.5 < CI or its limits	BF1		F on CI only providing $LCL > 4.5$ (ie whole of CI > 4.5) Quoting values for LCL or for CI is not required BF0 for '4.5 is outside CI'; OE
	SO Agree with manufacturer's specification	Bdep1	2	OE; dependent on previous BF1
		Total	10	

	(cont)		-	-
<u>Q</u>	Solution	Marks	Total	Comments
7 (a)	$\sigma \approx \frac{10}{a}$ or $\frac{20}{b}$ or $\frac{\text{range}}{b}$ or $10c$ or $20d$	M1		OE; with $2 \le a \le 4$ $4 \le b \le 8$ or with <i>c</i> or <i>d</i> in equiv percentages Cannot be implied from a correct answer (justification required)
	<u>2.5 or 3.3(OE) or 5</u>	A1	2	
SC	Award B1 for only 2.5 or 3.3(OE) or 5 with no justifica Award B0 for any other answer with no justification or wi			$h (eg \sqrt{10} = 3.16)$
(b)	Valid statement involving: 391 and 405 OR 401 and 415 OR 24 and 10 OR 391 and 415 and 10/24 with linking statement	B1		Allow 'set weight' to imply 415 and/or 'mean' to imply 391 B0 for 10 linked to σ
	95.5 > (value of σ of 2.5 or 3.3(OE) or 5)	B1		Accept ≠ rather than > Clear correct numerical comparison
	Neither (likely to be) correct	Bdep1	3	Dependent on B1 B1
(c)	Mean or $\overline{y} = \frac{8210.0}{10} = \underline{821}$ OR $\sum y = \underline{8200}$	B1		CAO;
	Variance $\frac{110.00}{9} = \underline{12.2}$ or $\frac{110.00}{10} = \underline{11}$ OR 3.5 or 3.3	B1		AWRT CAO Award on value ; ignore notation AWRT
	821 is similar to/within 10 of 820 OR 8210 is within 100 of 8200	B1		OE; clear correct numerical comparison of 821 with 820 Allow 'set weight' to imply 820 Or OE; clear correct numerical comparison of 8210 with 8200 but do not accept 'within 10' here
	3.5 or 3.3 is similar to a value of σ of 3.3(OE) or 2.5	B1	4	Clear correct numerical comparisor
		Total	9	
	TOTAL		75	

Version 1.0

General Certificate of Education (A-level) June 2013

Mathematics/Statistics

MS/SS1B

(Specification 6360/6380)

Statistics 1B

Final

Mark Scheme

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2013 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

Key to mark scheme abbreviations

М	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\checkmark or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
с	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

0	Solution	Marks	Total	Comments
1(a)(i)	Mean = 62.2 to 62.3	B1		AWFW (62.25)
	SD = <u>17.4 to 17.6 or 16.7 to 16.9</u>	B1	2	AWFW (17.519 or 16.774)
(ii)	Mean = <u>16.77 to 16.84</u>	BF1		AWFW (16.806) F on (a)(i) only providing 45 < mean < 65
	SD = <u>9.66 to 9.78 or 9.27 to 9.39</u>	BF2	3	AWFW (9.733 or 9.319) F on (a)(i) only providing 10 < SD < 20
(b)	$r_{xy} = 0.997$	B1		CAO Award on value only; ignore any explanation or working $r_{xy} = r_{uv}$ with no value stated \Rightarrow B0
	<i>r</i> not affected by change(s) in/different units			Accept 'Formula' or 'It' for r and reference to ' linear ' is not necessary
	or			
	r not affected by linear scaling	B1	2	Accept 'Formula' or 'It' for r but reference to ' linear ' is necessary
	or			
	Scaling/coding/transformation/change/ conversion to <i>u</i> and <i>v</i> is linear			OE; but reference to 'linear' is necessary
	Total		7	

Q	Solution	Marks	Total	Comments
				Accept percentage equivalents in (a)
2(a)(i)	$\frac{\text{Weight, } X \sim N(421, 2.5^2)}{P(X = 421) = \underbrace{0 \text{ or zero or nought or}}_{\underline{0\%}}$	B1		CAO; accept nothing else but ignore additional words providing that they are not contradictory (eg impossible so = 0)
(ii)	$P(X < 425) = P\left(Z < \frac{425 - 421}{2.5}\right)$	M1		Standardising 425 with 421 and 2.5 but allow $(421 - 425)$
	= P(Z < 1.6) = 0.945 to 0.946	A1		AWRT (0.94520)
(iii)	P(418 < X < 424) = P(-a < Z < a) =			
	$P(Z \le a) - (1 - P(Z \le a))$ or $2 \times P(Z \le a) - 1$	M1		 OE; a = 1.2 or correct standardising are not required May be implied by 0.885 (AWRT) seen anywhere or by a correct answer
	= 0.885 - (1 - 0.885) = 0.885 - 0.115 or $= 2 \times 0.885 - 1$	A1		AWRT (0.88493/0.11507) Implied by a correct answer
	= <u>0.769 to 0.77</u>	A1	6	AWFW (0.76986)
(b)	$0.98 \implies z = 2.05 \text{ to } 2.06$	B1		AWFW (2.0537)
	$\left(\frac{x-421}{2.5}\right) = 2(.0)$ to 2.4	M1		Standardising x with 421 and 2.5 but allow $(421 - x)$; and equating to a <i>z</i> -value (<i>ignore sign</i>) May be implied by a correct answer
	x = <u>426 to 426.3</u>	A1	3	AWFW (426.13) Must be consistent signs throughout
(c)	$0.01 \implies z = -2.33 \text{ to } -2.32$	B1		AWFW; (ignore sign) (-2.3263)
	$z = \left(\frac{410 - \mu}{3.0 \text{ or } 2.5}\right)$	M1		Standardising 410 with μ and (3.0 or 2.5) but allow (μ – 410)
	$\left(\frac{410-\mu}{3.0}\right) = -2.6$ to -2.3	A1		Equating to a <i>z</i> -value (<i>ignore sign</i>) May be implied by a correct answer
	μ = <u>417</u>	Adep1	4	AWRT (416.98) Dependent on previous A1 <i>Must be consistent signs throughout</i>
	Total		13	

Q	Solution	Marks	Total	Comments
3(a)(i)	$\underline{O} \sim \mathrm{B}(40, p)$			Accept percentage equivalents except for 27
	$P(NS \le 10) = 0.97$	B1	1	AWRT (0.9701)
(ii)	$P(LPE \ge 25) = 1 - (0.9231 \text{ or } 0.9597)$	M1		Requires '1 -' Accept 3 dp rounding Can be implied by (0.0769 to 0.077) but not by (0.04 to 0.0403)
	= <u>0.077</u>	A1	2	AWRT (0.0769)
(iii)	$P(UPE = 2) = {\binom{40}{2}} (0.175)^2 (0.825)^{38}$	M1		Correct expression; may be implied by a correct answer Ignore extra terms
	= <u>0.016</u>	A1	2	AWRT (0.0160)
(iv)	<i>p</i> = 0.85 – 0.50 = <u>0.35</u>	B1		CAO; award on value only May be implied by any of four probabilities below or by a correct answer
	$P(10 < X < 15) =$ 0.5721 or 0.6946 (p_1)	M1		Accept 3 dp rounding May be implied by a correct answer
	MINUS 0.1215 or 0.0644 (<i>p</i> ₂)	M1		Accept 3 dp rounding May be implied by a correct answer
	= <u>0.45 to 0.451</u>	A1	4	AWFW (0.4506)
(b)	or $p = 0.85 - 0.175 = 0.675$ p' = 0.325	B1		CAO; may be implied by 27 Each can be found in several ways CAO; may be implied by 13 or 27
	Number = $40 \times 0.675 = 27$	B1	2	CAO; can be found in several ways
	Total		11	

Q	Solution	Marks	Total	Comments
4(a)(i)	$r_{gy} = \frac{24.15}{\sqrt{0.1196 \times 5880}} = 0.91 \text{ to } 0.911$	M1 A1		May be implied by a correct answer in (a)(i) or (a)(ii) or (c)(i) AWFW (0.91067)
(ii)	$r_{ly} = \frac{10.25}{\sqrt{0.0436 \times 5880}} = \mathbf{0.64 \ to}$ <u>0.641</u>	A1	3	AWFW (0.64017)
(b)	(Very) Strong positive correlation	Bdep1		Dependent on $0.9 \le r_{gy} < 1$
	(Some) Moderate positive correlation	Bdep1		Dependent on $0.6 \le r_{ly} \le 0.7$ Bdep0 for any mention of 'strong'
	between girth and weight and/or length and weight	B1	3	At least one interpretation in context
(c)(i)	$r_{xy} = \frac{5662.97}{\sqrt{5656.15 \times 5880}} = \underline{0.98 \text{ to } 0.982}$	B1		AWFW (0.98196)
	Most strongly correlated with <i>y</i> is \underline{x}	Bdep1	2	CAO; dependent on $0.97 \le r_{xy} < 1$
(ii)	$x = 69.3 \times 1.25^2 \times 1.15 = \underline{124 \text{ to } 125}$	M1 A1	2	May be implied by a correct answer AWFW (124.52)
(iii)	$b = \frac{5662.97}{5656.15}$	M1		$116/115.4 (= 1.005) \implies M0 A0$
	= 1 to 1.002	A1		AWFW (1.00121)
	a = 116 - 115.4b = 0.3 to 0.6	B1	3	AWFW (0.46085)
(iv)	$r_{xy} \approx$ /nearly/almost/close to (+) 1 or very strong/almost exact (positive) correlation (Stating r_{xy} =0.98 to 0.982 \Rightarrow Bdep0)	Bdep1		OE Dependent on $0.97 \le r_{xy} < 1$ OE; 'strong' is not sufficient
	$b = \frac{1}{2} \frac{1}{1}$	Bdep1		OE; must reference value of 1 or unity
	a \approx /nearly/almost/close to 0 (Stating $a = 0.4$ to $0.6 \implies$ Bdep0)	Bdep1		Dependent on M1 A1 in (c)(iii) OE; must reference value of 0 or origin Dependent on B1 in (c)(iii)
	Estimate (not 'it' or 'this' or 'value', etc) is (very/highly/likely to be) accurate/precise/ reliable or (almost) exact/correct	Bdep1	4	OE; dependent on scoring at least 2 of the previous 3 marks in (c)(iv) Fairly accurate, good approximation, (quite) likely, (very) close, reasonable, etc \Rightarrow Bdep0
	Total		17	

Q	Solution	Marks	Total	Comments
5(a)(i)	$P(A = 2) = 0.90 \times 0.95 = 0.85 \text{ to } 0.86$	B1		AWFW (0.855 or 171/200 OE)
(ii)	$P(A = 1) = (0.90 \times 0.05) + (0.10 \times 0.95)$ or = 1 - [0.855 + (0.10 × 0.05)] = <u>0.14</u>	M1 A1	3	May be implied by a correct answer Do not ignore extra terms CAO (7/50 OE)
(b)(i)	$P(A_W \cap D_W) = 0.90 \times 0.80$	M1		May be implied by a correct answer
	= <u>0.72</u>	A1	2	CAO (18/25 OE)
(ii)	$\begin{split} P(A_B \cap D_B) &= (b)(i) \times 0.95 \; (\times \; 1) \\ \textbf{or} &= 0.90 \times 0.80 \times 0.95 \; (\times \; 1) \\ \textbf{or} &= (a)(i) \times 0.80 \end{split}$	M1		May be implied by a correct answer
	<u>0.68 to 0.685</u>	A1	2	AWFW (0.684 or 171/250 OE)
(iii)	$P(A_{T} \cap D'_{T}) = 0.95 \times 0 = \underline{0}$	B1	1	CAO; award on value only
(iv)	$P(\text{neither}) = P([A'_{W} \cap D'_{W}] \cap [A'_{T} \cap D'_{T}]) \\ (1 - 0.90) \times (1 - 0.15) \\ (1 - 0.95) \times (1 - 0) \\ \text{or} \\ P(\text{neither}) = \\ P(A'_{W} \cap A'_{T}) \cap P(D'_{W} A'_{W}) \cap P(D'_{T} A'_{T}) \\ (1 - 0.90) \times (1 - 0.95) \\ (1 - 0.15) \times (1 - 0) \\ \end{cases}$	M1 m1 (M1) (m1)		Accept 0.085 or 17/200 OE Award M1 and m1 on value(s) only Accept 0.05 or 1/20 OE Accept 0.005 or 1/200 OE Award M1 and m1 on value(s) only Accept 0.85 or 17/20 OE
	$= 0.085 \times 0.05$ or 0.005×0.85			OE
	= 0.0042 to 0.0043	Al	3	AWFW (0.00425 or 17/4000 OE)
	Total		11	

Q	Solution	Marks	Total	Comments
6(a)(i)	$\overline{x} = \frac{497.5}{25} = $ <u>19.9</u>	B1		САО
	$98\%(0.98) \implies z = 2.32 \text{ to } 2.33$	B1		AWFW (2.3263)
	CI for μ is $\overline{x} \pm z \times \frac{\sigma}{\sqrt{n}}$	M1		Used with z (2.05 to 2.58), \overline{x} (497.5 or 19 to 21) and σ (0.4) and $\div \sqrt{n}$ with $n > 1$
	Thus $19.9 \pm 2.3263 \times \frac{0.4}{\sqrt{25}}$	A1		z (2.05 to 2.06 or 2.32 to 2.33 or 2.57 to 2.58), \overline{x} (19.9) and σ (0.4) and $\div \sqrt{25 \text{ or } 24}$
	Hence 19.9 ± 0.2 or $(19.7, 20.1)$	A1	5	CAO/AWRT (0.186104) AWRT
(ii)	Clear correct comparison of 20 with CI			F on CI providing it contains 20
	eg 20 is within CI or $LCL < 20 < UCL$	BF1		Quoting values for CI is not required
	so Agree with claim or no reason to doubt claim	Bdep1	2	OE; dependent on previous BF1
(iii)	Weight of sand in a bag or <i>X/x</i> or original distribution or parent population	B1	1	It/mean/data/sample/information/sand is normal \Rightarrow B0
	is normal			Reference only to sample size or standard deviation \Rightarrow B0

Q	Solution	Marks	Total	Comments
6(b)(i)	<u>$Y \sim N(25.25, 0.35^2)$</u>			Accept percentage equivalent probabilities
	V(mean) = $0.35^2/10$ or 0.0122 to 0.0123 or SD (mean) = $0.35/\sqrt{10}$ or 0.11 to 0.111	B1		CAO/AWFW (0.01225) CAO/AWFW (0.11068)
	$P(\overline{Y} < 25) = P\left(Z < \frac{25 - 25.25}{0.35/\sqrt{10}}\right)$	M1		Standardising 25 using 25.25 and 0.35/$\sqrt{10}$ OE but allow (25.25 – 25)
	= P(Z < -2.25877) = 1 - P(Z < 2.25877)	m1		Correct area change May be implied by a correct answer or an answer < 0.5
	= 1 - (0.98809 to 0.98778)			
	= <u>0.011 to 0.013</u>	A1	4	AWFW (0.01195) $(0.987 \text{ to } 0.989) \Rightarrow$ B1 M1 m0 A0
(ii)	$P(Y > 25) = P\left(Z > \frac{25 - 25.25}{0.35}\right)$	M1		Standardising 25 using 25.25 and 0.35 but allow $(25.25 - 25)$
	= P(Z > -0.71429) = P(Z < 0.71429)			
	= <u>0.761 to 0.764</u>	A1		AWFW (0.76247) (0.236 to 0.239) \Rightarrow M1 A0
	$P(Y > 25 \text{ in each of } 10) = \underline{p^{10}}$	M1		Any p^{10} providing $0May be implied by a correct answer$
	= <u>0.065 to 0.068</u>	A1	4	AWFW (0.06641)
	Total		8	
	TOTAL		75	

A-LEVEL Statistics

Statistics 1B – SS1B Mark scheme

6380 June 2014

Version/Stage: Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Copyright © 2014 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

М	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
Α	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
С	candidate
sf	significant figure(s)
dp	decimal place(s)

Key to mark scheme abbreviations

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1	No MR or MC in this question	1111111	100001	
(a)	Ordered data: 3.3 3.6 3.7 3.8 3.9 4.0 4.1 4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2	M1		May be near printed values If seen, then ≥ 5 correctly ordered If not seen, then can be implied from ≥ 1 of M, UQ, LQ or IQR correct
	Median = $\underline{4.5}$	A1		CAO
	UQ = 4.9 $LQ = 3.8$	A1		Either CAO; ignore notation Can be implied by $IQR = 1.1$
	$IQR = \underline{1.1}$	A1	4	CAO
Notes	1 If values are not ordered, then $M = 5.2$, $UQ = 3.3$ and LQ 2 If answers are not identified, then assume that order of values of $M = 1000$ m s $M = 1$			\Rightarrow M0
(b)	Range = $5.2 - 3.3 = 1.9$	B1	1	CAO
Note	1 If values are not ordered, then Range = $0.2 \Rightarrow B0$			
(c)	All values are different/each value occurs once/ there is no mode	B1	1	OE
		Total	6	

Q	Solution	Marks	Total	Comments
2	No MR or MC in this question			Accept %age equivalents in (a)(i) to (iii)
(a)	<u>Time, $X \sim N(7.5, 1.6^2)$</u>			
(i)	$P(X < 10) = P\left(Z < \frac{10 - 7.5}{1.6}\right)$	M1		Standardising 10 with 7.5 and 1.6 but allow $(7.5 - 10)$; $z^2 \Rightarrow M0$
	= P(Z < 1.5625) = 0.94	A1	(2)	AWRT (0.94091)
(ii)	P(X > 6) = P(Z > -0.9375) = P(Z < 0.9375)	M1		Correct area change; 0.9375 or correct standardising are not required Can be implied by final answer > 0.5
	= 0.82 to 0.83	A1	(2)	AWFW (0.82575)
(iii)	P(5 < X < 10) = P(Z < 1.5625) - P(Z < -1.5625) =			
	(i) $- [1 - (i)]$ or $1 - 2 \times [1 - (i)]$ = $[2 \times (i)] - 1$	M1		OE; any correct difference in areas using (a)(i) or $P(5 < X < 10)$ Can be implied by a correct final answer
	$= 2 \times 0.94091 - 1 = = 0.88$	A1	(2)	AWRT (0.88182)
			6	
(b)	$80\% (0.8) \implies z = 0.84$	B1		AWRT; ignore sign (0.8416)
	$P(Y < 15) = P\left(Z < \frac{15 - \mu}{2.4 \text{ or } 1.6}\right)$	M1		Standardising 15 with μ and (2.4 or 1.6) but allow (μ – 15)
	$\left(\frac{15-\mu}{2.4}\right) = 0.84(16) \text{ or } 1.28(16)$	m1		Equating expression with $\sigma = 2.4$ to either <i>z</i> -value (<i>ignore sign</i>) Can be implied by a correct answer
	$\mu = 12.95 \text{ to } 13$	A1	4	AWFW (12.9802) Must be consistent signs throughout
		Tatal	10	
		Total	10	

Q	Solution	Marks	Total	Comments
3	No MR or MC in this question			
(a)	b (gradient/slope) = <u>0.85</u> b (gradient/slope) = <u>0.8 to 0.9</u>	B2 (B1)		AWRT (0.85055) AWFW
	$a (intercept) = \frac{94.6 \text{ to } 94.8}{93 \text{ to } 97}$ $a (intercept) = \frac{93 \text{ to } 97}{93 \text{ to } 97}$	B2 (B1)		AWFW (94.69602) AWFW
	Attempt at $\sum x \sum x^2 \sum y \& \sum xy$ or	(M1)		254 6924 1163 & 29942 (all 4 attempted) $(\sum y^2 = 135693)$
	Attempt at S_{xx} & S_{xy}	()		472.4 & 401.8 (both attempted) $(S_{yy} = 436.1)$
	Attempt at correct formula for b b = 0.85 (AWRT) $a = 94.6$ to 94.8 (AWFW)	(m1) (A1 A1)	4	$(\overline{x} = 25.4 \& \overline{y} = 116.3)$
Notes	 Treat rounding of correct answers as ISW Award 4 marks for y = (94.6 to 94.8) + 0.85 or for (94.4 Values of a and b interchanged and equation y = ax + b.5 Values of a and b interchanged and equation y = a + b.6 Values are not identified or simply b/a = # and a/b = # for example, as identification, [b = #, a = # with y = [slope/gradient(b) = #, intercept(a) = #] Answers in fractions can score at most M1 m1 Some/all of marks can be scored in (b) & (d), even if some be recouped by subsequent working in (b) or (d) 	harks B1 and 93 to 97 \Rightarrow B1 but accept, tion for b & a] or		
(b)	$y_{30} = \frac{120 \text{ to } 120.5}{117 \text{ to } 123}$	B2 (B1)	2	AWFW (120.21253) AWFW
Note	1 If, and only if, B0, then award M1 for seen use of $y =$	$a + b \times 30$	-	
(c)(i)	Extrapolation BMI is outside/above range 45 is outside/above range of BMI or x	B1		OE; accept references to sample/data but not to population
(ii)	Extrapolation Age is outside/above range 50 is outside/above range of age	B1		OE; accept references to sample/data but not to population
Notes	1 Extrapolation only stated in each of (i) & (ii) \Rightarrow B1 B0		2	2 Two debateable answers \Rightarrow B1 max
(d)	$r_{20} = 117 - (a + b \times 20) = \frac{5.3}{5 \text{ to } 6}$	B2 (B1)	2	AWRT; do not ignore sign (5.29297) AWFW; ignore sign
Note	1 If, and only if, B0, then award M1 for seen use of $\pm [11]$	$7 - (a + b \times 2)$		
(e)	As 2.71/(mean) value is small (in comparison to y-values), estimate is likely to be (quite/fairly/very/extremely) accurate	B1	1	OE; justification & conclusion
			11	
			11	

SS1B-MS-June14 v0.3

Q	Solution	Marks	Total	Comments
4	No MR or MC in this question		10(41	Comments
	^			
Notes	 Percentage answers must be penalised by 1 accuracy man Ratio answers (eg 4:5) are only acceptable in (a) and must 			
(a)(i)	$P(\geq 1) = 0.70 + 0.55 - 0.45 =$	M1		OE; eg $0.25 + 0.45 + 0.1$
	<u>0.8 or 4/5 or 80%</u>	A1	(2)	CAO
(ii)	P(=1) = (i) - 0.45 = 0.25 + 0.1			
	<u>0.35 or 35/100 or 7/20 or 35%</u>	AF1	(1)	F on (i) 0
			3	
Note	1 If answers to (i) & (ii) are correct but reversed, then awar	d M1 A0 A	AF0	
(b)	$P(A) \times P(M) = 0.70 \times 0.55 \text{ or } 0.385$	B1		OE
	$0.385 \neq 0.45 \text{ or } < 0.45$	B1	2	Must compare to 0.45 OE and compare 'like with like'
Notes	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		B1 for any	
(c)(i)	$P(AMBN) = (0.45 \text{ or } 0.385 \text{ or } 0.70 \times 0.55) \\ \times 0.85 \times 0.65$	M1		Can be implied by a correct answer Ignore any integer multipliers (eg 4)
	= 0.248 to 0.25 or 24.8% to 25%	A1	2	AWFW (0.248625)
Notes	 Use of 0.385 gives an answer of 0.2127125 (0.212 to 0.212) The 3 correct terms identified but not multiplied (eg additional) 		\Rightarrow M1 A	0
(ii)	P(A'M'B'N') = P(A'M') × P(B'N') = p × P(B'N')			
	$p = \underline{0.2}$	B1		CAO; can be implied from working or from a correct answer
	$p \times (0.15 \times 0.35)$	M1		$0Can be implied by a correct answerIgnore any integer multipliers (eg 4)$
	= 0.01 to 0.011 or 1% to 1.1%	A1	3	AWFW (0.0105)
Notes	1 Use of $p = 0.3 \times 0.45 = 0.135$ gives answer of 0.0070875		RT) \Rightarrow B	0 M1 A0
	2 The 3 correct terms identified but not multiplied (eg add			
		Total	10	

Q	Solution	Marks	Total	Comments
5	No MR or MC in this question		10(41	Comments
(a) (i)	$r = \frac{0.848 \text{ to } 0.849}{0.84 \text{ to } 0.86}$ $r = \frac{0.84 \text{ to } 0.86}{0.8 \text{ to } 0.9}$	B3 (B2) (B1)		AWFW (0.84856) AWFW AWFW
	Attempt at $\sum x \sum x^2 \sum y \sum y^2 \& \sum xy$ or Attempt at $S_{xx} S_{yy} \& S_{xy}$	(M1)		696 46896 1128 129832 & 76001 (all 5 attempted) 6528 23800 & 10577 (all 3 attempted)
	Attempt at substitution into correct corresponding formula for r r = 0.848 to 0.849	(m1) (A1)	3	AWFW
(ii)	(Fairly/quite) strong positive (linear) correlation between	Bdep1		Dependent on $0.8 \le r < 0.9$ OE; must qualify strength and state positive
	Shop X (daily) takings and Shop Y (daily) takings of two shops or (daily) takings of (two) shops	B1	2	Context OE; providing $-1 < r_{xy} < 1$
Notes	 Only accept phrase stated; ignore additional comments unl Use of: "very/extremely/relatively strong or high or big Accept "relationship/association/link" but not "trend" in Do not accept "£x" and "£y" without further identification 	or good o stead of "co	ictory r moderate	or medium or average" ⇒ Bdep0
(b)	Scatter diagram 4 points correct & labelled 3 or 2 points correct & labelled	B2 (B1)	2	Deduct 1 mark if not labelled
(c)	Days D & I Day D: more shoppers or increased takings Day I: fewer shoppers or reduced takings	B1 B1 B1	3	OE OE
Notes	1 D stated with valid reason & I stated with valid reason = 3 D & I stated with no (matching) reasons \Rightarrow B1 B0 B0		2 I & D st	ated with valid matching reasons \Rightarrow B1 B1 B1 ated with no (matching) reasons \Rightarrow B0 B0 B0
(d)(i)	$r = \frac{407.5}{\sqrt{1292.5 \times 3850.1}} =$	M1		
	<u>0.182 to 0.183</u>	A1		AWFW (0.18267)
(ii)	Some /(fairly/quite/very) weak or little or slight (almost) no/hardly any (positive) correlation	Bdep1	3	Dependent on $0.1 \le r < 0.2$ OE; must qualify strength
Notes	 Only accept phrases listed; ignore additional comments un Use of: "low or small or poor or bad or unlikely or r Accept "relationship/association/link" but not "trend" in 	elatively"	lictory ⇒ B0	1
		Total	13	

0	Solution	Marks	Total	Comments
<u>Q</u> 6	No MR or MC in this question		10181	Accept percentage equivalents in (a) & (b)
(a)	Use of B(26, 0.06) or B(50, 0.15)	M1		Indicated by an expression or by any one probability in (a) or (b) Correct expression
	$P(M = 2) = {\binom{26}{2}} (0.06)^2 (0.94)^{24}$	M1		Can be implied by a correct answer Ignore extra terms
	= <u>0.265</u>	A1	3	AWRT (0.26501)
(b) (i)	P(I < 10) = 0.791	B1	(1)	AWRT (0.7911)
(ii)	P(I > 5) = 1 - (0.2194 or 0.1121)	M1		Requires "1 – probability" Accept 3 dp rounding Can be implied by (0.78 to 0.781) but not by (0.888)
	= <u>0.78 to 0.781</u>	A1	(2)	AWFW (0.7806)
SC	For calculation of individual terms: award B2 for 0.78 to 0	.781 AWFV	/; award B	1 for 0.888 AWRT
(iii)	P(6 < I < 12) = 0.9372 or 0.9699 (p ₁)	M1		Accept 3 dp rounding May be implied by a correct answer
	MINUS 0.3613 or 0.2194 (<i>p</i> ₂)	M1		Accept 3 dp rounding May be implied by a correct answer
	= <u>0.575 to 0.577</u>	A1	(3)	AWFW (0.5759)
Notes			$12 \Rightarrow M$	2 May be implied by a correct answer A1
	x 5 6 7 $P(X=x)$ 0.1073 0.1419 0.1575	8 0.1493	9 0.1230	10 11 12 0.0890 0.0571 0.0327/8
			6	
(c)	Chain (or Farokh's): Mean = $50 \times 0.15 = \frac{7.5}{1000000000000000000000000000000000000$	B1		CAO (6.375)
	or $SD = \frac{0.07 + 0.000}{2.52 + 0.2.53}$	B1		AWFW
	(Farokh's) mean < Chain's mean or 4.33 < C's mean	B1		Not available for incorrect labelling
	(Farokh's) Var/SD < Chain's Var/SD or 3.94 < C's Variance	B1		Not available for incorrect labelling (1.98 to 1.99) < C's SD
	Farokh's store (performance) is better than that of the supermarket chain as a whole	Bdep1	5	Dependent on previous four B1 marks
SC	A correct comparison of 433 with 750 or (0.086 to 0.087)) with 0.15	scores B1 I	30 B1 B0 Bdep0
		Total	14	

0	Solution	Morilya	Tatal	Commonto	
Q 7	Solution No MR or MC in this question	Marks	Total	Comments	
(a)	Mid-points (x):				
(a)	37.5 42.5 47.5 52.5 57.5 62.5 67.5 72.5 77.5 82.5 87.5 92.5 97.5	M1		May be near printed table If seen, then ≥ 5 correct If not seen, then can be implied from mean of 62.9 or 67.5 or from 10065	
	Mean = 62.9	A1		AWRT (62.90625)	
	SD = 12.3 to 12.4	B2	4	AWFW (12.3234 or 12.3621)	
Notes	1 $\sum fx = 10065$ and $\sum fx^2 = 657450$		•		
	2 Using <i>LCB</i> -values or <i>UCB</i> -values and <i>f</i> -values gives Me 3 Using only <i>x</i> -values gives Mean = 67.5 and SD = 18.7 t 4 Using only <i>f</i> -values gives Mean = 12.3 and SD = 8.6 t 5 If, and only if, M0 A0 B0, then award M1 for seen atter	$\begin{array}{c} \text{o} \ 19.5 \Rightarrow \\ \text{to} \ 9.0 \Rightarrow \end{array}$	M1 A0 B0 M0 A0 B0		
(b)(i)	98% (0.98) $\Rightarrow z = 2.32 \text{ to } 2.33$	B1		AWFW (2.3263)	
	CI for μ is $\overline{x} \pm z \times \frac{s \text{ or } \sigma}{\sqrt{n \text{ or } (n-1)}}$	M1		Used; must $\div \sqrt{n}$ with $n > 1$ Evaluation of only one CL \Rightarrow M0	
	(C's-mean) ± (2.05 to 2.33) × $\frac{(C's-SD)}{\sqrt{160 \text{ or } 159}}$	AF1		F on (a)	
	Thus 62.9 \pm (2.32 to 2.33) $\times \frac{(12.3 \text{ to } 12.4)}{\sqrt{160 \text{ or } 159}}$	A1			
	Hence $62.9 \pm (2.2 \text{ to } 2.4)$ or $(60.5 \text{ to } 60.7, 65.1 \text{ to } 65.3)$	Adep1		AWRT/AWFW (±2.2735) Dependent on previous A1 AWFW	
			5		
Notes	1 Use of <i>t</i> -value of (2.34 to 2.35) gives $\pm 2.3 \Rightarrow B1 M1$ 2 A correct answer with no working (ignore (a)) $\Rightarrow B1 M$				
(ii)	Clear correct comparison of 61.7 with CI eg 61.7 is within CI or LCL < 61.7	BF1		F on CI providing it contains 61.7 Must be an interval but quoting values for limits is not required	
	Disagree with claim or reason to doubt claim	Bdep1	2	OE; dependent on BF1	
Notes	 Statement must clearly indicate that "61.7 is within the CI" OE 2 "It/mean/value/etc" is within CI ⇒ BF0 3 Statements of the form "61.7 is within 98% of the data" ⇒ BF0 4 Statements such as "Claim unlikely/unreasonable/unsupported/incorrect/false/impossible/invalid" ⇒ Bdep1 providing BF1 				
		Total	11		

A-LEVEL Statistics

Statistics 1B – SS1B Mark scheme

6380 June 2015

Version/Stage: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Copyright © 2015 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Μ	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
С	candidate
sf	significant figure(s)
dp	decimal place(s)

Key to mark scheme abbreviations

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

General Notes for SS1B

- GN1 There is no allowance for misreads (MR) or miscopies (MC) unless specifically stated in a question
- **GN2** In general, a correct answer (to accuracy required) without working scores full marks but an incorrect answer (or an answer not to required accuracy) scores no marks
- **GN3** Where percentage equivalent answers are permitted in a question, penalise by **one accuracy mark** at the first **correct** answer but only if no indication of percentage (eg %) is shown
- **GN4** In probability questions, do **not** award **accuracy** marks for answers in the form of a ratio or odds (eg 7/20 as 7:20 or 7:13)

0	Solution	Marks	Total	Comments		
1						
(a)	Mode = $\underline{10}$	B1		CAO; ignore any reference to 9 unless stated as the/a mode		
	Median = <u>11</u>	B1		CAO; providing not based on shown incorrect working		
	UQ = 14 $LQ = 10$	B1		Either CAO; ignore notation Can be implied from IQR = 4 with no working or from IQR = 4 not from incorrect working		
	$IQR = \underline{4}$	B1	4	CAO		
Notes	1 If values are not identified, then assume that order of values is mode, median, IQR 2 Ordering of days $(1, 1, 2, 3, 3, 4, 5, 7, 9) \implies \text{mode} = 3$, median = 3, IQR = $6 - 1.5 = 4.5 \implies$ no marks					
(b)						
	Mean = <u>11.8</u>	B2		CAO $\left(\sum f = 35 \text{ and } \sum fx = 413\right)$		
	Mean = <u>11.7 to 11.9</u>	(B1)	2	AWFW		
Notes	1 Using only <i>x</i> -values gives mean = $11.22 \implies B0$					
	2 Using only <i>f</i> -values gives mean = $3.889 \implies B0$	_				
	3 If, and only if, B0, then award M1 for seen attempt at	$fx \div 35$ or	for seen a	ttempt at 413÷35		
		Total	6			

Q	Solution	Marks	Total	Comments
2				Accept percentage equivalent answers in (a) but see GN3
(a)(i)	$P(X < 90) = P\left(Z < \frac{90 - 91}{0.8}\right)$	M1		Standardising 90 with 91 and 0.8; allow (91 – 90)
	= P(Z < -1.25) = 1 - P(Z < -1.25)	m1		Correct area change Can be implied by a correct answer or by an answer < 0.5
	= (1 - 0.89435) = 0.105 to 0.106	A1	(3)	AWFW (0.10565)
(ii)	$P(X \neq 90) = 1 \text{ or one or unity or } 100\%$	B1	(1)	CAO; accept nothing else but ignore zeros after decimal point (eg 1.00) Ignore additional words providing that they are not contradictory (eg certain so = 1)
Note	1 $P(X \neq 90) = P(Z \neq 0) \implies B0$ unless followed by 1 OE			
(iii)	P(91 < X < 92.5) = P(0 < Z < 1.875)			
	or = $(0.969 \text{ to } 0.972) - 0.5$ = $0.5 - (0.028 \text{ to } 0.031)$	B1		AWFW/CAO OE; can be implied by a correct final answer CAO/AWFW
	= <u>0.47</u>	B1	(2)	AWRT (0.46960)
			6	
(b)	$1\%(0.01) \implies z = -2.33 \text{ to } -2.32$	B1		AWFW; seen anywhere, ignore sign (-2.3263)
	$P(Y < 150) = P\left(Z < \frac{150 - 153}{\sigma}\right)$	M1		Standardising 150 with 153 and σ/s ; allow (153 – 150)
	$\frac{\pm (150 - 153)}{\sigma} = \begin{pmatrix} \pm 1.28 \text{ AWRT} \\ \text{or} \\ \pm 2.32 \text{ to } \pm 2.33 \text{ AWFW} \end{pmatrix}$	m1		(-1.2816) Can be implied by a correct answer
	<i>σ</i> = <u>1.3</u>	A1	4	(-2.3263) AWRT (1.28960)
Note	1 Award A0 if the signs are not consistent throughout, so, for	or example,	-)/+2.3263 gives $\sigma = 1.3 \implies B1, M1, m1, A0$
		Total	10	

Q	Solution	Marks	Total	Comments
3 (a)(i)	$r = \frac{0.748}{0.74 \text{ to } 0.76}$ $r = \frac{0.7}{0.7} \frac{0.76}{0.8}$	B3 (B2) (B1)		AWRT (0.74802) AWFW AWFW
	Attempt at $\sum x \sum x^2 \sum y \sum y^2 \& \sum xy$			364 10916 406 13688 & 11803 (all 5 attempted)
	or	(M1)		1452 1914 & 1247
	Attempt at S_{xx} S_{yy} & S_{xy}			(all 3 attempted)
	Attempt at substitution into correct corresponding formula for r	(m1)		
	r = 0.748	(A1)	3	AWRT
(ii)				Dependent on $0.7 \leq r \leq 0.8$
	Moderate/(fairly/quite) strong positive (linear) correlation	Bdep1		OE; must qualify strength and state positive
	between marks on (the two) papers	B1	2	OE; providing -1 < <i>r</i> < +1
Notes	 Only accept phrases stated; ignore additional comments un Use of: "very/extremely/relatively strong or high or big Accept "relationship/association/link" but not "trend" in: Do not accept "between papers" without further reference 	or good or stead of "co	r some or	medium or average" \Rightarrow Bdep0
(b) (i)	Group U: $r = \frac{34.57}{\sqrt{279.71 \times 112.86}}$	M1		Correct numerical form; can be implied by a correct answer
	= 0.19 to 0.2	A1	2	AWFW (0.19457)
(ii)	Crown T			
	<u>Group T</u> Some/(fairly/quite/very) weak/little/slight/ (almost) no/hardly any (positive) correlation	B1		OE; must qualify stren gth
	<u>Group U</u> Some/(fairly/quite/very) weak/little/slight/ (almost) no/hardly any (positive) correlation	Bdep1		Dependent on $0.19 \le r_{\rm U} \le 0.2$ OE; must qualify strength
Notes	1 Only accept phrases listed; ignore additional comments un	less contrad	2 ictory	
Totes	2 Use of: "low or small or poor or bad or unlikely or r 3 Accept "relationship/association/link" but not "trend" in: 4 "For each group" \Rightarrow B1 Bdep1 5 "For both gr	elatively" =	\Rightarrow B0 prrelation"	6 "No reference to groups (OE)" \Rightarrow B0
SC	1 "Correlation in (a)(ii) is spurious (OE)" \Rightarrow B1			
(iii)	(Both mean) marks for Group T are (much) larger than those for Group U	B1		OE
	so extra tuition appears beneficial/effective	Bdep1	2	Ignore comments about $r_{\rm T}$ and $r_{\rm U}$ OE; dependent on B1
SC	1 "Group T candidates may have been more motivated so wo	uld have pe		ter even without extra tuition (OE)" \Rightarrow B0 B1

Q		Solu	tion			Marks	Total	Comments
4								Accept percentage equivalent answers in $(a)^{(ii)} = (a)^{(iii)}$ but see CN3
(a)(i)								(a)(ii) & (a)(iii) but see GN3
				-	_			
		M	M'	Total		B1		0.12; CAO
	E	0.16	0.12	0.28				
	<i>E'</i>	0.24	0.48	0.72		B1		0.4(0) and 0.72; CAO
	Total	0.40	0.60	1.00	J	B1		0.24 and 0.48; CAO
							3	
(ii)								
	P(Buys exactly 0.12 +	71) = - [0.24 or	$P(E' \cap E)$	M) from (i	i)]	M1		
				=	<u>0.36</u>	A1	2	CAO
(iii)							2	
	$P(M \cap E) = 0.16$ which is greater than/not equal to 0							Correct comparison of 0.16 with 0
	or							
	$P(M \cup E) = 1 - 0.48 = 0.52$ but P(M) + P(E) = 0.40 + 0.28 = 0.68					(B2)	2	Correct comparison of 0.52 with 0.68
				Pa	rt (a)	Total	7	

0	Solution	Marks	Total	Comments
4	Continued	1.1.1.1.1.0	1000	
	Part (a)	Total	7	
				Accept percentage equivalent answers in
				(b) & (c)(ii) but see GN3
(b)				
	S S' Total			
	T 0.1700 0.1125 0.2825			(No marks for this table; it is simply
	<i>T'</i> 0.6800 0.0375 0.7175			here to help marking)
	Total 0.8500 0.1500 1.0000			
(i)				
(1)	$P(4 \text{ papers}) = P(M \cap E \cap S \cap T) =$			
	$0.16 \times (0.85 \times 0.20)$ or 0.16×0.17	M1		All correct
	$0.10 \times (0.03 \times 0.20)$ 01 0.10×0.17	1011		Can be implied by a correct answer
	0.025	. 1		
	= <u>0.027</u>	A1	2	AWRT (0.0272)
(ii)			2	
(11)	$P(0 \text{ papers}) = P(M' \cap E' \cap S' \cap T') =$			
	$0.48 \times (0.15 \times 0.25)$ or 0.48×0.0375	M1		Seen
	$0.40 \times (0.13 \times 0.23)$ 01 0.40×0.0373	1011		Can be implied by a correct answer
	0.010	A 1		(0.019)
	= <u>0.018</u>	A1	2	CAO (0.018)
(c)			2	
(i)	Chris (only) buys			
	a Friday morning (newspaper) and	B1		Ignore additional comments about what
	a Saturday (morning) newspaper	B1		he also does not buy
			2	
SCs	 Chris does not buy either a Friday evening or a Sunday (m Statements of the form "(Friday morning) × (Saturday morning) 	-	·	$(E) \Rightarrow B1$
	2 Statements of the form (Friday morning) × (Saturday morning) \times (Saturday morning) 3 Statements involving "probability and/or intersection" \Rightarrow) ⇒ BI	
(ii)		DI IIIdA		
	$P(M \cap E' \cap S \cap T') =$			
	$0.24 \times (0.85 \times 0.80)$ or 0.24×0.68	M1		Seen
				Can be implied by a correct answer
	= <u>0.163</u>	A1		AWRT (0.1632)
	- 0.105		2	(0.1052)
Note	1 $(0.40 \times 0.72 \times 0.85 \times 0.80) = 0.19584 \implies M0 A0$			1
		Total	15	

<u>Q</u>	Solution	Marks	Total	Comments
5	Solution	IVIAI KS	I Utal	Comments
(a)	Scatter diagram 4 or 3 points correct	B1	1	(within tolerances on template)
(b) (i)	$b \text{ (gradient/slope)} = \frac{10.0}{9.75 \text{ to } 10.25}$ $b \text{ (gradient/slope)} = \frac{9.75 \text{ to } 10.25}{10.25}$	B2 (B1)		AWRT (10.00503) AWFW
	$a (intercept) = \frac{67.6 \text{ to } 67.7}{50 \text{ to } 90}$ $a (intercept) = \frac{50 \text{ to } 90}{50 \text{ to } 90}$	B2 (B1)		AWFW (67.65292) AWFW
	Attempt at $\sum x \sum x^2 \sum y \& \sum xy$	-		690495987580& 542910(all 4 attempted) $\left(\sum y^2 = 5995000\right)$
	or	(M1)		
	Attempt at S_{xx} & S_{xy}			1988 & 19890 (both attempted) $(S_{yy} = 249360)$
	Attempt at substitution into correct corresponding formula for b	(m1)		
	b = 10.0 (AWRT) $a = 67.6$ to 67.7 (AWFW)	(A1 A1)	(4)	$(\overline{x} = 69 \& \overline{y} = 758)$
Notes	 Treat rounding of correct, but not of incorrect, answers as Award 4 marks for y = (67.6 to 67.7) + 10x or for (67.4 Values of a and b interchanged and equation y = ax + Values of a and b interchanged and equation y = a + b Values are not identified or simply b/a = # and a/b = # for example, as identification, [b = #, a = # with y = [slope/gradient(b) = #, intercept(a) = #] Answers in fractions can score at most M1 m1 Some/all of marks can be scored in (b)(ii), (b)(iii) & (c), er be recouped by subsequent working in (b)(ii), (b)(iii) or (a) 	.6 to 67.7) + b used for a x used for a t, then 9.75 a + bx but yen if some/a	Irawing line rawing line to 10.25 = no substitu	$\Rightarrow 0 \text{ marks}$ $\Rightarrow B1 \text{ and } 50 \text{ to } 90 \Rightarrow B1 \text{ but accept,}$ from for b & a] or
		<i>.</i>)		
	Scatter diagram line correct	B2		Within tolerance on template at least from $x = 50$ to $x = 80$
Notes		B2 of an equation		Within tolerance on template at least from $x = 50$ to $x = 80$ st two points in range $x = 35$ to $x = 100$
	Scatter diagram line correct 1 If, and only if, B0, then award M1 for seen correct use	B2 of an equation	on for at lea	Within tolerance on template at least from $x = 50$ to $x = 80$ st two points in range $x = 35$ to $x = 100$
Notes (ii)	Scatter diagram line correct 1 If, and only if, B0, then award M1 for seen correct use	B2 of an equation	on for at lea	Within tolerance on template at least from $x = 50$ to $x = 80$ st two points in range $x = 35$ to $x = 100$
	Scatter diagram line correct 1 If, and only if, B0, then award M1 for seen correct use 2 If, and only if, B0, then award M0 for points or line man b: each/every customer generates	B2 of an equation ked on scatt B1 BF1 n x affecting	6 2 2 2 3 2 3 2 3 2 3 3 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4	Within tolerance on template at least from $x = 50$ to $x = 80$ st two points in range $x = 35$ to $x = 100$ without supportive working F on <i>b</i> providing $9.75 \le b \le 10.25$
(ii)	Scatter diagram line correct 1 If, and only if, B0, then award M1 for seen correct use 2 If, and only if, B0, then award M0 for points or line man b: each/every customer generates on average £10 in takings 1 To score any marks, an explanation must indicate change if 2 As x increases then y increases by 10 (OE; context not recomplete)	B2 of an equation ked on scatt B1 BF1 n x affecting	6 2 2 2 3 2 3 2 3 2 3 3 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4	Within tolerance on template at least from $x = 50$ to $x = 80$ st two points in range $x = 35$ to $x = 100$ without supportive working F on <i>b</i> providing $9.75 \le b \le 10.25$
(ii) Notes	Scatter diagramline correct1 If, and only if, B0, then award M1 for seen correct use2 If, and only if, B0, then award M0 for points or line manb: each/every customer generates on average £10 in takings1 To score any marks, an explanation must indicate change if 2 As x increases then y increases by 10 (OE; context not red 3 Reference only to correlation \Rightarrow B0 BF0a: takings when no customers cannot be > 0 or when $x = 0$ then $y = 0$ or never no customers/x never $0/x$ always > 0	B2 of an equation ked on scatt B1 BF1 m x affecting uired) \Rightarrow	change in y B1 BF0	Within tolerance on template at least from $x = 50$ to $x = 80$ st two points in range $x = 35$ to $x = 100$ without supportive working F on <i>b</i> providing $9.75 \le b \le 10.25$ <i>c</i> , not change in <i>y</i> affecting change in <i>x</i>
(ii) Notes (iii)	Scatter diagramline correct1 If, and only if, B0, then award M1 for seen correct use2 If, and only if, B0, then award M0 for points or line manb: each/every customer generates on average £10 in takings1 To score any marks, an explanation must indicate change i 2 As x increases then y increases by 10 (OE; context not red 3 Reference only to correlation \Rightarrow B0 BF0a: takings when no customers cannot be > 0 or when $x = 0$ then $y = 0$ or never no customers/x never 0/x always > 0 or $x = 0$ is outside range/extrapolation	B2 of an equation ked on scatt B1 BF1 m x affecting juired) \Rightarrow B1	change in y B1 BF0	Within tolerance on template at least from $x = 50$ to $x = 80$ st two points in range $x = 35$ to $x = 100$ without supportive workingF on b providing $9.75 \le b \le 10.25$ c, not change in y affecting change in xOECAO; £ not required (£567.90)

Q	Solution	Marks	Total	Comments
6	Accept 3 dp rounding of probabilities from tables in (b)		1000	Accept percentage equivalent answers in (a) & (b) but see GN3
(a)	Use of B(24, 0.22) or B(40, 0.45)	M1		Indicated by an expression or by any one correct probability in (a) or (b)
	$P(C=2) = {\binom{24}{2}} (0.22)^2 (0.78)^{22}$	M1		Fully correct expression Can be implied by a correct answer Ignore extra terms
	= <u>0.056 to 0.057</u>	A1	3	AWFW (0.05647)
(b) (i)	P(DC < 20) = 0.684 to 0.685	B1	(1)	AWFW (0.6844)
(ii)	P(DC > 15) = 1 - (0.2142 or 0.1326)	M1		Requires '1 – (either value)'
	= <u>0.785 to 0.786</u>	A1	(2)	AWFW (0.7858)
Note	1 For stated answers: award B2 for 0.785 to 0.786 (AWFW	<i>V</i>); B1 for	0.867 to 0.8	368 (AWFW)
(iii)	$P(12 \le DC \le 24) = 0.9804 \text{ or } 0.9595$ (p ₁)	M1		Can be implied by a correct answer
	MINUS 0.0179 or 0.0386 (<i>p</i> ₂)	M1		Can be implied by a correct answer
	= 0.96 to 0.963	A1	(3)	AWFW (0.9625)
Notes	1 First M1 is for $(+p_1)$ in a subtraction 2 Second M1 is for $(-p_2)$ in a subtraction 4 For stated answers: award B3 for 0.96 to 0.963 (AWFW)); B2 for 0	.94 (AWRT	3 $(1-p_2) - (1-p_1) \Rightarrow M1 M1 (A1)$ (A); B1 for 0.92 (AWRT)
			6	
(c)	p = 1 - 0.22 - 0.45 = 0.33	B1		CAO; can be implied
	Mean $(\mu \text{ or } \overline{x}) = 200 \times 0.33 = \underline{66}$	B1		CAO
	Variance $(\sigma^2 \text{ or } s^2) = 200 \times 0.33 \times 0.67$			
	= <u>44 to 44.3</u>	B1	3	AWFW (44.22)
Notes	1 If answers are not identified, then assume that order of valu 2 When 44 to 44.3 is labelled as $Sd(\sigma \text{ or } s) \Rightarrow B0$	tes is (p) , mo	ean, varianc	e
SC	1 If mean is calculated from 200 <i>p</i> with $p \neq 0.33$ but $0 < p$	$<1 \implies B0$) M1 B0	
		Total	12	

Q	Solution	Marks	Total	Comments
7 (a)	Sd of \overline{A} = <u>0.43/$\sqrt{10}$ or 0.135 to 0.137</u> or Var of \overline{A} = <u>0.43²/10 or 0.0184 to 0.0186</u>	B1		CAO/AWFW (0.13598) Can be implied in what follows CAO/AWFW (0.01849)
	$P(\overline{A} > 1.25) = P\left(Z > \frac{1.25 - 1.16}{0.43/\sqrt{10}}\right)$	M1		Standardising 1.25 with 1.16 and (0.43 / $\sqrt{10}$) OE; allow (1.16 – 1.25)
	= P(Z > 0.6619) = 1 - P(Z < 0.6619)	ml		Correct area change Can be implied by a correct answer or by an answer < 0.5
	$= 1 - 0.74597 \qquad = \underline{0.253 \text{ to } 0.255}$	A1	4	AWFW (0.25403)
(b) (i)	$ \begin{array}{c} 96\% (0.96) \implies z = \underline{2.05 \ \text{to} \ 2.06} \\ \implies t = \underline{2.12 \ \text{to} \ 2.13} \end{array} $	B1		AWFW(2.0537)AWFW(2.1247)
	CI for μ is $0.86 \pm \begin{pmatrix} 2.05 \text{ to } 2.06 \\ 2.12 \text{ to } 2.13 \\ 1.75 \text{ or } 1.80 \end{pmatrix} \times \frac{(0.65 \text{ to } 0.66)}{\sqrt{40 \text{ or } 39}}$	M2,1 (-1 ee)		Ignore any notation (1.75 & 1.80) are AWRT $0.65 \times \sqrt{\frac{40}{39}} = 0.65828$ No $\sqrt{n} \Rightarrow M0$
	Hence $0.86 \pm (0.21 \text{ to } 0.23)$ or $(0.63 \text{ to } 0.65, 1.07 \text{ to } 1.09)$	Adep1	4	CAO ± AWFW Dependent on award of M2 AWFW
Notes	 An incorrect expression for CI followed by a numerically c Evaluation of only one CL ⇒ (B1) M0 Adep0 Accept answers in grams 	orrect CI =	\Rightarrow 2 solution	ons \Rightarrow ((0 or 1) + 4)/2 \Rightarrow 2 marks
(ii)	Clear correct comparison of 1.16 with CI eg 1.16 is above CI or UCL < 1.16	BF1		F on CI providing it does not contain 1.16 Must have found an interval in (i) but quoting values for CI or CLs is not required
	Agree with claim or accept claim or Weight of apples is (likely to be) greater than that of pears	Bdep1	2	OE; dependent on BF1
Notes	 Statement must clearly indicate that "1.16 is above/outside Statements of the form "It/mean/value/etc is above/outside Statements of the form "1.16 is above/outside/not within Statements such as "Claim is likely/reasonable/supported/ 	e/not within 96% of the	the CI" O the CI" = data/values	$\Rightarrow BF0$ /weights" $\Rightarrow BF0$
			10	