Vectors

[2]

[4]

1. The points *A*, *B* and *C* have position vectors $3\mathbf{i} - 4\mathbf{j} + 2\mathbf{k}$, $-\mathbf{i} + 6\mathbf{k}$ and $7\mathbf{i} - 4\mathbf{j} - 2\mathbf{k}$ respectively. *M* is the midpoint of *BC*.

(a) Show that the magnitude of \overrightarrow{OM} is equal to $\sqrt{17}$.

(b) Point *D* is such that $\overrightarrow{BC} = \overrightarrow{AD}$. Show that position vector of the point *D* is 11i - 8j = -6k. [3]

2. The equations of two lines are

$$\mathbf{r} = \begin{pmatrix} 3\\0\\2 \end{pmatrix} + \lambda \begin{pmatrix} 1\\1\\3 \end{pmatrix} \text{ and } \mathbf{r} = \begin{pmatrix} -1\\8\\2 \end{pmatrix} + \mu \begin{pmatrix} -3\\1\\-5 \end{pmatrix}.$$

Find the coordinates of the point where these lines intersect.

3. (i) Write down a vector equation of the line through the points A(5, 1, 9) and B(8, 7, 15). [1]

P is the point (11, -2, 15).

(ii) Show that triangle *APB* is isosceles and find angle *PAB*. [4]

The point *D* lies on the line through *A* and *B*. Angle PAD = angle PDA.

(iii) Find the coordinates of *D*. [4]

[4]

[4]

Points *A*, *B* and *C* have position vectors $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 2 \\ -1 \\ 5 \end{pmatrix}_{and} \begin{pmatrix} -4 \\ 0 \\ 3 \end{pmatrix}_{respectively.}$

(a) Find the exact distance between the midpoint of *AB* and the midpoint of *BC*.

Point *D* has position vector $\begin{pmatrix} x \\ -6 \\ z \end{pmatrix}$ and the line *CD* is parallel to the line *AB*.

(b) Find all the possible pairs of x and z.

5.

The points *A* and *B* have position vectors $\begin{pmatrix} 1 \\ -2 \\ 5 \\ -1 \\ 2 \end{pmatrix}_{and} \begin{pmatrix} -3 \\ -1 \\ 2 \\ -1 \\ 2 \end{pmatrix}_{respectively.}$

- (a) Find the exact length of AB.
- (b) Find the position vector of the midpoint of AB.

$$\begin{pmatrix} 1\\2\\0 \end{pmatrix}$$
 $\begin{pmatrix} 5\\1\\3 \end{pmatrix}$

The points P and Q have position vectors $[0]_{and}$ and $[3]_{respectively}$.

- (c) Show that *ABPQ* is a parallelogram.
- 6. The points *A*, *B* and *C* have position vectors **a**, **b** and **c**, relative to an origin *O*, in three dimensions. The figure *OAPBSCTU* is a cuboid, with vertices labelled as in the following diagram. *M* is the midpoint of *AU*.

Prove that the lines *OM* and *AS* intersect, and find the position vector of the point of intersection.

[3]

[9]

[2]

[1]

- 7. Points *A* and *B* have position vectors **a** and **b**. Point *C* lies on *AB* such that AC: CB = p: 1.
 - (a) $\frac{1}{p+1}(\mathbf{a}+p\mathbf{b})$ [3] Show that the position vector of *C* is $\frac{1}{p+1}(\mathbf{a}+p\mathbf{b})$.

It is now given that $\mathbf{a} = 2\mathbf{i} + 3\mathbf{j} - 4\mathbf{k}$ and $\mathbf{b} = -6\mathbf{i} + 4\mathbf{j} + 12\mathbf{k}$, and that *C* lies on the *y*-axis.

- (b) Find the value of *p*.
- (c) Write down the position vector of C.

END OF QUESTION paper

Vectors

[4]

[1]

Mark scheme

Question		า	Answer/Indicative content	Marks	Guidance	
1		а	$\overrightarrow{OM} = \frac{1}{2} \left(\overrightarrow{OC} + \overrightarrow{OB} \right) = 3\mathbf{i} - 2\mathbf{j} + 2\mathbf{k}$ $\left \overrightarrow{OM} \right = \sqrt{3^2 + (-2)^2 + 2^2} = \sqrt{9 + 4 + 4} = \sqrt{17}$	M1(AO1.1) E1(AO2.1) [2]	Attempt to find \overrightarrow{OM} AG	
		d	$\overrightarrow{BC} = 8\mathbf{i} - 4\mathbf{j} - 8\mathbf{k}$ $\overrightarrow{OD} = \overrightarrow{OA} + \overrightarrow{AD} = \overrightarrow{OA} + \overrightarrow{BC}$ $\overrightarrow{OD} = 3\mathbf{i} - 4\mathbf{j} + 2\mathbf{k} + 8\mathbf{i} - 4\mathbf{j} - 8\mathbf{k}$ $= 11\mathbf{i} - 8\mathbf{j} - 6\mathbf{k}$	M1(AO1.1) E1(AO2.4) E1(AO2.1) [3]	Express <i>OD</i> in terms of known vectors AG An intermediate step must be seen	
			Total	5		
2			Any two from $3 + \lambda = -1 - 3\mu$ $\lambda = 8 + \mu$ $2 + 3\lambda = 2 - 5\mu$	B1	may be in vector form	
			solve simultaneously to obtain a value of λ or μ $\lambda = 5$ or $\mu = -3$	M1		
			(8, 5, 17) isw	A1 A1		

			[4]	allow vector form	
				Examiner's Comments Most candidates scored full marks on this question. Very few were unable to make some progress, and those that went wrong usually did so through careless slips.	
		Total	4		
3	i	$r = \begin{pmatrix} 5\\1\\9 \end{pmatrix} + \lambda \begin{pmatrix} 3\\6\\6 \end{pmatrix} \text{ oe isw}$	B1 [1]	$r = \begin{pmatrix} 8 \\ 7 \\ 15 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$ B0 for just the RHS, must see " <i>r</i> =" oe Examiner's Comments Most knew what to do here. A few candidates wrote an expression and not an equation, or missed out the parameter, thus losing an easy mark.	
	ii	$6 \times 3 - 3 \times 6 + 6 \times 6 = \sqrt{6^2 + (-3)^2 + 6^2} \times \sqrt{3^2 + 6^2 + 6^2} \cos A$ 36 = 81cosA or - 36 = 81cosA or better A = 63.6° or 1.11 rad	M1 A1 A1	allow sign errors and 1 algebraic slip eg omission of power $\cos A = \frac{9^2 + 9^2 - (their\sqrt{90})^2}{2 \times 9 \times 9}$ $PB = 3\sqrt{10}$	

				Many candidates did not know where to begin and often failed to score. However, a variety of successful approaches were taken and some excellent work demonstrating thorough understanding was seen.
		Total	9	
4	а	$\begin{pmatrix} 1.5\\ 0.5\\ 4 \end{pmatrix} \begin{pmatrix} -1\\ -0.5\\ 4 \end{pmatrix}$ Position vectors of midpoints <i>AB</i> & <i>BC</i> are $2.5^{2} + 1^{2} (+0^{2})$ Distance = $\frac{\sqrt{29}}{2}$	M1(AO 1.1a) A1(AO 1.1) M1(AO 1.1) A1(AO 1.1) [4]	Correct method for one midpoint Both midpoints correct ft their midpoints; √ not necessary for M1
	b	$\overrightarrow{AB} = \begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix} \overrightarrow{CD} = \begin{pmatrix} -4 - x \\ 6 \\ 3 - z \end{pmatrix}$ $\overrightarrow{CD} = -2\overrightarrow{AB}$ $-x - 4 = -2 \Rightarrow x = -2$ $3 - z = -4 \Rightarrow z = 7$	M1(AO 3.1a) M1(AO 1.2) A1(AO 1.1) A1(AO 1.1) [4]	For scale factor –2
		Total	8	

					Vectors
		(1 - (-3)) ² + (-2 - (-1)) ² + (5 - 2) ² (= 26)	M1 (AO 1.1a) A1	Attempt. Allow with one sign error	√ not nec'y
5	а	Length = √26 or 5.10 or 5.1 (2 sf)	(AO 1.1) [2]	Examiner's Comments This question was very well answered. A few ca	indidates made sign errors.
	b	$\begin{pmatrix} -1\\ -1.5\\ 3.5 \end{pmatrix}$	B1 (AO 1.1) [1]	Examiner's Comments A surprisingly large number of candidates simpledid not understand the concept of a "position vertices"	y halved their answer to part (a). Perhaps they ector".
	С	$\overrightarrow{BA} = \begin{pmatrix} 4 \\ -1 \\ 3 \end{pmatrix}$ $\overrightarrow{PQ} = \begin{pmatrix} 5 \\ 1 \\ 3 \end{pmatrix} - \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} \qquad (= \begin{pmatrix} 4 \\ -1 \\ 3 \end{pmatrix})$ $_{BA = PQ \text{ and }} BA // PQ$	M1 (AO 2.1) M1 (AO 1.1)	or quote result for \overrightarrow{BA} from (b) or (a)(i) or similar methods with AQ & BP or AB and QP etc Allow find eg AB and PQ or $\overrightarrow{BA} = \overrightarrow{PQ}$ with arrows or $ BA = PQ \& BP =$ AQ shown & stated or $BA // PQ_{\&}$ BP // AQ shown &	SC Incorrect, but equal, vectors <i>BA</i> & <i>PQ</i> with correct conclusion SC B1 Allow without method SC Lengths only seen: M1M0 Just $ BA = PQ $ A0

		and hence <i>ABPQ</i> is a parallelogram (AG)	A1 (AO 2.2a)	stated Both statements needed, dep M1M1	Vectors
			[3]	Only a minority of candidates answered this question forms of one pair of sides. Many found the vector for	on in the most efficient way, using the vector orms of both pairs of sides. Then they
				commented either that <u>both</u> pairs consisted of two pairs four sides and commented that both pairs consisted found the vector form for two opposite sides and the parallel, <i>ABPQ</i> is a parallelogram. A few candidates n	parallel lines, or they found the lengths of all d of lines of equal length. Some candidates en stated that because these two sides are made sign errors while finding vectors.
				Some did not use correct vector notation. Some can column vector notation by the i , j , k notation. Some c opposite sides.	ndidates (quite reasonably) replaced the candidates discussed the "gradients" of
		Total	6		
		$AU = OS = \mathbf{b} + \mathbf{c}$			
		$OM = OA + 0.5 AU = \mathbf{a} + 0.5 (\mathbf{b} + \mathbf{c})$	B1 (AO3.1a)		
		$\mathcal{OM} = \mathcal{OA} + 0.5 \ \mathcal{AU} = \mathbf{a} + 0.5(\mathbf{b} + \mathbf{c})$ $\mathcal{AS} = \mathbf{b} + \mathbf{c} - \mathbf{a}$	B1 (AO3.1a) B1 (AO1.1a)		
		$OM = OA + 0.5 AU = \mathbf{a} + 0.5(\mathbf{b} + \mathbf{c})$ $AS = \mathbf{b} + \mathbf{c} - \mathbf{a}$ Let X lie on OM such that $OX = \mu OM$	B1 (AO3.1a) B1 (AO1.1a) M1 (AO2.1)		
6		$OM = OA + 0.5 AU = \mathbf{a} + 0.5(\mathbf{b} + \mathbf{c})$ $AS = \mathbf{b} + \mathbf{c} - \mathbf{a}$ Let X lie on OM such that $OX = \mu OM$ Let Y lie on AS such that $AY = \lambda AS$	B1 (AO3.1a) B1 (AO1.1a) M1 (AO2.1)		
6		$OM = OA + 0.5 AU = \mathbf{a} + 0.5(\mathbf{b} + \mathbf{c})$ $AS = \mathbf{b} + \mathbf{c} - \mathbf{a}$ Let X lie on OM such that $OX = \mu OM$ Let Y lie on AS such that $AY = \lambda AS$ $OX = \mu(\mathbf{a} + 0.5\mathbf{b} + 0.5\mathbf{c})$	B1 (AO3.1a) B1 (AO1.1a) M1 (AO2.1) A1 (AO1.1)	One of these stated or implied	
6		$\mathcal{OM} = \mathcal{OA} + 0.5 \ \mathcal{AU} = \mathbf{a} + 0.5(\mathbf{b} + \mathbf{c})$ $\mathcal{AS} = \mathbf{b} + \mathbf{c} - \mathbf{a}$ Let X lie on \mathcal{OM} such that $\mathcal{OX} = \mu \mathcal{OM}$ Let Y lie on \mathcal{AS} such that $\mathcal{AY} = \lambda \mathcal{AS}$ $\mathcal{OX} = \mu(\mathbf{a} + 0.5\mathbf{b} + 0.5\mathbf{c})$ $\mathcal{OY} = \mathbf{a} + \lambda(\mathbf{b} + \mathbf{c} - \mathbf{a})$	B1 (AO3.1a) B1 (AO1.1a) M1 (AO2.1) A1 (AO1.1) M1FT (AO3.1a)	One of these stated or implied	
6		$\mathcal{OM} = \mathcal{OA} + 0.5 \ \mathcal{AU} = \mathbf{a} + 0.5(\mathbf{b} + \mathbf{c})$ $\mathcal{AS} = \mathbf{b} + \mathbf{c} - \mathbf{a}$ Let X lie on \mathcal{OM} such that $\mathcal{OX} = \mu \mathcal{OM}$ Let Y lie on \mathcal{AS} such that $\mathcal{AY} = \lambda \mathcal{AS}$ $\mathcal{OX} = \mu(\mathbf{a} + 0.5\mathbf{b} + 0.5\mathbf{c})$ $\mathcal{OY} = \mathbf{a} + \lambda(\mathbf{b} + \mathbf{c} - \mathbf{a})$ Let $\mathcal{OX} = \mathcal{OY}$	B1 (AO3.1a) B1 (AO1.1a) M1 (AO2.1) A1 (AO1.1) M1FT (AO3.1a)	One of these stated or implied One correct	

Vectors
$$= \frac{\mathbf{a}(p+1) + p(\mathbf{b} \cdot \mathbf{a})}{p+1}$$
 $(= \frac{1}{p+1}(\mathbf{a} + p\mathbf{b}) \cdot \mathbf{AG})$ Any correct intermediate
form with denominator ρ +
1, and final answer $\mathbf{c} = \frac{2\mathbf{i} + 3\mathbf{j} \cdot 4\mathbf{k} + p(-6\mathbf{i} + 4\mathbf{j} + 12\mathbf{k})}{p+1}$ $\mathbf{M}_{1}(\mathbf{a} \cdot 1.1)$ $\mathbf{b} = \frac{(2-6p)\mathbf{i} + (3+4p)\mathbf{j} + (-4+12p)\mathbf{k}}{p+1}$ $\mathbf{M}_{1}(\mathbf{a} \cdot 1.1)$ $\mathbf{b} = \frac{2-6\rho = 0}{2-6\rho = 0}$ $\mathbf{M}_{1}(\mathbf{a} \cdot 1.1)$ $\mathbf{b} = \frac{1}{3}$ $\mathbf{M}_{1}(\mathbf{a} \cdot 1.1)$ $\mathbf{c} = \frac{13}{4}\mathbf{j}$ $\mathbf{p} = \frac{1}{3}$ $\mathbf{c} = \frac{13}{4}\mathbf{j}$ $\mathbf{B}_{1} = \mathbf{T}(\mathbf{p} \cdot 1.1)$ \mathbf{f} their ρ ; answer must be
of form $k\mathbf{j}$ \mathbf{m} \mathbf{g}