Vectors Questions

7 The quadrilateral ABCD has vertices A(2,1,3), B(6,5,3), C(6,1,-1) and D(2,-3,-1).

The line l_1 has vector equation $\mathbf{r} = \begin{bmatrix} 6 \\ 1 \\ -1 \end{bmatrix} + \lambda \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$.

(a) (i) Find the vector \overrightarrow{AB} .

(2 marks)

(ii) Show that the line AB is parallel to l_1 .

(1 mark)

(iii) Verify that D lies on l_1 .

(2 marks)

- (b) The line l_2 passes through D(2,-3,-1) and M(4,1,1).
 - (i) Find the vector equation of l_2 .

(2 marks)

(ii) Find the angle between l_2 and AC.

(3 marks)

- 6 The points \overrightarrow{A} and \overrightarrow{B} have coordinates (2, 4, 1) and (3, 2, -1) respectively. The point C is such that $\overrightarrow{OC} = 2\overrightarrow{OB}$, where O is the origin.
 - (a) Find the vectors:

(i) \overrightarrow{OC} ;

(1 mark)

(ii) \overrightarrow{AB} .

(2 marks)

(b) (i) Show that the distance between the points A and C is 5.

(2 marks)

(ii) Find the size of angle BAC, giving your answer to the nearest degree.

(4 marks)

(c) The point $P(\alpha, \beta, \gamma)$ is such that BP is perpendicular to AC.

Show that $4\alpha - 3\gamma = 15$.

(3 marks)

- 6 The points A, B and C have coordinates (3, -2, 4), (5, 4, 0) and (11, 6, -4) respectively.
 - (a) (i) Find the vector \overrightarrow{BA} .

(2 marks)

(ii) Show that the size of angle ABC is $\cos^{-1}\left(-\frac{5}{7}\right)$.

(5 marks)

- (b) The line l has equation $\mathbf{r} = \begin{bmatrix} 8 \\ -3 \\ 2 \end{bmatrix} + \lambda \begin{bmatrix} 1 \\ 3 \\ -2 \end{bmatrix}$.
 - (i) Verify that C lies on l.

(2 marks)

(ii) Show that AB is parallel to l.

- (1 mark)
- (c) The quadrilateral ABCD is a parallelogram. Find the coordinates of D.
- (3 marks)
- 7 The lines l_1 and l_2 have equations $\mathbf{r} = \begin{bmatrix} 8 \\ 6 \\ -9 \end{bmatrix} + \lambda \begin{bmatrix} 3 \\ -3 \\ -1 \end{bmatrix}$ and $\mathbf{r} = \begin{bmatrix} -4 \\ 0 \\ 11 \end{bmatrix} + \mu \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix}$ respectively.
 - (a) Show that l_1 and l_2 are perpendicular.

- (2 marks)
- (b) Show that l_1 and l_2 intersect and find the coordinates of the point of intersection, P. (5 marks)
- (c) The point A(-4, 0, 11) lies on l_2 . The point B on l_1 is such that AP = BP.

Find the length of AB.

(4 marks)

Vectors Answers

7(a)(i)	$\overline{AB} = \begin{bmatrix} 6 \\ 5 \\ 3 \end{bmatrix} - \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \\ 0 \end{bmatrix}$	M1		Penalise use of co-ordinates at first occurrence only
		A1	2	
(ii)	$\begin{bmatrix} 4 \\ 4 \\ 0 \end{bmatrix} = 4 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \Rightarrow \text{parallel}$	E1	1	Needs comment "same direction" Or "same gradient" (Or by scalar product)
(iii)	$\begin{bmatrix} 2 \\ -3 \\ -1 \end{bmatrix} = \begin{bmatrix} 6 \\ 1 \\ -1 \end{bmatrix} + \lambda \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$ is satisfied by $\lambda = -4$	M1	2	$\lambda = -4$ satisfies 2 equations
(b)(i)	l_2 has equation			Or
	$\mathbf{r} = \begin{bmatrix} 4 \\ 1 \\ 1 \end{bmatrix} + \lambda \begin{bmatrix} 4 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 2 \\ -3 \\ -1 \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \\ 1 \end{bmatrix} + \lambda \begin{bmatrix} 2 \\ 4 \\ 2 \end{bmatrix}$	M1A1	2	$r = \begin{bmatrix} 2 \\ -3 \\ -1 \end{bmatrix} + t \begin{bmatrix} 2 \\ 4 \\ 2 \end{bmatrix}$ M1 calculate and use direction vector A1 all correct
(ii)	$\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \bullet \begin{bmatrix} 4 \\ 0 \\ -4 \end{bmatrix} = 4 - 4 = 0$	M1A1		Clear attempt to use directions of AC and l_2 in scalar product
	⇒ 90° (or perpendicular)	A1F	3	Accept a correct ft value of $\cos \theta$
	Total		10	

6(a)(i)	$\overrightarrow{OC} = 2 \begin{bmatrix} 3 \\ 2 \\ -1 \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \\ -2 \end{bmatrix}$	B1	1	(Penalise coordinates once only)
(ii)	$\overrightarrow{AB} = \begin{bmatrix} 3\\2\\-1 \end{bmatrix} - \begin{bmatrix} 2\\4\\1 \end{bmatrix} = \begin{bmatrix} 1\\-2\\-2 \end{bmatrix}$	M1 A1	2	$\overrightarrow{OA} - \overrightarrow{OB}$ or $\overrightarrow{OB} - \overrightarrow{OA}$ or 2/3 correct cpts. A0 for line AB
(b)(i)	$AC^2 = (6-2)^2 + (4-4)^2 + (-1-2)^2 = 25$	M1		Components of AC
	AC = 5	A1	2	AG
(ii)	$\overrightarrow{AB} \bullet \overrightarrow{AC} = \begin{bmatrix} 1 \\ -2 \\ -2 \end{bmatrix} \bullet \begin{bmatrix} 4 \\ 0 \\ -3 \end{bmatrix} = 4 + 6 = 10$	M1 A1F		Clear attempt to use \overline{AB} and \overline{AC} ft \overline{AB} from a(ii) and/or \overline{AC} from b(i)
	$3 \times 5 \times \cos \theta = 10$	M1		Use of $ a b \cos \theta = \mathbf{a.b}$ with one correct $ a $ and $\mathbf{a.b}$ evaluated
	<i>θ</i> = 48.189 ≈ 48 °	A1	4	CAO (AWRT)
	Alternative: use of cos rule Find 3 rd side + use cos rule	(M2) (A1F) (A1)		ft on previously found vectors CAO (AWRT)
(c)	$\overline{BP} = \begin{bmatrix} \alpha - 3 \\ \beta - 2 \\ \gamma1 \end{bmatrix}$	В1		
	$\begin{bmatrix} 4 \\ 0 \\ -3 \end{bmatrix} \bullet \overline{BP} = 0$	M1		Their \overline{BP}
	$4\alpha - 3\gamma - 15 = 0$	A1	3	AG convincingly obtained
	Total		12	

6(a)(i)	$\overline{BA} = \begin{bmatrix} 3 \\ -2 \\ 4 \end{bmatrix} - \begin{bmatrix} 5 \\ 4 \\ 0 \end{bmatrix} = \begin{bmatrix} -2 \\ -6 \\ 4 \end{bmatrix}$	M1A1	2	Attempt $\pm \overline{BA}$ $(OA - OB \text{ or } OB - OA)$
(ii)	$\overrightarrow{BC} = \begin{bmatrix} 6\\2\\-4 \end{bmatrix}$	B1		Allow \overline{CB} ; or $\begin{bmatrix} -6 \\ -2 \\ 4 \end{bmatrix} = \overline{BC}$ or $\overline{CB} = \begin{bmatrix} 6 \\ 2 \\ -4 \end{bmatrix}$ May not see explicitly
	$ \overline{BA} \left(= \sqrt{(-2)^2 + (-6)^2 + (4)^2} \right) = \sqrt{56}$	B1F		Calculate modulus of \overline{BA} or \overline{BC} ; for finding modulus of one of vectors they have used
	$\overrightarrow{BA} \bullet \overrightarrow{BC} = \begin{bmatrix} -2 \\ -6 \\ 4 \end{bmatrix} \bullet \begin{bmatrix} 6 \\ 2 \\ -4 \end{bmatrix} = -12 - 12 - 16$	M1		Attempt at $\overrightarrow{BA} \bullet \overrightarrow{BC}$ with numerical answer; or $\overrightarrow{AB} \bullet \overrightarrow{CB}$
		A1		for -40, or correct if done with multiples of vectors

$\cos ABC = \frac{-40}{\sqrt{56}\sqrt{56}} = -\frac{5}{7}$	A1	5	AG (convincingly obtained)
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			Cosine rule: M1 attempt to find 3 sides A1 lengths of sides M1 cosine rule A1F correct A1 rearrange to get $\cos ABC = \frac{-5}{-}$
			$\cos ABC = \frac{-7}{7}$ (ft on length of sides)

(c)	$\overrightarrow{OD} = \overrightarrow{OC} + \overrightarrow{BA}$	В1		PI; \overrightarrow{OD} = correct vector expression which
				may involve \overline{AD}
	$= \begin{bmatrix} 11 \\ 6 \\ -4 \end{bmatrix} + \begin{bmatrix} -2 \\ -6 \\ 4 \end{bmatrix} = \begin{bmatrix} 9 \\ 0 \\ 0 \end{bmatrix} D \text{ is } (9,0,0)$	M1A1	3	M1 for substituting into vector expression for \overrightarrow{OD} NMS 3/3
	Total		13	