VECTORS

1	The points <i>A</i> , <i>B</i> and <i>C</i> have coordinates $(6, 1)$, $(2, 3)$ and $(-4, 3)$ respectively and <i>O</i> is the origin. Find, in terms of i and j , the vectors					
	a \overrightarrow{OA}	b \overrightarrow{AB}	c	\overrightarrow{BC}	d	\overrightarrow{CA}
2	Given that $\mathbf{p} = \mathbf{i} - 3\mathbf{j}$ and $\mathbf{q} = 4\mathbf{i} + 2\mathbf{j}$, find expressions in terms of \mathbf{i} and \mathbf{j} for					
	a 4 p	b q – p	c	$2\mathbf{p} + 3\mathbf{q}$	d	$4\mathbf{p} - 2\mathbf{q}$
3	Given that $\mathbf{p} = \begin{pmatrix} 3 \\ -4 \end{pmatrix} \mathbf{a}$	nd $\mathbf{q} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$, find				
	a p	b 2 q	c	$ \mathbf{p} + 2\mathbf{q} $	d	3 q – 2 p
4	Given that $\mathbf{p} = 2\mathbf{i} + \mathbf{j}$ the vector \mathbf{i} by the vector	and $\mathbf{q} = \mathbf{i} - 3\mathbf{j}$, find, in every	n deg	rees to 1 decimal pla	ace,	the angle made with
	a p	b q	c	$5\mathbf{p} + \mathbf{q}$	d	p – 3 q
5	Find a unit vector in th	e direction				
	a $\begin{pmatrix} 4 \\ 3 \end{pmatrix}$	b $\begin{pmatrix} 7\\ -24 \end{pmatrix}$	c	$\begin{pmatrix} -1\\ 1 \end{pmatrix}$	d	$\begin{pmatrix} 2\\4 \end{pmatrix}$
6	 Find a vector a of magnitude 26 in the direction 5i + 12j, b of magnitude 15 in the direction -6i - 8j, c of magnitude 5 in the direction 2i - 4j. 					
7	Given that $\mathbf{m} = 2\mathbf{i} + \lambda \mathbf{j}$ $\mathbf{a} \mathbf{m} + \mathbf{n} = 3\mathbf{i} - \mathbf{j}$	\mathbf{j} and $\mathbf{n} = \mu \mathbf{i} - 5\mathbf{j}$, find	d the b	values of λ and μ su $2\mathbf{m} - \mathbf{n} = -3\mathbf{i} + 8\mathbf{j}$	ich t	that
8	Given that $\mathbf{r} = 6\mathbf{i} + c\mathbf{j}$,	ven that $\mathbf{r} = 6\mathbf{i} + c\mathbf{j}$, where c is a positive constant, find the value of c such that				
	a r is parallel to the v	vector $2\mathbf{i} + \mathbf{j}$	b	r is parallel to the	vect	or –9 i – 6 j
	c $ \mathbf{r} = 10$		d	$ {\bf r} = 3\sqrt{5}$		
9	Given that $\mathbf{p} = \mathbf{i} + 3\mathbf{j}$ and $\mathbf{q} = 4\mathbf{i} - 2\mathbf{j}$, a find the values of <i>a</i> and <i>b</i> such that $a\mathbf{p} + b\mathbf{q} = -5\mathbf{i} + 13\mathbf{j}$, b find the value of <i>c</i> such that $c\mathbf{p} + \mathbf{q}$ is parallel to the vector \mathbf{j} , c find the value of <i>d</i> such that $\mathbf{p} + d\mathbf{q}$ is parallel to the vector $3\mathbf{i} - \mathbf{j}$.					
10	Relative to a fixed orig	gin O, the points A and	B ha	ve position vectors	$\begin{pmatrix} 3 \\ 6 \end{pmatrix}$	and $\begin{pmatrix} -5\\ 2 \end{pmatrix}$ respectively.
	Find				(7)	
	a the vector \overrightarrow{AB} ,					
	b $ \overrightarrow{AB} ,$					
	c the position vector of the mid-point of AB ,					
	d the position vector of the point C such that OABC is a parallelogram.					

continued

VECTORS

11	Given the coordinates of the points A and B, find the length AB in each case.							
	a $A(4, 0, 9), B(2, -3, 3)$ b $A(11, -3, 5), B(7, -1, 3)$							
12	Find the magnitude of each vector.							
	a $4\mathbf{i} + 2\mathbf{j} - 4\mathbf{k}$ b $\mathbf{i} + \mathbf{j} + \mathbf{k}$	$\mathbf{c} = -8\mathbf{i} - \mathbf{j} + 4\mathbf{k}$	$\mathbf{d} 3\mathbf{i} - 5\mathbf{j} + \mathbf{k}$					
13	Find							
	a a unit vector in the direction $5\mathbf{i} - 2\mathbf{j} + 14\mathbf{k}$,							
	b a vector of magnitude 10 in the direction $2\mathbf{i} + 11\mathbf{j} - 10\mathbf{k}$,							
	c a vector of magnitude 20 in the direction $-5\mathbf{i} - 4\mathbf{j} + 2\mathbf{k}$.							
14	Given that $\mathbf{r} = \lambda \mathbf{i} + 12\mathbf{j} - 4\mathbf{k}$, find the two possible values of λ such that $ \mathbf{r} = 14$.							
15	Given that $\mathbf{p} = \begin{pmatrix} 1 \\ 3 \\ -1 \end{pmatrix}$, $\mathbf{q} = \begin{pmatrix} 4 \\ -2 \\ 1 \end{pmatrix}$ and $\mathbf{r} = \begin{pmatrix} -4 \\ 5 \\ -4 \end{pmatrix}$	$\begin{pmatrix} 2\\ 3\\ 3 \end{pmatrix}$, find as column vector	ors,					
	a p + 2 q b p - r	c p+q+r	$\mathbf{d} 2\mathbf{p} - 3\mathbf{q} + \mathbf{r}$					
16	Given that $\mathbf{r} = -2\mathbf{i} + \lambda \mathbf{j} + \mu \mathbf{k}$, find the value	es of λ and μ such that						
	a r is parallel to $4\mathbf{i} + 2\mathbf{j} - 8\mathbf{k}$	b r is parallel to -	-5i + 20j - 10k					
17	Given that $\mathbf{p} = \mathbf{i} - 2\mathbf{j} + 4\mathbf{k}$, $\mathbf{q} = -\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$ and $\mathbf{r} = 2\mathbf{i} - 4\mathbf{j} - 7\mathbf{k}$,							
	a find $ 2\mathbf{p} - \mathbf{q} $,							
	D Find the value of k such that $\mathbf{p} + k\mathbf{q}$ is parallel to r .							
18	Relative to a fixed origin <i>O</i> , the points <i>A</i> , <i>B</i> and <i>C</i> have position vectors $(-2\mathbf{i} + 7\mathbf{j} + 4\mathbf{k})$, $(-4\mathbf{i} + \mathbf{j} + 8\mathbf{k})$ and $(6\mathbf{i} - 5\mathbf{j})$ respectively.							
	a Find the position vector of the mid-point of <i>AB</i> .							
	b Find the position vector of the point D o	on AC such that AD : DC	'=3:1					
19	Given that $\mathbf{r} = \lambda \mathbf{i} - 2\lambda \mathbf{j} + \mu \mathbf{k}$, and that r is parallel to the vector $(2\mathbf{i} - 4\mathbf{i} - 3\mathbf{k})$.							
	a show that $3\lambda + 2\mu = 0$.							
	Given also that $ \mathbf{r} = 2\sqrt{29}$ and that $\mu > 0$.							
	b find the values of λ and μ .							
			(6) (12) (6)					
20	Relative to a fixed origin <i>O</i> , the points <i>A</i> , <i>B</i> and <i>C</i> have position vectors $\begin{bmatrix} -2 \\ -4 \end{bmatrix}$, $\begin{bmatrix} -7 \\ -4 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ -8 \end{bmatrix}$							
	respectively.							
	a Find the position vector of the point <i>M</i> , the mid-point of <i>BC</i> .							
	b Show that <i>O</i> , <i>A</i> and <i>M</i> are collinear.							
21	The position vector of a model aircraft at tin to a fixed origin <i>O</i> . One unit on each coordi	me t seconds is $(9-t)\mathbf{i}$ inate axis represents 1 m	+ $(1+2t)\mathbf{j} + (5-t)\mathbf{k}$, relative netre.					
	a Find an expression for d^2 in terms of t , w	where <i>d</i> metres is the dis	tance of the aircraft from O.					

b Find the value of *t* when the aircraft is closest to *O* and hence, the least distance of the aircraft from *O*.