
VECTORS

1

The diagram shows three sets of equally-spaced parallel lines.

Given that $\overrightarrow{AC} = \mathbf{p}$ and that $\overrightarrow{AD} = \mathbf{q}$, express the following vectors in terms of \mathbf{p} and \mathbf{q} .

 \overrightarrow{a} \overrightarrow{CA}

b \overrightarrow{AG}

 $\mathbf{c} \quad \overrightarrow{AB}$

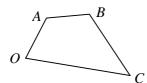
 $\overrightarrow{\mathbf{d}}$ \overrightarrow{DF}

 \overrightarrow{e} \overrightarrow{HE}

 $\mathbf{f} \quad \overrightarrow{AF}$

 $\mathbf{g} \quad \overrightarrow{AH}$

 $\mathbf{h} \quad \overrightarrow{DC}$


 \overrightarrow{CG}

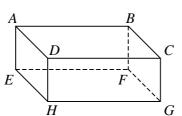
 \vec{i} $\vec{I}\vec{A}$

 $\mathbf{k} \quad \overrightarrow{EC}$

 \vec{l} $\vec{l}\vec{B}$

2

In the quadrilateral shown, $\overrightarrow{OA} = \mathbf{u}$, $\overrightarrow{AB} = \mathbf{v}$ and $\overrightarrow{OC} = \mathbf{w}$.


Find expressions in terms of **u**, **v** and **w** for

 \overrightarrow{a} \overrightarrow{OB}

b \overrightarrow{AC}

 \overrightarrow{CB}

3

The diagram shows a cuboid.

Given that $\overrightarrow{AB} = \mathbf{p}$, $\overrightarrow{AD} = \mathbf{q}$ and $\overrightarrow{AE} = \mathbf{r}$, find expressions in terms of \mathbf{p} , \mathbf{q} and \mathbf{r} for

 $\overrightarrow{a} \overrightarrow{BC}$

b \overrightarrow{AF}

 \overrightarrow{c} \overrightarrow{DE}

d \overrightarrow{AG}

 $\overrightarrow{\mathbf{e}}$ \overrightarrow{GB}

 $\mathbf{f} = \overline{RH}$

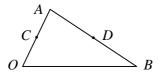
4

The diagram shows parallelogram ORST.

Given that $\overrightarrow{OR} = \mathbf{a} + 2\mathbf{b}$ and that $\overrightarrow{OT} = \mathbf{a} - 2\mathbf{b}$,

a find expressions in terms of a and b for

 \overrightarrow{i} \overrightarrow{OS}


ii \overrightarrow{TR}

Given also that $\overrightarrow{OA} = \mathbf{a}$ and that $\overrightarrow{OB} = \mathbf{b}$,

b copy the diagram and show the positions of the points A and B.

VECTORS continued

5

The diagram shows triangle OAB in which $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$.

The points C and D are the mid-points of OA and AB respectively.

- a Find and simplify expressions in terms of a and b for
 - \vec{i} \overrightarrow{OC}
- ii \overrightarrow{AB}
- iii \overrightarrow{AD}
- iv \overrightarrow{OD}
- $\mathbf{v} \quad \overrightarrow{CD}$

b Explain what your expression for \overrightarrow{CD} tells you about \overrightarrow{OB} and \overrightarrow{CD} .

- 6 Given that vectors **p** and **q** are not parallel, state whether or not each of the following pairs of vectors are parallel.
 - **a** 2**p** and 3**p**
- **b** $(\mathbf{p} + 2\mathbf{q})$ and $(2\mathbf{p} 4\mathbf{q})$ **c** $(3\mathbf{p} \mathbf{q})$ and $(\mathbf{p} \frac{1}{3}\mathbf{q})$

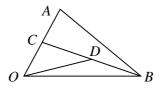
- **d** $(\mathbf{p} 2\mathbf{q})$ and $(4\mathbf{q} 2\mathbf{p})$ **e** $(\frac{3}{4}\mathbf{p} + \mathbf{q})$ and $(6\mathbf{p} + 8\mathbf{q})$ **f** $(2\mathbf{q} 3\mathbf{p})$ and $(\frac{3}{2}\mathbf{q} \mathbf{p})$
- The points O, A, B and C are such that $\overrightarrow{OA} = 4\mathbf{m}$, $\overrightarrow{OB} = 4\mathbf{m} + 2\mathbf{n}$ and $\overrightarrow{OC} = 2\mathbf{m} + 3\mathbf{n}$, where 7 **m** and **n** are non-parallel vectors.
 - **a** Find an expression for \overrightarrow{BC} in terms of **m** and **n**.

The point *M* is the mid-point of *OC*.

- **b** Show that AM is parallel to BC.
- The points O, A, B and C are such that $\overrightarrow{OA} = 6\mathbf{u} 4\mathbf{v}$, $\overrightarrow{OB} = 3\mathbf{u} \mathbf{v}$ and $\overrightarrow{OC} = \mathbf{v} 3\mathbf{u}$, where 8 **u** and **v** are non-parallel vectors.

The point M is the mid-point of OA and the point N is the point on AB such that AN : NB = 1 : 2

- **a** Find \overrightarrow{OM} and \overrightarrow{ON} .
- **b** Prove that *C*, *M* and *N* are collinear.
- 9 Given that vectors **p** and **q** are not parallel, find the values of the constants a and b such that


a
$$ap + 3q = 5p + bq$$

b
$$(2\mathbf{p} + a\mathbf{q}) + (b\mathbf{p} - 4\mathbf{q}) = \mathbf{0}$$

$$\mathbf{c} \quad 4a\mathbf{q} - \mathbf{p} = b\mathbf{p} - 2\mathbf{q}$$

d
$$(2ap + bq) - (aq - 6p) = 0$$

10

The diagram shows triangle *OAB* in which $OA = \mathbf{a}$ and $OB = \mathbf{b}$.

The point C is the mid-point of OA and the point D is the mid-point of BC.

- **a** Find an expression for *OD* in terms of **a** and **b**.
- **b** Show that if the point E lies on AB then \overrightarrow{OE} can be written in the form $\mathbf{a} + k(\mathbf{b} \mathbf{a})$, where k is a constant.

Given also that *OD* produced meets *AB* at *E*,

- \mathbf{c} find OE.
- **d** show that AE : EB = 2 : 1