Vectors

The points A, B and C have position vectors $\begin{pmatrix} -2 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 2 \\ 5 \end{pmatrix}$ and $\begin{pmatrix} 6 \\ 3 \end{pmatrix}$ respectively. M is the midpoint of BC.

- (a) Find the position vector of the point D such that $\overrightarrow{BC} = \overrightarrow{AD}$. [3]
- (b) Find the magnitude of \overrightarrow{AM} .

The point *A* has position vector **i** – 2**j**. The point *B* is such that $|\overrightarrow{OB}| = |\overrightarrow{OA}|_{and} \overrightarrow{OB}$ is perpendicular to \overrightarrow{OA} .

- (a) (i) Find $|\overrightarrow{OB}|$.
 - (ii) Find the two possible directions of \overrightarrow{OB} , giving your answers correct to the nearest [2] degree.

The point *C* is such that $|\overrightarrow{AC}| = 2$.

- (b) Find the maximum and minimum values of $|\overrightarrow{OC}|$.
- 3. Vectors a and b are defined as follows: a = 2i + 6j and b = 2i 4j.
 (a) Given that pa + qb = 6i 7j, find the values of the constants p and q. [3]
 - (b) It is now given instead that $|\mathbf{a} + k\mathbf{b}| = 5$. Use the diagram below to find the two possible values of the constant k. [4]

a b b

1.

[2]

[4]

[3]

4. OABC is a parallelogram with $\overrightarrow{OA} = \mathbf{a}_{and} \overrightarrow{OC} = \mathbf{c}$. P is the midpoint of AC.

- (a) Find the following in terms of **a** and **c**, simplifying your answers. (i) \overrightarrow{AC} [1]
 - (ii) \overrightarrow{OP} [2]
- (b) Hence prove that the diagonals of a parallelogram bisect one another. [4]
- 5. Vector $\mathbf{v} = a\mathbf{i} + 0.6\mathbf{j}$, where *a* is a constant.
 - (a) Given that the direction of v is 45°, state the value of a. [1]
 (b) Given instead that v is parallel to 8i + 3j, find the value of a. [2]
 - (c) Given instead that v is a unit vector, find the possible values of a. [3]

END OF QUESTION paper

Mark scheme

Question		on	Answer/Indicative content	Marks	Guidance	
1		а	$\overrightarrow{BC} = \begin{pmatrix} 4 \\ -2 \end{pmatrix}$ $\begin{pmatrix} 4 \\ -2 \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} - \begin{pmatrix} -2 \\ 1 \end{pmatrix} = \mathbf{d} - \mathbf{a} = \overrightarrow{AD}$ $\overrightarrow{OD} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$	B1(AO1.1) M1(AO3.1a) A1(AO1.1) [3]	soi	
		þ	$\overrightarrow{OM} = \begin{pmatrix} 4 \\ 4 \end{pmatrix}$ $\overrightarrow{AM} = \overrightarrow{OM} - \overrightarrow{OA} = \begin{pmatrix} 6 \\ 3 \end{pmatrix}$ $\left \overrightarrow{AM} \right = \sqrt{6^2 + 3^2} = 3\sqrt{5}$	B1(AO1.1) M1(AO1.1) A1(AO2.2a) [3]	soi Accept 6.71	
			Total	6		
2		а	$\int_{0} \overrightarrow{OB} = \sqrt{1^2 + 2^2}$ Mag = $\sqrt{5}$ or 2.24 (3 sf)	M1(AO1.2) A1(AO1.1) [2]		
		а	ii) Direction (= $\tan^{-1}(0.5)$) = 27° & (180° + 27° or $\tan^{-1}(-0.5)$) = 207°	M1(AO1.1a) A1f(AO1.1) [2]	ft their 27°	
		b	For max & min OC, C lies on OA $OC = OA \pm 2$ Max $OC = \sqrt{5} + 2$ or 4.24 (3 sf) Min $OC = \sqrt{5} - 2$ or 0.236 (3 sf)	M1(AO2.1) M1(AO3.1a) A1(AO2.2a) A1(AO1.1) [4]	May be implied, eg by diagram Their <i>OA</i> (from (a)) ± 2	
			Total	8		
3		а	2p + 2q = 6 6p - 4q = -7 eg $4p + 4q = 12$	B1(AO3.1a)		

		$10\rho = 5$ $\rho = 0.5, q = 2.5$	M1(AO 1.1) A1(AO 1.1) [3]	BothCorrect method to solve and achieve any correct equation in either p or qBoth	
	Ł	Vectors $3\mathbf{i} + 4\mathbf{j}$ and $5\mathbf{i}$ shown on diagram, each starting at start point of vector \mathbf{a} k = 0.5 or 1.5	(AO1.2) B1B1(AO1.1) B1(AO2.2a) B1(AO1.1) [4]	or just end points of these vectors shown	
		Total	7		
4		Allow without arrows or squiggles throughout		Examiner's Comments In all three parts of this question, many candidates did not use correct vector notation.	
	e	a (i) c – a oe	B1 (AO1.2) [1]	Examiner's Comments Almost all candidates answered this question correctly.	
	e	a (ii) $\mathbf{a} + \frac{1}{2} (\mathbf{c} - \mathbf{a}) \qquad \mathbf{c} + \frac{1}{2} (\mathbf{a} - \mathbf{c})$ or $\mathbf{c} + \frac{1}{2} (\mathbf{a} - \mathbf{c})$	M1 (AO3.1a) A1 (AO1.1b)	$a + \frac{1}{2}$ their (i) or $c - \frac{1}{2}$ their (i) Correct ans without wking: M1A1	
			[2]		

					Vectors
				some cases confusing it with "perpendicular". Thus many wrote that a + c is perpendicular to a – c, and that this somehow proves that the diagonals bisect one another. Perhaps the majority of candidates did not know how to start answering this question at all. An example of a candidate's solution that suggested they had no understanding of proof by vectors was as follows: "BO = AC. As they are the same length it means they would both meet in the centre, hence meaning they bisect one another."	
		Total	7		
5	0	<i>a</i> = 0.6	B1 (AO 1.2)	State correct value	
	a		[1]	for a	
		3 <i>k</i> = 0.6, so <i>k</i> = 0.2 <i>a</i> = 8 × 0.2 = 1.6	M1 (AO 1.1a)	Attempt to find scale factor OF	OR 0.6 <i>k</i> = 3, so
	b		A1 (AO 1.1) [2]	Obtain <i>a</i> = 1.6	<i>k</i> =5
	 			-	
		$\sqrt{a^2 + 0.6^2} = 1$ $a^2 = 0.64$	B1 (AO 1.2)	Correct definition for unit vector seen or implied	
	С		1.1a)	Attempt to find at least one value for	Allow BOD for a^2 + 0.6 ² = 1, with no square root seen
		<i>a</i> = ± 0.8	A1 (AO 1.1)	ä	
			[3]	Both correct values for <i>a</i>	
		Total	6		