1. Solve the equation $2 \sec^2 \theta = 5 \tan \theta$, for $0 \le \theta \le \pi$.

2. Show that the equation $\csc x + 5 \cot x = 3 \sin x$ may be rearranged as $3 \cos^2 x + 5 \cos x - 2 = 0$.

Hence solve the equation for $0^{\circ} \le x \le 360^{\circ}$, giving your answers to 1 decimal place.

[7]

[6]

^{3.} In this question you must show detailed reasoning.

Solve the equation $\sec^2\theta + 2\tan\theta = 4$ for $0^\circ \le \theta < 360^\circ$. [4]

^{4.} In this question you must show detailed reasoning.

- (a) Prove that $(\csc \theta - \cot \theta)^2 = \frac{1 - \cos \theta}{1 + \cos \theta}$ [3]
- (b) Hence solve the equation $(\csc \theta \cot \theta)^2 = \frac{1}{3}$ for $0^\circ < \theta < 360^\circ$. [3]

END OF QUESTION paper

Mark scheme

Question		Answer/Indicative content	Marks	Guidance
1		$2\sec^2\theta = 5\tan\theta$	6	
		$\Rightarrow 2(1 + \tan^2 \theta) = 5 \tan \theta$	M1	$\sec^2\theta = 1 + \tan^2 \theta$ used
		$\Rightarrow 2\tan^2\theta - 5\tan\theta + 2 = 0$	A1	correct quadratic oe
		$\Rightarrow (2tan\theta - 1)(tan\theta - 2) = 0$	M1	solving their quadratic for tan θ (follow rules for solving as in Question 1 $[\ensuremath{^*},\ensuremath{^*}]$
		\Rightarrow tan θ = ½ or 2	A1	www
		$\Rightarrow \theta = 0.464,$	A1	first correct solution (or better)
		1.107	A1	second correct solution (or better) and no others in the range Ignore solutions outside the range. SC A1 for both 0.46 and 1.11 SC A1 for both 26.6° and 63.4° (or better) Do not award SC s if there are extra solutions in range.
		OR		
		$2/\cos^2\theta = 5\sin\theta/\cos\theta$	M1	using both sec = 1/cos and tan = sin/cos
		⇒ $2\cos\theta = 5\sin\theta\cos^2\theta$, $\cos\theta \neq 0$	A1	correct one line equation $2 - 5 \sin\theta \cos\theta = 0$ or $2 \cos\theta = 5 \sin\theta \cos^2 \theta$ oe (or common denominator). Do not need $\cos\theta \neq 0$ at this stage.
		⇒ $\cos\theta(2 - 5\sin\theta \cos\theta) 0$ ⇒ $\cos\theta = 0$, <i>or</i> $\sin 2\theta = 0.8$	M1	using sin $2\theta = 2 \sin\theta \cos\theta$ oe eg $2=5 \sin\theta \sqrt{1-\sin^2\theta}$ and squaring
		⇒ sin 2θ = 0.8	A1	$\sin 2\theta = 0.8$ or, say, 25 $\sin^4\theta - 25\sin^2\theta + 4 = 0$

	$\Rightarrow 2\theta = 0.9273 \text{ or } 2.2143$ $\Rightarrow \theta = 0.464$	A1	first correct solution (or better)
			second correct solution (or better) and no others in range Ignore solutions outside the range SCs as above
			Examiner's Comments
	1.107	A1	Candidates seemed equally to choose the two approaches in the mark scheme to solve the trigonometric equation. Both were equally successful and few offered extra unnecessary solutions. The main error was to give insufficient accuracy in the final solutions.
			Where solving tan θ =2 in degrees leads to θ =63.4° to 3sf, giving θ = 1.11 radians = 63.598° (63.6°) and θ =1.1radians=63.0° were insufficiently accurate so we needed θ =1.107radians to achieve the same accuracy as 63.4°.
	Total	6	
2	$cosec x + 5 \cot x = 3 \sin x$ $\Rightarrow \frac{1}{\sin x} + \frac{5 \cos x}{\sin x} = 3 \sin x$	M1	using cosec $x = 1/\sin x$ and cot $x = \cos x / \sin x$
	$\Rightarrow 1 + 5 \cos x = 3 \sin^2 x = 3(1 - \cos^2 x)$	M1	$\cos^2 x + \sin^2 x = 1$ used (both M marks must be part of same solution in order to score both marks)
	$\Rightarrow 3\cos^2 x + 5\cos x - 2 = 0^*$	A1	AG (Accept working backwards, with same stages needed)
	$\Rightarrow (3\cos x - 1)(\cos x + 2) = 0$	M1	use of correct quadratic equation formula (can be an error when substituting into correct formula) or factorising (giving correct coeffs 3 and –2 when multiplied out) or comp square oe
	$\Rightarrow \cos x = 1/3,$	A1	$\cos x = 1/3$ www
	<i>x</i> = 70.5°,	A1	for 70.5° or first correct solution, condone over-specification (ie 70.5° or better eg 70.53°, 70.5288° etc),

		289.5°	A1	for 289.5° or second correct solution (c and no others in the range Ignore solutions outside the range SC A1A0 for incorrect answers that rou 289.48 SC Award A1A0 for 1.2, 5.1 radians (or Do not award SC marks if there are exit Examiner's Comments Many candidates scored full marks whice could be rearranged as a quadratic and Where there were errors, these were us the given result. Errors included failing f failing to use $\sin^2\theta + \cos^2\theta = 1$ or squari candidates would say $x+3=7$ so $x^2 + 9=$ $x+5$ cot $x=3\sin x$ term by term. Those who were unable to complete the the quadratic equation. Few errors were was incorrect and few candidates offer	Secant, Cosecant, Cotangener condone over-specification) nd to 70.5 and 360-their ans, eg 70.52 and r better) tra solutions in the range en showing that the trigonometric equation d then solving it. sually in the first part when trying to establish to use the correct trigonometric identities, ng the original expression term by term. Few e49 and yet they happily square cosec the first part sensibly then proceeded to solve e seen here. Occasionally the final solution ed additional incorrect solutions.
		Total	7		
3		$(1 + \tan^2 \theta) + 2 \tan \theta = 4$	M1 (AO 3.1a)	DR Using appropriate trig	
		$\tan^2\theta + 2\tan\theta - 3 = 0$ $(\tan\theta - 1)(\tan\theta + 3) = 0$	M1 (AO 1.1a) A1 (AO 1.1b)	identity Showing algebraic method for solving their quadratic	Must attempt to reach an equation with only one trig function eg $20\cos^4\theta - 12\cos^2\theta + 1$ = 0 Or $\sqrt{5}\sin(2\theta - 63.4^\circ) = 1$
		When tan θ – 1, θ = 45°, 225°	A1 (AO 1.1b)		

				Secant Cosecant Cotangen
		When tan $\theta = -3$, $\theta = 108.4^{\circ}$, 288.4°	[4]	Any two correct values for θ
				All correct values for θ and no extras in the interval. Ignore values outside the required interval.
				Examiner's Comments Candidates who used the identity $\sec^2 \theta = 1 + \tan^2 \theta$ generally went on to obtain most of the marks. Only a few candidates tried to rewrite the equation in terms of $\cos \theta$ as this is a much more difficult method requiring both sides to be squared and spurious solutions eliminated. Candidates did not get far enough into this method to obtain the method mark.
		Total	4	
4	a	$(\csc\theta - \cot\theta)^2 = \left(\frac{1}{\sin\theta} - \frac{\cos\theta}{\sin\theta}\right)^2$	M1 (AO 2.1) M1 (AO 2.1)	Using $\cos e \theta = \frac{1}{\sin \theta}$, $\cot \theta = \frac{\cos \theta}{\sin \theta}$
		$=\frac{(1-\cos\theta)^2}{\sin^2\theta}=\frac{(1-\cos\theta)^2}{1-\cos^2\theta}$	A1 (AO 2.1) [3]	Using $\sin^2\theta = 1 -$

		$=\frac{(1-\cos\theta)^2}{(1-\cos\theta)(1+\cos\theta)}=\frac{1-\cos\theta}{1+\cos\theta}$		Cos ² θ Secant, Cosecant, Cotangenet AG Factorising must be shown
	b	$\frac{1-\cos\theta}{1+\cos\theta} = \frac{1}{3} \Longrightarrow 3 - 3\cos\theta = 1 + \cos\theta \Longrightarrow \cos\theta = \frac{1}{2}$	M1 (AO 1.1a) A1 (AO 1.1)	Attempt to rearrange and find $\cos \theta$ For one correct value for θ
		$\theta = 60^{\circ}, 300^{\circ}$	A1 (AO 1.1) [3]	For second correct value; do not allow if additional values in range given, but ignore values outside range
		Total	6	