1.

Fig. 4
Fig. 4 shows sector OAB with sector angle 1.2 radians and arc length 4.2 cm . It also shows chord $A B$.
i. Find the radius of this sector.
ii. Calculate the perpendicular distance of the chord AB from O .
2.
i. Starting with an equilateral triangle, prove that $\cos 30^{\circ}=\frac{\sqrt{3}}{2}$.
ii. Solve the equation $2 \sin \theta=-1$ for $0 \leqslant \theta \leqslant 2 \pi$, giving your answers in terms of π.

Fig. 6
A circle with centre O has radius 12.4 cm . A segment of the circle is shown shaded in Fig. 6. The segment is bounded by the arc $A B$ and the chord $A B$, where the angle $A O B$ is 2.1 radians. Calculate the area of the segment.
4. Show that the equation $\sin ^{2} x=3 \cos x-2$ can be expressed as a quadratic equation in $\cos x$ and hence solve the equation for values of 3^{x} between 0 and 2π.
5. A sector of a circle has angle 1.5 radians and area $27 \mathrm{~cm}^{2}$. Find the perimeter of the sector.
6. A sector of a circle has radius $r \mathrm{~cm}$ and sector angle θ radians. It is divided into two regions, A and B. Region A is an isosceles triangle with the equal sides being of length $a \mathrm{~cm}$, as shown in Fig. 6.

Not to scale

Fig. 6
i. Express the area of B in terms of a, rand θ.
ii. Given that $r=12$ and $\theta=0.8$, find the value of a for which the areas of A and B are equal. Give your answer correct to 3 significant figures.
7. Fig. 1 shows a sector of a circle of radius 7 cm . The area of the sector is $5 \mathrm{~cm}^{2}$.

Fig. 1
Find the angle θ in radians
8. Fig. 7 shows a circle with centre A and radius 6 cm , and a circle with centre B and radius 2 cm . The two circles touch. DCE is a common tangent to the circles. ABE is a straight line.

Fig. 7
(a) Give a reason why angles $A D E$ and $B C E$ are right angles.
(b) Show that angle DAB is $\frac{1}{3} \pi$ radians.
(c) Show that trapezium ABCD has area $16 \sqrt{3} \mathrm{~cm}^{2}$.
(d) Calculate the area of the shaded region enclosed by the two circles and the common tangent DCE. Give your answer correct to 3 decimal places.
9. Fig. 3 shows a circle with centre O and radius 1 unit. Points A and B lie on the circle with angle $\mathrm{AOB}=\theta$ radians. C lies on AO , and BC is perpendicular to AO .

Fig. 3
Show that, when θ is small, $\mathrm{AC} \approx \frac{1}{2} \theta^{2}$.
10. Fig. 5 shows triangle $A B C$ where $A B=7 \mathrm{~cm}, \mathrm{BC}=8 \mathrm{~cm}$ and $\mathrm{AC}=5 \mathrm{~cm}$. The curve is an arc of a circle with centre C and radius rcm .

Fig. 5

Exactly half the area of the triangle is shaded. Find the value of r.

Mark scheme

Question		Answer/Indicative content	Marks	Part marks and guidance	
1	i	$1.2 r=4.2$ $3.5 \text { cao }$	M1 A1	$\frac{68.7549 \ldots}{360} \times 2 \pi r=4.2$ with θ to 3 sf or better Examiner's Comments Almost all candidates achieved full marks on this question. Some converted to degrees and rounded prematurely, thus losing the accuracy mark for the final answer, and a few used the formula for the area of a sector.	B2 if correct answer unsupported
	ii	$\cos 0.6=\frac{d}{\text { their3.5 }}$ $\text { 2.888.. to } 2.9$	M1 A1	$\cos 34.377 . .=\frac{d}{\text { their } 3.5}$ with θ to 3 sf or better Examiner's Comments This straightforward question defeated a surprisingly large number of candidates. Many of these misunderstood the question and used the Cosine Rule to calculate the length $A B$, or simply answered their own question and calculated the area of the sector or the segment. Many of the successful candidates used convoluted methods, such as finding AB and then using Pythagoras - premature rounding sometimes caused a mark to be lost; forgetting to halve $A B$ cost both marks. The Sine Rule was sometimes used successfully - but this was sometimes spoiled by the use of sine in conjunction with	or correct use of Sine Rule with 0.9708(55.623 $)$ or area $=5.709=0.5 \times h \times 3.952$, or $3.5^{2}-1.976^{2}=d^{t}$

$\left.\right|^{$| $\frac{-3+\sqrt{21}}{2}$ |
| :--- |
| $\cos x=\text { their }$ |
| $\cos x=\text { their } 0.79 \text { to } 0.7913 ~ s o i ~$ |
| $[x=] 0.6578 \text { to } 0.66 \text { isw cao }$ |$}$

Some were using x for $\cos x$ in their quadratic formula and not recovering the 'cos'. This was unfortunate. Candidates must realise that this is not a useful practice. Even those who made other substitutions often failed to give their evaluated formula a subject and then confused themselves.

Some candidates resorted to rounded decimals very quickly and made premature approximation errors in their answers, thus losing one or more accuracy mark.

Quite a few candidates were finding the second angle by adding 0.66 to 1.5π rather than subtracting it from 2π.

A fair number of candidates worked in degrees - a good number of these were allowed the SC1 for a pair of correct answers. When the
ignore other values (eg -3.79...);
$x=0.791287847 \ldots$ but MO if no recovery

NB $x=0.65788395 \ldots$

NB $x=5.625301357 .$.
no SC mark available if extra values in range

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& \& \& question stipulates angles over a range such as "between 0 and \(2 \pi\) ", the expectation is that their angleswill be in radians, not degrees. \& \& Radians \\
\hline \& Total \& 5 \& \& \& \\
\hline 5 \& \begin{tabular}{l}
\(27=1 / 2 R^{2} \times 1.500\) \\
\(r=6\) soi \\
their \(r \times 1.5\) \\
21 [cm] cao
\end{tabular} \& M1
A1

M1

A1 \& \begin{tabular}{l}
$$
\begin{aligned}
& \text { or }_{27}^{27}=\frac{85.943669 \ldots}{360} \times \pi r^{2} \\
& \text { may be embedded in tormula tor accl engttr } \\
& \quad \frac{85.943639}{360} \times 2 \pi \times \text { their } r
\end{aligned}
$$

allow full marks for recovery from working with rounded value of θ in degree form

Examiner's Comments

This was very well done: approximately two thirds of candidates obtained full marks. Some candidates converted to degrees and lost the accuracy marks and a few candidatesused incorrect formulae.

 \&

angle in degrees rounded to 2 sf or more

may be implied by later work eg 9 or 21

if r is incorrect, we must see their $r \times 1.5[+2$] for M if r is correct, M1 may be implied by 9 or 21

B4 for 21 unsupported www
\end{tabular} \&

\hline \& Total \& 4 \& \& \&

\hline 6 \& \[
$$
\begin{aligned}
& \frac{1}{2} r^{2} \theta \text { or } \frac{1}{2} a^{2} \sin \theta_{\text {or }} \\
& a^{2} \sin \frac{1}{2} \theta \cos \frac{1}{2} \theta_{\text {seen }} \\
& \frac{1}{2} r^{2} \theta-\frac{1}{2} a_{\sin \theta \text { isw oe }}
\end{aligned}
$$

\] \& M1 \& | do not allow use of variable other than θ |
| :--- |
| Examiner's Comments |
| This was generally very well done, but some candidates gave the area of the triangle as $1 / 2 a^{2}$ and a few gave the area of the sector as $r \theta$. | \& \[

\frac{\theta}{2 \pi} \times \pi r^{2} or \frac{1}{2} a^{2} \sin \left(\frac{180 \theta}{\pi}\right)
\] \&

\hline
\end{tabular}

	-		B1 B1	$\text { or eg } \frac{1}{2} a^{2} \sin 0.8=\frac{1}{4} \times 12^{2} \times 0.8[=28 .$ equivalent in degrees NB $\theta=45.8366236 \ldots{ }^{\circ}$ if unsupported, allow B2 for 8.96 or allow B1 for 9.0 or $8.96074 \ldots$ to 4 sf or more Examiner's Comments A significant minority were unable to make progress with this part due to incorrect work in part 9(i). Many others set the area of the sector equal to the area of the triangle and failed to score. A few needlessly converted to degrees, and often went wrong either by losing the accuracy mark or making a method error in the formula for the sector. A surprising number of candidates ignored their correct work in part (i) and began again with incorrect expressions.	NB $a^{2}=\frac{57.6}{0.717356}=80.29485$ NB $\theta=45.83662361 \ldots$. NB $\frac{1}{2} \sin 0.8=0.35867$..
		Total	4		
7		$\begin{aligned} & \quad 5=\frac{1}{2} \times 7^{2} \times \theta \\ & \theta=\frac{10}{49}[=0.204] \end{aligned}$			
		Total	2		
8		Tangent perpendiculur to radius		\square	

