1. (a) Express $2\cos\theta - \sin\theta$ in the form $R\cos(\theta + \alpha)$, where R > 0 and $0 < \alpha < \frac{\pi}{2}$ Give the exact value of R and the value of α in radians to 3 decimal places.

P H metres
Water level

Figure 6

Figure 6 shows the cross-section of a water wheel.

The wheel is free to rotate about a fixed axis through the point C.

The point P is at the end of one of the paddles of the wheel, as shown in Figure 6.

The water level is assumed to be horizontal and of constant height.

The vertical height, H metres, of P above the water level is modelled by the equation

$$H = 3 + 4\cos(0.5t) - 2\sin(0.5t)$$

where *t* is the time in seconds after the wheel starts rotating.

Using the model, find

- (b) (i) the maximum height of P above the water level,
 - (ii) the value of *t* when this maximum height first occurs, giving your answer to one decimal place.

(3)

In a single revolution of the wheel, P is below the water level for a total of T seconds.

According to the model,

(c) find the value of T giving your answer to 3 significant figures.

(Solutions based entirely on calculator technology are not acceptable.)

(4)

In reality, the water level may not be of constant height.

(d) Explain how the equation of the model should be refined to take this into account.

(1)

2.

Figure 4

Figure 5

Figure 4 shows a sketch of a Ferris wheel.

The height above the ground, H m, of a passenger on the Ferris wheel, t seconds after the wheel starts turning, is modelled by the equation

$$H = |A\sin(bt + \alpha)^{\circ}|$$

where A, b and α are constants.

Figure 5 shows a sketch of the graph of H against t, for one revolution of the wheel.

Given that

- the maximum height of the passenger above the ground is 50 m
- the passenger is 1 m above the ground when the wheel starts turning
- the wheel takes 720 seconds to complete one revolution
- (a) find a complete equation for the model, giving the exact value of A, the exact value of b and the value of α to 3 significant figures.

(4)

(b) Explain why an equation of the form

$$H = \left| A \sin(bt + \alpha)^{\circ} \right| + d$$

where d is a positive constant, would be a more appropriate model.

(1)

O)
$$H = A \sin(bt + \alpha)$$

because max $\sin(bt + a) = 1$

maximum $H = A = 50$

when $t = 0$, $H = 1 = 50 \sin \alpha$

$$\frac{1}{50} = \sin \alpha$$

H =
$$50 \sin(\frac{1}{4}t + 1.15)$$

b) We want the lowest point of the wheel to be a distance of d

above ground, so that the passenger does not touch the ground.

Hence, a model of the form of H= |A sin (bt+a)| + d would

be more appropriate.

3. On a roller coaster ride, passengers travel in carriages around a track.

On the ride, carriages complete multiple circuits of the track such that

- the maximum vertical height of a carriage above the ground is 60 m
- a carriage starts a circuit at a vertical height of 2 m above the ground
- the ground is horizontal

The vertical height, Hm, of a carriage above the ground, t seconds after the carriage starts the first circuit, is modelled by the equation

$$H = a - b(t - 20)^2$$

where a and b are positive constants.

(a) Find a complete equation for the model.

(3)

(b) Use the model to determine the height of the carriage above the ground when t = 40

(1)

In an alternative model, the vertical height, Hm, of a carriage above the ground, t seconds after the carriage starts the first circuit, is given by

$$H = 29\cos(9t + \alpha)^{\circ} + \beta \qquad 0 \leqslant \alpha < 360^{\circ}$$

where α and β are constants.

(c) Find a complete equation for the alternative model.

(2)

Given that the carriage moves continuously for 2 minutes,

(d) give a reason why the alternative model would be more appropriate.

(1)

a)
$$H = a - b(t - 20)^2$$

given:

2. when t=0, H=2

turning point has
$$H=60$$
 and $E=20$.. $60=a+6(20-20)$ $a=60$

$400b = 58$ $b = 0.145$ $H = 60 - 0.145(t - 20)^{2}$ D $b) sub in t = 40$ $H = 60 - 0.145(40 - 20)^{2}$ $= 2 m$ $C) H = 29 cos(9t + \alpha) + \beta$ $dH = -261 sin(9t + \alpha) = 0 \text{ when } t = 20$ dt
H=60-0.145($t-20$) ² (1) b) sub in $t=40$ H=60-0.145(40-20) ² =2 m (1) c) H=29cos(9t+ α) + β dH = -261sin(9t+ α) =0 when $t=20$
b) sub in $t=40$ $H = 60 - 0.145 (40-20)^2$ $= 2 m \Omega$ c) $H = 29 \cos(9t + \alpha) + \beta$ $dH = -261 \sin(9t + \alpha) = 0$ when $t=20$ dt
$H = 60 - 0.145 (40 - 20)^{2}$ $= 2 m (1)$ c) $H = 29 \cos(9t + \alpha) + \beta$ $dH = -261 \sin(9t + \alpha) = 0 \text{ when } t = 20$ dt
$H = 60 - 0.145 (40 - 20)^{2}$ $= 2 m (1)$ c) $H = 29 \cos(9t + \alpha) + \beta$ $dH = -261 \sin(9t + \alpha) = 0 \text{ when } t = 20$ dt
$= 2 m \Omega$ c) $H = 29 \cos(9t + \alpha) + \beta$ $\frac{dH}{dt} = -261 \sin(9t + \alpha) = 0 \text{ when } t = 20$ $\frac{dH}{dt} = -261 \sin(9t + \alpha) = 0$
c) $H = 29\cos(9t+\alpha) + \beta$ $\frac{dH}{dt} = -261\sin(9t+\alpha) = 0 \text{ when } t=20$
$\frac{dH}{dt} = -261 \sin(9t + \alpha) = 0 \text{ when } t = 20$
$\frac{dH}{dt} = -261 \sin(9t + \alpha) = 0 \text{ when } t = 20$
dt
$\cdot $ $\sim 100 + 41 - 6$
$\therefore SIN(180+\alpha)=0$
$180+\alpha=0 \Rightarrow \alpha=-180^{\circ}$, out of range
180+a = 360 ≥ x = 180°, in range ()°
$H = 29\cos(9t + 180) + \beta$ $(0 \le \alpha < 360)$
Subin $t=0$, $H=2$
$2 = 29\cos 180 + \beta$
$2 = -20(+\beta)$
B=31

d) The alternative model allows for more than one circuit (1)