Questions

Q1.
(a) Prove that

$$
\begin{equation*}
1-\cos 2 \theta \equiv \tan \theta \sin 2 \theta, \quad \theta \neq \frac{(2 n+1) \pi}{2}, \quad n \in \mathbb{Z} \tag{3}
\end{equation*}
$$

(b) Hence solve, for $-\frac{\pi}{2}<x<\frac{\pi}{2}$, the equation

$$
\left(\sec ^{2} x-5\right)(1-\cos 2 x)=3 \tan ^{2} x \sin 2 x
$$

Give any non-exact answer to 3 decimal places where appropriate.

Q2.
(a) Prove

$$
\begin{equation*}
\frac{\cos 3 \theta}{\sin \theta}+\frac{\sin 3 \theta}{\cos \theta} \equiv 2 \cot 2 \theta \quad \theta \neq(90 n)^{\circ}, n \in \mathbb{Z} \tag{4}
\end{equation*}
$$

(b) Hence solve, for $90^{\circ}<\theta<180^{\circ}$, the equation

$$
\frac{\cos 3 \theta}{\sin \theta}+\frac{\sin 3 \theta}{\cos \theta}=4
$$

giving any solutions to one decimal place.

Q3.

In this question you should show all stages of your working.
Solutions relying entirely on calculator technology are not acceptable.
(a) Given that $1+\cos 2 \theta+\sin 2 \theta \neq 0$ prove that

$$
\frac{1-\cos 2 \theta+\sin 2 \theta}{1+\cos 2 \theta+\sin 2 \theta} \equiv \tan \theta
$$

(b) Hence solve, for $0<x<180^{\circ}$

$$
\frac{1-\cos 4 x+\sin 4 x}{1+\cos 4 x+\sin 4 x}=3 \sin 2 x
$$

giving your answers to one decimal place where appropriate.

Q4.
(a) Prove that

$$
\begin{equation*}
\tan \theta+\cot \theta \equiv 2 \operatorname{cosec} 2 \theta, \quad \theta \neq \frac{n \pi}{2}, n \in \mathbb{Z} \tag{4}
\end{equation*}
$$

(b) Hence explain why the equation

$$
\tan \theta+\cot \theta=1
$$

does not have any real solutions.

Q5.
(i) Solve, for $0 \leqslant x<\frac{\pi}{2}$, the equation

$$
4 \sin x=\sec x
$$

(ii) Solve, for $0 \leq \theta<360^{\circ}$, the equation

$$
5 \sin \theta-5 \cos \theta=2
$$

giving your answers to one decimal place.
(Solutions based entirely on graphical or numerical methods are not acceptable.)

Q6.
(a) Express $\sin x+2 \cos x$ in the form $R \sin (x+\alpha)$ where R and α are constants, $R>0$
and $0<\alpha<\frac{\pi}{2}$
Give the exact value of R and give the value of α in radians to 3 decimal places.

The temperature, $\theta^{\circ} \mathrm{C}$, inside a room on a given day is modelled by the equation

$$
\theta=5+\sin \left(\frac{\pi t}{12}-3\right)+2 \cos \left(\frac{\pi t}{12}-3\right) \quad 0 \leqslant t<24
$$

where t is the number of hours after midnight.
Using the equation of the model and your answer to part (a),
(b) deduce the maximum temperature of the room during this day,
(c) find the time of day when the maximum temperature occurs, giving your answer to the nearest minute.

Q7.

In this question you must show all stages of your working.
Solutions relying entirely on calculator technology are not acceptable.
(a) Show that

$$
\begin{equation*}
\operatorname{cosec} \theta-\sin \theta \equiv \cos \theta \cot \theta \quad \theta \neq(180 n)^{\circ} \quad n \in \mathbb{Z} \tag{3}
\end{equation*}
$$

(b) Hence, or otherwise, solve for $0<x<180^{\circ}$

$$
\begin{equation*}
\operatorname{cosec} x-\sin x=\cos x \cot \left(3 x-50^{\circ}\right) \tag{5}
\end{equation*}
$$

Q8.

In this question you must show all stages of your working.
Solutions relying entirely on calculator technology are not acceptable.
(a) Show that

$$
\begin{equation*}
\cos 3 A \equiv 4 \cos ^{3} A-3 \cos A \tag{4}
\end{equation*}
$$

(b) Hence solve, for $-90^{\circ} \leq x \leq 180^{\circ}$, the equation

$$
1-\cos 3 x=\sin ^{2} x
$$

Mark Scheme

Q1.

Question	Scheme	Marks	AOs
	$1-\cos 2 \theta \equiv \tan \theta \sin 2 \theta, \theta \neq \frac{(2 n+1) \pi}{2}, n \in \mathbb{Z}$		
(a) Way 1	$\tan \theta \sin 2 \theta=\left(\frac{\sin \theta}{\cos \theta}\right)(2 \sin \theta \cos \theta)$	M1	1.1b
	$=\left(\frac{\sin \theta}{\cos \theta}\right)(2 \sin \theta \cos \theta)=2 \sin ^{2} \theta=1-\cos 2 \theta *$	M1	1.1b
		A1*	2.1
		(3)	
(a) Way 2	$1-\cos 2 \theta=1-\left(1-2 \sin ^{2} \theta\right)=2 \sin ^{2} \theta$	M1	1.1 b
	$=\left(\frac{\sin \theta}{\cos \theta}\right)(2 \sin \theta \cos \theta)=\tan \theta \sin 2 \theta^{*}$	M1	1.1b
		A1*	2.1
		(3)	
	$\left(\sec ^{2} x-5\right)(1-\cos 2 x)=3 \tan ^{2} x \sin 2 x,-\frac{\pi}{2}<x<\frac{\pi}{2}$		
(b) Way 1	$\begin{aligned} \left(\sec ^{2} x-5\right) \tan x \sin 2 x & =3 \tan ^{2} x \sin 2 x \\ \text { or }\left(\sec ^{2} x-5\right)(1-\cos 2 x) & =3 \tan x(1-\cos 2 x) \end{aligned}$		
	Deduces $x=0$	B1	2.2a
	Uses $\sec ^{2} x=1+\tan ^{2} x$ and cancels/factorises out $\tan x$ or $(1-\cos 2 x)$ e.g. $\left(1+\tan ^{2} x-3 \tan x-5\right) \tan x=0$ or $\left(1+\tan ^{2} x-3 \tan x-5\right)(1-\cos 2 x)=0$ or $1+\tan ^{2} x-5=3 \tan x$	M1	2.1
	$\tan ^{2} x-3 \tan x-4=0$	A1	1.1b
	$(\tan x-4)(\tan x+1)=0 \Rightarrow \tan x=\ldots$	M1	1.1 b
	元 1326	A1	1.1 b
	$x=-\frac{\pi}{4}, 1.326$	A1	1.1b
		(6)	
(9 marks)			
Notes for Question			
(a) ${ }^{\text {(a) }}$	Way 1		
M1: A	Applies $\tan \theta=\frac{\sin \theta}{\cos \theta}$ and $\sin 2 \theta=2 \sin \theta \cos \theta$ to $\tan \theta \sin 2 \theta$		
M1: ${ }^{\text {l }}$	Cancels as scheme (may be implied) and attempts to use $\cos 2 \theta=1-2 \sin ^{2} \theta$		
Al*: F	For a correct proof showing all steps of the argument		
(a) Way 2			
M1: \quad F	For using $\cos 2 \theta=1-2 \sin ^{2} \theta$		
Note: $\mathrm{I}^{\text {If }} \mathrm{u}$	If the form $\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta$ or $\cos 2 \theta=2 \cos ^{2} \theta-1$ is used, the mark cannot be awarded until $\cos ^{2} \theta$ has been replaced by $1-\sin ^{2} \theta$		
M1:	Attempts to write their $2 \sin ^{2} \theta$ in terms of $\tan \theta$ and $\sin 2 \theta$ using $\tan \theta=\frac{\sin \theta}{\cos \theta}$ and		
	$\sin 2 \theta=2 \sin \theta \cos \theta$ within the given expression		
Al*: F	For a correct proof showing all steps of the argument		
Note: ${ }^{\text {I }}$ If	If a proof meets in the middle; e.g. they show LHS $=2 \sin ^{2} \theta$ and $\mathrm{RHS}=2 \sin ^{2} \theta$; then some indication must be given that the proof is complete. E.g. $1-\cos 2 \theta \equiv \tan \theta \sin 2 \theta$, QED, box		

Notes for Question Continued				
(b)				
Bl:	Deduces that the given equation yields a solution $x=0$			
M1:	For using the key step of $\sec ^{2} x=1+\tan ^{2} x$ and cancels/factorises out $\tan x$ or $(1-\cos 2 x)$ or $\sin 2 x$ to produce a quadratic factor or quadratic equation in just $\tan x$			
Note:	Allow the use of $\pm \sec ^{2} x= \pm 1 \pm \tan ^{2} x$ for M1			
Al:	Correct 3TQ in $\tan x$. E.g. $\tan ^{2} x-3 \tan x-4=0$			
Note:	E.g. $\tan ^{2} x-4=3 \tan x$ or $\tan ^{2} x-3 \tan x=4$ are acceptable for A 1			
M1:	For a correct method of solving their 3TQ in $\tan x$			
Al:	Any one of $-\frac{\pi}{4}$, awrt -0.785 , awrt $1.326,-45^{\circ}$, awrt 75.964°			
Al:	Only $x=-\frac{\pi}{4}, 1.326$ cao stated in the range $-\frac{\pi}{2}<x<\frac{\pi}{2}$			
Note:	Alternative Method (Alt l)			
	$\begin{aligned} \quad\left(\sec ^{2} x-5\right) \tan x \sin 2 x & =3 \tan ^{2} x \sin 2 x \\ \text { or }\left(\sec ^{2} x-5\right)(1-\cos 2 x) & =3 \tan x(1-\cos 2 x) \end{aligned}$			
	Deduces $x=0$		B1	2.2a
	$\begin{gathered} \sec ^{2} x-5=3 \tan x=\frac{1}{\cos ^{2} x}-5=3\left(\frac{\sin x}{\cos x}\right) \\ 1-5 \cos ^{2} x=3 \sin x \cos x \\ 1-5\left(\frac{1+\cos 2 x}{2}\right)=\frac{3}{2} \sin 2 x \\ -\frac{3}{2}-\frac{5}{2} \cos 2 x=\frac{3}{2} \sin 2 x \\ \{3 \sin 2 x+5 \cos 2 x=-3\} \\ \hline \end{gathered}$	Complete process (as shown) of using the identities for $\sin 2 x$ and $\cos 2 x$ to proceed as far as $\pm A \pm B \cos 2 x= \pm C \sin 2 x$	M1	2.1
		$-\frac{3}{2}-\frac{5}{2} \cos 2 x=\frac{3}{2} \sin 2 x$	A1	1.1b
	$\sqrt{34} \sin (2 x+1.03)=-3$	Exresses their answer in the $\mathrm{m} R \sin (2 x+\alpha)=k ; k \neq 0$ with values for R and α	M1	1.1b
	$\sin (2 x+1.03)=-\frac{3}{\sqrt{34}}$			
	$x=-\frac{\pi}{4}, 1.326$		A1	1.1b
			A1	1.1b

Q2.

Part	Working or answer an examiner might expect to see	Mark	Notes
(a)	$\frac{\cos 3 \theta}{\sin \theta}+\frac{\sin 3 \theta}{\cos \theta}=\frac{\cos 3 \theta \cos \theta+\sin 3 \theta}{\sin \theta \cos \theta}$	M1	This mark is given for a method to form a single fraction
	$=\frac{\cos (3 \theta-\theta)}{\sin \theta \cos \theta}$	M1	This mark is given for a method to use a compound angle formula on the numerator
	$=\frac{\cos 2 \theta}{\frac{1}{2} \sin 2 \theta}$	M1	This mark is given for a method to use a compound angle formula on the denominator
	$=2 \cot 2 \theta$	A1	This mark is given for a fully correct proof to show the answer required
(b)	$\tan 2 \theta=\frac{1}{2}$	M1	This mark is given for deducing that the value of $\tan 2 \theta$
	$180^{\circ}+26.6^{\circ}$	M1	This mark is given for finding the solution in the third quadrant for $\arctan \frac{1}{2}$
	$\theta=103.3{ }^{\circ}$	A1	This mark is given for finding a correct value for θ
(Total 7 marks)			

Q3.

Question	Scheme	Marks	AOs
(a)	$\begin{aligned} & \frac{1-\cos 2 \theta+\sin 2 \theta}{1+\cos 2 \theta+\sin 2 \theta}=\frac{1-\left(1-2 \sin ^{2} \theta\right)+2 \sin \theta \cos \theta}{1+\cos 2 \theta+\sin 2 \theta} \\ & \frac{1-\cos 2 \theta+\sin 2 \theta}{1+\cos 2 \theta+\sin 2 \theta}=\frac{1-\cos 2 \theta+\sin 2 \theta}{1+\left(2 \cos ^{2} \theta-1\right)+2 \sin \theta \cos \theta} \end{aligned}$	M1	2.1
	$\frac{1-\cos 2 \theta+\sin 2 \theta}{1+\cos 2 \theta+\sin 2 \theta}=\frac{1-\left(1-2 \sin ^{2} \theta\right)+2 \sin \theta \cos \theta}{1+\left(2 \cos ^{2} \theta-1\right)+2 \sin \theta \cos \theta}$	A1	1.1b
	$=\frac{2 \sin ^{2} \theta+2 \sin \theta \cos \theta}{2 \cos ^{2} \theta+2 \sin \theta \cos \theta}=\frac{2 \sin \theta(\sin \theta+\cos \theta)}{2 \cos \theta(\cos \theta+\sin \theta)}$	dM1	2.1
	$=\frac{\sin \theta}{\cos \theta}=\tan \theta^{*}$	A1*	1.1b
		(4)	
(b)	$\frac{1-\cos 4 x+\sin 4 x}{1+\cos 4 x+\sin 4 x}=3 \sin 2 x \Rightarrow \tan 2 x=3 \sin 2 x \text { o.e }$	M1	3.1a
	$\begin{aligned} & \Rightarrow \sin 2 x-3 \sin 2 x \cos 2 x=0 \\ & \Rightarrow \sin 2 x(1-3 \cos 2 x)=0 \\ & \Rightarrow(\sin 2 x=0,) \cos 2 x=\frac{1}{3} \end{aligned}$	A1	1.1b
	$x=90^{\circ}$, awrt 35.3°, awrt 144.7°	$\begin{aligned} & \mathrm{A} 1 \\ & \mathrm{~A} 1 \end{aligned}$	$\begin{gathered} 1.1 \mathrm{~b} \\ 2.1 \end{gathered}$
		(4)	
(8 marks)			
Notes			

(a)

M1: Attempts to use a correct double angle formulae for both $\sin 2 \theta$ and $\cos 2 \theta$ (seen once).
The application of the formula for $\cos 2 \theta$ must be the one that cancels out the " 1 "
So look for $\cos 2 \theta=1-2 \sin ^{2} \theta$ in the numerator or $\cos 2 \theta=2 \cos ^{2} \theta-1$ in the denominator
Note that $\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta$ may be used as well as using $\cos ^{2} \theta+\sin ^{2} \theta=1$
A1: $\frac{1-\left(1-2 \sin ^{2} \theta\right)+2 \sin \theta \cos \theta}{1+\left(2 \cos ^{2} \theta-1\right)+2 \sin \theta \cos \theta}$ or $\frac{2 \sin ^{2} \theta+2 \sin \theta \cos \theta}{2 \cos ^{2} \theta+2 \sin \theta \cos \theta}$
$\mathrm{dM1}$: Factorises numerator and denominator in order to demonstrate cancelling of $(\sin \theta+\cos \theta)$
A1*: Fully correct proof with no errors.
You must see an intermediate line of $\frac{2 \sin \theta(\sin \theta+\cos \theta)}{2 \cos \theta(\cos \theta+\sin \theta)}$ or $\frac{\sin \theta}{\cos \theta}$ or even $\frac{2 \sin \theta}{2 \cos \theta}$
Withhold this mark if you see, within the body of the proof,

- notational errors. E.g. $\cos 2 \theta=1-2 \sin ^{2}$ or $\cos \theta^{2}$ for $\cos ^{2} \theta$
- mixed variables. E.g. $\cos 2 \theta=2 \cos ^{2} x-1$
(b)

M1: Makes the connection with part (a) and writes the lhs as $\tan 2 x$. Condone $x \leftrightarrow \theta$ tan $2 \theta=3 \sin 2 \theta$
A1: Obtains $\cos 2 x=\frac{1}{3}$ o.e. with $x \leftrightarrow \theta$. You may see $\sin ^{2} x=\frac{1}{3}$ or $\cos ^{2} x=\frac{2}{3}$ after use of double angle formulae.
A1: Two "correct" values. Condone accuracy of awrt $90^{\circ}, 35^{\circ}, 145^{\circ}$
Also condone radian values here. Look for 2 of awrt $0.62,1.57,2.53$
A1: All correct (allow awrt) and no other values in range. Condone $x \leftrightarrow \theta$ if used consistently
Answers without working in (b): Just answers and no working score 0 marks.
If the first line is written out, i.e. $\tan 2 x=3 \sin 2 x$ followed by all three correct answers score 1100 .

Q4.

Question	Scheme	Marks	AOs
(a)	$\tan \theta+\cot \theta \equiv \frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\sin \theta}$	M1	2.1
	$\equiv \frac{\sin ^{2} \theta+\cos ^{2} \theta}{\sin \theta \cos \theta}$	A1	1.1b
	$\equiv \frac{1}{\frac{1}{2} \sin 2 \theta}$	M1	2.1
	$\equiv 2 \operatorname{cosec} 2 \theta$ *	A1*	1.1b
		(4)	
(b)	States $\tan \theta+\cot \theta=1 \Rightarrow \sin 2 \theta=2$ AND no real solutions as $-1 \leqslant \sin 2 \theta \leqslant 1$	B1	2.4
		(1)	
(5 marks)			

Notes:

(a)

M1: Writes $\tan \theta=\frac{\sin \theta}{\cos \theta}$ and $\cot \theta=\frac{\cos \theta}{\sin \theta}$
A1: Achieves a correct intermediate answer of $\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\sin \theta \cos \theta}$
M1: Uses the double angle formula $\sin 2 \theta=2 \sin \theta \cos \theta$
A1*: Completes proof with no errors. This is a given answer.
Note: There are many alternative methods. For example
$\tan \theta+\cot \theta \equiv \tan \theta+\frac{1}{\tan \theta} \equiv \frac{\tan ^{2} \theta+1}{\tan \theta} \equiv \frac{\sec ^{2} \theta}{\tan \theta} \equiv \frac{1}{\cos ^{2} \theta \times \frac{\sin \theta}{\cos \theta}} \equiv \frac{1}{\cos \theta \times \sin \theta}$ then as the
main scheme.
(b)

B1: Scored for sight of $\sin 2 \theta=2$ and a reason as to why this equation has no real solutions.
Possible reasons could be $-1 \leqslant \sin 2 \theta \leqslant 1 \ldots \ldots .$. and therefore $\sin 2 \theta \neq 2$
or $\sin 2 \theta=2 \Rightarrow 2 \theta=\arcsin 2$ which has no answers as $-1 \leqslant \sin 2 \theta \leqslant 1$

Q5.

Question	Scheme	Marks	AOs
	(i) $4 \sin x=\sec x, 0 \leq x<\frac{\pi}{2}$; (ii) $5 \sin \theta-5 \cos \theta=2,0 \leq \theta<360^{\circ}$		
$\begin{gathered} \text { (i) } \\ \text { Way } 1 \end{gathered}$	For $\sec x=\frac{1}{\cos x}$	B1	1.2
	$\{4 \sin x=\sec x \Rightarrow\} 4 \sin x \cos x=1 \Rightarrow 2 \sin 2 x=1 \Rightarrow \sin 2 x=\frac{1}{2}$	M1	3.1a
	(1) $\frac{1}{2}\left(\pi-\arcsin \left(\frac{1}{2}\right)\right) \Rightarrow x=\frac{\pi}{12}, \frac{5}{12}$	dM1	1.1b
	$x=\frac{\arcsin }{2}\left(\frac{1}{2}\right)$ or $\frac{1}{2}\left(\pi-\arcsin \left(\frac{1}{2}\right)\right) \Rightarrow x=\frac{\overline{12}}{12}, \frac{1}{12}$	A1	1.1b
		(4)	
(i) Way 2	For $\sec x=\frac{1}{\cos x}$	B1	1.2
	$\begin{array}{c\|c} \{4 \sin x=\sec x \Rightarrow\} & 4 \sin x \cos x=1 \Rightarrow 16 \sin ^{2} x \cos ^{2} x=1 \\ 16 \sin ^{2} x\left(1-\sin ^{2} x\right)=1 & 16\left(1-\cos ^{2} x\right) \cos ^{2} x=1 \\ 16 \sin ^{4} x-16 \sin ^{2} x+1=0 & 16 \cos ^{4} x-16 \cos ^{2} x+1=0 \\ \sin ^{2} x \text { or } \cos ^{2} x=\frac{16 \pm \sqrt{192}}{32}\left\{=\frac{2 \pm \sqrt{3}}{4} \text { or } 0.933 \ldots, 0.066 \ldots\right\} \end{array}$	M1	3.1a
	$x=(\sqrt{2 \pm \sqrt{3}})$ or $x=\sqrt{2 \pm \sqrt{3}}) \Rightarrow x=5 \pi$	dM1	1.1b
	$x=\arcsin \left(\sqrt{\frac{2 \pm}{4}}\right)$ or $x=\arccos \left(\sqrt{\frac{2}{4}}\right) \Rightarrow x=\frac{1}{12}, \frac{5}{12}$	A1	1.1b
		(4)	

(ii)	Complete strategy, i.e. - Expresses $5 \sin \theta-5 \cos \theta=2$ in the form $R \sin (\theta-\alpha)=2$, finds both R and α, and proceeds to $\sin (\theta-\alpha)=k,\|k\|<1, k \neq 0$ - Applies $(5 \sin \theta-5 \cos \theta)^{2}=2^{2}$, followed by applying both $\cos ^{2} \theta+\sin ^{2} \theta=1$ and $\sin 2 \theta=2 \sin \theta \cos \theta$ to proceed to $\sin 2 \theta=k,\|k\|<1, k \neq 0$		M1	3.1a
	$\begin{gathered} R=\sqrt{50} \\ \tan \alpha=1 \Rightarrow \alpha=45^{\circ} \end{gathered}$	$\begin{gathered} (5 \sin \theta-5 \cos \theta)^{2}=2^{2} \Rightarrow \\ 25 \sin ^{2} \theta+25 \cos ^{2} \theta-50 \sin \theta \cos \theta=4 \\ \Rightarrow 25-25 \sin 2 \theta=4 \end{gathered}$	M1	1.1b
	$\sin \left(\theta-45^{\circ}\right)=\frac{2}{\sqrt{50}}$	$\sin 2 \theta=\frac{21}{25}$	A1	1.1b
	$\text { e.g. } \theta=\arcsin \left(\frac{2}{\sqrt{50}}\right)+45^{\circ}$	on the first M mark $\text { e.g. } \theta=\frac{1}{2}\left(\arcsin \left(\frac{21}{25}\right)\right)$	dM1	1.1b
	$\theta=\mathrm{awt}$	61.4°, awrt 208.6°	A1	2.1
	Note: Working in radians	es not affect any of the first 4 marks		
			(5)	
				marks)

Question		Scheme		Marks	AOs
		(ii) $5 \sin \theta-5 \cos \theta=2,0 \leq \theta<360^{\circ}$			
(ii) Alt 1		Complete strategy, i.e. - Attempts to apply $(5 \sin \theta)^{2}=(2+5 \cos \theta)^{2}$ or $(5 \sin \theta-2)^{2}=(5 \cos \theta)^{2}$ followed by applying $\cos ^{2} \theta+\sin ^{2} \theta=1$ and solving a quadratic equation in either $\sin \theta$ or $\cos \theta$ to give at least one of $\sin \theta=k$ or $\cos \theta=k,\|k\|<1, k \neq 0$		M1	3.1a
		$\begin{aligned} & \text { e.g. } 25 \sin ^{2} \theta=4+20 \cos \theta+25 \cos ^{2} \theta \\ & \Rightarrow 25\left(1-\cos ^{2} \theta\right)=4+20 \cos \theta+25 \cos ^{2} \theta \\ & \hline \text { or e.g. } 25 \sin ^{2} \theta-20 \sin \theta+4=25 \cos ^{2} \theta \\ & \Rightarrow 25 \sin ^{2} \theta-20 \sin \theta+4=25\left(1-\sin ^{2} \theta\right) \end{aligned}$		M1	1.16
		$50 \cos ^{2} \theta+20 \cos \theta-21=0$	$50 \sin ^{2} \theta-20 \sin \theta-21=0$		
		$\cos \theta=\frac{-20 \pm \sqrt{4600}}{100}$, o.e.	$\sin \theta=\frac{20 \pm \sqrt{4600}}{100}$, o.e.	A1	1.1b
		$\text { e.g. } \theta=\arccos \left(\frac{-2+\sqrt{46}}{10}\right)$	first M mark $\text { e.g. } \theta=\arcsin \left(\frac{2+\sqrt{46}}{10}\right)$	dM1	1.1 b
		$\theta=$ awnt $61.4{ }^{\circ}$, awrt 208.6°		A1	2.1
				(5)	
Notes for Question					
(i)					
Bl:	For recalling that $\sec x=\frac{1}{\cos x}$				
M1:	Correct strategy of - Way 1: applying $\sin 2 x=2 \sin x \cos x$ and proceeding to $\sin 2 x=k,\|k\| \leq 1, k \neq 0$ - Way 2: squaring both sides, applying $\cos ^{2} x+\sin ^{2} x=1$ and solving a quadratic equation in either $\sin ^{2} x$ or $\cos ^{2} x$ to give $\sin ^{2} x=k$ or $\cos ^{2} x=k,\|k\| \leq 1, k \neq 0$				
dM1: U	Uses the correct order of operations to find at least one value for x in either radians or degrees				
Al: ${ }^{\text {c }}$	Clear reasoning to achieve both $x=\frac{\pi}{12}, \frac{5 \pi}{12}$ and no other values in the range $0 \leq x<\frac{\pi}{2}$				
Note:	Give dM1 for $\sin 2 x=\frac{1}{2} \Rightarrow$ any of $\frac{\pi}{12}, \frac{5 \pi}{12}, 15^{\circ}, 75^{\circ}$, awrt 0.26 or awrt 1.3				
Note:	Give special case, SC B1M0M0A0 for writing down any of $\frac{\pi}{12}, \frac{5 \pi}{12}, 15^{\circ}$ or 75° with no working				

Notes for Question Continued	
(ii)	
M1:	See scheme
Note:	Alternative strategy: Expresses $5 \sin \theta-5 \cos \theta=2$ in the form $R \cos (\theta+\alpha)=-2$, finds both R and α, and proceeds to $\cos (\theta+\alpha)=k,\|k\|<1, k \neq 0$
M1:	Either - uses $R \sin (\theta-\alpha)$ to find the values of both R and α - attempts to apply $(5 \sin \theta-5 \cos \theta)^{2}=2^{2}$, uses $\cos ^{2} \theta+\sin ^{2} \theta=1$ and proceeds to find an equation of the form $\pm \lambda \pm \mu \sin 2 \theta= \pm \beta$ or $\pm \mu \sin 2 \theta= \pm \beta ; \mu \neq 0$ - attempts to apply $(5 \sin \theta)^{2}=(2+5 \cos \theta)^{2}$ or $(5 \sin \theta-2)^{2}=(5 \cos \theta)^{2}$ uses $\cos ^{2} \theta+\sin ^{2} \theta=1$ to form an equation in $\cos \theta$ only or $\sin \theta$ only
Al:	For $\sin \left(\theta-45^{\circ}\right)=\frac{2}{\sqrt{50}}$, o.e., $\cos \left(\theta+45^{\circ}\right)=-\frac{2}{\sqrt{50}}$, o.e. or $\sin 2 \theta=\frac{21}{25}$, o.e. or $\cos \theta=\frac{-20 \pm \sqrt{4600}}{100}$, o.e. or $\cos \theta=$ awrt 0.48 , awrt -0.88 or $\sin \theta=\frac{20 \pm \sqrt{4600}}{100}$, o.e., or $\sin \theta=$ awrt 0.88 , awrt -0.48
Note:	$\sin \left(\theta-45^{\circ}\right), \cos \left(\theta+45^{\circ}\right), \sin 2 \theta$ must be made the subject for A1
dM1:	dependent on the first M mark Uses the correct order of operations to find at least one value for x in either degrees or radians
Note:	$\mathrm{dM1}$ can also be given for $\theta=180^{\circ}-\arcsin \left(\frac{2}{\sqrt{50}}\right)+45^{\circ}$ or $\theta=\frac{1}{2}\left(180^{\circ}-\arcsin \left(\frac{21}{25}\right)\right)$
Al:	Clear reasoning to achieve both $\theta=$ awrt 61.4°, awrt 208.6° and no other values in the range $0 \leq \theta<360^{\circ}$
Note:	Give M 0 M 0 A0M0A0 for writing down any of $\theta=$ awrt 61.4°, awrt 208.6° with no working
Note:	Alternative solutions: (to be marked in the same way as Alt 1): - $5 \sin \theta-5 \cos \theta=2 \Rightarrow 5 \tan \theta-5=2 \sec \theta \Rightarrow(5 \tan \theta-5)^{2}=(2 \sec \theta)^{2}$ $\Rightarrow 25 \tan ^{2} \theta-50 \tan \theta+25=4 \sec ^{2} \theta \Rightarrow 25 \tan ^{2} \theta-50 \tan \theta+25=4\left(1+\tan ^{2} \theta\right)$ $\Rightarrow 21 \tan ^{2} \theta-50 \tan \theta+21=0 \Rightarrow \tan \theta=\frac{50 \pm \sqrt{736}}{42}=\frac{25 \pm 2 \sqrt{46}}{21}=1.8364 \ldots, 0.5445 \ldots$ $\Rightarrow \theta=$ awrt 61.4°, awrt 208.6° only - $5 \sin \theta-5 \cos \theta=2 \Rightarrow 5-5 \cot \theta=2 \operatorname{cosec} \theta \Rightarrow(5-5 \cot \theta)^{2}=(2 \operatorname{cosec} \theta)^{2}$ $\Rightarrow 25-50 \cot \theta+25 \cot ^{2} \theta=4 \operatorname{cosec}^{2} \theta \Rightarrow 25-50 \cot \theta+25 \cot ^{2} \theta=4\left(1+\cot ^{2} \theta\right)$ $\Rightarrow 21 \cot ^{2} \theta-50 \cot \theta+21=0 \Rightarrow \cot \theta=\frac{50 \pm \sqrt{736}}{42}=\frac{25 \pm 2 \sqrt{46}}{21}=1.8364 \ldots, 0.5445 \ldots$ $\Rightarrow \theta=$ awrt 61.4°, awrt 208.6° only

Q6.

Question	Scheme	Marks	AOs
(a)	$R=\sqrt{5}$	B1	1.1 b
	$\tan \alpha=2 \Rightarrow \alpha=\ldots$	M1	1.1b
	$\alpha=1.107$	A1	1.1b
		(3)	
	$\theta=5+\sqrt{5} \sin \left(\frac{\pi t}{12}+1.107-3\right)$		
(b)	$(5+\sqrt{5})^{\circ} \mathrm{C}$ or awrt $7.24{ }^{\circ} \mathrm{C}$	B1ft	2.2a
		(1)	
(c)	$\frac{\pi t}{12}+1.107-3=\frac{\pi}{2} \Rightarrow t=$	M1	3.1b
	$t=$ awit 13.2	A1	1.1 b
	Either $13: 14$ or $1: 14 \mathrm{pm}$ or 13 hours 14 minutes after midnight.	A1	3.2a
		(3)	
(7 marks)			
Notes:			

(a)

B1: $R=\sqrt{5}$ only.
M1: Proceeds to a value of α from $\tan \alpha= \pm 2, \tan \alpha= \pm \frac{1}{2}, \sin \alpha= \pm \frac{2}{{ }^{\prime \prime} R^{\prime \prime}}$ OR $\cos \alpha= \pm \frac{1}{{ }^{\prime \prime} R^{\prime \prime}}$ It is implied by either awrt 1.11 (radians) or 63.4 (degrees)
Al: $\alpha=$ awrt 1.107
(b)

Blft: Deduces that the maximum temperature is $(5+\sqrt{5})^{\circ} \mathrm{C}$ or awrt $7.24^{\circ} \mathrm{C}$ Remember to isw Condone a lack of units. Follow through on their value of R so allow ($\left.5+{ }^{\prime} R^{\prime \prime}\right)^{\circ} \mathrm{C}$
(c)

M1: An complete strategy to find t from $\frac{\pi t}{12} \pm 1.107-3=\frac{\pi}{2}$.
Follow through on their 1.107 but the angle must be in radians.
It is possible via degrees but only using $15 t \pm 63.4-171.9=90$
Al: awrt $t=13.2$
Al: The question asks for the time of day so accept either $13: 14,1: 14 \mathrm{pm}, 13$ hours 14 minutes after midnight, 13 h 14 , or 1 hour 14 minutes after midday. If in doubt use review

It is possible to attempt parts (b) and (c) via differentiation but it is unlikely to yield correct results.

$$
\begin{aligned}
& \frac{\mathrm{d} \theta}{\mathrm{~d} t}=\frac{\pi}{12} \cos \left(\frac{\pi t}{12}-3\right)-\frac{2 \pi}{12} \sin \left(\frac{\pi t}{12}-3\right)=0 \Rightarrow \tan \left(\frac{\pi t}{12}-3\right)=\frac{1}{2} \Rightarrow t=13.23=13: 14 \text { scores M1 A1 A1 } \\
& \frac{\mathrm{d} \theta}{\mathrm{~d} t}=\cos \left(\frac{\pi t}{12}-3\right)-2 \sin \left(\frac{\pi t}{12}-3\right)=0 \Rightarrow \tan \left(\frac{\pi t}{12}-3\right)=\frac{1}{2} \Rightarrow t=13.23=13: 14 \text { they can score M1 A0 A1 (SC) }
\end{aligned}
$$

A value of $t=1.23$ implies the minimum value has been found and therefore incorrect method M0.

Q7.

Question	Scheme	Marks	AOs
(a)	States or uses $\quad \operatorname{cosec} \theta=\frac{1}{\sin \theta}$	B1	1.2
	$\operatorname{cosec} \theta-\sin \theta=\frac{1}{\sin \theta}-\sin \theta=\frac{1-\sin ^{2} \theta}{\sin \theta}$	M1	2.1
	$=\frac{\cos ^{2} \theta}{\sin \theta}=\cos \theta \times \frac{\cos \theta}{\sin \theta}=\cos \theta \cot \theta \quad *$	A1*	2.1
		(3)	
(b)	$\begin{aligned} \operatorname{cosec} x-\sin x & =\cos x \cot \left(3 x-50^{\circ}\right) \\ \Rightarrow \cos x \cot x & =\cos x \cot \left(3 x-50^{\circ}\right) \end{aligned}$		
	$\cot x=\cot \left(3 x-50^{\circ}\right) \Rightarrow x=3 x-50^{\circ}$	M1	3.1a
	$x=25^{\circ}$	A1	1.1b
	Also $\cot x=\cot \left(3 x-50^{\circ}\right) \Rightarrow x+180^{\circ}=3 x-50^{\circ}$	M1	2.1
	$x=115^{\circ}$	A1	1.1b
	Deduces $x=90^{\circ}$	B1	2.2a
		(5)	
(8 marks)			
Notes:			

(a) Condone a full proof in x (or other variable) instead of θ 's here

B1: States or uses $\operatorname{cosec} \theta=\frac{1}{\sin \theta}$ Do not accept $\operatorname{cosec} \theta=\frac{1}{\sin }$ with the θ missing
M1: For the key step in forming a single fraction/common denominator
E.g. $\operatorname{cosec} \theta-\sin \theta=\frac{1}{\sin \theta}-\sin \theta=\frac{1-\sin ^{2} \theta}{\sin \theta}$. Allow if written separately $\frac{1}{\sin \theta}-\sin \theta=\frac{1}{\sin \theta}-\frac{\sin ^{2} \theta}{\sin \theta}$ Condone missing variables for this M mark
A1*: Shows careful work with all necessary steps shown leading to given answer. See scheme for necessary steps. There should not be any notational or bracketing errors.
(b) Condone θ 's instead of x 's here

M1: Uses part (a), cancels or factorises out the $\cos x$ term, to establish that one solution is found when $x=3 x-50^{\circ}$.
You may see solutions where $\cot A-\cot B=0 \Rightarrow \cot (A-B)=0$ or $\tan A-\tan B=0 \Rightarrow \tan (A-B)=0$.
As long as they don't state $\cot A-\cot B=\cot (A-B)$ or $\tan A-\tan B=\tan (A-B)$ this is acceptable
Al: $x=25^{\circ}$
M1: For the key step in realising that $\cot x$ has a period of 180° and a second solution can be found by solving $x+180^{\circ}=3 x-50^{\circ}$. The sight of $x=115^{\circ}$ can imply this mark provided the step $x=3 x-50^{\circ}$ has been seen. Using reciprocal functions it is for realising that $\tan x$ has a period of 180°
A1: $x=115^{\circ}$ Withhold this mark if there are additional values in the range $(0,180)$ but ignore values outside. B1: Deduces that a solution can be found from $\cos x=0 \Rightarrow x=90^{\circ}$. Ignore additional values here.

Solutions with limited working. The question demands that candidates show all stages of working.
$\mathrm{SC}: \cos x \cot x=\cos x \cot \left(3 x-50^{\circ}\right) \Rightarrow \cot x=\cot \left(3 x-50^{\circ}\right) \Rightarrow x=25^{\circ}, 115^{\circ}$
They have shown some working so can score B1, B1 marked on epen as 11000

Alt 1-Right hand side to left hand side

Question	Scheme	Marks	AOs
(a)	States or uses $\cot \theta=\frac{\cos \theta}{\sin \theta}$	B 1	1.2
	$\cos \theta \cot \theta=\frac{\cos ^{2} \theta}{\sin \theta}=\frac{1-\sin ^{2} \theta}{\sin \theta}$	M 1	2.1
	$=\frac{1}{\sin \theta}-\sin \theta=\operatorname{cosec} \theta-\sin \theta$	$*$	$\mathrm{~A} 1^{*}$
2.1			

Alt 2-Works on both sides

Question	Scheme	Marks	AOs
(a)	States or uses $\cot \theta=\frac{\cos \theta}{\sin \theta}$ or $\operatorname{cosec} \theta=\frac{1}{\sin \theta}$	B1	1.2
	$\begin{aligned} & \text { LHS }=\frac{1}{\sin \theta}-\sin \theta=\frac{1-\sin ^{2} \theta}{\sin \theta}=\frac{\cos ^{2} \theta}{\sin \theta} \\ & \text { RHS }=\cos \theta \cot \theta=\frac{\cos ^{2} \theta}{\sin \theta} \end{aligned}$	M1	2.1
	States a conclusion E.g. "HENCE TRUE", "QED" or $\operatorname{cosec} \theta-\sin \theta \equiv \cos \theta \cot \theta$ o.e. (condone $=$ for \equiv)	A1*	2.1
		(3)	

Alt (b)

Question	Scheme	Marks	AOs
	$\begin{array}{r} \cot x=\cot \left(3 x-50^{\circ}\right) \Rightarrow \frac{\cos x}{\sin x}=\frac{\cos \left(3 x-50^{\circ}\right)}{\sin \left(3 x-50^{\circ}\right)} \\ \sin \left(3 x-50^{\circ}\right) \cos x-\cos \left(3 x-50^{\circ}\right) \sin x=0 \\ \sin \left(\left(3 x-50^{\circ}\right)-x\right)=0 \\ 2 x-50^{\circ}=0 \end{array}$	M1	3.1a
	$x=25^{\circ}$	A1	1.1 b
	Also $2 x-50^{\circ}=180^{\circ}$	M1	2.1
	$x=115^{\circ}$	A1	1.1 b
	Deduces $\cos x=0 \Rightarrow x=90^{\circ}$	B1	2.2a
		(5)	

Q8.

Question	Scheme	Marks	AOs
(a)	$\cos 3 A=\cos (2 A+A)=\cos 2 A \cos A-\sin 2 A \sin A$	M1	3.1 a
	$=\left(2 \cos ^{2} A-1\right) \cos A-(2 \sin A \cos A) \sin A$	dM 1	1.1 b
	$=\left(2 \cos ^{2} A-1\right) \cos A-2 \cos A\left(1-\cos ^{2} A\right)$	ddM 1	2.1

Notes:

(a)

Allow a proof in terms of x rather than A
Ml: Attempts to use the compound angle formula for $\cos (2 A+A)$ or $\cos (A+2 A)$
Condone a slip in sign
dM1: Uses correct double angle identities for $\cos 2 A$ and $\sin 2 A$
$\cos 2 A=2 \cos ^{2} A-1$ must be used. If either of the other two versions are used expect to see an attempt to
replace $\sin ^{2} A$ by $1-\cos ^{2} A$ at a later stage.
Depends on previous mark.
ddM1: Attempts to get all terms in terms of $\cos A$ using correct and appropriate identities.
Depends on both previous marks.
Al*: A completely correct and rigorous proof including correct notation, no mixed variables, missing brackets etc. Alternative right to left is possible:
$4 \cos ^{3} A-3 \cos A=\cos A\left(4 \cos ^{2} A-3\right)=\cos A\left(2 \cos ^{2} A-1+2\left(1-\sin ^{2} A\right)-2\right)=\cos A\left(\cos 2 A-2 \sin ^{2} A\right)$
$=\cos A \cos 2 A-2 \sin A \cos A \sin A=\cos A \cos 2 A-\sin 2 A \sin A=\cos (2 A+A)=\cos 3 A$
Score M1: For $4 \cos ^{3} A-3 \cos A=\cos A\left(4 \cos ^{2} A-3\right)$
$\mathrm{dM1}$: For $\cos A\left(2 \cos ^{2} A-1+2\left(1-\sin ^{2} A\right)-2\right)$ (Replaces $4 \cos ^{2} A-1$ by $2 \cos ^{2} A-1$ and $2\left(1-\sin ^{2} A\right)$)
ddM1: Reaches $\cos A \cos 2 A-\sin 2 A \sin A$
A1: $\cos (2 A+A)=\cos 3 A$
(b)

M1: For an attempt to produce an equation just in $\cos x$ using both part (a) and the identity $\sin ^{2} x=1-\cos ^{2} x$ Allow one slip in sign or coefficient when copying the result from part (a)
dM1: Dependent upon the preceding mark. It is for taking the cubic equation in $\cos x$ and making a valid attempt to solve. This could include factorisation or division of a $\cos x$ term followed by an attempt to solve the 3 term quadratic equation in $\cos x$ to reach at least one non zero value for $\cos x$.
May also be scored for solving the cubic equation in $\cos x$ to reach at least one non zero value for $\cos x$.
Al: Two of $-90^{\circ}, 0,90^{\circ}$, awrt 139° Depends on the first method mark.
Al: All four of $-90^{\circ}, 0,90^{\circ}$, awrt 139° with no extra solutions offered within the range.
Note that this is an alternative approach for obtaining the cubic equation in (b):

$$
\begin{aligned}
& 1-\cos 3 x=\sin ^{2} x \Rightarrow 1-\cos 3 x=\frac{1}{2}(1-\cos 2 x) \\
& \Rightarrow 2-2 \cos 3 x=1-\cos 2 x \\
& \Rightarrow 1=2 \cos 3 x-\cos 2 x \\
& \Rightarrow 1=2\left(4 \cos ^{3} x-3 \cos x\right)-\left(2 \cos ^{2} x-1\right) \\
& \Rightarrow 0=4 \cos ^{3} x-3 \cos x-\cos ^{2} x
\end{aligned}
$$

The M1 will be scored on the penultimate line when they use part (a) and use the correct identity for $\cos 2 x$

