(3)

Questions

Q1.

(a) Express 10 cos *θ* − 3 sin *θ* in the form *R* cos (*θ* + *α*), where *R* > 0 and 0 < *α* < 90° Give the exact value of *R* and give the value of *α*, in degrees, to 2 decimal places.

Figure 3

The height above the ground, *H* metres, of a passenger on a Ferris wheel *t* minutes after the wheel starts turning, is modelled by the equation

H = *α* − 10 cos (80 *t*)° + 3 sin (80 *t*)°

where *α* is a constant.

Figure 3 shows the graph of *H* against *t* for two complete cycles of the wheel.

Given that the initial height of the passenger above the ground is 1 metre,

- (b) (i) find a complete equation for the model,
	- (ii) hence find the maximum height of the passenger above the ground.

(2)

(c) Find the time taken, to the nearest second, for the passenger to reach the maximum height on the second cycle.

(*Solutions based entirely on graphical or numerical methods are not acceptable.*)

It is decided that, to increase profits, the speed of the wheel is to be increased.

(d) How would you adapt the equation of the model to reflect this increase in speed?

(1)

(3)

(Total for question = 9 marks)

Q2.

The depth of water, *D* metres, in a harbour on a particular day is modelled by the formula

$$
D = 5 + 2\sin(30t)^\circ \quad 0 \leqslant t < 24
$$

where *t* is the number of hours after midnight.

A boat enters the harbour at 6:30 am and it takes 2 hours to load its cargo. The boat requires the depth of water to be at least 3.8 metres before it can leave the harbour.

- (a) Find the depth of the water in the harbour when the boat enters the harbour.
- (b) Find, to the nearest minute, the earliest time the boat can leave the harbour. (*Solutions based entirely on graphical or numerical methods are not acceptable.*)

(4)

(1)

(Total for question = 5 marks)

(4)

Q3.

$$
f(x) = 10e^{-0.25x} \sin x, \quad x \ge 0
$$

(a) Show that the *x* coordinates of the turning points of the curve with equation $y = f(x)$ satisfy the equation tan $x = 4$

Figure 3 shows a sketch of part of the curve with equation $y = f(x)$.

(b) Sketch the graph of *H* against *t* where

$$
H(t) = |10e^{-0.25t} \sin t | \qquad t \ge 0
$$

showing the long-term behaviour of this curve.

The function H(*t*) is used to model the height, in metres, of a ball above the ground *t* seconds after it has been kicked.

Using this model, find

(c) the maximum height of the ball above the ground between the first and second bounce.

(3)

(2)

(d) Explain why this model should not be used to predict the time of each bounce.

(1)

(Total for question = 10 marks)

PhysicsAndMathsTutor.com

Q4.

(a) Express sin*x* + 2 cos*x* in the form *R*sin(*x* + *α*) where *R* and *α* are constants, *R* > 0 and $0 < \alpha < \frac{\pi}{2}$

Give the exact value of *R* and give the value of *α* in radians to 3 decimal places.

The temperature, *θ* °C , inside a room on a given day is modelled by the equation

$$
\theta = 5 + \sin\left(\frac{\pi t}{12} - 3\right) + 2\cos\left(\frac{\pi t}{12} - 3\right) \qquad 0 \leq t < 24
$$

where *t* is the number of hours after midnight.

Using the equation of the model and your answer to part (a),

(b) deduce the maximum temperature of the room during this day,

(1)

(3)

(c) find the time of day when the maximum temperature occurs, giving your answer to the nearest minute.

(3)

(Total for question = 7 marks)

(3)

Q5.

(a) Express 2cos θ – sin θ in the form R cos $(\theta + \alpha)$, where $R > 0$ and $0 < \alpha < 2$

Give the exact value of *R* and the value of α in radians to 3 decimal places.

Figure 6

Figure 6 shows the cross-section of a water wheel.

The wheel is free to rotate about a fixed axis through the point *C*.

The point *P* is at the end of one of the paddles of the wheel, as shown in Figure 6.

The water level is assumed to be horizontal and of constant height.

The vertical height, *H* metres, of *P* above the water level is modelled by the equation

H = 3 + 4 cos (0.5*t*) – 2 sin (0.5*t*)

where *t* is the time in seconds after the wheel starts rotating.

Using the model, find

(b) (i) the maximum height of *P* above the water level,

(ii) the value of *t* when this maximum height first occurs, giving your answer to one decimal place.

In a single revolution of the wheel, *P* is below the water level for a total of *T* seconds.

According to the model,

(c) find the value of *T* giving your answer to 3 significant figures.

(Solutions based entirely on calculator technology are not acceptable.)

(4)

(3)

In reality, the water level may not be of constant height.

(d) Explain how the equation of the model should be refined to take this into account.

(1) (Total for question = 11 marks)

Mark Scheme

Q1.

Q2.

Q3.

Q4.

 (a)

B1: $R = \sqrt{5}$ only.

M1: Proceeds to a value of α from $\tan \alpha = \pm 2$, $\tan \alpha = \pm \frac{1}{2}$, $\sin \alpha = \pm \frac{2}{\pi R^n}$ OR $\cos \alpha = \pm \frac{1}{\pi R^n}$ It is implied by either awrt 1.11 (radians) or 63.4 (degrees)

A1: α = awrt 1.107

 (b)

B1ft: Deduces that the maximum temperature is $(5+\sqrt{5})^{\circ}C$ or awrt 7.24 °C Remember to isw Condone a lack of units. Follow through on their value of R so allow $(5 + "R")$ °C

 (c)

M1: An complete strategy to find t from $\frac{\pi t}{12} \pm 1.107 - 3 = \frac{\pi}{2}$.

Follow through on their 1.107 but the angle must be in radians. It is possible via degrees but only using $15t \pm 63.4 - 171.9 = 90$

- A1: awrt $t = 13.2$
- A1: The question asks for the time of day so accept either 13:14, 1:14 pm, 13 hours 14 minutes after midnight, 13h 14, or 1 hour 14 minutes after midday. If in doubt use review

It is possible to attempt parts (b) and (c) via differentiation but it is unlikely to yield correct results.

Notes (a) B1: $R = \sqrt{5}$ only. M1: Proceeds to a value for α from $\tan \alpha = \pm \frac{1}{2}$ or $\sin \alpha = \pm \frac{1}{nR^n}$ or $\cos \alpha = \pm \frac{2}{nR^n}$ It is implied by either awrt 0.464 (radians) or awrt 26.6 (degrees) A1: α = awrt 0.464 $(b)(i)$ B1ft: For $(3+2\sqrt{5})$ m or awrt 7.47 m and remember to isw. Condone lack of units. Follow through on their R value so allow $3 + 2 \times$ Their R. (Allow in decimals with at least 3sf accuracy) $(b)(ii)$ M1: Uses $0.5t \pm 0.464$ " = 2π to obtain a value for t Follow through on their 0.464 but this angle must be in radians. It is possible in degrees but only using $0.5t \pm 26.6 = 360$ A1: Awrt 11.6

Alternative for (b):

\n
$$
H = 3 + 4\cos(0.5t) - 2\sin(0.5t) \Rightarrow \frac{dH}{dt} = -2\sin(0.5t) - \cos(0.5t) = 0
$$
\n
$$
\Rightarrow \tan(0.5t) = -\frac{1}{2} \Rightarrow 0.5t = 2.677..., 5.819... \Rightarrow t = 5.36, 11.6
$$
\n
$$
t = 11.6 \Rightarrow H = 7.47
$$
\nScore as follows:

\nM1: For a complete method:

\nAttemps $\frac{dH}{dt}$ and attempts to solve $\frac{dH}{dt} = 0$ for t

\nA1: For t = awrt 11.6

\nB1ft: For awrt 7.47 or 3 + 2×Their R

 (c)

M1: Uses the model and sets
$$
3 + 2\sqrt{5} \cdot \cos(...) = 0
$$
 and proceeds to $\cos(...) = k$ where $|k| < 1$.
\nAllow e.g. $3 + 2\sqrt{5} \cdot \cos(...) < 0$
\ndM1: Solves $\cos(0.5t \pm \pi/0.464 \cdot \pi) = k$ where $|k| < 1$ to obtain at least one value for t
\nThis requires e.g. $2\left(\pi + \cos^{-1}(k) \pm \tan^{-1}\left(\frac{1}{2}\right)\right)$ or e.g. $2\left(\pi - \cos^{-1}(k) \pm \tan^{-1}\left(\frac{1}{2}\right)\right)$
\n**Depends on the previous method mark.**
\ndM1: A fully correct strategy to find the required duration. E.g. finds 2 consecutive values of t when H is minimum and uses the times found
\ncorrectly to find the required duration.
\n**Depends on the previous method mark.**
\nSecond time at water level – first time at water level:
\n $2\left(\pi + \cos^{-1}\left(\frac{3}{2\sqrt{5}}\right) - \tan^{-1}\left(\frac{1}{2}\right)\right) - 2\left(\pi - \cos^{-1}\left(\frac{3}{2\sqrt{5}}\right) - \tan^{-1}\left(\frac{1}{2}\right)\right) = 7.02685... - 3.68492...$
\n $2 \times$ (first time at minimum point – first time at water level):
\n $2\left(2\left(\pi - \tan^{-1}\left(\frac{1}{2}\right)\right) - 2\left(\pi - \cos^{-1}\left(\frac{3}{2\sqrt{5}}\right) - \tan^{-1}\left(\frac{1}{2}\right)\right)\right) = 2(5.35589... - 3.68492...)$
\nNote that both of these examples equate to $4\cos^{-1}\left(\frac{3}{2\sqrt{5}}\right)$ which is not immediately obvious
\nbut may be seen as an overall method.
\nThere may be other methods – if you are not sure if they deserve credit send to review.
\nA1: Correct value. Must be 3.34 (not awt).
\nNote that if candidates have an incorrect α and have e.g. $3 + 2\sqrt{5} \cos(0.5t - 0.464)$, this has no
\nimpact on the final answer. So for candidates using $3 + 2\sqrt$

then it must be sensible e.g. a trigonometric function rather than e.g. a quadratic/linear one.