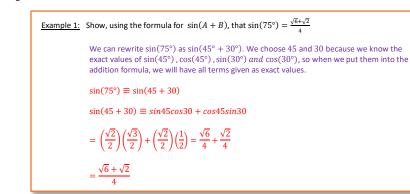
Trigonometry and modelling Cheat Sheet


This chapter builds upon the previous, introducing more useful methods, formulae and identities relating to trigonometric functions

Addition Formulae

•

•

- $sin(A + B) \equiv sinAcosB + cosAsinB$ $sin(A B) \equiv sinAcosB cosAsinB$
 - $cos(A + B) \equiv cosAcosB sinAsinB$ $cos(A B) \equiv cosAcosB + sinAsinB$
 - $\tan(A+B) \equiv \frac{\tan A + \tan B}{1 \tan A \tan B}$
- $tan(A B) \equiv \frac{tanA tanB}{1 + tanAtanB}$
- You need to know how to use the above formulae to find exact values of trigonometric functions for various angles.

Double-angle formulae

• $sin(2A) \equiv 2sinAcosA$

 $\cos(2A) \equiv \cos^2 A - \sin^2 A = 1 - 2\sin^2 A = 2\cos^2 A - 1$

$\tan(2A) \equiv \frac{2tanA}{1 - tan^2A}$		You can be a reproduce the	
Example 2: Using the addition formulae, prove	e each of the above double-angle formulae.	•	
Proving the double-angle sine formula:	sin(2A) = sin(A + A) = sinAcosA + c = 2sinAcosA	osAsinA	
Proving the double-angle cosine formula:	$cos(2A) = cos(A + A) = cosAcosA - A$ $= cos^{2}A - sin^{2}A$	sinAsinA	
Using $sin^2A + cos^2A \equiv 1$ to prove the other cosine double angle formulae:	By replacing $cos^2 A$ with $1 - sin^2 A$: $\Rightarrow cos(2A) = 1 - 2sin^2 A$ Also, by replacing $sin^2 A$ with $1 - cos^2 A$ $\Rightarrow cos(2A) = 2cos^2 A - 1$:	
Proving the double-angle tangent formula:	$\tan(2A) = \tan(A+A) = \frac{\tan A + \tan A}{1 - \tan A \tan A}$ $= \frac{2\tan A}{1 - \tan^2 A}$	4	

You can see that there are three different versions for the cosine double angle formula. It is important you a familiar with all three as one may be more useful than the others in certain questions

Spotting the factorisation:	$\frac{\sin^4 x - 2\sin^2 x \cos^2 x + \cos^4 x}{(\cos^2 x - \sin^2 x)^2} =$
Using $cos2x = cos^2x - sin^2x$:	$= (\cos 2x)^2 = \cos^2 2x$
ample 4: Simplify as much as possible the	e expression: $\sqrt{1 + cosx}$
ample 4: Simplify as much as possible the Since $cos2x = 2cos^2x - 1$	$e \text{ expression: } \sqrt{1 + \cos x}$ $\cos x = 2\cos^2\left(\frac{x}{2}\right) - 1$

Simpli	ifying $asinx \pm bcosx$					Proving identities You need to be able to us
Expres	ssions of the above form can be simplified ir	nto one trigonometric terr	n.			and use your knowledge
•	• $asinx \pm bcosx$ can be expressed as R	$2\sin(x \pm \alpha)$	and when t	oefficient of <i>sin</i> is positive, he coefficient of <i>cos</i> is posit	ive, use	There is no set procedu make sure you are very
•	• $acosx \pm bsinx$ can be expressed as R	$cos(x \mp \alpha)$		 Of course, when both con n you can use either form. 	efficients are	useful preparation tool l
where	$e a, b, R > 0 and 0 < \alpha < \frac{\pi}{2}.$					Example 8: Show
The pr	rocedure for achieving the above simplificat	ions can be broken down	into three steps:			Starting with the
[1]	Expand the form using the addition fo	rmulae, and equate it to a	$asinx \pm bcosx$			Using the double $\cos^2 x$ in terms of
[2]	Compare the coefficients of sinx and	<i>cosx</i> on both sides of the	equation, to get	two equations in ter	ms of R and α .	Substituting this
[3]	Solve these simultaneously to find R a	and α .				Expanding:
	Example 5: Express $cos2x - 2sin2x$ in the for	$prm Rcos(2x + \alpha)$, where R >	> 0 and 0 < $\alpha < \frac{\pi}{2}$			Using the doub
	Proving the double-angle sine formula:	$1\cos 2x - 2\sin 2x = R\cos(2x - 2\sin 2x)$	2	cosα – Rsin2x sinα		express cos ² 2x Substituting this
	Equating coefficients:	$1 = R\cos\alpha \qquad (1)$	(equating cos2x co (equating sin2x co	efficients)		Simplifying to ac
	Solving simultaneously.: We divide equation [2] by [1].	$tan\alpha = \frac{Rsin\alpha}{Rcos\alpha} = \frac{2}{1} = -2$				Simplifying to ac
	Finding R:	$\therefore \alpha = \arctan(2) = 1.11$ $(1)^2 + (2)^2 \Rightarrow R^2 \cos^2 \alpha + \frac{1}{2} \cos^2 $		(2) ²		
	Square equations [1] and [2] then add them together. We also use the	$\Rightarrow R^{2}(\cos^{2}\alpha + \sin^{2}\alpha) = 5$ $\Rightarrow R^{2} = 5 \therefore R = \sqrt{5} \bullet \bullet$				
	identity $cos^2 \alpha + sin^2 \alpha \equiv 1$ Putting everything together:	So $cos2x - 2sin2x = \sqrt{5}cos2x$	ns(2x + 1.11)			
This fo	Dorm is often useful because it makes solving	equations and finding mir	nimum/maximun	use $R = \sqrt{a}$		In the exam you will lik involving the forms <i>Rs</i> scenario given to you. R
This fo			nimum/maximun	use $R = \sqrt{a}$	$a^2 + b^2$	Modelling with trigon In the exam you will lik involving the forms Rst scenario given to you. Re is the same as before; you <u>Example 9:</u> A to group
This fo	form is often useful because it makes solving <u>Example 6:</u> Given that $g(x) = \frac{18}{50 + cos2x}$		nimum/maximun	use $R = \sqrt{a}$	$a^2 + b^2$	In the exam you will lik involving the forms <i>Rst</i> scenario given to you. Re is the same as before; yo <u>Example 9:</u> A to grou
This fo		- 2 <i>sin</i> 2 <i>x</i> '		use $R = \sqrt{a}$	$a^2 + b^2$	In the exam you will lik involving the forms Rst scenario given to you. Re is the same as before; you <u>Example 9:</u> A to group H =
This fo	Example 6: Given that $g(x) = \frac{18}{50 + cos2x}$ calculate: (i) the maximum value of $g(x)$	– 2 <i>sin2x'</i> I. of x at which this minimum oc	curs. $f(x) =$	use $R = \sqrt{a}$ values much easier.	$a^2 + b^2$	In the exam you will lik involving the forms <i>Rst</i> scenario given to you. Re is the same as before; yo <u>Example 9:</u> A to grou
This fo	Example 6:Given that $g(x) = \frac{18}{50 + cos2x}$ calculate:(i)(ii)The maximum value of $g(x)$ (iii)The smallest positive valueProving the double-angle sine formula:The maximum value of $g(x)$ occurs when the smallest positive value of $g(x)$	- 2sin2x' of x at which this minimum oc	curs. $I(x) = \frac{1}{50 + \sqrt{5}\cos^2 \theta}$	use $R = \sqrt{a}$ values much easier. $\frac{.8}{(2x + 1.11)}$	$a^2 + b^2$	In the exam you will lik involving the forms Rst scenario given to you. Re is the same as before; yo <u>Example 9:</u> A to groun H = wher start a) By
This fo	Example 6: Given that $g(x) = \frac{18}{50 + cos2x}$ calculate: (i) the maximum value of $g(x)$ (ii) The smallest positive valueProving the double-angle sine formula:The maximum value of $g(x)$ occurs when the minimum. We can deduce that the denominimum use:when $cos(2x + 1.11)$ is at a minimum. i.e.	- 2sin2x' of x at which this minimum oc he denominator is at a nator is a minimum when	curs. $I(x) = \frac{1}{50 + \sqrt{5}\cos^2 \theta}$	use $R = \sqrt{a}$ values much easier.	$a^2 + b^2$	In the exam you will lik involving the forms Rst scenario given to you. Re is the same as before; yo <u>Example 9:</u> A to groun H = wher start
This fo	Example 6: Given that $g(x) = \frac{18}{50 + cos2x}$ calculate: (i) the maximum value of $g(x)$ (ii) The smallest positive value Proving the double-angle sine formula: The maximum value of $g(x)$ occurs when the minimum. We can deduce that the denoming when $cos(2x + 1.11)$ is at a minimum. i.e. $cos(2x + 1.11) = -1$, since $-1 \leq cos(2)$ From (i), we established that the maximum	$-2sin2x'$ of x at which this minimum oc g he denominator is at a nator is a minimum when x + 1.11) \le 1. value of g(x) occurs	curs. $I(x) = \frac{1}{50 + \sqrt{5}\cos^2 \theta}$	use $R = \sqrt{a}$ values much easier. $\frac{.8}{(2x + 1.11)}$	$a^2 + b^2$	In the exam you will lik involving the forms Rst scenario given to you. Re is the same as before; yo <u>Example 9:</u> A to groun H = wher start a) By heigt b) Fin
This fo	Example 6: Given that $g(x) = \frac{18}{50 + cos2x}$ calculate: (i) the maximum value of $g(x)$ (ii) The smallest positive valueProving the double-angle sine formula:The maximum value of $g(x)$ occurs when the minimum. We can deduce that the denome when $cos(2x + 1.11) = 1$, since $-1 \le cos(2x + 1.11) = -1$. Therefore, we smallest positive value of x such that this is	-2sin2x' of x at which this minimum oc he denominator is at a nator is a minimum when x + 1.11) \leq 1. value of $g(x)$ occurs a need to solve for the s true. Since cos(x) has	curs. $f(x) = \frac{1}{50 + \sqrt{5}\cos^2 x}$ $g(x)_{max} = \frac{1}{50 + \sqrt{5}\cos^2 x}$ $f(x) = 2x_{min} + 1.11$	use $R = \sqrt{a}$ values much easier. (2x + 1.11) $\frac{18}{\sqrt{5}(-1)} = \frac{18}{50 - \sqrt{5}}$	$a^2 + b^2$	In the exam you will lik involving the forms Rst scenario given to you. Re is the same as before; you <u>Example 9:</u> A to groun H = wher starts a) By heigt b) Fin Use the method trigonometric te
This fo	Example 6: Given that $g(x) = \frac{18}{50 + cos2x}$ calculate: (i) the maximum value of $g(x)$ (ii) The smallest positive value Proving the double-angle sine formula: The maximum value of $g(x)$ occurs when the minimum. We can deduce that the denome when $cos(2x + 1.11) = -1$, since $-1 \le cos(2x + 1.11) = -1$, since $-1 \le cos(2x + 1.11) = -1$. Therefore, we smallest positive value of x such that this is its first positive minimum at $x = \pi$, our minimum at $x = \pi$. Altern solving the equation $2x + 1.11 = \pi$. Altern	$-2sin2x'$ of x at which this minimum oc g the denominator is at a nator is a minimum when $x + 1.11) \leq 1.$ To value of $g(x)$ occurs and to solve for the s true. Since cos(x) has nimum will be found by natively, we can use	curs. $y(x) = \frac{1}{50 + \sqrt{5}\cos^2 \theta}$ $g(x)_{max} = \frac{1}{50 + 1}$	use $R = \sqrt{a}$ values much easier. (2x + 1.11) $\frac{18}{\sqrt{5}(-1)} = \frac{18}{50 - \sqrt{5}}$	$a^2 + b^2$	In the exam you will lik involving the forms Rst scenario given to you. Re is the same as before; yo <u>Example 9:</u> A to groun H = wher start a) By heigt b) Fin Use the method trigonometric te we need to use t coefficient must
This fo	Example 6:Given that $g(x) = \frac{18}{50 + cos2x}$ calculate:(i) the maximum value of $g(x)$ (ii) The smallest positive valueProving the double-angle sine formula:The maximum value of $g(x)$ occurs when tminimum. We can deduce that the denomwhen $cos(2x + 1.11) = -1$, since $-1 \le cos(2x)$ From (i), we established that the maximumwhen $cos(2x + 1.11) = -1$. Therefore, wsmallest positive value of x such that this isits first positive minimum at $x = \pi$, our mi	$-2sin2x'$ of x at which this minimum oc g the denominator is at a nator is a minimum when $x + 1.11) \leq 1.$ To value of $g(x)$ occurs and to solve for the s true. Since cos(x) has nimum will be found by natively, we can use	curs. $f(x) = \frac{1}{50 + \sqrt{5}\cos^2 x}$ $g(x)_{max} = \frac{1}{50 + \sqrt{5}\cos^2 x}$ $f(x) = 2x_{min} + 1.11$	use $R = \sqrt{a}$ values much easier. (2x + 1.11) $\frac{18}{\sqrt{5}(-1)} = \frac{18}{50 - \sqrt{5}}$	$a^2 + b^2$	In the exam you will lik involving the forms Rst scenario given to you. Re is the same as before; you <u>Example 9:</u> A tor groun H = where starts a) By heigt b) Fin Use the method trigonometric te we need to use to coefficient must $65 \cos(\frac{2}{5}t) - 2t$
	Example 6:Given that $g(x) = \frac{18}{50 + cos2x}$ calculate:(i)the maximum value of $g(x)$ (ii)The smallest positive valueProving the double-angle sine formula:The maximum value of $g(x)$ occurs when tminimum. We can deduce that the denomwhen $cos(2x + 1.11) = -1$, since $-1 \le cos(2$ From (i), we established that the maximumwhen $cos(2x + 1.11) = -1$. Therefore, wussmallest positive value of x such that this isits first positive minimum at $x = \pi$, our missolving the equation $2x + 1.11 = \pi$. AlterrCAST or a graphical method to solve $cos(2x)$	$-2sin2x'$ of x at which this minimum oc g the denominator is at a nator is a minimum when $x + 1.11) \leq 1.$ To value of $g(x)$ occurs and to solve for the s true. Since cos(x) has nimum will be found by natively, we can use	curs. $f(x) = \frac{1}{50 + \sqrt{5}\cos^2 x}$ $g(x)_{max} = \frac{1}{50 + \sqrt{5}\cos^2 x}$ $f(x) = 2x_{min} + 1.11$	use $R = \sqrt{a}$ values much easier. (2x + 1.11) $\frac{18}{\sqrt{5}(-1)} = \frac{18}{50 - \sqrt{5}}$	$a^2 + b^2$	In the exam you will lik involving the forms Rst scenario given to you. Re is the same as before; you <u>Example 9:</u> A to groun H = where starts a) By heigt b) Fin Use the method trigonometric te we need to use to coefficient must $65 \cos(\frac{2}{5}t) - 2t$ $65 \cos(\frac{2}{5}t)$ By looking at our
Solvin	Example 6: Given that $g(x) = \frac{18}{50 + cos2x}$ calculate: (i) the maximum value of $g(x)$ (ii) The smallest positive value Proving the double-angle sine formula: The maximum value of $g(x)$ occurs when the minimum. We can deduce that the denome when $cos(2x + 1.11) = -1$, since $-1 \le cos(2x + 1.11) = -1$, since $-1 \le cos(2x + 1.11) = -1$. Therefore, we smallest positive value of x such that this is its first positive minimum at $x = \pi$, our minimum at $x = \pi$. Altern solving the equation $2x + 1.11 = \pi$. Altern	$-2sin2x'$ of x at which this minimum oc g he denominator is at a nator is a minimum when $x + 1.11) \le 1$. Ty value of $g(x)$ occurs a need to solve for the s true. Since cos(x) has nimum will be found by natively, we can use $x + 1.11) = -1$.	curs. $f(x) = \frac{1}{50 + \sqrt{5}\cos^2 x}$ $g(x)_{max} = \frac{1}{50 + 1}$ $f(x) = 2x_{min} + 1.11$ $x_{min} = \frac{\pi - 1.11}{2} = 1$	use $R = \sqrt{a}$ values much easier. $\frac{8}{(2x + 1.11)}$ $\frac{18}{(5(-1))} = \frac{18}{50 - \sqrt{5}}$ = 1.02		In the exam you will lik involving the forms Rst scenario given to you. Re is the same as before; you <u>Example 9:</u> A to groun H = where start a) By heigh b) Fin Use the method trigonometric te we need to use t coefficient must $65 \cos(\frac{2}{5}t) - 2t$ $65 \cos(\frac{2}{5}t)$ By looking at our maximum when
Solvin To solv	Example 6: Given that $g(x) = \frac{18}{50 + cos2x}$. calculate: (i) the maximum value of $g(x)$. (ii) The smallest positive value Proving the double-angle sine formula: The maximum value of $g(x)$ occurs when t minimum. We can deduce that the denom when $cos(2x + 1.11)$ is at a minimum. i.e. $cos(2x + 1.11) = -1$, since $-1 \le cos(2)$ From (i), we established that the maximum when $cos(2x + 1.11) = -1$. Therefore, wus smallest positive value of x such that this is its first positive minimum at $x = \pi$, our mini- solving the equation $2x + 1.11 = \pi$. Alterr CAST or a graphical method to solve $cos(2x)$.	-2sin2x' of x at which this minimum oc f x at which this minimum oc he denominator is at a nator is a minimum when x + 1.11) \leq 1. value of g(x) occurs e need to solve for the s true. Since cos(x) has nimum will be found by natively, we can use x + 1.11) = -1.	curs. $f(x) = \frac{1}{50 + \sqrt{5}\cos^2 \theta}$ $g(x)_{max} = \frac{1}{50 + 1}$ $f(x) = 2x_{min} + 1.11$ $x_{min} = \frac{\pi - 1.11}{2} = 1$ simplify the equ	use $R = \sqrt{a}$ values much easier. $\frac{8}{(2x + 1.11)}$ $\frac{18}{(5(-1))} = \frac{18}{50 - \sqrt{5}}$ = 1.02		In the exam you will lik involving the forms Rst scenario given to you. Re is the same as before; you <u>Example 9:</u> A to groun H = where starts a) By heigt b) Fin Use the method trigonometric te we need to use to coefficient must $65 \cos(\frac{2}{5}t) - 2t$ $65 \cos(\frac{2}{5}t)$ By looking at our
Solvin To solv	Example 6:Given that $g(x) = \frac{18}{50 + cos2x}$ calculate:(i) the maximum value of $g(x)$ (ii) The smallest positive valueProving the double-angle sine formula:The maximum value of $g(x)$ occurs when the minimum. We can deduce that the denoming when $cos(2x + 1.11) = -1$, since $-1 \le cos(2$ From (i), we established that the maximum when $cos(2x + 1.11) = -1$. Therefore, wus smallest positive value of x such that this is its first positive minimum at $x = \pi$, our min solving the equation $2x + 1.11 = \pi$. Alterr CAST or a graphical method to solve $cos(2x)$ mg equations we more complicated trigonometric express	-2sin2x' of x at which this minimum oc f x at which this minimum oc he denominator is at a nator is a minimum when x + 1.11) \leq 1. value of g(x) occurs a need to solve for the s true. Since cos(x) has nimum will be found by natively, we can use x + 1.11) = -1.	curs. $f(x) = \frac{1}{50 + \sqrt{5}\cos^2 \pi}$ $g(x)_{max} = \frac{1}{50 + \sqrt{5}}$ $f(x) = 2x_{min} + 1.11$ $x_{min} = \frac{\pi - 1.11}{2} = 1$ simplify the equilies in practice:	use $R = \sqrt{a}$ values much easier. $\frac{8}{(2x + 1.11)}$ $\frac{18}{(5(-1))} = \frac{18}{50 - \sqrt{5}}$ = 1.02		In the exam you will lik involving the forms Rst scenario given to you. Re is the same as before; you Example 9: A to groun H = where starts a) By heigh b) Fin Use the method trigonometric te we need to use t coefficient must $65 \cos(\frac{2}{5}t) - 2t$ $65 \cos(\frac{2}{5}t)$ By looking at our maximum when This question is a period of our fur To do so, we just
Solvin To solv	Example 6:Given that $g(x) = \frac{18}{50 + cos2x}$ calculate:(i)the maximum value of $g(x)$ (ii)The smallest positive valueProving the double-angle sine formula:The maximum value of $g(x)$ occurs when tminimum. We can deduce that the denomwhen $cos(2x + 1.11) = -1$, since $-1 \le cos(2$ From (i), we established that the maximumwhen $cos(2x + 1.11) = -1$. Therefore, wussmallest positive value of x such that this isis first positive minimum at $x = \pi$, our missolving the equation $2x + 1.11 = \pi$. AlterrCAST or a graphical method to solve $cos(2)$ ing equations ve more complicated trigonometric expresspos we have covered so far. Here is an examtExample 7: Solve $3 sin(x - 45^\circ) - sin(x + 4)$ Using the addition formulae	-2sin2x' of x at which this minimum oc f x at which this minimum oc a be denominator is at a nator is a minimum when x + 1.11) \leq 1. value of $g(x)$ occurs a need to solve for the s true. Since cos(x) has nimum will be found by natively, we can use x + 1.11) = -1. ions, you will first need to ple showing how we do th 5°) = 0 in the interval $0 \leq x$ 3sinxcos45 - 3cc	curs. $f(x) = \frac{1}{50 + \sqrt{5}\cos^2}$ $g(x)_{max} = \frac{1}{50 + \sqrt{5}\cos^2}$ $f(x)_{max} = \frac{1}{50 + \sqrt{5}\cos^2}$ $f(x)_{max} = \frac{\pi - 1.11}{2} = 1$ simplify the equation in practice: $\leq 360^\circ$ $f(x) = \frac{1}{50 + \sqrt{5}\cos^2}$	use $R = \sqrt{a}$ values much easier. $\frac{8}{(2x + 1.11)}$ $\frac{18}{(5(-1))} = \frac{18}{50 - \sqrt{5}}$ = 1.02		In the exam you will lik involving the forms Rst scenario given to you. Re is the same as before; yo Example 9: A to groun H = wher start a) By heigh b) Fin Use the method trigonometric te we need to use t coefficient must $65 \cos(\frac{2}{5}t) - 2t$ $65 \cos(\frac{2}{5}t)$ By looking at our maximum when This question is of period of our fur To do so, we just since $cos(t)$ has H has a period of
Solvin To solv	Example 6:Given that $g(x) = \frac{18}{50 + cos2x}$ calculate: (i) the maximum value of $g(x)$ (ii) The smallest positive valueProving the double-angle sine formula:The maximum value of $g(x)$ occurs when the minimum. We can deduce that the denominy when $cos(2x + 1.11) = -1$, since $-1 \le cos(2$ From (i), we established that the maximum when $cos(2x + 1.11) = -1$. Therefore, we smallest positive value of x such that this is its first positive minimum at $x = \pi$, our minimoning the equation $2x + 1.11 = \pi$. Alterr CAST or a graphical method to solve $cos(2)$ mg equationsVe more complicated trigonometric express pods we have covered so far. Here is an example 7: Solve 3 $sin(x - 45^\circ) - sin(x + 4)$ Using the addition formulae Simplifying	-2sin2x' of x at which this minimum oc f x at which this minimum oc he denominator is at a nator is a minimum when x + 1.11) \leq 1. value of $g(x)$ occurs a need to solve for the s true. Since cos(x) has nimum will be found by natively, we can use x + 1.11) = -1. ions, you will first need to ple showing how we do th 5°) = 0 in the interval $0 \leq x$ 3sinxcos45 - 3cc 2sinxcos45 - 4cc	curs. $f(x) = \frac{1}{50 + \sqrt{5}\cos^2 \pi}$ $g(x)_{max} = \frac{1}{50 + \sqrt{5}}$ $f(x) = 2x_{min} + 1.11$ $x_{min} = \frac{\pi - 1.11}{2} = 1$ simplify the equivalent is in practice: $\leq 360^{\circ}$ $sxsin45 - sinxco$ $sxsin45 = 0$	use $R = \sqrt{a}$ values much easier. (2x + 1.11) $\frac{18}{\sqrt{5}(-1)} = \frac{18}{50 - \sqrt{5}}$ = 1.02		In the exam you will lik involving the forms Rst scenario given to you. Re is the same as before; you Example 9: A to groun H = where start a) By heigh b) Fin Use the method trigonometric te we need to use t coefficient must $65 \cos\left(\frac{2}{5}t\right) - 2t$ $65 \cos\left(\frac{2}{5}t\right)$ By looking at our maximum when This question is a period of our fur To do so, we just since $cos(t)$ has H has a period of The reason we co
Solvin Fo solv	Example 6:Given that $g(x) = \frac{18}{50 + cos2x}$ calculate:(i)the maximum value of $g(x)$ (ii)The smallest positive valueProving the double-angle sine formula:The maximum value of $g(x)$ occurs when tminimum. We can deduce that the denomwhen $cos(2x + 1.11) = -1$, since $-1 \le cos(2$ From (i), we established that the maximumwhen $cos(2x + 1.11) = -1$. Therefore, wussmallest positive value of x such that this isis first positive minimum at $x = \pi$, our missolving the equation $2x + 1.11 = \pi$. AlterrCAST or a graphical method to solve $cos(2)$ ing equations ve more complicated trigonometric expresspos we have covered so far. Here is an examtExample 7: Solve $3 sin(x - 45^\circ) - sin(x + 4)$ Using the addition formulae	-2sin2x' of x at which this minimum oc f x at which this minimum oc anator is a minimum when x + 1.11) \leq 1. value of g(x) occurs e need to solve for the strue. Since cos(x) has inimum will be found by natively, we can use x + 1.11) = -1. ions, you will first need to ple showing how we do th 5°) = 0 in the interval $0 \leq x$ 3sinxcos45 - 3cc $2sinxcos45 - 4cc\sqrt{2}sinx - 2\sqrt{2}cos$	curs. $f(x) = \frac{1}{50 + \sqrt{5}\cos^2 \pi}$ $g(x)_{max} = \frac{1}{50 + \sqrt{5}}$ $f(x) = 2x_{min} + 1.11$ $x_{min} = \frac{\pi - 1.11}{2} = 1$ simplify the equivalent is in practice: $\leq 360^{\circ}$ $sxsin45 - sinxco$ $sxsin45 = 0$	use $R = \sqrt{a}$ values much easier. (2x + 1.11) $\frac{18}{\sqrt{5}(-1)} = \frac{18}{50 - \sqrt{5}}$ = 1.02		In the exam you will lik involving the forms R_{SI} scenario given to you. Re is the same as before; yo <u>Example 9:</u> A to groun H = where starts a) By heigh b) Fin Use the method trigonometric te we need to use to coefficient must $65 \cos(\frac{2}{5}t) - 2t$ $65 \cos(\frac{2}{5}t)$ By looking at our maximum when This question is of period of our fur To do so, we just since $cos(t)$ has H has a period of The reason we co term in H is cos compared to cost
Solvin To solv	Example 6:Given that $g(x) = \frac{18}{50 + cos2x}$ calculate: (i) the maximum value of $g(x)$ (ii) The smallest positive valueProving the double-angle sine formula:The maximum value of $g(x)$ occurs when the minimum. We can deduce that the denominy when $cos(2x + 1.11) = -1$, since $-1 \le cos(2$ From (i), we established that the maximum when $cos(2x + 1.11) = -1$. Therefore, we smallest positive value of x such that this is its first positive minimum at $x = \pi$, our minimoning the equation $2x + 1.11 = \pi$. Alterr CAST or a graphical method to solve $cos(2)$ mg equationsVe more complicated trigonometric express pods we have covered so far. Here is an example 7: Solve 3 $sin(x - 45^\circ) - sin(x + 4)$ Using the addition formulae Simplifying	-2sin2x' of x at which this minimum oc f x at which this minimum oc he denominator is at a nator is a minimum when x + 1.11) \leq 1. value of $g(x)$ occurs a need to solve for the s true. Since cos(x) has nimum will be found by natively, we can use x + 1.11) = -1. ions, you will first need to ple showing how we do th 5°) = 0 in the interval $0 \leq x$ 3sinxcos45 - 3cc 2sinxcos45 - 4cc	curs. $f(x) = \frac{1}{50 + \sqrt{5}\cos^2 \pi}$ $g(x)_{max} = \frac{1}{50 + \sqrt{5}}$ $f(x) = 2x_{min} + 1.11$ $x_{min} = \frac{\pi - 1.11}{2} = 1$ simplify the equivalent is in practice: $\leq 360^{\circ}$ $sxsin45 - sinxco$ $sxsin45 = 0$	use $R = \sqrt{a}$ values much easier. (2x + 1.11) $\frac{18}{\sqrt{5}(-1)} = \frac{18}{50 - \sqrt{5}}$ = 1.02		In the exam you will lik involving the forms Rst scenario given to you. Re is the same as before; you Example 9: A to groun H = where start a) By heigh b) Fin Use the method trigonometric te we need to use t coefficient must $65 \cos\left(\frac{2}{5}t\right) - 2t$ $65 \cos\left(\frac{2}{5}t\right)$ By looking at our maximum when This question is e period of our fur To do so, we just since $cos(t)$ has H has a period of The reason we co- term in H is cos

www.pmt.education <a>D© PMTEducation

the solutions:

Using CAST or a graphical method, we can find all The solutions in the given interval are:

 $x = 63.4^{\circ}, 243.4^{\circ}$

0

Edexcel Pure Year 2

thing we have covered so far to prove identities. You must start from one side of the equatio phometric identities to manipulate the expression and achieve what is on the other side.

llow in your manipulation. Your knowledge of the identities is being tested, so you need to with the content in this chapter and the previous. As with most of Mathematics, the mos practice.

	$LHS = (\cos^2 x)(\cos^2 x)$
ine identity to express	Since $cos2x = 2cos^2x - 1 \Rightarrow cos^2x = \left(\frac{cos2x + 1}{2}\right)$
into the <i>LHS</i> :	$\Rightarrow LHS = \left(\frac{\cos 2x + 1}{2}\right) \left(\frac{\cos 2x + 1}{2}\right)$
	$=\frac{1}{4}(\cos^2 2x + 2\cos 2x + 1)$
sine identity again to cos4x.	Since $cos2x = 2cos^2x - 1 \Rightarrow cos^22x = \left(\frac{cos4x+1}{2}\right)$
into the <i>LHS</i> :	$\frac{1}{4} \left[\frac{\cos 4x + 1}{2} + 2\cos 2x + 1 \right]$
PHS:	$=\frac{1}{8}\cos 4x + \frac{1}{2}\cos 2x + \frac{1}{8} + \frac{1}{4}$
	$=\frac{1}{8}cos4x + \frac{1}{2}cos2x + \frac{3}{8} = RHS$

ric functions

given problems where trigonometric functions are used to model real-life situations, ofter α) and $Rcos(x \pm \alpha)$. To succeed in these questions, you must properly understand the ugh the text more than once to make sure you understand what is going on. The maths itself need to be able to apply it in the context of the question.

es to build a large Ferris wheel to be used as a tourist attraction. The height above the tres, of a passenger on the Ferris wheel is modelled by the equation

 $\sin\left(\frac{2}{5}t\right) - 65\cos\left(\frac{2}{5}t\right),$

e height of the passenger above the ground and t is the number of minutes after the ride has ngles are given in radians.

g H in the form $A + Rcos(\frac{2}{5}t + \alpha)$ where A, R, α are positive constants, find the maximum Ferris wheel above the ground.

me taken for one complete revolution.

nple 4 to simplify the two ne term. Note that since $\frac{2}{5}t + \alpha$ form, our cosine e. So consider rather than 20 sin $\left(\frac{2}{5}t\right)$ –	$65\cos\left(\frac{2}{5}t\right) - 20\sin\left(\frac{2}{5}t\right) \equiv 5\sqrt{185}\cos\left(\frac{2}{5}t + 0.298\right)$ $\therefore H = 25 - 5\sqrt{185}\cos\left(\frac{2}{5}t + 0.298\right)$
we can deduce that H is 0.298 is minimum.	H_{max} occurs when $\cos\left(\frac{2}{5}t + 0.298\right) = -1$. $\therefore H_{max} = 25 + 5\sqrt{185} = \max \text{ height above ground}$
asking us to calculate the	The time taken for one complete revolution is $\frac{2\pi}{\frac{2}{5}} = 5\pi$.
bok at our cosine function: of 2π , we can conclude that	
is because the cosine 28). This tells us that t values are multiplied by o multiplied by $\frac{1}{2}$ giving us	

